LT1819IS8#PBF [Linear]

LT1819 - 400MHz, 2500V/µs, 9mA Dual Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LT1819IS8#PBF
型号: LT1819IS8#PBF
厂家: Linear    Linear
描述:

LT1819 - 400MHz, 2500V/µs, 9mA Dual Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总18页 (文件大小:1128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1818/LT1819  
400MHz, 2500V/µs, 9mA  
Single/Dual Operational  
Amplifiers  
FEATURES  
DESCRIPTION  
TheLT®1818/LT1819aresingle/dualwidebandwidth,high  
slew rate, low noise and distortion operational amplifiers  
with excellent DC performance. The LT1818/LT1819 have  
been designed for wider bandwidth and slew rate, much  
lower input offset voltage and lower noise and distortion  
than devices with comparable supply current. The circuit  
topology is a voltage feedback amplifier with the excellent  
slewing characteristics of a current feedback amplifier.  
n
400MHz Gain Bandwidth Product  
n
2500V/μs Slew Rate  
n
–85dBc Distortion at 5MHz  
9mA Supply Current Per Amplifier  
n
n
6nꢀ/√Hz Input Noise ꢀoltage  
UnityꢂGain Stable  
n
n
1.ꢁmꢀ Maximum Input Offset ꢀoltage  
n
8μA Maximum Input Bias Current  
n
800nA Maximum Input Offset Current  
The output drives a 100Ω load to ±±.8ꢀ with ±ꢁꢀ supꢂ  
plies. On a single ꢁꢀ supply, the output swings from 1ꢀ  
to 4ꢀ with a 100Ω load connected to 2.ꢁ. The amplifier  
is unityꢂgain stable with a 20pF capacitive load without the  
need for a series resistor. Harmonic distortion is –8ꢁdBc  
n
40mA Minimum Output Current, ꢀ  
= ±±ꢀ  
OUT  
n
n
n
n
±±.ꢁꢀ Minimum Input CMꢃ, ꢀ = ±ꢁꢀ  
S
Specified at ±ꢁ, Single ꢁꢀ Supplies  
Operating Temperature ꢃange: –40°C to 8ꢁ°C  
Low Profile (1mm) TSOT2± (ThinSOT™) Package  
up to ꢁMHz for a 2ꢀ output at a gain of 2.  
PꢂP  
APPLICATIONS  
The LT1818/LT1819 are manufactured on Linear Techꢂ  
nology’s advanced low voltage complementary bipolar  
process. The LT1818 (single op amp) is available in  
TSOT2± and SOꢂ8 packages; the LT1819 (dual op amp)  
is available in MSOPꢂ8 and SOꢂ8 packages.  
n
Wideband Amplifiers  
n
Buffers  
n
Active Filters  
n
ꢀideo and ꢃF Amplification  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Communication ꢃeceivers  
n
Cable Drivers  
n
Data Acquisition Systems  
TYPICAL APPLICATION  
FFT of Single Supply ADC Driver  
0
f
f
= ꢁ.102ꢁ±9MHz  
= ꢁ0Msps  
Single Supply Unity-Gain ADC Driver for Oversampling Applications  
IN  
S
–10  
–20  
–±0  
–40  
–ꢁ0  
–60  
–70  
–80  
–90  
–100  
–110  
= ±00mꢀ  
IN  
PꢂP  
SFDꢃ = 78dB  
ꢁꢀ  
ꢁꢀ  
8192 POINT FFT  
NO WINDOWING  
Oꢃ AꢀEꢃAGING  
2.ꢁꢀDC  
±1ꢀAC  
+
ꢁ1.1Ω  
18pF  
LTC1744  
14 BITS  
ꢁ0Msps  
(SET FOꢃ 2ꢀ  
FULL SCALE)  
+
LT1818  
A
A
IN  
IN  
PꢂP  
2.ꢁꢀ  
2
±
18189 TA01  
0
ꢁM  
10M  
1ꢁM  
20M  
2ꢁM  
FꢃEQUENCY (Hz)  
18189 TA02  
18189fb  
1
LT1818/LT1819  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
+
Total Supply ꢀoltage (ꢀ to ꢀ )..............................12.6ꢀ  
Differential Input ꢀoltage (Transient Only, Note 2).....±6ꢀ  
Output ShortꢂCircuit Duration (Note ±) ............ Indefinite  
Operating Temperature ꢃange (Note 8).... –40°C to 8ꢁ°C  
Specified Temperature ꢃange (Note 9) .... –40°C to 8ꢁ°C  
Maximum Junction Temperature........................... 1ꢁ0°C  
Storage Temperature ꢃange................... –6ꢁ°C to 1ꢁ0°C  
Lead Temperature (Soldering, 10 sec) .................. ±00°C  
PIN CONFIGURATION  
TOP ꢀIEW  
TOP ꢀIEW  
+
OUT A  
–IN A  
+IN A  
1
2
±
4
8 ꢀ  
OUT 1  
1
2
±
4
ꢀ+  
7 OUT B  
6 –IN B  
ꢁ +IN B  
A
B
+
+IN  
–IN  
MS8 PACKAGE  
8ꢂLEAD PLASTIC MSOP  
Sꢁ PACKAGE  
ꢁꢂLEAD PLASTIC TSOTꢂ2±  
T
JMAX  
= 1ꢁ0°C, θ = 2ꢁ0°C/W (NOTE 10)  
JA  
T
= 1ꢁ0°C, θ = 2ꢁ0°C/W (NOTE 10)  
JMAX  
JA  
TOP ꢀIEW  
TOP ꢀIEW  
+
NC  
–IN  
+IN  
1
2
±
4
8
7
6
NC  
OUT A  
–IN A  
+IN A  
1
2
±
4
8
7
6
+
OUT B  
–IN B  
+IN B  
+
A
OUT  
NC  
B
S8 PACKAGE  
8ꢂLEAD PLASTIC SO  
S8 PACKAGE  
8ꢂLEAD PLASTIC SO  
T
= 1ꢁ0°C, θ = 1ꢁ0°C/W (NOTE 10)  
T = 1ꢁ0°C, θ = 1ꢁ0°C/W (NOTE 10)  
JMAX JA  
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1818CSꢁ#PBF  
LT1818ISꢁ#PBF  
LT1818CS8#PBF  
LT1818IS8#PBF  
LT1819CMS8#PBF  
LT1819IMS8#PBF  
LT1819CS8#PBF  
LT1819IS8#PBF  
TAPE AND REEL  
PART MARKING*  
LTF7  
PACKAGE DESCRIPTION  
ꢁꢂLead Plastic TSOT2±  
ꢁꢂLead Plastic TSOT2±  
8ꢂLead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1818CSꢁ#TꢃPBF  
LT1818ISꢁ#TꢃPBF  
LT1818CS8#TꢃPBF  
LT1818IS8#TꢃPBF  
LT1819CMS8#TꢃPBF  
LT1819IMS8#TꢃPBF  
LT1819CS8#TꢃPBF  
LT1819IS8#TꢃPBF  
LTF7  
–40°C to 8ꢁ°C  
0°C to 70°C  
1818  
1818I  
8ꢂLead Plastic SO  
–40°C to 8ꢁ°C  
0°C to 70°C  
LTE7  
8ꢂLead Plastic MSOP  
8ꢂLead Plastic MSOP  
8ꢂLead Plastic SO  
LTEꢁ  
–40°C to 8ꢁ°C  
0°C to 70°C  
1819  
1819I  
8ꢂLead Plastic SO  
–40°C to 8ꢁ°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonꢂstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
18189fb  
2
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 9) VS = 5V, VCM = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset ꢀoltage  
(Note 4)  
0.2  
1.ꢁ  
2.0  
±.0  
mꢀ  
mꢀ  
mꢀ  
OS  
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
l
l
Input Offset ꢀoltage Drift  
Input Offset Current  
T = 0°C to 70°C (Note 7)  
A
10  
10  
1ꢁ  
±0  
μꢀ/°C  
μꢀ/°C  
Δꢀ /ΔT  
A
OS  
T = –40°C to 8ꢁ°C (Note 7)  
I
60  
800  
1000  
1200  
nA  
nA  
nA  
OS  
B
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
I
Input Bias Current  
–2  
±8  
±10  
±12  
μA  
μA  
μA  
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
e
Input Noise ꢀoltage Density  
Input Noise Current Density  
Input ꢃesistance  
f = 10kHz  
6
nꢀ/√Hz  
pA/√Hz  
n
i
n
f = 10kHz  
1.2  
+
= ꢀ + 1.ꢁꢀ to ꢀ – 1.ꢁꢀ  
1.ꢁ  
7ꢁ0  
MΩ  
kΩ  
IN  
CM  
Differential  
C
Input Capacitance  
1.ꢁ  
pF  
IN  
Input ꢀoltage ꢃange  
(Positive/Negative)  
Guaranteed by CMꢃꢃ  
T = –40°C to 8ꢁ°C  
±±.ꢁ  
±±.ꢁ  
±4.2  
CM  
l
A
CMꢃꢃ  
Common Mode ꢃejection ꢃatio  
= ±±.ꢁꢀ  
7ꢁ  
7±  
72  
8ꢁ  
dB  
dB  
dB  
CM  
A
A
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
Minimum Supply ꢀoltage  
Guaranteed by PSꢃꢃ  
T = –40°C to 8ꢁ°C  
±1.2ꢁ  
97  
±2  
±2  
l
A
PSꢃꢃ  
Power Supply ꢃejection ꢃatio  
ꢀ = ±2ꢀ to ±ꢁ.ꢁꢀ  
78  
76  
7ꢁ  
dB  
dB  
dB  
S
l
l
T = 0°C to 70°C  
A
A
T = –40°C to 8ꢁ°C  
A
LargeꢂSignal ꢀoltage Gain  
= ±±, ꢃ = 00Ω  
1.ꢁ  
1.0  
0.6  
2.ꢁ  
6
ꢀ/mꢀ  
ꢀ/mꢀ  
ꢀ/mꢀ  
ꢀOL  
OUT  
A
A
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
= ±±, ꢃ = 100Ω  
1.0  
0.7  
0.6  
ꢀ/mꢀ  
ꢀ/mꢀ  
ꢀ/mꢀ  
OUT  
A
A
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
Channel Separation  
= ±±, LT1819  
82  
81  
80  
100  
±4.1  
±±.8  
±70  
±200  
dB  
dB  
dB  
OUT  
A
A
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
Output Swing (Positive/Negative)  
ꢃ = ꢁ00Ω, ±0mꢀ Overdrive  
±±.8  
±±.7  
±±.6  
OUT  
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
A
A
ꢃ = 100Ω, ±0mꢀ Overdrive  
±±.ꢁ0  
±±.2ꢁ  
±±.1ꢁ  
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
A
A
I
I
Output Current  
ꢀ = ±±, ±0mꢀ Overdrive  
OUT  
±40  
±±ꢁ  
±±0  
mA  
mA  
mA  
OUT  
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
A
A
Output ShortꢂCircuit Current  
Slew ꢃate  
OUT  
= 0, 1ꢀ Overdrive (Note ±)  
±100  
±90  
±70  
mA  
mA  
mA  
SC  
l
l
T = 0°C to 70°C  
A
A
T = –40°C to 8ꢁ°C  
Sꢃ  
A = 1  
2ꢁ00  
1800  
ꢀ/μs  
A = –1 (Note ꢁ)  
900  
7ꢁ0  
600  
ꢀ/μs  
ꢀ/μs  
ꢀ/μs  
l
l
TA = 0°C to 70°C  
TA = –40°C to 8ꢁ°C  
FPBW  
FullꢂPower Bandwidth  
6ꢀ (Note 6)  
PꢂP  
9ꢁ  
MHz  
18189fb  
3
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 9) VS = 5V, VCM = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
GBW GainꢂBandwidth Product  
CONDITIONS  
f = 4MHz, ꢃ = ꢁ00Ω  
MIN  
TYP  
MAX  
UNITS  
270  
260  
2ꢁ0  
400  
MHz  
MHz  
MHz  
L
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
t , t  
ꢃise Time, Fall Time  
Propagation Delay  
Overshoot  
A = 1, 10% to 90%, 0.1ꢀ Step  
0.6  
1.0  
20  
ns  
ns  
%
ns  
r
f
t
PD  
A = 1, ꢁ0% to ꢁ0%, 0.1ꢀ Step  
OS  
A = 1, 0.1, ꢃ = 100Ω  
ꢀ L  
t
S
Settling Time  
A = –1, 0.1%, ꢁꢀ  
10  
HD  
Harmonic Distortion  
HD2, A = 2, f = ꢁMHz, ꢀ  
= 2ꢀ , ꢃ = ꢁ00Ω  
–8ꢁ  
–89  
dBc  
dBc  
OUT  
OUT  
PꢂP  
L
HD±, A = 2, f = ꢁMHz, ꢀ  
= 2ꢀ , ꢃ = ꢁ00Ω  
PꢂP L  
dG  
dP  
Differential Gain  
Differential Phase  
Supply Current  
A = 2, ꢃ = 1ꢁ0Ω  
0.07  
0.02  
9
%
L
A = 2, ꢃ = 1ꢁ0Ω  
DEG  
L
I
S
Per Amplifier  
T = 0°C to 70°C  
10  
1±  
14  
mA  
mA  
mA  
l
l
A
T = –40°C to 8ꢁ°C  
A
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
(Note 9) VS = 5V, 0V; VCM = 2.5V, RL to 2.5V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset ꢀoltage  
Input Offset ꢀoltage Drift  
Input Offset Current  
Input Bias Current  
(Note 4)  
0.4  
2.0  
2.ꢁ  
±.ꢁ  
mꢀ  
mꢀ  
mꢀ  
OS  
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
(Note 7)  
Δꢀ /ΔT  
OS  
l
l
T = 0°C to 70°C  
10  
10  
1ꢁ  
±0  
μꢀ/°C  
μꢀ/°C  
A
T = –40°C to 8ꢁ°C  
A
I
60  
800  
1000  
1200  
nA  
nA  
nA  
OS  
B
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
I
–2.4  
±8  
±10  
±12  
μA  
μA  
μA  
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
e
Input Noise ꢀoltage Density  
Input Noise Current Density  
Input ꢃesistance  
f = 10kHz  
6
nꢀ/√Hz  
pA/√Hz  
n
i
n
f = 10kHz  
1.4  
+
= ꢀ + 1.ꢁꢀ to ꢀ – 1.ꢁꢀ  
1.ꢁ  
7ꢁ0  
MΩ  
kΩ  
IN  
CM  
Differential  
C
Input Capacitance  
1.ꢁ  
4.2  
pF  
IN  
Input ꢀoltage ꢃange (Positive)  
Guaranteed by CMꢃꢃ  
±.ꢁ  
±.ꢁ  
CM  
l
l
T = –40°C to 8ꢁ°C  
A
Input ꢀoltage ꢃange (Negative)  
Common Mode ꢃejection ꢃatio  
Guaranteed by CMꢃꢃ  
0.8  
82  
1.ꢁ  
1.ꢁ  
T = –40°C to 8ꢁ°C  
A
CMꢃꢃ  
PSꢃꢃ  
= 1.ꢁꢀ to ±.ꢁꢀ  
7±  
71  
70  
dB  
dB  
dB  
CM  
A
A
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
Minimum Supply ꢀoltage  
Guaranteed by PSꢃꢃ  
T = –40°C to 8ꢁ°C  
±1.2ꢁ  
97  
±2  
±2  
l
A
Power Supply ꢃejection ꢃatio  
ꢀ = 4ꢀ to 11ꢀ  
78  
76  
7ꢁ  
dB  
dB  
dB  
S
l
l
T = 0°C to 70°C  
A
A
T = –40°C to 8ꢁ°C  
18189fb  
4
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 9) VS = 5V, 0V; VCM = 2.5V, RL to 2.5V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
LargeꢂSignal ꢀoltage Gain  
= 1.ꢁꢀ to ±.ꢁ, ꢃ = 00Ω  
1.0  
0.7  
0.6  
2
ꢀ/mꢀ  
ꢀ/mꢀ  
ꢀ/mꢀ  
ꢀOL  
OUT  
A
A
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
= 1.ꢁꢀ to ±.ꢁ, ꢃ = 100Ω  
0.7  
0.ꢁ  
0.4  
4
100  
4.2  
4
ꢀ/mꢀ  
ꢀ/mꢀ  
ꢀ/mꢀ  
OUT  
A
A
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
Channel Separation  
= 1.ꢁꢀ to ±.ꢁ, LT1819  
81  
80  
79  
dB  
dB  
dB  
OUT  
A
A
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
Output Swing (Positive)  
ꢃ = ꢁ00Ω, ±0mꢀ Overdrive  
±.9  
±.8  
±.7  
OUT  
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
A
A
ꢃ = 100Ω, ±0mꢀ Overdrive  
±.7  
±.6  
±.ꢁ  
L
l
l
T = 0°C to 70°C  
T = –40°C to 8ꢁ°C  
A
A
Output Swing (Negative)  
ꢃ = ꢁ00Ω, ±0mꢀ Overdrive  
0.8  
1
1.1  
1.2  
1.±  
L
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
ꢃ = 100Ω, ±0mꢀ Overdrive  
1.±  
1.4  
1.ꢁ  
L
l
l
T = 0°C to 70°C  
A
A
T = –40°C to 8ꢁ°C  
I
I
Output Current  
= 1.ꢁꢀ or ±.ꢁ, ±0mꢀ Overdrive  
OUT  
±±0  
±2ꢁ  
±20  
±ꢁ0  
±140  
mA  
mA  
mA  
OUT  
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
Output ShortꢂCircuit Current  
Slew ꢃate  
OUT  
= 2.ꢁ, 1ꢀ Overdrive (Note ±)  
±80  
±70  
±ꢁ0  
mA  
mA  
mA  
SC  
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
Sꢃ  
A = 1  
1000  
800  
ꢀ/μs  
A = –1 (Note ꢁ)  
4ꢁ0  
±7ꢁ  
±00  
ꢀ/μs  
ꢀ/μs  
ꢀ/μs  
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
FPBW  
GBW  
FullꢂPower Bandwidth  
2ꢀ (Note 6)  
12ꢁ  
±60  
MHz  
PꢂP  
GainꢂBandwidth Product  
f = 4MHz, ꢃ = ꢁ00Ω  
240  
2±0  
220  
MHz  
MHz  
MHz  
L
l
l
T = 0°C to 70°C  
A
T = –40°C to 8ꢁ°C  
A
t , t  
ꢃise Time, Fall Time  
Propagation Delay  
Overshoot  
A = 1, 10% to 90%, 0.1ꢀ Step  
0.7  
1.1  
20  
ns  
ns  
%
r
f
t
PD  
A = 1, ꢁ0% to ꢁ0%, 0.1ꢀ Step  
OS  
HD  
A = 1, 0.1, ꢃ = 100Ω  
ꢀ L  
Harmonic Distortion  
HD2, A = 2, f = ꢁMHz, ꢀ  
= 2ꢀ , ꢃ = ꢁ00Ω  
= 2ꢀ , ꢃ = ꢁ00Ω  
–72  
–74  
dBc  
dBc  
OUT  
OUT  
PꢂP  
PꢂP L  
L
HD±, A = 2, f = ꢁMHz, ꢀ  
dG  
dP  
Differential Gain  
Differential Phase  
Supply Current  
A = 2, ꢃ = 1ꢁ0Ω  
0.07  
0.07  
8.ꢁ  
%
L
A = 2, ꢃ = 1ꢁ0Ω  
DEG  
L
I
S
Per Amplifier  
T = 0°C to 70°C  
10  
1±  
14  
mA  
mA  
mA  
l
l
A
T = –40°C to 8ꢁ°C  
A
Note 1: Stresses beyond those listed under Absolute Maximum ꢃatings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum ꢃating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 4: Input offset voltage is pulse tested and is exclusive of warmꢂup  
drift.  
Note 2: Differential inputs of ±6ꢀ are appropriate for transient operation  
only, such as during slewing. Large sustained differential inputs can cause  
excessive power dissipation and may damage the part.  
18189fb  
5
LT1818/LT1819  
ELECTRICAL CHARACTERISTICS  
Note 5: With ±ꢁꢀ supplies, slew rate is tested in a closedꢂloop gain of –1  
by measuring the rise time of the output from –2ꢀ to 2ꢀ with an output  
step from –±ꢀ to ±. With single ꢁꢀ supplies, slew rate is tested in a  
closedꢂloop gain of –1 by measuring the rise time of the output from 1.ꢁꢀ  
to ±.ꢁꢀ with an output step from 1ꢀ to 4. Falling edge slew rate is not  
production tested, but is designed, characterized and expected to be within  
10% of the rising edge slew rate.  
Note 8: The LT1818C/LT1818I and LT1819C/LT1819I are guaranteed  
functional over the operating temperature range of –40°C to 8ꢁ°C.  
Note 9: The LT1818C/LT1819C are guaranteed to meet specified  
performance from 0°C to 70°C and is designed, characterized and  
expected to meet the extended temperature limits, but is not tested  
at –40°C and 8ꢁ°C. The LT1818I/LT1819I are guaranteed to meet the  
extended temperature limits.  
Note 6: Fullꢂpower bandwidth is calculated from the slew rate:  
Note 10: Thermal resistance (θ ) varies with the amount of PC board  
JA  
FPBW = Sꢃ/2πꢀ  
metal connected to the package. The specified values are for short  
traces connected to the leads. If desired, the thermal resistance can be  
P
Note 7: This parameter is not 100% tested.  
significantly reduced by connecting the ꢀ pin to a large metal area.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Common Mode Range  
Input Bias Current vs Common  
Mode Voltage  
Supply Current vs Temperature  
vs Supply Current  
+
2
0
12  
10  
8
T
= 2ꢁ°C  
= ±ꢁꢀ  
T
= 2ꢁ°C  
OS  
PEꢃ AMPLIFIEꢃ  
A
S
A
–0.ꢁ  
–1.0  
–1.ꢁ  
–2.0  
$ꢀ < 1mꢀ  
= ±ꢁꢀ  
S
S
–2  
–4  
–6  
–8  
= ±2.ꢁꢀ  
6
2.0  
1.ꢁ  
1.0  
0.ꢁ  
4
2
0
0
2.ꢁ  
–ꢁ  
–2.ꢁ  
–ꢁ0 –2ꢁ  
0
2ꢁ  
ꢁ0  
7ꢁ 100 12ꢁ  
0
2
±
4
6
7
1
TEMPEꢃATUꢃE (°C)  
INPUT COMMON MODE ꢀOLTAGE (ꢀ)  
SUPPLY ꢀOLTAGE (±ꢀ)  
18189 G0±  
18189 G01  
18189 G02  
Input Bias Current vs Temperature  
Input Noise Spectral Density  
Open-Loop Gain vs Resistive Load  
0
100  
10  
1
10  
80  
77  
74  
71  
68  
6ꢁ  
62  
= 0ꢀ  
T
= 2ꢁ°C  
T
= 2ꢁ°C  
= ±ꢁꢀ  
= 101  
= 10k  
CM  
A
A
S
A
–0.4  
S
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
i
n
1
e
n
= ±ꢁꢀ  
S
= ±ꢁꢀ  
S
S
= ±2.ꢁꢀ  
S
= ±2.ꢁꢀ  
–2.8  
0.1  
100k  
ꢁ0  
100 12ꢁ  
–ꢁ0 –2ꢁ  
0
2ꢁ  
7ꢁ  
10  
100  
1k  
FꢃEQUENCY (Hz)  
10k  
100  
1k  
LOAD ꢃESISTANCE (Ω)  
10k  
TEMPEꢃATUꢃE (°C)  
18189 G0ꢁ  
18189 G06  
18189 G04  
18189fb  
6
LT1818/LT1819  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Swing  
Open-Loop Gain vs Temperature  
vs Supply Voltage  
vs Load Current  
+
80  
77  
74  
71  
68  
6ꢁ  
62  
T
= 2ꢁ°C  
= ±ꢁꢀ  
OS  
= ±ꢁꢀ  
= ±±ꢀ  
T = 2ꢁ°C  
A
A
S
S
O
–0.ꢁ  
–1.0  
–1.ꢁ  
–2.0  
$ꢀ = ±0mꢀ  
OS  
= ꢁ00Ω  
= 100Ω  
L
= 100Ω  
$ꢀ = ±0mꢀ  
L
4
±
2
L
SOUꢃCE  
–2  
–±  
–4  
–ꢁ  
SINK  
2.0  
1.ꢁ  
1.0  
0.ꢁ  
= ꢁ00Ω  
L
L
= 100Ω  
= ꢁ00Ω  
L
ꢁ0  
TEMPEꢃATUꢃE (°C)  
100 12ꢁ  
–80  
0
–ꢁ0 –2ꢁ  
0
2ꢁ  
7ꢁ  
4
7
–120  
–40  
40  
80  
120  
0
2
±
6
1
SUPPLY ꢀOLTAGE (±ꢀ)  
OUTPUT CUꢃꢃENT (mA)  
18189 G07  
18189 G09  
18189 G08  
Output Short-Circuit Current  
vs Temperature  
Output Current vs Temperature  
Output Impedance vs Frequency  
240  
200  
160  
120  
100  
10  
1ꢁ0  
= ±ꢁꢀ  
= ±1ꢀ  
S
IN  
SOUꢃCE  
SINK  
12ꢁ  
100  
7ꢁ  
SOUꢃCE, ꢀ = ±ꢁꢀ  
S
A
= 100  
SINK, ꢀ = ±ꢁꢀ  
SOUꢃCE, ꢀ = ±2.ꢁꢀ  
S
S
A
= 10  
1
SINK, ꢀ = ±2.ꢁꢀ  
S
80  
40  
0
ꢁ0  
2ꢁ  
0
A
= 1  
0.1  
0.01  
$ꢀ = ±0mꢀ  
OS  
= ±±ꢀ FOꢃ ꢀ = ±ꢁꢀ  
OUT  
OUT  
S
T
= 2ꢁ°C  
= ±ꢁꢀ  
A
S
= ±1ꢀ FOꢃ ꢀ = ±2.ꢁꢀ  
S
ꢁ0  
100 12ꢁ  
–ꢁ0 –2ꢁ  
0
2ꢁ  
7ꢁ  
ꢁ0  
0
TEMPEꢃATUꢃE (°C)  
100 12ꢁ  
–ꢁ0 –2ꢁ  
2ꢁ  
7ꢁ  
10k  
100k  
1M  
10M  
100M  
FꢃEQUENCY (Hz)  
TEMPEꢃATUꢃE (°C)  
18189 G12  
18189 G10  
18189 G11  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
Gain vs Frequency, AV = 1  
80  
70  
60  
ꢁ0  
180  
160  
140  
120  
0
440  
400  
±60  
T
= 2ꢁ°C  
= 1  
= ꢁ00Ω  
= ꢁ00Ω  
A
L
L
GBW  
S
A
= ±ꢁꢀ  
S
= ±ꢁꢀ  
ꢀ = ±2.ꢁꢀ  
S
GBW  
= ±2.ꢁꢀ  
PHASE  
GAIN  
S
40  
±0  
100  
80  
20  
10  
60  
40  
20  
0
ꢁ0  
PHASE MAꢃGIN  
= ±2.ꢁꢀ  
PHASE MAꢃGIN  
= ±ꢁꢀ  
–ꢁ  
S
S
0
40  
T
= 2ꢁ°C  
A
A
= –1  
–10  
= ꢁ00Ω  
L
–20  
10k  
–20  
100M ꢁ00M  
–10  
1M  
±0  
100k  
1M  
10M  
10M  
100M  
ꢁ00M  
–ꢁ0 –2ꢁ  
0
2ꢁ  
ꢁ0  
7ꢁ 100 12ꢁ  
TEMPEꢃATUꢃE (°C)  
FꢃEQUENCY (Hz)  
FꢃEQUENCY (Hz)  
18189 G1±  
18189 G16  
18189 G1ꢁ  
18189fb  
7
LT1818/LT1819  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain-Bandwidth and Phase  
Margin vs Supply Voltage  
Gain vs Frequency, AV = 2  
Gain vs Frequency, AV = –1  
10  
0
4ꢁ0  
400  
±ꢁ0  
±00  
= ꢁ00Ω  
T
= 2ꢁ°C  
L
GBW  
= ꢁ00Ω  
A
= ±ꢁꢀ  
L
S
= ±2.ꢁꢀ  
S
= 100Ω  
L
GBW  
= 100Ω  
L
0
PHASE MAꢃGIN  
= 100Ω  
4ꢁ  
–ꢁ  
L
T
A
C
= 2ꢁ°C  
= 2  
A
S
F
F
–ꢁ  
–10  
40  
±ꢁ  
±0  
T
= 2ꢁ°C  
A = –1  
L
= ±ꢁꢀ  
A
PHASE MAꢃGIN  
= ꢃ = ꢁ00Ω  
= ꢁ00Ω  
G
L
= ꢃ = ꢃ = ꢁ00Ω  
F G  
= 1pF  
–10  
1M  
1M  
10M  
FꢃEQUENCY (Hz)  
100M ±00M  
2
±
4
6
10M  
FꢃEQUENCY (Hz)  
100M ±00M  
SUPPLY ꢀOLTAGE (±ꢀ)  
18189 G17  
18189 G18  
18189 G19  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Slew Rate vs Input Step  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
2000  
1600  
1200  
800  
400  
0
T
=2ꢁ°C  
= –1  
T
A
= 2ꢁ°C  
T = 2ꢁ°C  
A
A
S
A
S
A
= 1  
= ±ꢁꢀ  
= ±ꢁꢀ  
= ꢃ = ꢃ = ꢁ00Ω  
G L  
F
+
Sꢃ  
Sꢃ  
= ±2.ꢁꢀ  
ꢀ = ±ꢁꢀ  
S
PSꢃꢃ  
+PSꢃꢃ  
S
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
2
±
4
6
INPUT STEP (ꢀ  
)
FꢃEQUENCY (Hz)  
FꢃEQUENCY (Hz)  
PꢂP  
18189 G20  
18189 G21  
18189 G22  
Differential Gain and Phase  
vs Supply Voltage  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
2000  
1ꢁ00  
1000  
ꢁ00  
0
2400  
2000  
1600  
1200  
T
A
= 2ꢁ°C  
T
=2ꢁ°C  
A
F
0.10  
0.08  
0.06  
0.04  
0.02  
0
A
= –1  
DIFFEꢃENTIAL GAIN  
= 1ꢁ0Ω  
= 6ꢀ  
= ꢃ = ꢃ = ꢁ00Ω  
G
IN  
PꢂP  
PꢂP  
L
= ±ꢁꢀ  
S
L
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
= ±2.ꢁꢀ  
= 2ꢀ  
S
IN  
800  
400  
0
DIFFEꢃENTIAL PHASE  
= 1ꢁ0Ω  
L
A
= –1  
G L  
F
= ꢃ = ꢃ = ꢁ00Ω  
2
±
4
6
0
2
±
4
6
7
–ꢁ0  
2ꢁ  
ꢁ0  
7ꢁ  
100 12ꢁ  
1
–2ꢁ  
0
SUPPLY ꢀOLTAGE (±ꢀ)  
SUPPLY ꢀOLTAGE (±ꢀ)  
TEMPEꢃATUꢃE (°C)  
18189 G2ꢁ  
18189 G2±  
18189 G24  
18189fb  
8
LT1818/LT1819  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distortion vs Frequency, AV = 2  
Distortion vs Frequency, AV = –1  
Distortion vs Frequency, AV = 1  
–60  
–70  
–60  
–70  
–60  
–70  
A
= 1  
= ±ꢁꢀ  
= 2ꢀ  
S
O
2ND, ꢃ = 100Ω  
L
2ND, ꢃ = 100Ω  
L
±ꢃD, ꢃ = 100Ω  
2ND, ꢃ = ꢁ00Ω  
L
L
PꢂP  
2ND, ꢃ = 100Ω  
L
±ꢃD, ꢃ = 100Ω  
–80  
–80  
L
–80  
2ND, ꢃ = ꢁ00Ω  
L
±ꢃD, ꢃ = 100Ω  
L
±ꢃD, ꢃ = ꢁ00Ω  
L
–90  
–90  
–90  
±ꢃD, ꢃ = ꢁ00Ω  
L
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
±ꢃD, ꢃ = ꢁ00Ω  
L
A
= –1  
= ±ꢁꢀ  
= 2ꢀ  
A
= 2  
= ±ꢁꢀ  
= 2ꢀ  
S
O
S
O
2ND, ꢃ = ꢁ00Ω  
L
PꢂP  
PꢂP  
1M  
10M  
2M  
ꢁM  
1M  
10M  
2M  
ꢁM  
1M  
10M  
2M  
ꢁM  
FꢃEQUENCY (Hz)  
FꢃEQUENCY (Hz)  
FꢃEQUENCY (Hz)  
18189 G27  
18189 G28  
18189 G26  
Channel Separation vs Frequency  
0.1% Settling Time  
Small-Signal Transient, 20dB Gain  
110  
100  
90  
80  
70  
60  
ꢁ0  
40  
±0  
20  
10  
INPUT  
TꢃIGGEꢃ  
(1ꢀ/DIꢀ)  
OUTPUT  
20mꢀ/DIꢀ  
SETTLING  
ꢃESIDUE  
(ꢁmꢀ/DIꢀ)  
T
= 2ꢁ°C  
A
S
18189 G±0  
A
= ±ꢁꢀ  
= ±ꢁꢀ  
OUT  
SETTLING TIME = 9ns  
= –1  
= ꢃ = ꢁ00Ω  
ꢁns/DIꢀ  
18189 G±1  
S
10ns/DIꢀ  
= –1  
= ±2.ꢁꢀ  
= ꢃ = ꢃ = ꢁ00Ω  
F
G
L
A
10k  
100k  
1M  
10M  
100M  
1G  
F
F
G
FꢃEQUENCY (Hz)  
C
= 4.1pF  
18188 G29  
Large-Signal Transient, AV = –1  
Large-Signal Transient, AV = 1  
Large-Signal Transient, AV = –1  
1ꢀ/DIꢀ  
2ꢀ/DIꢀ  
1ꢀ/DIꢀ  
18189 G±±  
18189 G±2  
18189 G±4  
= ±ꢁꢀ  
10ns/DIꢀ  
= ±ꢁꢀ  
ꢁns/DIꢀ  
= ±ꢁꢀ  
10ns/DIꢀ  
S
S
S
18189fb  
9
LT1818/LT1819  
APPLICATIONS INFORMATION  
Layout and Passive Components  
load, aresistorof10Ωto0Ωmustbeconnectedbetween  
the output and the capacitive load to avoid ringing or  
As with all high speed amplifiers, the LT1818/LT1819  
require some attention to board layout. A ground plane  
is recommended and trace lengths should be minimized,  
especially on the negative input lead.  
oscillation (see ꢃ in Figure 1). The feedback must still be  
S
taken directly from the output so that the series resistor  
will isolate the capacitive load to ensure stability.  
Low ESL/ESꢃ bypass capacitors should be placed directly  
at the positive and negative supply (0.01μF ceramics are  
recommended). For high drive current applications, adꢂ  
ditional 1μF to 10μF tantalums should be added.  
Input Considerations  
TheinputsoftheLT1818/LT1819amplifiersareconnected  
to the bases of NPN and PNP bipolar transistors in paralꢂ  
lel. The base currents are of opposite polarity and provide  
first order bias current cancellation. Due to variation in the  
matching of NPN and PNP beta, the polarity of the input  
biascurrentcanbepositiveornegative.Theoffsetcurrent,  
however, does not depend on beta matching and is tightly  
controlled.Therefore,theuseofbalancedsourceresistance  
at each input is recommended for applications where DC  
accuracy must be maximized. For example, with a 100Ω  
sourceresistanceateachinput,the800nAmaximumoffset  
current results in only 80μꢀ of extra offset, while without  
balance the 8μA maximum input bias current could result  
in an 0.8mꢀ offset condition.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input combine with the  
input capacitance to form a pole that can cause peaking or  
even oscillations. If feedback resistors greater than ꢁ00Ω  
are used, a parallel capacitor of value  
C > ꢃ • C /ꢃ  
F
F
G
IN  
should be used to cancel the input pole and optimize  
dynamic performance (see Figure 1). For applications  
where the DC noise gain is 1 and a large feedback resisꢂ  
tor is used, C should be greater than or equal to C . An  
F
IN  
example would be an Iꢂtoꢂꢀ converter.  
The inputs can withstand differential input voltages of  
up to 6ꢀ without damage and without needing clamping  
or series resistance for protection. This differential input  
voltage generates a large internal current (up to ꢁ0mA),  
which results in the high slew rate. In normal transient  
closedꢂloop operation, this does not increase power disꢂ  
sipation significantly because of the low duty cycle of the  
transient inputs. Sustained differential inputs, however,  
will result in excessive power dissipation and therefore  
this device should not be used as a comparator.  
In high closedꢂloop gain configurations, ꢃ >> ꢃ , no C  
F
F
G
needs to be added. To optimize the bandwidth in these  
applications, a capacitor, C , may be added in parallel with  
G
ꢃ in order to cancel out any parasitic C capacitance.  
G
F
Capacitive Loading  
The LT1818/LT1819 are optimized for low distortion and  
highgainbandwidthapplications. Theamplifierscandrive  
a capacitive load of 20pF in a unityꢂgain configuration and  
more with higher gain. When driving a larger capacitive  
+
IN  
+
S
G
C
LOAD  
IN  
C
G
F
C
F
18189 F01  
Figure 1  
18189fb  
10  
LT1818/LT1819  
APPLICATIONS INFORMATION  
Slew Rate  
Example: LT1819IS8 at 8ꢁ°C, ꢀ = ±ꢁ, ꢃ = 100Ω  
S L  
The slew rate of the LT1818/LT1819 is proportional to the  
differential input voltage. Highest slew rates are therefore  
seen in the lowest gain configurations. For example, a 6ꢀ  
outputstepwithagainof10hasa0.6inputstep,whereas  
at unity gain there is a 6ꢀ input step. The LT1818/LT1819  
is tested for slew rate at a gain of –1. Lower slew rates  
occur in higher gain configurations, whereas the highest  
slew rate (2ꢁ00ꢀ/μs) occurs in a noninverting unityꢂgain  
configuration.  
P
= (10ꢀ) • (14mA) + (2.ꢁꢀ)2/100Ω = 202.ꢁmW  
= 8ꢁ°C + (2 • 202.ꢁmW) • (1ꢁ0°C/W) = 146°C  
DMAX  
JMAX  
T
Circuit Operation  
The LT1818/LT1819 circuit topology is a true voltage  
feedback amplifier that has the slewing behavior of a curꢂ  
rent feedback amplifier. The operation of the circuit can  
be understood by referring to the Simplified Schematic.  
Complementary NPN and PNP emitter followers buffer  
the inputs and drive an internal resistor. The input voltage  
appears across the resistor, generating a current that is  
mirrored into the high impedance node.  
Power Dissipation  
The LT1818/LT1819 combine high speed and large output  
drive in small packages. It is possible to exceed the maxiꢂ  
mum junction temperature specification (1ꢁ0°C) under  
Complementary followers form an output stage that bufꢂ  
fer the gain node from the load. The input resistor, input  
stage transconductance and the capacitor on the high  
impedance node determine the bandwidth. The slew rate  
is determined by the current available to charge the gain  
node capacitance. This current is the differential input  
voltage divided by ꢃ1, so the slew rate is proportional to  
the input step. Highest slew rates are therefore seen in  
the lowest gain configurations.  
certain conditions. Maximum junction temperature (T )  
J
is calculated from the ambient temperature (T ), power  
A
dissipation per amplifier (P ) and number of amplifiers  
D
(n) as follows:  
T = T + (n • P θ )  
J
A
D
JA  
Power dissipation is composed of two parts. The first is  
due to the quiescent supply current and the second is  
due to onꢂchip dissipation caused by the load current.  
The worstꢂcase loadꢂinduced power occurs when the  
output voltage is at 1/2 of either supply voltage (or the  
maximum swing if less than 1/2 the supply voltage).  
Therefore P  
is:  
DMAX  
+
+
P
P
=(ꢀ )•(I  
)+(ꢀ /2)2/ꢃ or  
DMAX  
DMAX  
SMAX  
L
+
+
=(ꢀ )•(I  
)+(ꢀ  
)•(ꢀ /ꢃ )  
OMAX OMAX L  
SMAX  
18189fb  
11  
LT1818/LT1819  
TYPICAL APPLICATION  
Single Supply Differential ADC Driver  
ꢁꢀ  
10μF  
18pF  
+
IN  
ꢁ1.1Ω  
1/2 LT1819  
ꢁꢀ  
LTC1744  
14 BITS  
ꢁ0Msps  
(SET FOꢃ 2ꢀ  
FULL SCALE)  
+
A
A
IN  
18pF  
18pF  
ꢁ±6Ω  
PꢂP  
IN  
ꢁ±6Ω  
4.99k  
18189 TA0ꢁ  
ꢁ1.1Ω  
1/2 LT1819  
ꢁꢀ  
+
4.99k  
0.1μF  
Results Obtained with the Circuit of Figure 2 at 5MHz.  
FFT Shows 81dB Overall Spurious Free Dynamic Range  
0
–10  
–20  
–±0  
–40  
–ꢁ0  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
ꢁM  
10M  
1ꢁM  
20M  
2ꢁM  
FꢃEQUENCY (Hz)  
18189 TA06  
18189fb  
12  
LT1818/LT1819  
SIMPLIFIED SCHEMATIC (One Amplifier)  
+
+IN  
ꢃ1  
OUT  
–IN  
C
18189 SS  
18189fb  
13  
LT1818/LT1819  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(ꢃeference LTC DWG # 0ꢁꢂ08ꢂ1660 ꢃev F)  
0.889 p 0.127  
(.0±ꢁ p .00ꢁ)  
ꢁ.2±  
(.206)  
MIN  
±.20 – ±.4ꢁ  
(.126 – .1±6)  
±.00 p 0.102  
(.118 p .004)  
(NOTE ±)  
0.ꢁ2  
(.020ꢁ)  
ꢃEF  
0.6ꢁ  
(.02ꢁ6)  
BSC  
0.42 p 0.0±8  
(.016ꢁ p .001ꢁ)  
TYP  
8
7 6  
ꢃECOMMENDED SOLDEꢃ PAD LAYOUT  
±.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.1ꢁ2  
(.19± p .006)  
DETAIL “A”  
0.2ꢁ4  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
1
2
±
4
0.ꢁ± p 0.1ꢁ2  
(.021 p .006)  
1.10  
(.04±)  
MAX  
0.86  
(.0±4)  
ꢃEF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.±8  
0.1016 p 0.0ꢁ08  
(.009 – .01ꢁ)  
(.004 p .002)  
0.6ꢁ  
(.02ꢁ6)  
BSC  
TYP  
MSOP (MS8) 0±07 ꢃEꢀ F  
NOTE:  
1. DIMENSIONS IN MILLIMETEꢃ/(INCH)  
2. DꢃAWING NOT TO SCALE  
±. DIMENSION DOES NOT INCLUDE MOLD FLASH, PꢃOTꢃUSIONS Oꢃ GATE BUꢃꢃS.  
MOLD FLASH, PꢃOTꢃUSIONS Oꢃ GATE BUꢃꢃS SHALL NOT EXCEED 0.1ꢁ2mm (.006") PEꢃ SIDE  
4. DIMENSION DOES NOT INCLUDE INTEꢃLEAD FLASH Oꢃ PꢃOTꢃUSIONS.  
INTEꢃLEAD FLASH Oꢃ PꢃOTꢃUSIONS SHALL NOT EXCEED 0.1ꢁ2mm (.006") PEꢃ SIDE  
ꢁ. LEAD COPLANAꢃITY (BOTTOM OF LEADS AFTEꢃ FOꢃMING) SHALL BE 0.102mm (.004") MAX  
18189fb  
14  
LT1818/LT1819  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic TSOT-23  
(ꢃeference LTC DWG # 0ꢁꢂ08ꢂ16±ꢁ)  
0.62  
MAX  
0.9ꢁ  
ꢃEF  
2.90 BSC  
(NOTE 4)  
1.22 ꢃEF  
1.ꢁ0 – 1.7ꢁ  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
±.8ꢁ MAX 2.62 ꢃEF  
PIN ONE  
ꢃECOMMENDED SOLDEꢃ PAD LAYOUT  
PEꢃ IPC CALCULATOꢃ  
0.±0 – 0.4ꢁ TYP  
ꢁ PLCS (NOTE ±)  
0.9ꢁ BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.±0 – 0.ꢁ0 ꢃEF  
1.90 BSC  
0.09 – 0.20  
(NOTE ±)  
NOTE:  
Sꢁ TSOT2± 0±02 ꢃEꢀ B  
1. DIMENSIONS AꢃE IN MILLIMETEꢃS  
2. DꢃAWING NOT TO SCALE  
±. DIMENSIONS AꢃE INCLUSIꢀE OF PLATING  
4. DIMENSIONS AꢃE EXCLUSIꢀE OF MOLD FLASH AND METAL BUꢃꢃ  
ꢁ. MOLD FLASH SHALL NOT EXCEED 0.2ꢁ4mm  
6. JEDEC PACKAGE ꢃEFEꢃENCE IS MOꢂ19±  
18189fb  
15  
LT1818/LT1819  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(ꢃeference LTC DWG # 0ꢁꢂ08ꢂ1610)  
.189 – .197  
(4.801 – ꢁ.004)  
.04ꢁ p.00ꢁ  
NOTE ±  
.0ꢁ0 BSC  
7
8
6
.24ꢁ  
MIN  
.160 p.00ꢁ  
.1ꢁ0 – .1ꢁ7  
(±.810 – ±.988)  
NOTE ±  
.228 – .244  
(ꢁ.791 – 6.197)  
.0±0 p.00ꢁ  
TYP  
1
±
4
2
ꢃECOMMENDED SOLDEꢃ PAD LAYOUT  
.010 – .020  
(0.2ꢁ4 – 0.ꢁ08)  
s 4ꢁo  
.0ꢁ± – .069  
(1.±46 – 1.7ꢁ2)  
.004 – .010  
(0.101 – 0.2ꢁ4)  
.008 – .010  
(0.20± – 0.2ꢁ4)  
0o– 8o TYP  
.016 – .0ꢁ0  
(0.406 – 1.270)  
.0ꢁ0  
(1.270)  
BSC  
.014 – .019  
(0.±ꢁꢁ – 0.48±)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETEꢃS)  
2. DꢃAWING NOT TO SCALE  
±. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH Oꢃ PꢃOTꢃUSIONS.  
MOLD FLASH Oꢃ PꢃOTꢃUSIONS SHALL NOT EXCEED .006" (0.1ꢁmm)  
SO8 0±0±  
18189fb  
16  
LT1818/LT1819  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
ꢁ/10  
Updated Order Information Section  
2
18189fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representaꢂ  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LT1818/LT1819  
TYPICAL APPLICATION  
80MHz, 20dB Gain Block  
+
IN  
1/2 LT1819  
+
1/2 LT1819  
OUT  
4±2Ω  
4±2Ω  
200Ω  
200Ω  
–±dB BANDWIDTH: 80MHz  
18189 TA0±  
20dB Gain Block Frequency Response  
Large-Signal Transient Response  
2ꢁ  
20  
1ꢁ  
10  
1ꢀ/DIꢀ  
0
–ꢁ  
–10  
= ±ꢁꢀ  
= 2ꢁ°C  
S
A
T
18189 TA07  
10ns/DIꢀ  
100k  
1M  
10M  
100M  
FꢃEQUENCY (Hz)  
18189 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1±9ꢁ/LT1±96/LT1±97  
LT1806/LT1807  
Single/Dual/Quad 400MHz Current Feedback Amplifiers  
Single/Dual ±2ꢁMHz, 140ꢀ/μs ꢃailꢂtoꢂꢃail I/O Op Amps  
Single/Dual 180MHz, ±ꢁ0ꢀ/μs ꢃailꢂtoꢂꢃail I/O Op Amps  
Single/Dual/Quad 100MHz, 7ꢁ0ꢀ/μs Op Amps  
4.6mA Supply Current  
Low Noise: ±.ꢁnꢀ/√Hz  
LT1809/LT1810  
Low Distortion: –90dBc at ꢁMHz  
Low Power: ±.6mA Max at ±ꢁꢀ  
Programmable Supply Current  
1.9nꢀ/√Hz Noise, ±mA Max  
LT1812/LT181±/LT1814  
LT181ꢁ/LT1816/LT1817  
LT620±/LT6204  
Single/Dual/Quad 220MHz, 1ꢁ00ꢀ/μs Op Amps  
Dual/Quad 100MHz, ꢃailꢂtoꢂꢃail I/O Op Amps  
18189fb  
LT 0510 REV B • PRINTED IN USA  
LinearTechnology Corporation  
16±0 McCarthy Blvd., Milpitas, CA 9ꢁ0±ꢁꢂ7417  
18  
© LINEAR TECHNOLOGY CORPORATION 2002  
(408) 4±2ꢂ1900 FAX: (408) 4±4ꢂ0ꢁ07 www.linear.com  

相关型号:

LT1819IS8#TR

LT1819 - 400MHz, 2500V/&#181;s, 9mA Dual Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1819IS8#TRPBF

LT1819 - 400MHz, 2500V/&#181;s, 9mA Dual Operational Amplifiers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1819_15

400MHz, 2500V/s, 9mA Single/Dual Operational Amplifiers
Linear

LT1839

TRANSISTOR | BJT | NPN | 300MA I(C) | TO-39
ETC

LT1840-7

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DB1

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DFB1

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DZB1

AC-DC Regulated Power Supply Module, 1 Output, CASE T01, MODULE
BEL

LT1840-7DZF

AC-DC Regulated Power Supply Module, 1 Output, 450W, CASE T01, MODULE
BEL

LT1840-7DZFB1

AC-DC Regulated Power Supply Module, 1 Output, 500W, Hybrid, CASE T01, MODULE
BEL

LT1840-7FB1

AC-DC Regulated Power Supply Module
BEL

LT1840-7ZB1

AC-DC Regulated Power Supply Module, 1 Output, 500W, Hybrid
BEL