LT1793IN8 [Linear]

Low Noise, Picoampere Bias Current, JFET Input Op Amp; 低噪声, Picoampere偏置电流, JFET输入运算放大器
LT1793IN8
型号: LT1793IN8
厂家: Linear    Linear
描述:

Low Noise, Picoampere Bias Current, JFET Input Op Amp
低噪声, Picoampere偏置电流, JFET输入运算放大器

运算放大器
文件: 总12页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1793  
Low Noise,  
Picoampere Bias Current,  
JFET Input Op Amp  
U
FEATURES  
DESCRIPTIO  
The LT®1793 achieves a new standard of excellence in  
noiseperformanceforaJFETopamp.Forthefirsttimelow  
voltage noise (6nV/Hz) is simultaneously offered with  
extremely low current noise (0.8fA/Hz), providing the  
lowest total noise for high impedance transducer applica-  
tions. Unlike most JFET op amps, the very low input bias  
current (3pA typ) is maintained over the entire common  
moderangewhichresultsinanextremelyhighinputresis-  
tance (1013). When combined with a very low input ca-  
pacitance (1.5pF) an extremely high input impedance  
results, making the LT1793 the first choice for amplifying  
low level signals from high impedance transducers. The  
lowinputcapacitancealsoassureshighgainlinearitywhen  
buffering AC signals from high impedance transducers.  
Input Bias Current, Warmed Up: 10pA Max  
100% Tested Low Voltage Noise: 8nV/Hz Max  
A Grade 100% Temperature Tested  
Offset Voltage Over Temp: 1mV Max  
Input Resistance: 1013Ω  
Very Low Input Capacitance: 1.5pF  
Voltage Gain: 1 Million Min  
Gain-Bandwidth Product: 4.2MHz Typ  
Guaranteed Specifications with ±5V Supplies  
U
APPLICATIO S  
Photocurrent Amplifiers  
Hydrophone Amplifiers  
High Sensitivity Piezoelectric Accelerometers  
TheLT1793isunconditionallystableforgainsof1ormore,  
even with 1000pF capacitive loads. Other key features are  
250µV VOS and a voltage gain over 4 million. Each indi-  
vidual amplifier is 100% tested for voltage noise, slew rate  
(3.4V/µs) and gain-bandwidth product (4.2MHz).  
Low Voltage and Current Noise Instrumentation  
Amplifier Front Ends  
Two and Three Op Amp Instrumentation Amplifiers  
Active Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Specifications at ±5V supply operation are also provided.  
ForanevenlowervoltagenoisepleaseseetheLT1792data  
sheet.  
U
TYPICAL APPLICATIO  
Low Noise Light Sensor with DC Servo  
C1  
2pF  
1kHz Output Voltage Noise  
Density vs Source Resistance  
10k  
+
V
R1  
1M  
+
2
3
7
V
N
1k  
100  
10  
+
6
V
LT1793  
OUT  
R
SOURCE  
C2 0.022µF  
D2  
1N914  
4
+
V
V
R2  
100k  
C
D
D1  
1N914  
R3  
1k  
V
N
2N3904  
LT1097  
SOURCE  
T
= 25°C  
= ±15V  
A
S
+
RESISTANCE  
ONLY  
V
HAMAMATSU  
S1336-5BK  
(908) 231-0960  
R5  
R4  
10k 1k  
1
100  
1k 10k 100k 1M 10M  
1G  
100M  
1793 TA01  
V
R2C2 > C1R1  
SOURCE RESISTANCE ()  
C
V
= PARASITIC PHOTODIODE CAPACITANCE  
= 100mV/µWATT FOR 200nm WAVE LENGTH  
D
OUT  
2
2
V
N
=
(V  
OP AMP  
)
+ 4kTR + 2qI R  
V
S
B
S
330mV/µWATT FOR 633nm WAVE LENGTH  
1793 TA02  
1
LT1793  
ABSOLUTE AXI U RATI GS  
W W W  
U
(Note 1)  
Specified Temperature Range  
Supply Voltage ..................................................... ±20V  
Differential Input Voltage ...................................... ±40V  
Input Voltage (Equal to Supply Voltage)............... ±20V  
Output Short-Circuit Duration ........................ Indefinite  
Operating Temperature Range............... 40°C to 85°C  
Commercial (Note 8) ......................... – 40°C to 85°C  
Industrial ........................................... – 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................ 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
V
OS  
ADJ  
V
OS  
ADJ  
NC  
1
2
3
4
8
7
6
5
1
2
3
4
NC  
8
7
6
5
LT1793ACS8  
LT1793CS8  
LT1793AIS8  
LT1793IS8  
LT1793ACN8  
LT1793CN8  
LT1793AIN8  
LT1793IN8  
+
–IN A  
+IN A  
IN A  
+IN A  
V+  
V
A
A
OUT  
OUT  
V
V
V
OS  
ADJ  
V
OS  
ADJ  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
S8 PART MARKING  
1793A 1793AI  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 80°C/W  
TJMAX = 160°C, θJA = 190°C/W  
1793  
1793I  
Consult factory for Military grade parts.  
TA = 25°C, VS = ±15V, VCM = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LT1793AC/LT1793AI  
LT1793C/LT1793I  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
0.25  
0.45  
0.8  
1.4  
0.25  
0.45  
0.9  
1.6  
mV  
mV  
OS  
V = ±5V  
S
I
I
Warmed Up (Note 3)  
T = 25°C (Note 6)  
J
1.5  
0.5  
7
2
2.5  
0.7  
15  
4
pA  
pA  
OS  
Warmed Up (Note 3)  
T = 25°C (Note 6)  
J
3
1
10  
3
4.0  
1.5  
20  
5
pA  
pA  
B
e
Input Noise Voltage  
0.1Hz to 10Hz  
2.4  
2.4  
µV  
P-P  
n
Input Noise Voltage Density  
f = 10Hz  
f = 1000Hz  
O
11.5  
6
11.5  
6
nV/Hz  
nV/Hz  
O
8
8
i
Input Noise Current Density  
f = 10Hz, f = 1kHz (Note 4)  
0.8  
1
fA/Hz  
n
O
O
R
Input Resistance  
Differential Mode  
Common Mode  
IN  
14  
14  
10  
10  
13  
13  
V
CM  
= 10V to 13V  
10  
10  
C
V
Input Capacitance  
1.5  
2.0  
1.5  
2.0  
pF  
pF  
IN  
V = ±5V  
S
Input Voltage Range (Note 5)  
13.0  
13.5  
10.5 11.0  
13.0  
13.5  
– 10.5 – 11.0  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
= –10V to 13V  
83  
85  
102  
98  
81  
83  
96  
95  
dB  
dB  
CM  
V = ±4.5V to ± 20V  
S
2
LT1793  
TA = 25°C, VS = ±15V, VCM = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LT1793AC/LT1793AI  
LT1793C/LT1793I  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
V = ±12V, R = 10k  
MIN  
1000 4500  
500 3500  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
A
V
Large-Signal Voltage Gain  
Output Voltage Swing  
900  
400  
4400  
3000  
V/mV  
V/mV  
VOL  
OUT  
O
L
V = ±10V, R = 1k  
O
L
R = 10k  
±13.0 ±13.2  
±12.0 ±12.3  
±13.0 ±13.2  
±12.0 ±12.3  
V
V
L
R = 1k  
L
SR  
Slew Rate  
R 2k (Note 7)  
2.3  
2.5  
3.4  
4.2  
2.3  
2.5  
3.4  
4.2  
V/µs  
L
GBW  
Gain-Bandwidth Product  
Supply Current  
f = 100kHz  
O
MHz  
I
4.2  
4.2  
5.20  
5.15  
4.2  
4.2  
5.20  
5.15  
mA  
mA  
S
V = ±5V  
S
Offset Voltage  
R
(to V ) = 10k  
13  
13  
mV  
POT  
EE  
Adjustment Range  
The denotes specifications which apply over the temperature range 0°C TA 70°C, otherwise specifications are at TA = 25°C.  
VS = ±15V, VCM = 0V, unless otherwise noted. (Note 9)  
LT1793AC  
TYP  
LT1793C  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
0.50  
0.75  
1.0  
1.6  
1.0  
1.6  
3.5  
4.2  
mV  
mV  
OS  
V = ±5V  
S
V  
Temp  
Average Input Offset  
Voltage Drift  
(Note 6)  
5
13  
8
50  
µV/°C  
OS  
I
I
Input Offset Current  
15  
100  
400  
20  
130  
500  
pA  
pA  
OS  
B
Input Bias Current  
130  
13.4  
10.0 10.8  
150  
13.4  
– 10.0 – 10.8  
V
Input Voltage Range (Note 5)  
12.9  
12.9  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –10V to 12.9V  
79  
83  
100  
97  
77  
81  
95  
94  
dB  
dB  
CM  
V = ±4.5V to ± 20V  
S
A
V = ±12V, R = 10k  
V = ±10V, R = 1k  
900  
500  
3600  
2600  
800  
400  
3400  
2400  
V/mV  
V/mV  
VOL  
O
L
O
L
V
Output Voltage Swing  
R = 10k  
R = 1k  
L
±12.9 ±13.2  
±11.9 ±12.15  
±12.9 ±13.2  
±11.9 ±12.15  
V
V
OUT  
L
SR  
Slew Rate  
R 2k (Note 7)  
2.2  
2.2  
3.3  
3.3  
2.2  
2.2  
3.3  
3.3  
V/µs  
L
GBW  
Gain-Bandwidth Product  
Supply Current  
f = 100kHz  
O
MHz  
I
4.2  
4.2  
5.30  
5.25  
4.2  
4.2  
5.30  
5.25  
mA  
mA  
S
V = ±5V  
S
3
LT1793  
The denotes specifications which apply over the temperature range  
ELECTRICAL CHARACTERISTICS  
40°C TA 85°C. VS = ±15V, VCM = 0V, unless otherwise noted. (Notes 8, 9)  
LT1793AC/LT1793AI  
LT1793C/LT1793I  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
0.65  
1.00  
1.3  
1.9  
1.6  
2.0  
4.8  
5.5  
mV  
mV  
OS  
V = ±5V  
S
V  
Temp  
Average Input Offset  
Voltage Drift  
(Note 6)  
5
13  
9
50  
µV/°C  
OS  
I
I
Input Offset Current  
80  
300  
100  
800  
13.0  
400  
pA  
pA  
OS  
B
Input Bias Current  
700  
13.0  
10.0 10.5  
2400  
3000  
V
Input Voltage Range (Note 5)  
12.6  
12.6  
V
V
CM  
– 10.0 – 10.5  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= –10V to 12.6V  
78  
81  
99  
96  
76  
79  
94  
93  
dB  
dB  
CM  
V = ±4.5V to ± 20V  
S
A
V = ±12V, R = 10k  
V = ±10V, R = 1k  
850  
400  
3300  
2200  
750  
300  
3000  
2000  
V/mV  
V/mV  
VOL  
O
L
O
L
V
Output Voltage Swing  
R = 10k  
R = 1k  
L
±12.8 ±13.1  
±11.8 ±12.1  
±12.8 ±13.1  
±11.8 ±12.1  
V
V
OUT  
L
SR  
Slew Rate  
R 2k  
2.1  
2
3.2  
3.1  
2.1  
2
3.2  
3.1  
V/µs  
L
GBW  
Gain-Bandwidth Product  
Supply Current  
f = 100kHz  
O
MHz  
I
4.2  
4.2  
5.40  
5.35  
4.2  
4.2  
5.40  
5.35  
mA  
mA  
S
V = ±5V  
S
Note 6: This parameter is not 100% tested.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 7: Slew rate is measured in A = –1; input signal is ±7.5V, output  
V
measured at ±2.5V.  
Note 2: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers.  
Note 8: The LT1793AC and LT1793C are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet these extended temperature limits, but are not tested at  
40°C and 85°C. The LT1793I is guaranteed to meet the extended  
temperature limits. The LT1793AC and LT1793AI grade are 100%  
temperature tested for the specified temperature range.  
Note 9: The LT1793 is measured in an automated tester in less than one  
second after application of power. Depending on the package used, power  
dissipation, heat sinking, and air flow conditions, the fully warmed-up chip  
temperature can be 10°C to 50°C higher than the ambient temperature.  
Note 3: I and I readings are extrapolated to a warmed-up temperature  
B
OS  
from 25°C measurements and 32°C characterization data.  
Note 4: Current noise is calculated from the formula:  
1/2  
i = (2qI )  
n
B
–19  
where q = 1.6 • 10  
coulomb. The noise of source resistors up to 200M  
swamps the contribution of current noise.  
Note 5: Input voltage range functionality is assured by testing offset  
voltage at the input voltage range limits to a maximum of 2.3mV  
(A grade) to 2.8mV (C grade).  
4
LT1793  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
1kHz Input Noise Voltage  
Distribution  
0.1Hz to 10Hz Voltage Noise  
Voltage Noise vs Frequency  
100  
10  
1
50  
40  
30  
20  
10  
0
T
= 25°C  
= ±15V  
A
S
T
= 25°C  
= ±15V  
A
S
V
V
510 OP AMPS TESTED  
1/f CORNER  
30Hz  
0
2
4
6
8
10  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2  
INPUT VOLTAGE NOISE (nV/Hz)  
1793 G02  
TIME (SEC)  
1793 G03  
1793 G01  
Voltage Noise  
Common Mode Limit  
vs Temperature  
Common Mode Rejection Ratio  
vs Frequency  
vs Chip Temperature  
+
120  
100  
V
0
–0.5  
–1.0  
–1.5  
10  
9
T
= 25°C  
= ±15V  
A
V
= ±15V  
S
V
S
+
V
= 5V TO 20V  
8
80  
60  
40  
20  
0
7
–2.0  
6
4.0  
3.5  
5
4
V
= 5V TO 20V  
3.0  
3
2.5  
V
+2.0  
2
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–60  
–20  
20  
60  
100  
140  
50 75  
TEMPERATURE (°C)  
–75 –50 –25  
0
25  
100 125  
TEMPERATURE (°C)  
1793 G06  
1793 G05  
1793 G04  
Power Supply Rejection Ratio  
vs Frequency  
Gain and Phase Shift  
vs Frequency  
Voltage Gain vs Frequency  
120  
100  
80  
60  
40  
20  
0
180  
160  
140  
120  
100  
80  
50  
40  
30  
20  
10  
0
80  
T
V
C
= 25°C  
= ±15V  
= 10pF  
T
V
C
= 25°C  
= ±15V  
= 10pF  
A
S
L
A
S
L
T
= 25°C  
A
100  
120  
140  
160  
180  
200  
+PSRR  
PHASE  
–PSRR  
60  
40  
GAIN  
20  
0
–10  
20  
10  
1k  
10k 100k  
1M  
10M  
100  
0.01  
1
100  
10k  
1M  
100M  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
1793 G07  
1793 G08  
1793 G09  
5
LT1793  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Output Voltage Swing  
vs Load Current  
Large-Signal Transient Response  
Small-Signal Transient Response  
+
V
0.8  
–1.0  
–1.2  
1.4  
–1.6  
2.0  
125°C  
25°C  
–55°C  
V
= ±5V TO ±20V  
S
1.8  
1.6  
125°C  
25°C  
1.4  
1793 G11  
1793 G10  
AV = 1  
5µs/DIV  
AV = 1  
CL = 10pF  
VS = ±15V, ±5V  
1µs/DIV  
1.2  
–55°C  
–6 –4  
CL = 10pF  
RL = 2k  
V
+1.0  
V
S = ±15V  
0
2
4
8
–10 –8  
–2  
6
I
10  
I
SINK  
SOURCE  
OUTPUT CURRENT (mA)  
1793 G12  
THD and Noise Frequency for  
Noninverting Gain  
Warm-Up Drift  
Capacitive Load Handling  
1
0.1  
90  
75  
60  
45  
30  
15  
0
50  
40  
30  
20  
10  
0
V
= ±15V  
= 25°C  
10k  
= 100mV  
= 10  
V
= ±15V  
= 25°C  
Z
V
A
= 2k 15pF  
S
A
L
O
V
F
S
A
L
O
V
T
T
= 20V  
P-P  
R
V
A
= 1, 10, 100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
SO-8 PACKAGE  
N8 PACKAGE  
P-P  
R = 10k  
C = 20pF  
F
A
= 100  
V
0.01  
0.001  
A
= 10  
A
= 1  
V
V
A
= 1  
V
NOISE FLOOR  
1k  
A
= 10  
V
0.0001  
0
2
3
4
5
6
0.1  
1
10  
100  
1000 10000  
1
20  
100  
10k 20k  
TIME AFTER POWER ON (MINUTES)  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
1793 G15  
1793 G14  
1793 G13  
THD and Noise vs Frequency for  
Inverting Gain  
THD and Noise vs Output  
THD and Noise vs Output  
Amplitude for Noninverting Gain  
Amplitude for Inverting Gain  
1
1
1
0.1  
Z
V
A
= 2k 15pF  
Z
= 2k 15pF, f = 1kHz  
O
= –1, –10, –100  
Z
= 2k 15pF, f = 1kHz  
L
O
V
L
V
L O  
= 20V  
A
A
= 1, 10, 100  
V
P-P  
= 1, 10, 100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
0.1  
0.01  
0.1  
0.01  
A
= 100  
A
= –100  
A
V
= 100  
V
V
0.01  
A
= 10  
= 1  
V
A
= –10  
V
A
= 10  
V
A
= 1  
0.001  
0.0001  
V
0.001  
0.0001  
0.001  
0.0001  
A
V
A
= –1  
V
NOISE FLOOR  
20  
100  
1k  
10k 20k  
0.3  
1
10  
)
30  
0.3  
1
10  
30  
FREQUENCY (Hz)  
OUTPUT SWING (V  
OUTPUT SWING (V  
)
P-P  
P-P  
1793 G16  
1793 G17  
1793 G18  
6
LT1793  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Short-Circuit Output Current  
vs Temperature  
Input Bias and Offset Currents  
vs Chip Temperature  
Supply Current vs Temperature  
30n  
10n  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
S
V
V
= ±15V  
CM  
S
= –10 TO 13V  
3n  
1n  
BIAS  
CURRENT  
V
= ±15V  
= ±5V  
300p  
100p  
S
SINK  
SOURCE  
4
V
S
30p  
10p  
3p  
OFFSET  
CURRENT  
1p  
3
0.3p  
75 100  
75 100  
0
25  
75  
TEMPERATURE (°C)  
100  
125  
75 50 25  
0
25 50  
125  
75 50 25  
0
25 50  
125  
50  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1793 G21  
1793 G19  
1793 G20  
W
U
O U  
I FOR ATIO  
S
PPLICATI  
A
The extremely high input impedance (1013) assures that  
the input bias current is almost constant over the entire  
common mode range. Figure 1 shows how the LT1793  
standsuptothecompetition.Unlikethecompetition,asthe  
input voltage is swept across the entire common mode  
range the input bias current of the LT1793 hardly changes.  
As a result the current noise does not degrade. This makes  
the LT1793 the best choice in applications where an  
amplifier has to buffer signals from a high impedance  
transducer.  
LT1793 vs the Competition  
With improved noise performance, the LT1793 in the  
PDIP directly replaces such JFET op amps as the OPA111  
and the AD645. The combination of low current and  
voltagenoiseoftheLT1793allowsittosurpassmostdual  
and single JFET op amps. The LT1793 can replace many  
of the lowest noise bipolar amps that are used in amplify-  
ing low level signals from high impedance transducers.  
The best bipolar op amps (with higher current noise) will  
eventually lose out to the LT1793 when transducer im-  
pedance increases.  
Offsetnullingwillbecompatiblewiththesedeviceswiththe  
wiper of the potentiometer tied to the negative supply  
(Figure 2a). No appreciable change in offset voltage drift  
100  
CURRENT NOISE = 2qI  
B
80  
60  
40  
20  
15V  
15V  
OP215  
LT1793  
+
+
2
3
2
3
7
7
6
6
0
–20  
4
4
AD822  
5
5
–40  
–60  
V = ±13mV  
V = ±1.3mV  
OS  
OS  
1
1
50k  
15V  
10k 10k  
50k  
–80  
–100  
–15  
–10  
0
5
10  
15  
–5  
COMMON MODE RANGE (V)  
15V  
1793 F02  
1793 F01  
(a)  
(b)  
Figure 1. Comparison of LT1793, OP215, and AD822  
Input Bias Current vs Common Mode Range  
Figure 2  
7
LT1793  
PPLICATI  
with temperature will occur when the device is nulled with  
a potentiometer ranging from 10k to 200k. Finer adjust-  
ments can be made with resistors in series with the  
potentiometer (Figure 2b).  
W
U
O U  
I FOR ATIO  
S
A
voltagenoise, thethermalnoiseofthetransducer, andthe  
op amp’s input bias current noise times the transducer  
impedance. Figure 3 shows total input voltage noise  
versus source resistance. In a low source resistance  
(<5k) application the op amp voltage noise will dominate  
the total noise. This means the LT1793 is superior to  
most JFET op amps. Only the lowest noise bipolar op  
amps have the advantage at low source resistances. As  
the source resistance increases from 5k to 50k, the  
LT1793 will match the best bipolar op amps for noise  
performance, since the thermal noise of the transducer  
(4kTR) begins to dominate the total noise. A further  
increase in source resistance, above 50k, is where the op  
amp’s current noise component (2qIBR2) will eventually  
dominate the total noise. At these high source resis-  
tances, the LT1793 will out perform the lowest noise  
bipolar op amps due to the inherently low current noise of  
FET input op amps. Clearly, the LT1793 will extend the  
range of high impedance transducers that can be used for  
high signal-to-noise ratios. This makes the LT1793 the  
best choice for high impedance, capacitive transducers.  
Amplifying Signals from High Impedance Transducers  
The low voltage and current noise offered by the LT1793  
makes it useful in a wide range of applications, especially  
where high impedance, capacitive transducers are used  
such as hydrophones, precision accelerometers and  
photodiodes. The total output noise in such a system is  
thegaintimestheRMSsumoftheopamp’sinputreferred  
10k  
C
LT1007*  
S
+
R
LT1793*  
S
1k  
100  
10  
V
O
R
C
S
S
LT1007†  
LT1793  
LT1793†  
LT1007  
RESISTOR NOISE ONLY  
Optimization Techniques for Charge Amplifiers  
1
The high input impedance JFET front end makes the  
LT1793 suitable in applications where very high charge  
sensitivity is required. Figure 4 illustrates the LT1793 in its  
inverting and noninverting modes of operation. A charge  
amplifier is shown in the inverting mode example; the gain  
depends on the principal of charge conservation at the  
input of the LT1793. The charge across the transducer  
capacitance CS is transferred to the feedback capacitor CF  
100  
1k 10k 100k 1M 10M 100M 1G  
SOURCE RESISTANCE ()  
1793 F03  
SOURCE RESISTANCE = 2R = R  
S
* PLUS RESISTOR  
PLUS RESISTOR  
1000pF CAPACITOR  
2
2
V = A V  
n
+ 4kTR + 2qI R  
B
V
n (OP AMP)  
Figure 3. Comparison of LT1793 and LT1007 Total Output  
1kHz Voltage Noise vs Source Resistance  
R
R2  
F
C
B
C
F
R
B
+
+
R
C
OUTPUT  
R1  
OUTPUT  
S
S
C
= C  
C
S
S
B
B
F
F
TRANSDUCER  
R
= R  
R
R
C
S
C
R
R
C
S
S
dQ  
Q = CV; = I = C  
dt  
dV  
dt  
B
B
S
= R  
S
R
B
C
B
> R1 OR R2  
TRANSDUCER  
1793 F04  
Figure 4. Inverting and Noninverting Gain Configurations  
8
LT1793  
W
U
O U  
I FOR ATIO  
S
PPLICATI  
A
resultinginachangeinvoltagedV, whichisequaltodQ/CF.  
The gain therefore is CF/CS. For unity-gain, the CF should  
equal the transducer capacitance plus the input capaci-  
tance of the LT1793 and RF should equal RS.  
forRB isdeterminedbyequatingthethermalnoise(4kTRS)  
2
to the current noise (2qIB) times RS . Solving for RS  
results in RB = RS = 2VT/IB (VT = 26mV at 25°C). A parallel  
capacitor CB, is used to cancel the phase shift caused by  
the op amp input capacitance and RB.  
In the noninverting mode example, the transducer current  
is converted to a change in voltage by the transducer  
capacitance, CS. This voltage is then buffered by the  
LT1793 with a gain of 1 + R1/R2. A DC path is provided by  
RS, which is either the transducer impedance or an exter-  
nal resistor. Since RS is usually several orders of magni-  
tudegreaterthantheparallelcombinationofR1andR2,RB  
is added to balance the DC offset caused by the noninvert-  
ing input bias current and RS. The input bias currents,  
althoughsmallatroomtemperature,cancreatesignificant  
errors at higher temperature, especially with transducer  
resistances of up to 1000M or more. The optimum value  
Reduced Power Supply Operation  
Totakefulladvantageofawideinputcommonmoderange,  
the LT1793 was designed to eliminate phase reversal.  
Referring to the photographs in Figure 5, the LT1793 is  
shown operating in the follower mode (AV = 1) at ±5V  
supplies with the input swinging ±5.2V. The output of the  
LT1793 clips cleanly and recovers with no phase reversal.  
This has the benefit of preventing lockup in servo systems  
and minimizing distortion components.  
Input: ±5.2V Sine Wave  
LT1793 Output  
LT1793 F05a  
LT1793 F05b  
Figure 5. Voltage Follower with Input Exceeding the Common Mode Range (VS = ±5V)  
9
LT1793  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
10  
LT1793  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1793  
TYPICAL APPLICATIONS N  
U
10Hz Fourth Order Chebyshev Lowpass Filter (0.01dB Ripple)  
R2  
237k  
R5  
154k  
15V  
7
R1  
R3  
249k  
C1  
237k  
33nF  
+
2
3
R4  
154k  
R6  
C3  
V
IN  
249k  
10nF  
+
6
2
3
LT1793  
C2  
100nF  
6
C4  
330nF  
V
OUT  
LT1793  
4
1793 TA04  
–15V  
TYPICAL OFFSET 0.8mV  
1% TOLERANCES  
FOR V = 10V , V  
= –121dB AT f > 330Hz  
= – 6dB AT f = 16.3Hz  
IN  
P-P OUT  
LOWER RESISTOR VALUES WILL RESULT IN LOWER THERMAL NOISE AND LARGER CAPACITORS  
Accelerometer Amplifier with DC Servo  
C1  
1250pF  
R1  
100M  
R2  
18k  
C2  
2µF  
R3  
2k  
R4  
20M  
2
1
R5  
1/2 LT1464+ 3  
20M  
5V TO 15V  
7
ACCELEROMETER  
B & K MODEL 4381  
OR EQUIVALENT  
(800) 442-1030  
C3  
2µF  
2
3
6
LT1793  
+
OUTPUT  
1793 TA03  
4
R4C2 = R5C3 > R1 (1 + R2/R3) C1  
OUTPUT = 0.8mV/pC* = 8.0mV/g**  
DC OUTPUT 1.9mV  
–5V TO –15V  
OUTPUT NOISE = 8nV/Hz AT 1kHz  
*PICOCOULOMBS  
**g = EARTH’S GRAVITATIONAL CONSTANT  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1113  
Low Noise, Dual JFET Op Amp  
Low Noise, Dual JFET Op Amp  
Micropower Dual JFET Op Amp  
Low Noise, Single JFET Op Amp  
Dual Version of LT1792, V  
Dual Version of LT1793, V  
= 4.5nV/Hz  
NOISE  
LT1169  
= 6nV/Hz, I = 10pA  
NOISE  
B
LT1467  
1MHz, 2pA Max I , 200µA Max I  
B
S
LT1792  
Lower V  
Version of LT1793, V  
= 4.2nV/Hz  
NOISE  
NOISE  
1793f LT/TP 0599 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1999  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1793IS8

Low Noise, Picoampere Bias Current, JFET Input Op Amp
Linear

LT1793IS8#TR

暂无描述
Linear

LT1794

Dual 500mA, 200MHz xDSL Line Driver Amplifier
Linear

LT1794CFE

Dual 500mA, 200MHz xDSL Line Driver Amplifier
Linear

LT1794CFE#PBF

LT1794 - Dual 500mA, 200MHz xDSL Line Driver Amplifier; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1794CFE#TR

LT1794 - Dual 500mA, 200MHz xDSL Line Driver Amplifier; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1794CFE#TRPBF

LT1794 - Dual 500mA, 200MHz xDSL Line Driver Amplifier; Package: TSSOP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1794CSW

Dual 500mA, 200MHz xDSL Line Driver Amplifier
Linear

LT1794CSW#PBF

LT1794 - Dual 500mA, 200MHz xDSL Line Driver Amplifier; Package: SO; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1794CSW#TRPBF

LT1794 - Dual 500mA, 200MHz xDSL Line Driver Amplifier; Package: SO; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1794IFE

Dual 500mA, 200MHz xDSL Line Driver Amplifier
Linear

LT1794IFE#PBF

LT1794 - Dual 500mA, 200MHz xDSL Line Driver Amplifier; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear