LT1784CS6#PBF [Linear]

暂无描述;
LT1784CS6#PBF
型号: LT1784CS6#PBF
厂家: Linear    Linear
描述:

暂无描述

运算放大器 放大器电路
文件: 总12页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1784  
2.5MHz, Over-The-Top  
Low Power, Rail-to-Rail Input  
and Output Op Amp in SOT-23  
U
FEATURES  
DESCRIPTIO  
Operates with Inputs Above V+  
The LT®1784 is a 2.5MHz op amp available in the small  
SOT-23 package that operates on all single and split  
supplies with a total voltage of 2.5V to 18V. The amplifier  
draws less than 750µA of quiescent current and has  
reverse battery protection, drawing negligible current for  
reverse supply voltages up to 18V.  
Rail-to-Rail Input and Output  
Low Profile (1mm) ThinSOTTM Package  
Gain Bandwidth Product: 2.5MHz  
Slew Rate: 2.1V/µs  
Low Input Offset Voltage: 3.5mV Max  
High Voltage Gain: 1000V/mV  
The input range of the LT1784 includes ground, and a  
unique feature of this device is its Over-The-TopTM opera-  
tion capabilitity with either or both of its inputs above the  
positive rail. The inputs handle 18V both differential and  
common mode, independent of supply voltage. The input  
stage incorporates phase reversal protection to prevent  
false outputs from occurring even when the inputs are 9V  
below the negative supply.  
Single Supply Input Range: 0V to 18V  
Specified on 3V, 5V and ±5V Supplies  
Reverse Battery Protection to 18V  
Low Power: 750µA Supply Current Max  
Output Shutdown on 6-Lead Version  
High Output Current: 15mA Min  
Operating Temperature Range: 40°C to 85°C  
U
APPLICATIO S  
The LT1784 can drive loads up to 15mA and still maintain  
rail-to-rail capability. A shutdown feature on the 6-lead  
version can disable the part, making the output high  
impedance and reducing quiescent current to 5µA. The  
LT1784 op amp is available in the 5- and 6-lead  
SOT-23packages.Forapplicationsrequiringlowerpower,  
refer to the LT1782 and LT1783 data sheets.  
Portable Instrumentation  
Battery-Powered Systems  
Sensor Conditioning  
Supply Current Sensing  
MUX Amplifiers  
4mA to 20mA Transmitters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Over-The-Top and ThinSOT are trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Programmable Gain, AV = 2, AV = 20, 100kHz Amplifier  
Programmable Gain Amplifier  
Frequency Response  
V
CC  
30  
A
V
= 20  
A = 2  
V
25  
A
V
= 20  
SHDN  
20  
15  
V
CC  
EE  
IN  
+
10  
OUT  
LT1784  
V
SHDN  
5
V
CC  
A
V
= 2  
0
+
–5  
–10  
–15  
–20  
LT1782  
R1 + R2  
R3  
A
V
= 1+  
(
(
)
)
V
EE  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
R1  
R1  
10k  
R2  
9.09k  
OR 1+  
R2 + R3  
1784 TA01a  
R3  
1k  
1784 TA01  
1
LT1784  
W W  
U W  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V) .............................. 18V  
Input Differential Voltage ........................................ 18V  
Input Pin Voltage to V............................... +24V/10V  
Shutdown Pin Voltage Above V............................ 18V  
Shutdown Pin Current ....................................... ±10mA  
Output Short-Circuit Duration (Note 2)........... Indefinite  
Operating Temperature Range (Note 10) 40°C to 85°C  
Specified Temperature Range (Note 11) 40°C to 85°C  
Junction Temperature........................................... 150°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
+
+
1
2
5
4
OUT  
V
V
OUT 1  
6
5
4
V
LT1784CS5  
LT1784IS5  
LT1784CS6  
LT1784IS6  
SHDN  
–IN  
V
2
+IN 3  
–IN  
+IN 3  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
S5 PART MARKING  
S6 PART MARKING  
TJMAX = 150°C, θJA = 250°C/ W  
TJMAX = 150°C, θJA = 230°C/ W  
LTJD  
LTSN  
LTIW  
LTIX  
Consult LTC marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature range, otherwise specifications are TA = 25°C.  
VS = 3V, 0V; VS = 5V, 0V, VCM = VOUT = half supply, for the 6-lead part VPIN5 = 0V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
1.5  
3.5  
4.2  
4.5  
mV  
mV  
mV  
OS  
A
0°C T 70°C  
A
40°C T 85°C  
A
V /T Input Offset Voltage Drift (Note 7)  
OS  
40°C T 85°C  
5
15  
µV/°C  
A
I
Input Offset Current  
25  
50  
50  
nA  
µA  
OS  
V
V
= 18V (Note 3)  
= 18V (Note 3)  
CM  
I
Input Bias Current  
250  
225  
0.1  
500  
400  
nA  
µA  
nA  
B
CM  
SHDN or V = 0V, V = 0V to 18V  
S
CM  
I /T Input Bias Current Drift  
40°C T 85°C  
0.4  
1.5  
25  
nA/°C  
B
A
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/Hz  
pA/Hz  
n
i
f = 10kHz  
0.3  
n
R
Differential  
100  
45  
200  
150  
80  
kΩ  
MΩ  
kΩ  
IN  
Common Mode, V = 0V to (V – 1.2V)  
CM  
CC  
Common Mode, V = 0V to 18V  
CM  
C
V
Input Capacitance  
5
pF  
V
IN  
Input Voltage Range  
0
18  
CM  
2
LT1784  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature range, otherwise specifications are TA = 25°C.  
VS = 3V, 0V; VS = 5V, 0V, VCM = VOUT = half supply, for the 6-lead part VPIN5 = 0V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection Ratio  
(Note 3)  
V
V
= 0V to V – 1.2V  
= 0V to 18V (Note 6)  
84  
60  
95  
70  
dB  
dB  
CM  
CM  
CC  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 3V to 12.5V, V = V = 1V  
90  
100  
dB  
S
CM  
O
A
V = 3V, V = 500mV to 2.5V, R = 10k  
133  
90  
60  
1000  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
V = 3V, 0°C T 70°C  
S
A
V = 3V, 40°C T 85°C  
S
A
V = 5V, V = 500mV to 4.5V, R = 10k  
266  
180  
120  
1000  
V/mV  
V/mV  
V/mV  
S
O
L
V = 5V, 0°C T 70°C  
S
A
V = 5V, 40°C T 85°C  
S
A
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
No Load  
4
200  
350  
10  
400  
600  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
SINK  
V = 5V, I  
S
= 10mA  
SINK  
V = 3V, No Load  
2.885  
2.600  
2.93  
2.8  
V
V
S
V = 3V, I  
S
= 3mA  
SOURCE  
V = 5V, No Load  
4.885  
4.400  
4.93  
4.7  
V
V
S
V = 5V, I  
= 10mA  
S
SOURCE  
I
Short-Circuit Current (Note 2)  
V = 3V, Short to GND  
4
15  
7.5  
30  
mA  
mA  
SC  
S
V = 3V, Short to V  
S
CC  
V = 5V, Short to GND  
12.5  
20.0  
22  
40  
mA  
mA  
S
V = 5V, Short to V  
S
CC  
Minimum Supply Voltage  
Reverse Supply Voltage  
2.5  
2.7  
V
V
I = –100µA  
S
18  
I
I
Supply Current  
(Note 4)  
500  
7
750  
900  
µA  
µA  
S
Supply Current, Shutdown  
SHDN Pin Current  
V
= 2V, No Load (Note 8)  
18  
µA  
PIN5  
V
V
V
= 0.3V (On), No load (Note 8)  
= 2V (Shutdown), No Load (Note 8)  
= 5V (Shutdown), No Load (Note 8)  
0.5  
2.0  
5.0  
nA  
µA  
µA  
SHDN  
PIN5  
PIN5  
PIN5  
8
Output Leakage Current, Shutdown  
Maximum SHDN Pin Current  
SHDN Pin Input Low Voltage  
SHDN Pin Input High Voltage  
Turn-On Time  
V
V
= 2V, No Load (Note 8)  
= 18V, No Load (Note 8)  
0.05  
10  
1
µA  
µA  
V
PIN5  
PIN5  
30  
0.3  
V
V
(Note 8)  
(Note 8)  
IL  
IH  
2
V
t
t
V
V
= 5V to 0V, R = 10k (Note 8)  
18  
2.2  
2.5  
µs  
µs  
ON  
OFF  
PIN5  
PIN5  
L
Turn-Off Time  
= 0V to 5V, R = 10k (Note 8)  
L
GBW  
Gain Bandwidth Product  
(Note 4)  
f = 5kHz  
0°C T 70°C  
40°C T 85°C  
1.5  
1.2  
1.1  
MHz  
MHz  
MHz  
A
A
SR  
Slew Rate  
(Note 5)  
A = –1, R = ∞  
1.2  
1.1  
1.0  
2.1  
V/µs  
V/µs  
V/µs  
V
L
0°C T 70°C  
A
40°C T 85°C  
A
FPBW  
Full-Power Bandwidth (Note 9)  
Settling Time  
V
= 2V  
350  
3.7  
kHz  
µs  
OUT  
P-P  
t
V = 5V, V  
= 2V to 0.1%, A = –1  
OUT V  
S
S
THD  
Distortion  
V = 3V, V = 1.8V , A = 1, R = 10k, f = 1kHz  
0.001  
%
S
O
P-P  
V
L
3
LT1784  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature range, otherwise specifications are TA = 25°C.  
VS = ±5V, VCM = 0V,VOUT = 0V, for the 6-lead part VPIN5 = V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
1.6  
3.75  
4.50  
4.80  
mV  
mV  
mV  
OS  
A
0°C T 70°C  
A
40°C T 85°C  
A
V /T Input Offset Voltage Drift (Note 7)  
–40°C T 85°C  
5
15  
50  
µV/°C  
nA  
OS  
A
I
I
Input Offset Current  
Input Bias Current  
25  
OS  
B
250  
0.4  
1.5  
25  
500  
nA  
I /T Input Bias Current Drift  
B
0°C T 70°C  
nA/°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/Hz  
pA/Hz  
n
i
f = 1kHz  
0.3  
n
R
Differential  
100  
45  
200  
80  
kΩ  
kΩ  
IN  
Common Mode, V = –5V to 13V  
CM  
C
V
Input Capacitance  
5
pF  
V
IN  
Input Voltage Range  
–5  
60  
13  
CM  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= –5V to 13V  
70  
dB  
CM  
A
V = ±4V, R = 10k  
0°C T 70°C  
50  
35  
100  
V/mV  
V/mV  
VOL  
O
L
A
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
Short-Circuit Current (Note 2)  
No Load  
4.996  
4.800  
4.650  
4.99  
4.60  
4.40  
V
V
V
OL  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
V
No Load  
4.885  
4.550  
4.400  
4.92  
4.75  
4.65  
V
V
V
OH  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
I
Short to GND  
0°C T 70°C  
15  
10  
27  
mA  
mA  
SC  
A
PSRR  
Power Supply Rejection Ratio  
Supply Current  
V = ±1.5V to ±9V  
S
90  
100  
540  
dB  
I
I
800  
975  
µA  
µA  
S
Supply Current, Shutdown  
SHDN Pin Current  
V
= –3V, V = ±5V, No Load (Note 8)  
8
20  
µA  
PIN5  
S
V
V
= –4.7V (On), V = ±5V, No load (Note 8)  
= –3V (Shutdown), V = ±5V, No Load (Note 8)  
0.5  
2.0  
nA  
µA  
SHDN  
PIN5  
PIN5  
S
8
30  
S
Maximum SHDN Pin Current  
Output Leakage Current, Shutdown  
SHDN Pin Input Low Voltage  
SHDN Pin Input High Voltage  
Turn-On Time  
V
V
= 9V, V = ±9V (Note 8)  
10  
µA  
µA  
V
PIN5  
PIN5  
S
= –7V, V = ±9V, No Load (Note 8)  
0.05  
1
S
V
V
V = ±5V (Note 8)  
S
4.7  
IL  
IH  
V = ±5V (Note 8)  
S
–3  
V
t
t
V
V
= 0V to –5V, R = 10k (Note 8)  
18  
2.2  
2.6  
µs  
µs  
ON  
OFF  
PIN5  
PIN5  
L
Turn-Off Time  
= –5V to 0V, R = 10k (Note 8)  
L
GBW  
Gain Bandwidth Product  
f = 5kHz  
0°C T 70°C  
1.55  
1.30  
1.20  
MHz  
MHz  
MHz  
A
–40°C T 85°C  
A
4
LT1784  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified temperature range, otherwise specifications are TA = 25°C.  
VS = ±5V, VCM = 0V,VOUT = 0V, for the 6-lead part VPIN5 = V, pulse power tested unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
A = –1, R = , V = ±4V, Measured at V = ±2V  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
1.3  
1.2  
1.1  
2.2  
V/µs  
V/µs  
V/µs  
V
L
O
O
0°C T 70°C  
A
–40°C T 85°C  
A
FPBW  
Full-Power Bandwidth (Note 9)  
Settling Time  
V
= 8V  
94  
kHz  
OUT  
P-P  
t
V = 5V, V  
= 4V to 0.1%, A = 1  
3.4  
µs  
S
S
OUT  
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: This specification implies a typical input offset voltage of 5.7mV at  
V = 18V and a maximum input offset voltage of 18mV at V = 18V.  
CM  
CM  
Note 2: A heat sink may be required to keep the junction temperature  
Note 7: This parameter is not 100% tested.  
below absolute maximum.  
Note 8: Specifications apply to 6-lead SOT-23 with shutdown.  
Note 9: Full-power bandwidth is calculated from the slew rate.  
Note 3: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
V = ±5V or V = ±9V tests.  
S
S
FPBW = SR/2πV .  
P
Note 4: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
Note 10: The LT1784C is guaranteed functional over the operating  
temperature range 40°C to 85°C.  
V = ±5V or V = ±9V tests.  
S
S
Note 5: Guaranteed by correlation to slew rate at V = ±5V, and GBW at  
S
Note 11: The LT1784C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1784C is designed, characterized and expected to  
meet specified performance from 40°C to 85°C but is not tested or QA  
sampled at these temperatures. LT1784I is guaranteed to meet specified  
performance from 40°C to 85°C.  
V = 5V and V = ±5V tests.  
S
S
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage vs Large Input  
Voltage  
Supply Current vs Supply Voltage  
Minimum Supply Voltage  
5
4
3
2
1
0
700  
650  
600  
550  
500  
450  
400  
350  
300  
400  
300  
V
S
= 5V, 0V  
T
A
= 125°C  
200  
T
A
= 25°C  
100  
T
A
= –55°C  
T
A
= 125°C  
0
T
= 25°C  
A
5V  
T
A
= –55°C  
–100  
–200  
–300  
–400  
+
V
IN  
10  
SUPPLY VOLTAGE (V)  
3
6
18  
2
4
6
8
12 14 16 18  
1
2
4
5
–10  
–2  
2
10  
–6  
14  
V
IN  
(V)  
TOTAL SUPPLY VOLTAGE (V)  
1784 G01  
1784 G02  
1784 G03  
5
LT1784  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Input Bias Current vs Common  
Mode Voltage  
Output Saturation Voltage vs  
Load Current (Output Low)  
Output Saturation Voltage vs  
Load Current (Output High)  
300,000  
250,000  
200,000  
150,000  
100,000  
1
1
0.1  
V
V
= ±2.5V  
V
S
= 5V, 0V  
S
V
V
= ±2.5V  
S
= 30mV  
OD  
= 30mV  
OD  
T
A
= 125°C  
T
A
= 25°C  
800  
600  
400  
200  
0
0.1  
T
= 125°C  
T
= 25°C  
A
A
T
= –55°C  
A
T
= 25°C  
A
0.01  
0.001  
T
= 125°C  
A
T
= –55°C  
A
T
A
= –55°C  
–200  
–400  
0.01  
3.5  
4.5  
5
5.5  
14 16 18  
4
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
COMMON MODE VOLTAGE (V)  
SOURCING LOAD CURRENT (µA)  
SINKING LOAD CURRENT (µA)  
1784 G05  
1784 G04  
1784 G06  
Output Saturation Voltage vs  
Input Overdrive  
Output Short-Circuit Current vs  
Temperature  
0.1Hz to 10Hz Noise Voltage  
100  
10  
1
50  
45  
40  
35  
30  
25  
V
= ±2.5V  
S
V
S
= ±5V  
OUTPUT HIGH  
SINKING  
OUTPUT LOW  
V
= ±2.5V  
S
SOURCING  
NO LOAD  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
–50  
0
25  
50  
75  
100 125  
–25  
TIME (sec)  
INPUT OVERDRIVE (mV)  
TEMPERATURE (°C)  
1784 G07  
1784 G09  
DC194 G02  
Noise Voltage Density vs  
Frequency  
Input Noise Current vs  
Frequency  
Gain and Phase Shift vs  
Frequency  
70  
60  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= ±2.5V  
V
S
= ±2.5V  
V
= ±2.5V  
S
S
50  
PHASE  
40  
60  
30  
40  
20  
20  
GAIN  
10  
0
0
–20  
–40  
–60  
–80  
–10  
–20  
–30  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1784 G12  
1784 G10  
1784 G11  
6
LT1784  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain Bandwidth Product vs  
Temperature  
Gain Bandwidth Product and  
Phase Margin vs Supply Voltage  
Slew Rate vs Temperature  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
3.0  
2.5  
2.0  
1.5  
65  
60  
55  
V
= ±2.5V  
A
= –1  
V
= ±5V  
S
V
S
PHASE MARGIN  
f = 5kHz  
R = R = 10k  
F G  
f = 5kHz  
RISING  
FALLING  
GAIN BANDWIDTH  
PRODUCT  
2.7  
2.6  
2.5  
2.4  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
2
4
6
8
10 12 14 16 18  
TOTAL SUPPLY VOLTAGE (V)  
1784 G13  
1784 G14  
1784 G15  
Gain Bandwidth and Phase  
Margin vs Load Resistance  
PSRR vs Frequency  
CMRR vs Frequency  
120  
65  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5V  
V
= ±2.5V  
S
S
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
60  
55  
PHASE MARGIN  
POSITIVE SUPPLY  
GAIN BANDWIDTH  
PRODUCT  
NEGATIVE SUPPLY  
2.6  
2.4  
2.2  
2.0  
V
A
= ±2.5V  
S
V
F
= –1  
R = R = 10k  
G
f = 5kHz  
–10  
1k  
10k  
100k  
1M  
1k  
10k  
LOAD RESISTANCE ()  
100k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1784 G17  
1784 G18  
1784 G16  
Disabled Output Impedance vs  
Frequency  
Settling Time to 0.1% vs Output  
Step  
Output Impedance vs Frequency  
5
4
1k  
100  
10  
1M  
V
V
= ±2.5V  
V
= ±2.5V  
V = ±5V  
S
S
S
= 2.5V  
PIN 5  
A
V
= 1  
3
100k  
A
V
= –1  
A
= 100  
V
2
1
10k  
1k  
0
A
= 10  
V
–1  
–2  
–3  
–4  
–5  
1
A
= –1  
V
A
= 1  
V
A
V
= 1  
0.1  
100  
100  
0.01  
0
4
6
7
1
2
3
5
8
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
SETTLING TIME (µs)  
FREQUENCY (Hz)  
1784 G20  
1784 G21  
1784 G19  
7
LT1784  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Capacitive Load Handling  
Total Harmonic Distortion +  
Noise vs Frequency  
Undistorted Output Swing vs  
Frequency  
Overshoot vs Capacitive Load  
0.1  
0.01  
70  
60  
50  
40  
30  
20  
10  
0
12  
10  
8
DISTORTION 1%  
= 1  
R
V
= 10k  
V
V
= 5V, 0V  
= 2.5V  
L
S
S
CM  
A
= 3V, 0V  
= 1.8V  
V
V
= ±5V  
S
A
= 1  
V
V
V
OUT  
CM  
P-P  
= 1V  
A
= 5  
V
6
V
= ±2.5V  
A = –1  
V
S
A
= 1  
V
0.001  
0.0001  
4
A
= 10  
V
2
0
10  
100  
CAPACITIVE LOAD (pF)  
1000  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1784 G22  
1784 G24  
1784 G23  
Total Harmonic Distortion + Noise  
vs Load Resistance  
Total Harmonic Distortion + Noise  
vs Output Voltage Amplitude  
Open-Loop Gain  
10  
1
1
FREQUENCY = 1kHz  
A
V
V
= 1  
V
S
V
= ±5V  
S
V
= HALF SUPPLY  
= 3V TOTAL  
CM  
V
V
= ±1.5V  
= ±1V  
S
IN  
= 2V AT 1kHz  
IN  
P-P  
R
= 2k  
L
0.1  
A
V
= 1  
= 3V, 0V  
V
S
R
= 10k  
L
0.1  
0.01  
0.01  
A
V
= –1  
V
S
R
= 50k  
L
= 3V, 0V  
A
V
= 1  
V
S
RF = RG = 10k  
= ±1.5V  
V
V
= 3V, 0V  
IN  
S
= 0.1V TO 2.1V  
0.001  
A
V
= –1  
= ±1.5V  
V
S
RF = RG = 10k  
0.0001  
0.001  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
100  
1k  
10k  
100k  
0
1
2
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE AMPLITUDE (V  
)
P-P  
LOAD RESISTANCE TO GROUND ()  
1784 G26  
1784 G27  
1784 G25  
Supply Current vs SHDN Pin  
Voltage  
Small Signal Response  
Large Signal Response  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5V, 0V  
S
T
= 125°C  
A
T
= 25°C  
A
T
= –55°C  
A
20mV/DIV  
2V/DIV  
V
S
A
V
C
L
= ±5V  
= 1  
= 15pF  
2µs/DIV  
V
S
A
V
C
L
= ±5V  
= 1  
= 15pF  
5µs/DIV  
0
0
0.5  
1
1.5  
2
2.5  
SHUTDOWN PIN VOLTAGE (V)  
1784 G28  
8
LT1784  
W U U  
APPLICATIO S I FOR ATIO  
U
Supply Voltage  
Output  
The positive supply pin of the LT1784 should be bypassed  
with a small capacitor (typically 0.1µF) within an inch of  
the pin. When driving heavy loads, and additional 4.7µF  
electrolytic capacitor should be used. When using split  
supplies the same is true for the negative supply pin.  
The output of the LT1784 can swing to within 80mV of the  
positive rail and within 4mV of the negative rail with no  
load. When monitoring input voltages within 80mV of the  
positive rail or within 4mV of the negative rail, gain should  
be taken to keep the output from clipping. The LT1784 can  
typically sink and source over 25mA at ±5V supplies,  
sourcing current is reduced to 7.5mA at 3V total supplies  
as noted in the electrical characteristics.  
The LT1784 is protected against reverse battery voltages  
up to 18V. In the event a reverse battery condition occurs  
the supply current is less than 1nA.  
The LT1784 is internally compensated to drive at least  
400pF of capacitance under any output loading condi-  
tions. A 0.22µF capacitor in series with a 150resistor  
between the output and ground will compensate these  
amplifiers for larger capacitive loads, up to 10,000pF at all  
output currents.  
Inputs  
The LT1784 has two input stages, NPN and PNP (see  
the Simplified Schematic), resulting in three distinct  
operating regions as shown in the “Input Bias Current vs  
CommonModeTypicalPerformanceCharacteristicCurve.  
For input voltages about 1V or more below V+, the PNP  
input stage is active and the input bias current is typically  
–250nA. When the input common mode voltage is within  
0.6Vofthepositiverail, theNPNstageisoperatingandthe  
input bias current is typically 500nA. Increases in tem-  
peraturewillcausethevoltageatwhichoperationswitches  
from the PNP input stage to the NPN input stage to move  
towards V+. The input offset voltage of the NPN stage is  
untrimmed and is typically 3mV.  
Distortion  
There are two main contributors to distortion in op amps:  
output crossover distortion as the output transitions from  
sourcing to sinking current, and distortion caused by  
nonlinear common mode rejection. If the op amp is  
operating inverting, there is no common mode induced  
distortion.IftheopampisoperatinginthePNPinputstage  
(input not within 1V of V+), the CMRR is very good,  
typically 95dB. When the LT1784 switches between input  
stages, there is significant nonlinearity in the CMRR.  
Lower load resistance increases the output crossover  
distortion but has no effect on the input stage transition  
distortion. For lowest distortion, the LT1784 should be  
operated single supply, with the output always sourcing  
current and with the input voltage swing between ground  
and (V+ –1V). See Typical Performance Characteristics  
Curve, “Total Harmonic Distortion + Noise vs Output  
Voltage Amplitude.”  
A Schottky diode in the collector of the input transistors,  
along with special geometries for these NPN transistors,  
allowtheLT1784tooperatewitheitherorbothofitsinputs  
above V+. At about 0.3V above V+, the NPN input transis-  
tors is fully saturated and the input bias current is typically  
200µA at room temperature. The input offset voltage is  
typically 3mV when operating above V+. The LT1784 will  
operate with inputs 18V above Vregardless of V+.  
The inputs are protected against excursions as much as  
10V below Vby an internal 1k resistor in series with each  
input and a diode from the input to the negative supply.  
TheinputstageoftheLT1784incorporatesphasereversal  
protection to prevent the output from phase reversing for  
inputs up to 9V below V. There are no clamping diodes  
between the inputs and the maximum differential input  
voltage is 18V.  
Gain  
The open-loop gain is almost independent of load when  
the output is sourcing current. This optimizes perfor-  
mance in single supply applications where the load is  
returned to ground. The Typical Performance Characteric  
Curve “Open-Loop Gain” for various loads shows the  
details.  
9
LT1784  
W U U  
U
APPLICATIO S I FOR ATIO  
Shutdown  
bringing the SHDN pin 1.2V or more above V. When shut  
down,thesupplycurrentislessthan1µA(VVOUT V +).  
In normal operation, the SHDN pin can be tied to Vor left  
floating. See Typical Performance Characteristics Curve,  
“Supply Current vs SHDN pin Voltage.”  
The 6-lead part includes a shutdown feature that disables  
the part, reducing quiescent current and making the  
output high impedance. The part can be shut down by  
U
TYPICAL APPLICATIO S  
Adjustable Clamp  
Negative Rectifier  
+
V
LT1784  
V
+
IN  
+
V
- ~80mV  
CLAMP  
OUT  
LT1784  
V
+
IN  
V
10k  
V
LT1784  
OUT  
WORKS WELL  
TO 100kHz  
V
- ~80mV  
CLAMP  
V
10k  
WORKS WELL  
TO 100kHz  
1784 TA07  
V
W
W
SI PLIFIED SCHE ATIC  
+
V
Q2  
Q1  
Q3  
Q22  
D1  
SHDN  
R1  
6k  
D3  
R2  
1k  
Q19  
IN  
Q4  
R6  
1.5k  
R7  
1.5k  
Q17  
Q20  
J1  
+
OUT  
Q7  
Q8  
Q11  
Q12  
R3  
1k  
20µA  
Q16  
Q18  
+IN  
R8  
0.75k  
R9  
0.75k  
Q15  
Q9  
D5  
Q10  
Q26  
Q13  
Q14  
Q21  
R4  
2k  
R5  
2k  
Q25 Q23  
Q24  
Q5  
Q6  
D4  
V
1784 SS  
10  
LT1784  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1633)  
(Reference LTC DWG # 05-08-1635)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
SOT-23  
(Original)  
SOT-23  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
A
A1  
A2  
L
(.035 – .057)  
(.039 MAX)  
2.60 – 3.00  
1.50 – 1.75  
.00 – .15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
PIN ONE  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(5PLCS, NOTE 2)  
.20  
(.008)  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
A2  
A
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
DATUM ‘A’  
L
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEC MO-193 FOR THIN  
1.90  
(.074)  
REF  
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S5 SOT-23 0401  
S6 Package  
6-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1634)  
(Reference LTC DWG # 05-08-1636)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
SOT-23  
(Original)  
SOT-23  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
A
A1  
A2  
L
(.035 – .057)  
(.039 MAX)  
.00 – 0.15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
2.60 – 3.00  
1.50 – 1.75  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
PIN ONE ID  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(6PLCS, NOTE 2)  
NOTE:  
.20  
(.008)  
1. CONTROLLING DIMENSION: MILLIMETERS  
A2  
MILLIMETERS  
(INCHES)  
A
2. DIMENSIONS ARE IN  
DATUM ‘A’  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S6 SOT-23 0401  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEC MO-193 FOR THIN  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1784  
U
TYPICAL APPLICATIO S  
Protected Fault Conditions  
–18V  
5V  
5V  
5V  
+
+
V
V
+
+
+
+
+
LT1784  
LT1784  
LT1784  
LT1784  
18V  
+
10V  
+
24V  
1784 TA02  
REVERSE BATTERY  
INPUT OVERVOLTAGE  
INPUT DIFFERENTIAL VOLTAGE  
INPUTS BELOW GROUND  
Simple Peak Detector  
Single Supply Full Wave Rectifier  
1k  
5V  
OUT  
ACCURACY  
BANDWIDTH  
BAT54  
V
IN  
+
5V  
98%  
90%  
3dB  
3kHz TO 5.7kHz  
116Hz TO 47kHz  
34Hz TO 96kHz  
1k  
LT1784  
1k  
BAT54  
IN  
+
LT1784  
V
OUT  
WORKS WELL  
TO 15kHz  
1µF  
100k  
V
= 3V , V = 2.5V  
P-P CM  
1785 TA05  
IN  
1784 TA04  
Simple Polarity Selector  
1k  
+
IN  
1V/DIV  
V
1k  
IN  
OUT  
1V/DIV  
LT1784  
OUT  
FOLLOW  
SHDN  
+
0V  
SHDN  
5V/DIV  
V
INVERT  
V
1785 TA06a  
1785 TA06b  
100µs/DIV  
= 3V AT 5kHz  
V
V
= ±5V  
S
IN  
P-P  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1782  
Micropower Over-The-Top Rail-to-Rail In/Out Op Amp in SOT-23  
1.25MHz Over-The-Top Rail-to-Rail In/Out Op Amp in SOT-23  
10MHz Rail-to-Rail In/Out Op Amp in SOT-23  
55µA Max Supply Current, 800µV Max Offset Voltage  
300µA Max Supply Current, 800µV Max Offset Voltage  
Unity-Gain Stable, 2.25µV/µs Slew Rate  
Micropower, 0.4V/µs Slew Rate  
LT1783  
LT1797  
LT1637  
1.1MHz Over-The-Top Rail-to-Rail In/Out Op Amp  
LT1638/LT1639  
LT1880  
Dual/Quad 1.2MHz Over-The-Top Rail-to-Rail In/Out Op Amp  
SOT-23 Pico Amp Input, Precision, Rail-to-Rail Output Op Amp  
Micropower 230µA Max, 0.4V/µs Slew Rate  
150µV Offset, 900pA Bias Current  
1784f LT/TP 0601 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY