LT1469-2 [Linear]

Dual 200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp; 200MHz的双通道, 30V /μs的16位精度的AV ≥ 2运算放大器
LT1469-2
型号: LT1469-2
厂家: Linear    Linear
描述:

Dual 200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
200MHz的双通道, 30V /μs的16位精度的AV ≥ 2运算放大器

运算放大器
文件: 总12页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1469-2  
Dual 200MHz, 30V/µs  
16-Bit Accurate A 2 Op Amp  
V
FEATURES  
DESCRIPTION  
The LT®1469-2 is a dual, precision high speed opera-  
tional amplifier with 16-bit accuracy, decompensated to  
be stable in a gain of 2 or greater. The combination of  
precision and AC performance makes the LT1469-2 the  
optimum choice for high accuracy applications such as  
DAC current-to-voltage conversion and ADC buffers. The  
initial accuracy and drift characteristics of the input offset  
voltage and inverting input bias current are tailored for  
inverting applications.  
n
Stable in Gain A ≥ 2 (A = –1)  
V
V
n
n
n
n
n
n
n
n
n
n
n
n
n
n
200MHz Gain Bandwidth Product  
30V/μs Slew Rate  
Settling Time: 800ns (150ꢀV, 10V Step)  
Specified at 5V and 15V Supplies  
Maximum Input Offset Voltage: 125μV  
Low Distortion: ꢀ96.±dB for 100kHz, 105  
P-P  
Maximum Input Offset 5oltage Drift: 3μ5/ꢁC  
Maximum Inverting Input Bias Current: 10nA  
Minimum DC Gain: 3005/m5  
Minimum Output Swing into 2k: ±12.ꢂ5  
Input Noise 5oltage: ±n5/√Hz  
Input Noise Current: 0.6pA/√Hz  
The 200MHz gain bandwidth ensures high open-loop gain  
at frequency for reducing distortion. In noninverting ap-  
plications such as an ADC buffer, the low distortion and  
DC accuracy allow full 16-bit AC and DC performance.  
The high slew rate of the LT1469-2 improves large-signal  
performance in applications such as active filters and  
instrumentation amplifiers compared to other precision  
op amps.  
Total Input Noise Optimized for 1kΩ < R < 20kΩ  
Available in ꢂ-Lead Plastic SO and  
S
12-Lead (4mm × 4mm) DFN Packages  
APPLICATIONS  
The LT1469-2 is specified on power supply voltages of  
±±5 and ±1±5 and from ꢀ40ꢁC to ꢂ±ꢁC. It is available in  
an ꢂ-lead SOIC package and a space saving 4mm × 4mm  
leadlesspackage.Foraunity-gainstableopampwithsame  
DC performance, see the LT1469 datasheet.  
n
Precision Instrumentation  
n
High Accuracy Data Acquisition Systems  
n
16-Bit DAC Current-to-5oltage Converter  
ADC Buffer  
Low Distortion Active Filters  
n
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Photodiode Amplifiers  
TYPICAL APPLICATION  
16-Bit DAC I-to-V Converter  
Large-Signal Transient, AV = –1  
5
A
R
C
= ±1±5  
= ꢀ1  
S
5
F
105  
20pF  
= R = 2k  
G
16  
= 22pF  
6k  
F
DAC  
INPUTS  
2k  
1/2  
5
25/DI5  
05  
OUT  
LT1469-2  
LTC®1±97  
+
±0pF  
OPTIONAL NOISE FILTER  
OFFSET: 5 + I (6kꢃ) < 1LSB  
OS  
B
SETTLING TIME TO 1±0μ5 = 1.6μs  
SETTLING LIMITED BY 6k AND 20pF TO COMPENSATE DAC OUTPUT CAPACITANCE  
14692 TA01a  
200ns/DI5  
14692 TA02  
14692f  
1
LT1469-2  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
+
Total Supply 5oltage (5 to 5 ).................................365  
Input Current (Note 2)..........................................±10mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4).... ꢀ40ꢁC to ꢂ±ꢁC  
Specified Temperature Range (Note ±) .... ꢀ40ꢁC to ꢂ±ꢁC  
Maximum Junction Temperature........................... 1±0ꢁC  
Storage Temperature Range................... ꢀ6±ꢁC to 1±0ꢁC  
PIN CONFIGURATION  
TOP 5IEW  
+
TOP 5IEW  
1
2
3
4
±
6
5
12  
OUT A  
ꢀIN A  
+IN A  
+
5
OUT A  
ꢀIN A  
+IN A  
1
2
3
4
7
6
±
11 OUT B  
A
ꢀIN B  
+IN B  
N/C  
10  
9
OUT B  
ꢀIN B  
+IN B  
13  
B
A
5
N/C  
N/C  
B
5
7
N/C  
Sꢂ PACKAGE  
ꢂ-LEAD PLASTIC SO  
= 1±0ꢁC, θ = 190ꢁC/W  
DF PACKAGE  
12-LEAD (4mm × 4mm) PLASTIC DFN  
= 1±0ꢁC, θ = 37ꢁC/W  
T
T
JMAX  
JA  
JMAX  
JA  
EXPOSED PAD (PIN 13) IS GND, MUST BE CONNECTED TO 5  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1469CSꢂ-2#PBF  
LT1469ISꢂ-2#PBF  
LT1469ACDF-2#PBF  
LT1469AIDF-2#PBF  
LT1469CDF-2#PBF  
LT1469IDF-2#PBF  
TAPE AND REEL  
PART MARKING*  
14692  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0ꢁC to 70ꢁC  
LT1469CSꢂ-2#TRPBF  
LT1469ISꢂ-2#TRPBF  
LT1469ACDF-2#TRPBF  
LT1469AIDF-2#TRPBF  
LT1469CDF-2#TRPBF  
LT1469IDF-2#TRPBF  
ꢂ-Lead Plastic Small Outline  
14692  
ꢂ-Lead Plastic Small Outline  
ꢀ40ꢁC to ꢂ±ꢁC  
0ꢁC to 70ꢁC  
14692  
12-Lead (4mm × 4mm) Plastic DFN  
12-Lead (4mm × 4mm) Plastic DFN  
12-Lead (4mm × 4mm) Plastic DFN  
12-Lead (4mm × 4mm) Plastic DFN  
14692  
ꢀ40ꢁC to ꢂ±ꢁC  
0ꢁC to 70ꢁC  
14692  
14692  
ꢀ40ꢁC to ꢂ±ꢁC  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
5
Input Offset 5oltage  
Sꢂ Package  
±1±5  
±±5  
±0  
±0  
12±  
200  
μ5  
μ5  
OS  
LT1469A, DF Package  
LT1469, DF Package  
±1±5  
±±5  
±0  
±0  
12±  
200  
μ5  
μ5  
±1±5  
±±5  
100  
1±0  
22±  
300  
μ5  
μ5  
I
Input Offset Current  
±±5 to ±1±5  
13  
±±0  
nA  
OS  
14692f  
2
LT1469-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
3
MAX  
±10  
±40  
UNITS  
nA  
SUPPLY  
I ꢀ  
Inverting Input Bias Current  
Noninverting Input Bias Current  
Input Noise 5oltage  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
B
I +  
B
ꢀ10  
0.3  
±
nA  
0.1Hz to 10Hz  
f = 10kHz  
μ5  
P-P  
e
Input Noise 5oltage Density  
Input Noise Current Density  
Input Resistance  
n5/√Hz  
pA/√Hz  
n
i
n
f = 10kHz  
0.6  
R
Common Mode, 5 = ±12.±5  
Differential  
±1±5  
±1±5  
100  
±0  
240  
1±0  
MΩ  
kΩ  
IN  
CM  
C
5
Input Capacitance  
±1±5  
4
pF  
IN  
Input 5oltage Range (Positive)  
Guaranteed by CMRR  
Guaranteed by CMRR  
±1±5  
±±5  
12.±  
2.±  
13.±  
3.6  
5
5
CM  
Input 5oltage Range (Negative)  
Common Mode Rejection Ratio  
±1±5  
±±5  
ꢀ14.3  
ꢀ4.4  
ꢀ12.±  
ꢀ2.±  
5
5
CMRR  
PSRR  
5
CM  
5
CM  
= ±12.±5  
= ±2.±5  
±1±5  
±±5  
96  
96  
110  
112  
dB  
dB  
Minimum Supply 5oltage  
Power Supply Rejection Ratio  
Large-Signal 5oltage Gain  
Guaranteed by PSRR  
5 = ±4.±5 to ±1±5  
±2.±  
112  
±4.±  
5
100  
dB  
S
A
5OL  
5
OUT  
5
OUT  
5
OUT  
5
OUT  
= ±12.±5, R = 10k  
±1±5  
±1±5  
±±5  
300  
300  
200  
200  
2000  
2000  
ꢂ000  
ꢂ000  
5/m5  
5/m5  
5/m5  
5/m5  
L
= ±12.±5, R = 2k  
L
= ±2.±5, R = 10k  
L
= ±2.±5, R = 2k  
±±5  
L
5
Maximum Output Swing  
Maximum Output Current  
R = 10k, 1m5 Overdrive  
±1±5  
±1±5  
±±5  
±13.0 ±13.6  
±12.ꢂ ±13.±  
5
5
5
5
OUT  
L
R = 2k, 1m5 Overdrive  
L
R = 10k, 1m5 Overdrive  
±3.0  
±2.ꢂ  
±3.7  
±3.6  
L
R = 2k, 1m5 Overdrive  
±±5  
L
I
I
5
OUT  
5
OUT  
= ±12.±5, 1m5 Overdrive  
= ±2.±5, 1m5 Overdrive  
±1±5  
±±5  
±1±  
±1±  
±22  
±22  
mA  
mA  
OUT  
Output Short-Circuit Current  
Slew Rate  
5
OUT  
= 05, 0.25 Overdrive (Note 3)  
±1±5  
±2±  
±40  
mA  
SC  
SR  
R = 2k (Note 6)  
L
±1±5  
±±5  
20  
1±  
30  
22  
5/μs  
5/μs  
FPBW  
GBW  
Full-Power Bandwidth  
Gain Bandwidth Product  
Settling Time  
105 Peak, (Note 7)  
35 Peak, (Note 7)  
±1±5  
±±5  
47±  
kHz  
kHz  
1160  
f = 100kHz, R = 2k  
±1±5  
±±5  
140  
130  
200  
190  
MHz  
MHz  
L
t
S
105 Step, 0.01%, A = ꢀ1  
105 Step, 1±0μ5, A = 1  
±1±5  
±1±5  
6±0  
ꢂ00  
ns  
ns  
5
5
R
Output Resistance  
Channel Separation  
A = ꢀ1, f = 100kHz  
±1±5  
0.02  
Ω
OUT  
5
5
OUT  
5
OUT  
= ±12.±5, R = 2k  
±1±5  
±±5  
100  
100  
130  
130  
dB  
dB  
L
= ±2.±5, R = 2k  
L
I
S
Supply Current  
Per Amplifier  
±1±5  
±±5  
4.1  
3.ꢂ  
±.2  
±
mA  
mA  
Δ5  
OS  
Input Offset 5oltage Match  
±1±5  
±±5  
30  
±0  
22±  
3±0  
μ5  
μ5  
ΔI ꢀ  
Inverting Input Bias Current Match  
Noninverting Input Bias Current Match  
Common Mode Rejection Match  
±±5 to ±1±5  
±±5 to ±1±5  
2
±
1ꢂ  
7ꢂ  
nA  
nA  
B
ΔI +  
B
ΔCMRR  
5
CM  
5
CM  
= ±12.±5 (Note 9)  
= ±2.±5 (Note 9)  
±1±5  
±±5  
93  
93  
113  
11±  
dB  
dB  
ΔPSRR  
Power Supply Rejection Match  
5 = ±4.±5 to ±1±5 (Note 9)  
S
97  
11±  
dB  
14692f  
3
LT1469-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, 0°C ≤ TA ≤ 70°C. VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset 5oltage  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
5
Sꢂ Package  
±1±5  
±±5  
3±0  
3±0  
μ5  
μ5  
OS  
LT1469A, DF Package  
LT1469, DF Package  
(Note ꢂ)  
±1±5  
±±5  
22±  
27±  
μ5  
μ5  
±1±5  
±±5  
4±0  
4±0  
μ5  
μ5  
Δ5 /ΔT Input Offset 5oltage Drift  
OS  
±1±5  
±±5  
1
1
±
3
μ5/ꢁC  
μ5/ꢁC  
I
Input Offset Current  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±ꢂ0  
±20  
±60  
nA  
pA/ꢁC  
nA  
OS  
ΔI /ΔT  
Input Offset Current Drift  
(Note ꢂ)  
(Note ꢂ)  
60  
40  
OS  
I ꢀ  
Inverting Input Bias Current  
Inverting Input Bias Current Drift  
Noninverting Input Bias Current  
Input 5oltage Range (Positive)  
B
ΔI ꢀ/ΔT  
pA/ꢁC  
nA  
B
I +  
B
5
Guaranteed by CMRR  
Guaranteed by CMRR  
±1±5  
±±5  
12.±  
2.±  
5
5
CM  
Input 5oltage Range (Negative)  
Common Mode Rejection Ratio  
±1±5  
±±5  
ꢀ12.±  
ꢀ2.±  
5
5
CMRR  
PSRR  
5
5
= ±12.±5  
= ±2.±5  
±1±5  
±±5  
94  
94  
dB  
dB  
5
CM  
CM  
Minimum Supply 5oltage  
Power Supply Rejection Ratio  
Large-Signal 5oltage Gain  
Guaranteed by PSRR  
5 = ±4.±5 to ±1±5  
±4.±  
9±  
dB  
S
A
5
OUT  
5
OUT  
5
OUT  
5
OUT  
= ±12.±5, R = 10k  
±1±5  
±1±5  
±±5  
100  
100  
100  
100  
5/m5  
5/m5  
5/m5  
5/m5  
5OL  
L
L
= ±12.±5, R = 2k  
= ±2.±5, R = 10k  
= ±2.±5, R = 2k  
L
L
±±5  
5
Maximum Output Swing  
Maximum Output Current  
R = 10k, 1m5 Overdrive  
±1±5  
±1±5  
±±5  
±12.9  
±12.7  
±2.9  
5
5
5
5
OUT  
L
R = 2k, 1m5 Overdrive  
L
R = 10k, 1m5 Overdrive  
L
R = 2k, 1m5 Overdrive  
±±5  
±2.7  
L
I
I
5
OUT  
5
OUT  
= ±12.±5, 1m5 Overdrive  
= ±2.±5, 1m5 Overdrive  
±1±5  
±±5  
±12.±  
±12.±  
mA  
mA  
OUT  
Output Short-Circuit Current  
Slew Rate  
5
OUT  
= 05, 0.25 Overdrive (Note 3)  
±1±5  
±17  
mA  
SC  
SR  
R = 2k (Note 6)  
L
±1±5  
±±5  
1ꢂ  
13  
5/μs  
5/μs  
GBW  
Gain Bandwidth Product  
Channel Separation  
Supply Current  
f = 100kHz, R = 2k  
±1±5  
±±5  
130  
120  
200  
190  
MHz  
MHz  
L
5
OUT  
5
OUT  
= ±12.±5, R = 2k  
±1±5  
±±5  
9ꢂ  
9ꢂ  
dB  
dB  
L
= ±2.±5, R = 2k  
L
I
S
Per Amplifier  
±1±5  
±±5  
6.±  
6.3  
mA  
mA  
Δ5  
Input Offset 5oltage Match  
±1±5  
±±5  
600  
600  
μ5  
μ5  
OS  
ΔI ꢀ  
Inverting Input Bias Current Match  
Noninverting Input Bias Current Match  
Common Mode Rejection Match  
±±5 to ±1±5  
±±5 to ±1±5  
3ꢂ  
nA  
nA  
B
ΔI +  
B
11ꢂ  
ΔCMRR  
5
CM  
5
CM  
= ±12.±5 (Note 9)  
= ±2.±5 (Note 9)  
±1±5  
±±5  
91  
91  
dB  
dB  
ΔPSRR  
Power Supply Rejection Match  
5 = ±4.±5 to ±1±5 (Note 9)  
S
92  
dB  
14692f  
4
LT1469-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, –40°C ≤ TA ≤ 85°C, VCM = 0V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset 5oltage  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
5
Sꢂ Package  
±1±5  
±±5  
±00  
±00  
μ5  
μ5  
OS  
LT1469A, DF Package  
LT1469, DF Package  
(Note ꢂ)  
±1±5  
±±5  
300  
3±0  
μ5  
μ5  
±1±5  
±±5  
600  
600  
μ5  
μ5  
Δ5 /ΔT Input Offset 5oltage Drift  
OS  
±1±5  
±±5  
1
1
6
±
μ5/ꢁC  
μ5/ꢁC  
I
Input Offset Current  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±±5 to ±1±5  
±120  
nA  
pA/ꢁC  
nA  
OS  
ΔI /ΔT  
Input Offset Current Drift  
(Note ꢂ)  
(Note ꢂ)  
120  
ꢂ0  
OS  
I ꢀ  
Inverting Input Bias Current  
Inverting Input Bias Current Drift  
Noninverting Input Bias Current  
Input 5oltage Range (Positive)  
±40  
B
ΔI ꢀ/ΔT  
pA/ꢁC  
nA  
B
I +  
±ꢂ0  
B
5
Guaranteed by CMRR  
Guaranteed by CMRR  
±1±5  
±±5  
12.±  
2.±  
5
5
CM  
Input 5oltage Range (Negative)  
Common Mode Rejection Ratio  
±1±5  
±±5  
ꢀ12.±  
ꢀ2.±  
5
5
CMRR  
PSRR  
5
CM  
5
CM  
= ±12.±5  
= ±2.±5  
±1±5  
±±5  
92  
92  
dB  
dB  
±4.±  
Minimum Supply 5oltage  
Power Supply Rejection Ratio  
Large-Signal 5oltage Gain  
Guaranteed by PSRR  
5 = ±4.±5 to ±1±5  
5
93  
dB  
S
A
5
OUT  
5
OUT  
5
OUT  
5
OUT  
= ±12,±5, R = 10k  
±1±5  
±1±5  
±±5  
7±  
7±  
7±  
7±  
5/m5  
5/m5  
5/m5  
5/m5  
5OL  
L
L
= ±12.±5, R = 2k  
= ±2.±5, R = 10k  
= ±2.±5, R = 2k  
L
L
±±5  
5
Maximum Output Swing  
Maximum Output Current  
R = 10k, 1m5 Overdrive  
±1±5  
±1±5  
±±5  
±12.ꢂ  
±12.6  
±2.ꢂ  
5
5
5
5
OUT  
L
R = 2k, 1m5 Overdrive  
L
R = 10k, 1m5 Overdrive  
L
R = 2k, 1m5 Overdrive  
±±5  
±2.6  
L
I
I
5
OUT  
5
OUT  
= ±12.±5, 1m5 Overdrive  
= ±2.±5, 1m5 Overdrive  
±1±5  
±±5  
±7  
±7  
mA  
mA  
OUT  
Output Short-Circuit Current  
Slew Rate  
5
OUT  
= 05, 0.25 Overdrive (Note 3)  
±1±5  
±12  
mA  
SC  
SR  
R = 2k (Note 6)  
L
±1±5  
±±5  
1±  
11  
5/μs  
5/μs  
GBW  
Gain Bandwidth Product  
Channel Separation  
f = 100kHz, R = 2k  
±1±5  
±±5  
110  
100  
200  
190  
MHz  
MHz  
L
5
OUT  
5
OUT  
= ±12.±5, R = 2k  
±1±5  
±±5  
96  
96  
dB  
dB  
L
= ±2.±5, R = 2k  
L
I
Supply Current  
Per Amplifier  
±1±5  
±±5  
7
6.ꢂ  
mA  
mA  
S
Δ5  
OS  
Input Offset 5oltage Match  
±1±5  
±±5  
ꢂ00  
ꢂ00  
μ5  
μ5  
ΔI ꢀ  
Inverting Input Bias Current Match  
±±5 to ±1±5  
±±5 to ±1±5  
7ꢂ  
nA  
nA  
B
ΔI +  
B
Noninverting Input Bias Current  
Match  
1±ꢂ  
ΔCMRR  
ΔPSRR  
Common Mode Rejection Match  
5
5
= ±12.±5 (Note 9)  
= ±2.±5 (Note 9)  
±1±5  
±±5  
ꢂ9  
ꢂ9  
dB  
dB  
CM  
CM  
Power Supply Rejection Match  
5 = ±4.±5 to ±1±5 (Note 9)  
S
90  
dB  
14692f  
5
LT1469-2  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The LT1469C-2 is guaranteed to meet specified performance from  
0ꢁC to 70ꢁC and is designed, characterized and expected to meet specified  
performance from ꢀ40ꢁC to ꢂ±ꢁC but is not tested or QA sampled at these  
temperatures. The LT1469I-2 is guaranteed to meet specified performance  
from ꢀ40ꢁC to ꢂ±ꢁC.  
Note 6: Slew rate is measured between ±ꢂ5 on the output with ±125  
swing for ±1±5 supplies and ±25 on the output with ±35 swing for ±±5  
Note 2: The inputs are protected by back-to-back diodes and two 100Ω  
series resistors. If the differential input voltage exceeds 0.75, the input  
current should be limited to less than 10mA. Input voltages outside the  
supplies will be clamped by ESD protection devices and input currents  
should also be limited to less than 10mA.  
supplies. Tested in A = ꢀ10  
5
Note 7: Full-power bandwidth is calculated from the slew rate.  
Note 3: A heat sink may be required to keep the junction temperature  
FPBW = SR/2π5 .  
P
below absolute maximum when the output is shorted indefinitely.  
Note 8: This parameter is not 100% tested.  
Note 4: The LT1469C-2 and LT1469I-2 are guaranteed functional over the  
operating temperature range of 40ꢁC to ꢂ±ꢁC.  
Note 9: ΔCMRR and ΔPSRR are defined as follows: 1) CMRR and PSRR  
are measured in μ5/5 on each amplifier; 2) the difference between the two  
sides is calculated in μ5/5; 3) the result is converted to dB.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distribution of Input Offset  
Voltage  
Distribution of Inverting Input  
Bias Current  
Supply Current vs Supply Voltage  
and Temperature  
±0  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
6
±
4
3
2
1
5
= ±1±5  
= 2±ꢁC  
5
= ±1±5  
= 2±ꢁC  
S
A
S
A
ꢂ±ꢁC  
2±ꢁC  
T
T
ꢀ40ꢁC  
ꢀ17± ꢀ12± ꢀ7± ꢀ2± 2±  
7± 12± 17±  
ꢀ10 ꢀ7.± ꢀ± ꢀ2.±  
0
2.±  
±
7.± 10  
0
±
10  
1±  
20  
SUPPLY 5OLTAGE (±5)  
INPUT OFFSET 5OLTAGE (μ5)  
IN5ERTING INPUT BIAS CURRENT (nA)  
14692 G01  
14692 G02  
14692 G03  
Total Noise vs Unmatched  
Source Resistance  
Input Noise Spectral Density  
0.1Hz to 10Hz Voltage Noise  
100  
1000  
100  
10  
1
5
= ±1±5  
= 2±ꢁC  
S
A
5
= ±1±5  
= 2±ꢁC  
S
A
5
= ±1±5  
= 2±ꢁC  
= 101  
S
A
5
T
T
T
f = 10kHz  
A
R
= 100k FOR i  
S
n
TOTAL  
NOISE  
i
n
10  
1
RESISTOR  
NOISE ONLY  
e
n
R
10  
1
0.1  
S
+
0.1  
0.01  
TIME (1s/DI5)  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
14692 G0±  
SOURCE RESISTANCE, R (ꢃ)  
FREQUENCY (Hz)  
S
14692 G06  
14692 G04  
14692f  
6
LT1469-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current  
vs Temperature  
Input Bias Current  
Input Common Mode Range  
vs Supply Voltage  
vs Input Common Mode Voltage  
+
30  
20  
ꢂ0  
60  
5
T
= 2±ꢁC  
OS  
5
= ±1±5  
A
5
T
= ±1±5  
= 2±ꢁC  
S
S
A
ꢀ0.±  
ꢀ1.0  
ꢀ1.±  
ꢀ2.0  
Δ5 < 100μ5  
40  
10  
+
I
I
20  
B
0
I
B
0
+
I
B
ꢀ10  
ꢀ20  
ꢀ30  
ꢀ40  
2.0  
1.±  
1.0  
0.±  
ꢀ20  
ꢀ40  
ꢀ60  
ꢀꢂ0  
B
5
±0  
TEMPERATURE (ꢁC)  
100 12±  
ꢀ10  
ꢀ±  
±
0
3
6
9
12  
1±  
1ꢂ  
ꢀ±0 ꢀ2±  
0
2±  
7±  
ꢀ1±  
10  
1±  
0
SUPPLY 5OLTAGE (±5)  
INPUT COMMON MODE 5OLTAGE (5)  
14692 G09  
14692 G07  
14692 G0ꢂ  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Output Short-Circuit Current  
vs Temperature  
+
+
60  
±±  
±0  
4±  
40  
3±  
30  
2±  
20  
1±  
10  
5
5
ꢀ0.±  
ꢀ1.0  
ꢀ1.±  
ꢀ2.0  
ꢀ2.±  
R
= 10k  
L
5
= ±1±5  
S
5
5
= ±1±5  
= ±0.25  
ꢂ±ꢁC  
S
IN  
2±ꢁC  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
4
R
L
= 2k  
ꢀ40ꢁC  
SOURCE  
SINK  
2.±  
2.0  
1.±  
1.0  
3
ꢀ40ꢁC  
ꢂ±ꢁC  
2
R
= 2k  
L
2±ꢁC  
1
R
= 10k  
L
T
A
= 2±ꢁC  
5
5
0.±  
ꢀ±0  
0
2±  
±0  
7± 100 12±  
ꢀ2±  
0
±
10  
1±  
20  
ꢀ20  
0
10 1±  
ꢀ1± ꢀ10 ꢀ±  
±
20  
SUPPLY 5OLTAGE (±5)  
TEMPERATURE (ꢁC)  
OUTPUT CURRENT (mA)  
14692 G12  
14692 G10  
14692 G11  
Open-Loop Gain  
vs Resistive Load  
Open-Loop Gain  
vs Temperature  
Warm-Up Drift vs Time  
160  
1±0  
140  
13±  
130  
12±  
120  
11±  
110  
10  
0
R
= 2k  
T
= 2±ꢁC  
L
A
5
S
= ±±5  
S
S0-ꢂ ±±5  
ꢀ10  
ꢀ20  
ꢀ30  
ꢀ40  
ꢀ±0  
ꢀ60  
ꢀ70  
ꢀꢂ0  
5
5
= ±±5  
S
S
140  
130  
120  
110  
100  
5
= ±1±5  
= ±1±5  
S0-ꢂ ±1±5  
90  
±0  
TEMPERATURE (ꢁC)  
100 12±  
ꢀ±0 ꢀ2±  
0
2±  
7±  
10  
100  
1k  
10k  
0
20  
40  
60  
ꢂ0 100 120 140  
LOAD RESISTANCE (ꢃ)  
TIME AFTER POWER UP (s)  
14692 G14  
14692 G13  
14692 G1±  
14692f  
7
LT1469-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Open-Loop Gain and Phase  
Gain vs Frequency, AV = –1  
Output Impedance vs Frequency  
vs Frequency  
70  
60  
±0  
40  
30  
20  
10  
0
100  
ꢂ0  
100  
10  
6
±
T
= 2±ꢁC  
= ꢀ1  
G
= 6.ꢂpF  
= ±00ꢃ  
5
T
= ±1±5  
= 2±ꢁC  
A
5
F
F
L
S
A
C
= 100pF  
= 47pF  
A
L
R
= R = 2k  
4
PHASE  
C
C
C
60  
L
3
R
A
= 100  
5
2
40  
= 22pF  
L
1
GAIN  
A
= 10  
1
5
20  
0
0.1  
0
NO C  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ±  
L
A
= ꢀ1  
1M  
T
= 2±ꢁC  
= ꢀ1  
5
A
5
F
F
L
ꢀ20  
ꢀ40  
ꢀ60  
A
0.01  
R
= R = ±.1k  
G
C
= ±pF  
= 2k  
R
ꢀ10  
0.001  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
14692 G17  
14692 G16  
14692 G1ꢂ  
Undistorted Output Swing  
vs Frequency, VS = 15V  
Undistorted Output Swing  
vs Frequency, VS = 5V  
Settling Time vs Output Step,  
AV = –1  
30  
2±  
20  
1±  
10  
±
10  
10  
9
7
6
±
4
3
2
1
0
5
= ±1±5  
= 2±ꢁC  
S
A
F
1±0μ5  
T
R
R
= R = 2.±k  
G
6
A
5
= ꢀ1  
= 2.±k  
L
0.01%  
INTO DIODES  
C
4
0.1%  
= ꢂpF  
F
2
A
= ꢀ1  
5
0
ꢀ2  
ꢀ4  
ꢀ6  
ꢀꢂ  
ꢀ10  
0.1%  
5
T
= ±1±5  
= 2±ꢁC  
= 2k  
5
T
= ±±5  
= 2±ꢁC  
= 2k  
S
S
A
A
1±0μ5  
R
R
L
L
0.01%  
THD<1%  
THD<1%  
0
1
10  
100  
1000  
0
100 200 300 400 ±00 600 700 ꢂ00 9001000  
1
10  
100  
1000 2000  
FREQUENCY (kHz)  
SETTLING TIME (ns)  
FREQUENCY (kHz)  
14692 G19  
14692 G21  
14692 G20  
Settling Time vs Output Step,  
AV = 2  
Small-Signal Transient, AV = –1  
Large-Signal Transient, AV = –1  
10  
5
= ±1±5  
5
A
= ±1±5  
= ꢀ1  
S
S
5
F
105  
R
= R = 2k  
G
0.01%  
6
C
= 22pF  
L
4
2
20m5/DI5  
25/DI5  
05  
0
ꢀ2  
ꢀ4  
ꢀ6  
ꢀꢂ  
ꢀ10  
5
= ±1±5  
= 2±ꢁC  
S
A
T
0.01%  
R
= R = 1k  
G
F
R
L
= 2.±k INTO DIODES  
200ns/DI5  
±0ns/DI5  
C
= 22pF  
F
14692 G24  
14692 G23  
R
= ±11Ω//30pF  
S
0
100 200 300 400 ±00 600 700 ꢂ00 9001000  
SETTLING TIME (ns)  
14692 G22  
14692f  
8
LT1469-2  
APPLICATIONS INFORMATION  
Gain of 2 Stable  
input and a 1±5 supply will generate 10nA—equal to the  
maximum I ꢀ specification).  
B
The LT1469-2 is a decompensated version of the LT1469.  
The DC precision performance is identical, but the internal  
compensation capacitors have been reduced to a point  
where the op amp needs a gain of 2 or greater in order  
to be stable.  
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close  
to that of the inputs: for inverting configurations tie the  
ring to ground, in noninverting connections tie the ring  
to the inverting input (note the input capacitance will  
increase which may require a compensating capacitor as  
discussed below).  
In general, for applications where the gain around the op  
amp is ≥ 2, the decompensated version should be used,  
because it will give the best AC performance. In applica-  
tions where the gain is <2, the unity-gain stable version  
should be used.  
Microvolt level error voltages can also be generated in  
the external circuitry. Thermocouple effects caused by  
temperature gradients across dissimilar metals at the  
contacts to the inputs can exceed the inherent drift of  
the amplifier. Air currents over device leads should be  
minimized, package leads should be short and the two  
input leads should be as close together as possible and  
maintained at the same temperature.  
The appropriate way to define the ‘gain’ is as the inverse  
of the feedback ratio from output to differential input,  
including all relevant parasitics. Moreover, as with all  
feedback loops, the stability of the loop depends on the  
value of that feedback ratio at frequencies where the total  
loop-gain would cross unity. Therefore, it is possible to  
have circuits in which the gain at DC is lower than the gain  
at high frequency, and these circuits can be stable even  
with a non unity-gain stable op amp. An example is many  
current-output DAC buffer applications.  
The parallel combination of the feedback resistor and gain  
settingresistorontheinvertinginputcancombinewiththe  
input capacitance to form a pole which can cause peak-  
ing or even oscillations. A feedback capacitor of value C  
F
= R • C /R may be used to cancel the input pole and  
G
IN  
F
Layout and Passive Components  
optimize dynamic performance. For applications where  
the DC noise gain is one, and a large feedback resistor is  
The LT1469 requires attention to detail in board layout  
in order to maximize DC and AC performance. For best  
AC results (for example, fast settling time) use a ground  
plane, short lead lengths and RF quality bypass capacitors  
(0.01μF to 0.1μF) in parallel with low ESR bypass capaci-  
tors(Fto1Ftantalum). ForbestDCperformance, use  
“star” grounding techniques, equalize input trace lengths  
and minimize leakage (e.g., 1.±GΩ of leakage between an  
used, C should be less than or equal to one half of C .  
F
IN  
An example would be a DAC I-to-5 converter as shown on  
the front page of the data sheet where the DAC can have  
many tens of picofarads of output capacitance.  
+
5
C
F
R1  
100ꢃ  
R1  
100ꢃ  
Q1  
Q2  
+IN  
ꢀIN  
R
F
R
G
C
IN  
1/2 LT1469-2  
5
OUT  
5
IN  
+
14692 F02  
5
14692 F01  
Figure 1. Nulling Input Capacitance  
Figure 2. Input Stage Protection  
14692f  
9
LT1469-2  
APPLICATIONS INFORMATION  
Input Considerations  
The input bias currents vary with common mode voltage.  
The cancellation circuitry was not designed to track this  
common mode voltage because the settling time would  
have been adversely affected.  
Each input of the LT1469 is protected with a 100Ω series  
resistor and back-to-back diodes across the bases of  
the input devices. If large differential input voltages are  
anticipated, limit the input current to less than 10mA with  
an external series resistor. Each input also has two ESD  
clamp diodes—one to each supply. If an input is driven  
beyond the supply, limit the current with an external resis-  
tor to less than 10mA.  
The LT1469 inputs can be driven to the negative supply  
and to within 0.±5 of the positive supply without phase  
reversal. As the input moves closer than 0.±5 to the posi-  
tive supply, the output reverses phase.  
Total Input Noise  
TheLT1469employsbiascurrentcancellationattheinputs.  
The inverting input current is trimmed at zero common  
mode voltage to minimize errors in inverting applications  
such as I-to-5 converters. The noninverting input current  
is not trimmed and has a wider variation and therefore a  
larger maximum value. As the input offset current can be  
greaterthaneitherinputcurrent,theuseofbalancedsource  
resistance is NOT recommended as it actually degrades  
DC accuracy and also increases noise.  
ThetotalinputnoiseoftheLT1469isoptimizedforasource  
resistance between 1k and 20k. Within this range, the  
total input noise is dominated by the noise of the source  
resistance itself. When the source resistance is below  
1k, voltage noise of the amplifier dominates. When the  
source resistance is above 20k, the input noise current is  
the dominant contributor.  
SIMPLIFIED SCHEMATIC  
+
5
I1  
I2  
I±  
Q10  
Qꢂ  
Q9  
OUT  
+IN  
Q1  
Q2  
ꢀIN Q±  
Q3  
Q6  
Q7  
Q11  
Q4  
C
BIAS  
I3  
I4  
I6  
5
14692 SS  
14692f  
10  
LT1469-2  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(Reference LTC DWG # 0±-0ꢂ-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
DF Package  
12-Lead Plastic DFN (4mm × 4mm)  
(Reference LTC DWG # 0±-0ꢂ-1773 Rev Ø)  
4.00 ± 0.10  
(4 SIDES)  
2.50 REF  
2.50 REF  
7
12  
0.70 ±0.05  
0.40 ± 0.10  
3.38 ±0.10  
3.38 ±0.05  
2.65 ± 0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.65 ± 0.10  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 × 45°  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
CHAMFER  
(DF12) DFN 0806 REV  
Ø
6
1
0.25 ± 0.05  
0.50 BSC  
R = 0.115  
TYP  
0.25 ±0.05  
0.50 BSC  
0.200 REF  
0.75 ± 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.00 – 0.05  
NOTE:  
1. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
14692f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1469-2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1167  
Precision Instrumentation Amplifier  
Single 90MHz, 225/μs, 16-Bit Accurate Op Amp  
Single Resistor Gain Set, 0.04% Max Gain Error, 10ppm Max Gain Nonlinearity  
LT146ꢂ  
7±μ5 Max 5 , Single 5ersion of LT1469  
OS  
LTC1±9±/LTC1±96 16-Bit Serial Multiplying I  
DAC  
±1LSB Max INL/DNL, Low Glitch, DACꢂ043 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors  
±2.±5 Input, SINAD = 90dB, THD = ꢀ100dB  
OUT  
LTC1±97  
LTC1604  
LTC160±  
16-Bit Parallel Multiplying I  
DAC  
OUT  
16-Bit, 333ksps Sampling ADC  
Single ±5, 16-Bit, 100ksps Sampling ADC  
Low Power, ±105 Inputs, Parallel/Byte Interface  
14692f  
LT 0808 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 9±03±-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(40ꢂ) 432-1900 FAX: (40ꢂ) 434-0±07 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY