LT1225CS8 [Linear]

Very High Speed Operational Amplifier; 超高速运算放大器
LT1225CS8
型号: LT1225CS8
厂家: Linear    Linear
描述:

Very High Speed Operational Amplifier
超高速运算放大器

运算放大器
文件: 总8页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1225  
Very High Speed  
Operational Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Gain of 5 Stable  
TheLT1225isaveryhighspeedoperationalamplifierwith  
excellent DC performance. The LT1225 features reduced  
input offset voltage and higher DC gain than devices with  
comparable bandwidth and slew rate. The circuit is a  
singlegainstagewithoutstandingsettlingcharacteristics.  
The fast settling time makes the circuit an ideal choice for  
data acquisition systems. The output is capable of driving  
a 500load to ±12V with ±15V supplies and a 150load  
to ±3V on ±5V supplies. The circuit is also capable of  
driving large capacitive loads which makes it useful in  
buffer or cable driver applications.  
150MHz Gain Bandwidth  
400V/µs Slew Rate  
20V/mV DC Gain, RL = 500Ω  
1mV Maximum Input Offset Voltage  
±12V Minimum Output Swing into 500Ω  
Wide Supply Range: ±2.5V to ±15V  
7mA Supply Current  
90ns Settling Time to 0.1%, 10V Step  
Drives All Capacitive Loads  
O U  
PPLICATI  
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
Data Acquisition Systems  
S
A
The LT1225 is a member of a family of fast, high per-  
formance amplifiers that employ Linear Technology  
Corporation’s advanced bipolar complementary  
processing.  
U
O
TYPICAL APPLICATI  
Gain of 5 Pulse Response  
20MHz,AV = 50 Instrumentation Amplifier  
+
LT1225  
1k  
10k  
1k  
1k  
250Ω  
250Ω  
+
200pF  
1k  
+
V
V
OUT  
LT1225  
IN  
10k  
LT1225 TA02  
LT1225  
+
LT1225 TA01  
1
LT1225  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Total Supply Voltage (V+ to V) .............................. 36V  
Differential Input Voltage ......................................... ±6V  
Input Voltage ............................................................±VS  
Output Short Circuit Duration (Note 1) ............ Indefinite  
Operating Temperature Range  
TOP VIEW  
ORDER PART  
1
2
3
4
NUMBER  
NULL  
–IN  
8
7
6
5
NULL  
+
V
LT1225CN8  
LT1225CS8  
OUT  
NC  
+IN  
V
LT1225C................................................ 0°C to 70°C  
Maximum Junction Temperature  
Plastic Package .............................................. 150°C  
Storage Temperature Range ................. – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
N8 PACKAGE  
S8 PACKAGE  
S8 PART MARKING  
1225  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
LT1225 PO01  
TJ MAX = 15O°C, θJA = 130°C/W (N8)  
TJ MAX = 15O°C, θJA = 220°C/W (S8)  
ELECTRICAL CHARACTERISTICS VS = ±15V, TA = 25°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
100  
4
MAX  
1.0  
400  
8
UNITS  
mV  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
(Note 2)  
OS  
I
I
nA  
OS  
µA  
B
e
f = 10kHz  
f = 10kHz  
7.5  
1.5  
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±12V  
CM  
24  
12  
40  
70  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
Input Voltage Range +  
Input Voltage Range –  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Swing  
2
14  
pF  
V
IN  
–13  
115  
95  
–12  
V
CMRR  
PSRR  
V
= ±12V  
94  
86  
dB  
CM  
V = ±5V to ±15V  
S
dB  
A
V
V
= ±10V, R = 500Ω  
12.5  
±12.0  
24  
20  
V/mV  
V
VOL  
OUT  
OUT  
OUT  
L
R = 500Ω  
L
±13.3  
40  
I
Output Current  
V
= ±12V  
mA  
V/µs  
MHz  
MHz  
ns  
OUT  
SR  
Slew Rate  
(Note 3)  
250  
400  
6.4  
150  
7
Full Power Bandwidth  
Gain Bandwidth  
10V Peak, (Note 4)  
f = 1MHz  
GBW  
t , t  
r
Rise Time, Fall Time  
Overshoot  
A
A
= 5, 10% to 90%, 0.1V  
= 5, 0.1V  
f
VCL  
VCL  
20  
%
Propagation Delay  
Settling Time  
50% V to 50% V  
7
ns  
IN  
OUT  
t
10V Step, 0.1%, A = 5  
90  
ns  
s
V
Differential Gain  
f = 3.58MHz, A = 5, R = 150Ω  
1.0  
1.7  
4.5  
7
%
V
L
Differential Phase  
Output Resistance  
Supply Current  
f = 3.58MHz, A = 5, R = 150Ω  
Deg  
V
L
R
A
= 5, f = 1MHz  
VCL  
O
I
9
mA  
S
2
LT1225  
ELECTRICAL CHARACTERISTICS V = ±5V, T = 25°C, V  
CM = 0V unless otherwise noted.  
S
A
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 2)  
MIN  
TYP  
1.0  
100  
4
MAX  
2.0  
400  
8
UNITS  
mV  
nA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
OS  
I
I
OS  
µA  
V
B
Input Voltage Range +  
Input Voltage Range –  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
2.5  
4
–3  
115  
2.5  
V
CMRR  
V
= ±2.5V  
94  
10  
dB  
CM  
A
V
OUT  
V
OUT  
= ±2.5V, R = 500Ω  
= ±2.5V, R = 150Ω  
15  
13  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
L
V
Output Voltage  
R = 500Ω  
R = 150Ω  
±3.0  
±3.0  
±3.7  
±3.3  
V
V
L
L
I
Output Current  
Slew Rate  
V
OUT  
= ±3V  
20  
40  
250  
13.3  
100  
9
mA  
V/µs  
MHz  
MHz  
ns  
SR  
(Note 3)  
Full Power Bandwidth  
Gain Bandwidth  
Rise Time, Fall Time  
Overshoot  
3V Peak, (Note 4)  
f = 1MHz  
GBW  
t , t  
A
VCL  
A
VCL  
= 5, 10% to 90%, 0.1V  
= 5, 0.1V  
r
f
10  
9
%
Propagation Delay  
Settling Time  
50% V to 50% V  
ns  
IN  
OUT  
t
I
– 2.5V to 2.5V, 0.1%, A = 4  
70  
7
ns  
s
V
Supply Current  
9
mA  
S
0°C TA 70°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±15V, (Note 2)  
MIN  
TYP  
MAX  
1.5  
2.5  
UNITS  
V
OS  
Input Offset Voltage  
0.5  
1.0  
mV  
mV  
S
V = ±5V, (Note 2)  
S
Input V Drift  
10  
100  
4
µV/°C  
nA  
OS  
I
I
Input Offset Current  
V = ±15V and V = ±5V  
600  
9
OS  
S
S
Input Bias Current  
V = ±15V and V = ±5V  
µA  
B
S
S
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V = ±15V, V = ±12V and V = ±5V, V = ±2.5V  
93  
85  
115  
95  
dB  
S
CM  
S
CM  
V = ±5V to ±15V  
S
dB  
A
V = ±15V, V  
= ±10V, R = 500Ω  
10  
8
12.5  
10  
V/mV  
V/mV  
VOL  
OUT  
OUT  
S
OUT  
L
V = ±5V, V  
= ±2.5V, R = 500Ω  
S
OUT  
L
V
Output Swing  
Output Current  
V = ±15V, R = 500Ω  
±12.0  
±3.0  
±13.3  
±3.3  
V
V
S
L
V = ±5V, R = 500or 150Ω  
S
L
I
V = ±15V, V  
= ±12V  
OUT  
24  
20  
40  
40  
mA  
mA  
S
V = ±5V, V  
= ±3V  
S
OUT  
SR  
Slew Rate  
V = ±15V, (Note 3)  
250  
400  
7
V/µs  
S
I
Supply Current  
V = ±15V and V = ±5V  
10.5  
mA  
S
S
S
Note 1: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 3: Slew rate is measured between ±10V on an output swing of ±12V  
on ±15V supplies, and ±2V on an output swing of ±3.5V on ±5V supplies.  
Note 2: Input offset voltage is tested with automated test equipment  
in <1 second.  
Note 4: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πVp.  
3
LT1225  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common-Mode Range vs  
Supply Voltage  
Output Voltage Swing vs  
Supply Voltage  
Supply Current vs Supply Voltage  
20  
15  
10  
5
8.0  
7.5  
7.0  
6.5  
6.0  
20  
15  
10  
5
T
= 25°C  
A
L
T
= 25°C  
OS  
T = 25°C  
A
A
R
= 500Ω  
V < 1mV  
V = 30mV  
OS  
+V  
SW  
+V  
–V  
CM  
–V  
SW  
CM  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1225 TPC01  
LT1225 TPC02  
LT1225 TPC03  
Output Voltage Swing vs  
Resistive Load  
Input Bias Current vs Input  
Common-Mode Voltage  
Open-Loop Gain vs  
Resistive Load  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
5.0  
4.5  
4.0  
3.5  
3.0  
T
= 25°C  
OS  
T
= 25°C  
A
A
V
= ±15V  
= 25°C  
S
A
V = 30mV  
T
I
+ I  
B+ B–  
V
V
= ±15V  
= ±5V  
I
=
S
B
2
V
= ±15V  
S
S
V
= ±5V  
S
0
10  
100  
1k  
10k  
10  
100  
1k  
10k  
–15 –10  
–5  
0
5
10  
15  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
INPUT COMMON-MODE VOLTAGE (V)  
LT1225 TPC04  
LT1225 TPC06  
LT1225 TPC05  
Output Short-Circuit Current vs  
Temperature  
Supply Current vs Temperature  
Input Bias Current vs Temperature  
5.0  
4.75  
4.5  
10  
9
55  
50  
45  
40  
35  
30  
25  
V
= ±15V  
V
= ±15V  
V
= ±5V  
S
S
S
I
+ I  
B+ B–  
I
=
B
2
8
4.25  
4.0  
7
SINK  
SOURCE  
6
3.75  
3.5  
5
4
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1225 TPC08  
LT1225 TPC07  
LT1225 TPC09  
4
LT1225  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio vs  
Common-Mode Rejection Ratio vs  
Frequency  
Input Noise Spectral Density  
Frequency  
1000  
100  
10  
10  
100  
80  
120  
100  
V
= ±15V  
= 25°C  
V
= ±15V  
= 25°C  
S
A
S
A
T
T
i
n
+PSRR  
1.0  
0.1  
0.01  
80  
60  
60  
–PSRR  
40  
e
n
40  
20  
0
V
T
V
R
= ±15V  
= 25°C  
= 101  
S
A
20  
0
A
= 100k  
S
1
100  
10k  
100k 1M  
FREQUENCY (Hz)  
10M 100M  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
LT1225 TPC11  
LTXXXX • TPCXX  
LT1225 TPC10  
Voltage Gain and Phase vs  
Frequency  
Frequency Response vs  
Capacitive Load  
Output Swing vs Settling Time  
24  
22  
20  
10  
100  
80  
100  
80  
V
T
= ±15  
V
T
= ±15V  
= 25°C  
= –5  
S
A
S
A
V
8
6
4
V
= ±15V  
= 25°C  
S
10mV SETTLING  
A
C = 100pF  
C = 50pF  
C = 0pF  
A
V
= 5  
V
S
= ±5V  
A
V
= –5  
18  
16  
14  
12  
10  
8
2
0
60  
60  
V
= ±15V  
S
V
= ±5V  
S
–2  
–4  
–6  
–8  
–10  
40  
40  
A
V
= –5  
C = 1000pF  
C = 500pF  
20  
0
20  
0
A
= 5  
V
6
4
T
= 25°C  
1k  
A
1M  
10M  
FREQUENCY (HZ)  
100M  
100  
10k  
100k 1M  
10M 100M  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
LT1225 TPC15  
LT1225 TPC13  
LTC1225 TPC14  
Closed-Loop Output Impedance vs  
Frequency  
Gain Bandwidth vs Temperature  
Slew Rate vs Temperature  
500  
450  
400  
350  
100  
10  
153  
152  
151  
150  
V
S
A
V
= ±15V  
= –5  
V
= ±15V  
= 25°C  
= 5  
V = ±15V  
S
S
A
V
T
A
–SR  
+SR  
1
300  
250  
200  
149  
148  
147  
0.1  
0.01  
50  
TEMPERATURE (˚C)  
100 125  
50  
TEMPERATURE (˚C)  
100 125  
–50 –25  
0
25  
75  
1M  
10M  
–50 –25  
25  
75  
10k  
100M  
0
100k  
FREQUENCY (Hz)  
LT1225 TPC18  
LT1225 TPC16  
LT1225 TPC17  
5
LT1225  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
Small Signal, AV = 5  
Small Signal, AV = 5  
TheLT1225maybeinserteddirectlyintoHA2541,HA2544,  
AD847, EL2020 and LM6361 applications, provided that  
the amplifier configuration is a noise gain of 5 or greater,  
andthenullingcircuitryisremoved.Thesuggestednulling  
circuit for the LT1225 is shown below.  
Offset Nulling  
+
V
5k  
0.1µF  
LT1225 AI02  
1
Thelarge-signalresponseinbothinvertingandnoninvert-  
ing gain shows symmetrical slewing characteristics. Nor-  
mally the noninverting response has a much faster rising  
edge than falling edge due to the rapid change in input  
common-modevoltagewhichaffectsthetailcurrentofthe  
input differential pair. Slew enhancement circuitry has  
been added to the LT1225 so that the noninverting slew  
rate response is balanced.  
8
3
2
+
7
4
6
LT1225  
0.1µF  
V
LT1225 AI01  
Layout and Passive Components  
Large Signal, AV = 5  
Large Signal, AV = 5  
As with any high speed operational amplifier, care must be  
taken in board layout in order to obtain maximum perfor-  
mance. Key layout issues include: use of a ground plane,  
minimization of stray capacitance at the input pins, short  
lead lengths, RF-quality bypass capacitors located close  
to the device (typically 0.01µF to 0.1µF), and use of low  
ESR bypass capacitors for high drive current applications  
(typically 1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is  
required, although low profile sockets can provide  
reasonable performance up to 50MHz. For more details  
see Design Note 50. Feedback resistor values greater than  
5karenotrecommendedbecauseapoleisformedwiththe  
input capacitance which can cause peaking. If feedback  
resistors greater than 5k are used, a parallel  
capacitorof5pFto10pFshouldbeusedtocanceltheinput  
pole and optimize dynamic performance.  
LT1225 AI03  
Input Considerations  
Resistors in series with the inputs are recommended for  
the LT1225 in applications where the differential input  
voltage exceeds ±6V continuously or on a transient basis.  
An example would be in noninverting configurations with  
high input slew rates or when driving heavy capacitive  
loads. The use of balanced source resistance at each input  
isrecommendedforapplicationswhereDCaccuracymust  
be maximized.  
Transient Response  
TheLT1225gain-bandwidthis150MHzwhenmeasuredat  
1MHz. The actual frequency response in gain of 5 is  
considerablyhigherthan30MHzduetopeakingcausedby  
a second pole beyond the gain of 5 crossover point. This  
is reflected in the small-signal transient response. Higher  
noisegainconfigurationsexhibitlessovershootasseenin  
the inverting gain of 5 response.  
Capacitive Loading  
The LT1225 is stable with all capacitive loads. This is  
accomplishedbysensingtheloadinducedoutputpoleand  
adding compensation at the amplifier gain node. As the  
capacitive load increases, both the bandwidth and phase  
margin decrease so there will be peaking in the frequency  
6
LT1225  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Compensation  
domain and in the transient response. The photo of the  
small-signalresponsewith1000pFloadshows50%peak-  
ing.Thelarge-signalresponsewitha10,000pFloadshows  
the output slew rate being limited by the short-circuit  
current.  
The LT1225 has a typical gain-bandwidth product of  
150MHz which allows it to have wide bandwidth in high  
gain configurations (i.e., in a gain of 10 it will have a  
bandwidth of about 15MHz). The amplifier is stable in a  
noise gain of 5 so the ratio of the output signal to the  
inverting input must be 1/5 or less. Straightforward gain  
configurations of 5 or –4 are stable, but there are a few  
configurations that allow the amplifier to be stable for  
lower signal gains (the noise gain, however, remains 5 or  
more). One example is the summing amplifier shown in  
the typical applications section below. Each input signal  
hasagainof –RF/RIN totheoutput, butitiseasilyseenthat  
this configuration is equivalent to a gain of –4 as far as the  
amplifier is concerned. Lag compensation can also be  
used to give a low frequency gain less than 5 with a high  
frequency gain of 5 or greater. The example below has a  
DC gain of one, but an AC gain of 5. The break frequency  
of the RC combination across the amplifier inputs should  
be approximately a factor of 10 less than the gain band-  
width of the amplifier divided by the high frequency gain  
(in this case 1/10 of 150MHz/5 or 3MHz).  
AV = 5, CL = 10,000pF  
AV = 5, CL = 1000pF  
LT1225 AI04  
The LT1225 can drive coaxial cable directly, but for best  
pulse fidelity the cable should be doubly terminated with  
a resistor in series with the output.  
U
O
TYPICAL APPLICATI S  
Cable Driving  
Lag Compensation  
R3  
75  
+
V
75CABLE  
IN  
LT1225  
V
OUT  
V
+
IN  
LT1225  
V
OUT  
R4  
75Ω  
500Ω  
R1  
1k  
100pF  
2k  
= 1, f < 3MHz  
R2  
250Ω  
LT1225 TA03  
A
V
LT1225 TA04  
Wein Bridge Oscillator  
Summing Amplifier  
430Ω  
#327  
LAMP  
R
F
R
R
+
IN  
V
+
IN1  
LT1225  
V
OUT  
1.5k  
IN  
>10V  
LT1225  
V
OUT  
P-P  
V
IN2  
1MHz  
R
IN  
100pF  
100pF  
V
IN  
n
1.5k  
nR  
F
4
R
IN  
=
LT1225 TA06  
LT1225 TA05  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
7
LT1225  
W
W
SI PLIFIED SCHE ATIC  
V+  
7
NULL  
1
8
BIAS 1  
–IN  
BIAS 2  
+IN  
3
2
6
OUT  
V–  
4
LT1224 • TA10  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
2
3
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
N8 0392  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.228 – 0.244  
0.150 – 0.157  
0.016 – 0.050  
0.406 – 1.270  
(5.791 – 6.197)  
(3.810 – 3.988)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
0°– 8° TYP  
1
3
4
SO8 0392  
2
LT/GP 1092 5K REV A  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

LT1225CS8#PBF

LT1225 - Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1225MJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1225MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1225MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear

LT1226

Low Noise Very High Speed Operational Amplifier
Linear

LT1226C

Low Noise Very High Speed Operational Amplifier
Linear

LT1226CJ8

IC OP-AMP, 1000 uV OFFSET-MAX, 1000 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1226CN8

Low Noise Very High Speed Operational Amplifier
Linear

LT1226CN8#PBF

暂无描述
Linear

LT1226CS8

Low Noise Very High Speed Operational Amplifier
Linear

LT1226CS8#PBF

LT1226 - Low Noise Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1226CS8#TRPBF

LT1226 - Low Noise Very High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear