LTC2057HVIMS8#PBF [Linear]

LTC2057/LTC2057HV - High Voltage, Low Noise Zero-Drift Operational Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LTC2057HVIMS8#PBF
型号: LTC2057HVIMS8#PBF
厂家: Linear    Linear
描述:

LTC2057/LTC2057HV - High Voltage, Low Noise Zero-Drift Operational Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

放大器 斩波器 光电二极管
文件: 总32页 (文件大小:1659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2057/LTC2057HV  
High Voltage, Low Noise  
Zero-Drift Operational Amplifier  
FeaTures  
DescripTion  
n
Supply Voltage Range  
The LTC®2057 is a high voltage, low noise, zero-drift op-  
erational amplifier that offers precision DC performance  
over a wide supply range of 4.75V to 36V or 4.75V to  
60V for the LTC2057HV. Offset voltage and 1/f noise are  
suppressed, allowingthisamplifiertoachieveamaximum  
offset voltage of 4μV and a DC to 10Hz input noise volt-  
n
4.75V to 36V (LTC2057)  
4.75V to 60V (LTC2057HV)  
n
n
n
Offset Voltage: 4μV (Maximum)  
Offset Voltage Drift: 0.015μV/°C  
(Maximum, –40°C to 125°C)  
n
Input Noise Voltage  
age of 200nV  
(typ). The LTC2057’s self-calibrating  
P-P  
n
200nV , DC to 10Hz (Typ)  
P-P  
circuitryresultsinlowoffsetvoltagedriftwithtemperature,  
0.015μV/°C (max), and zero-drift over time. The amplifier  
also features an excellent power supply rejection ratio  
(PSRR) of 160dB and a common mode rejection ratio  
(CMRR) of 150dB (typ).  
n
11nV/√Hz, 1kHz (Typ)  
+
n
n
n
n
n
n
n
n
n
Input Common Mode Range: V – 0.1V to V – 1.5V  
Rail-to-Rail Output  
Unity Gain Stable  
Gain Bandwidth Product: 1.5MHz (Typ)  
Slew Rate: 0.45V/μs (Typ)  
The LTC2057 provides rail-to-rail output swing and an  
A
: 150dB (Typ)  
VOL  
input common mode range that includes the V rail (V –  
PSRR: 160dB (Typ)  
CMRR: 150dB (Typ)  
Shutdown Mode  
+
0.1V to V – 1.5V). In addition to low offset and noise, this  
amplifier features a 1.5MHz (typ) gain-bandwidth product  
and a 0.45V/μs (typ) slew rate.  
applicaTions  
Wide supply range, combined with low noise, low offset,  
and excellent PSRR and CMRR make the LTC2057 and  
LTC2057HV well suited for high dynamic-range test,  
measurement, and instrumentation systems.  
L, LT, LTC, LTM, Linear Technology, Over-The-Top, and the Linear logo are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
High Resolution Data Acquisition  
n
Reference Buffering  
n
Test and Measurement  
n
Electronic Scales  
n
Thermocouple Amplifiers  
n
Strain Gauges  
n
Low-Side Current Sense  
n
Automotive Monitors and Control  
Typical applicaTion  
Wide Input Range Precision Gain-of-100 Instrumentation Amplifier  
Input Offset Voltage  
vs Supply Voltage  
30V  
5
4
5 TYPICAL UNITS  
= V /2  
+
–IN  
V
CM  
T = 25°C  
A
S
LTC2057HV  
3
1ꢀV  
2
1
–30V  
30V  
7
9
10  
11.5k  
11.5k  
M9  
M3  
M1  
V
CC  
0
232Ω  
6
–1  
–2  
–3  
–4  
–5  
LT1991A  
REO  
V
ꢃUT  
ꢃUT  
1
2
3
P1  
P3  
P9  
V
EE  
5
–1ꢀV  
0
5
20 25  
40 45 50 55 60 65  
LTC2057HV  
2057 TA01a  
10 15  
30 35  
(V)  
V
S
+IN  
+
INPUT CM RANGE = 2ꢀV ꢁITH ꢂV ꢃO ꢃUTPUT ꢄꢁING  
CMRR = 130dB (TYP), INPUT ꢃOOꢄET VꢃLTAGE = 1µV (TYP)  
2057 TA01b  
–30V  
2057f  
1
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
absoluTe MaxiMuM raTings  
(Note 1)  
+
Total Supply Voltage (V to V )  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range (Note 2)  
LTC2057I/LTC2057HVI........................–40°C to 85°C  
LTC2057H/LTC2057HVH ................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
LTC2057 ..............................................................40V  
LTC2057HV...........................................................65V  
Input Voltage  
–IN, +IN ...................................V 0.3V to V + 0.3V  
SD, SDCOM ............................V – 0.3V to V + 0.3V  
Input Current  
+
+
–IN, +IN ........................................................... 10mA  
SD, SDCOM ..................................................... 10mA  
Differential Input Voltage  
–IN – +IN .............................................................. 6V  
SD – SDCOM ........................................ –0.3V to 5.3V  
pin conFiguraTion  
TOP VIEW  
9
V
SD  
–IN  
+IN  
1
2
3
4
8
7
6
5
SDCOM  
TOP VIEW  
+
V
+
SD 1  
–IN 2  
8 SDCOM  
+
+
7 V  
OUT  
NC  
+IN  
V
6 OUT  
5 NC  
3
4
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 163°C/W  
JMAX  
JA  
T
= 150°C, θ = 43°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 9) IS V  
PCB CONNECTION REQUIRED  
TOP VIEW  
TOP VIEW  
SD  
–IN  
+IN  
1
2
3
4
8
7
6
5
SDCOM  
GRD  
1
2
3
4
5
10 SD  
+
+
–IN  
+IN  
9
8
7
6
SDCOM  
V
+
+
V
OUT  
NC  
GRD  
NC  
OUT  
V
V
MS PACKAGE  
10-LEAD PLASTIC MSOP  
= 150°C, θ = 160°C/W  
JMAX JA  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
T
= 150°C, θ = 120°C/W  
JMAX  
JA  
2057f  
2
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LGCZ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
LTC2057IDD#PBF  
LTC2057IDD#TRPBF  
LTC2057HVIDD#TRPBF  
LTC2057HDD#TRPBF  
LTC2057HVHDD#TRPBF  
LTC2057IMS8#TRPBF  
LTC2057HVIMS8#TRPBF  
LTC2057HMS8#TRPBF  
LTC2057HVHMS8#TRPBF  
LTC2057IMS#TRPBF  
LTC2057HVIMS#TRPBF  
LTC2057HMS#TRPBF  
LTC2057HVHMS#TRPBF  
LTC2057IS8#TRPBF  
8-Lead Plastic DFN (3mm × 3mm)  
8-Lead Plastic DFN (3mm × 3mm)  
8-Lead Plastic DFN (3mm × 3mm)  
8-Lead Plastic DFN (3mm × 3mm)  
8-Lead Plastic MSOP  
LTC2057HVIDD#PBF  
LTC2057HDD#PBF  
LTC2057HVHDD#PBF  
LTC2057IMS8#PBF  
LTC2057HVIMS8#PBF  
LTC2057HMS8#PBF  
LTC2057HVHMS8#PBF  
LTC2057IMS#PBF  
LGDB  
LGCZ  
LGDB  
LTFGK  
LTGDC  
LTFGK  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
LTGDC  
LTGCX  
LTGCY  
LTGCX  
LTGCY  
2057  
8-Lead Plastic MSOP  
10-Lead Plastic MSOP  
LTC2057HVIMS#PBF  
LTC2057HMS#PBF  
LTC2057HVHMS#PBF  
LTC2057IS8#PBF  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
LTC2057HVIS8#PBF  
LTC2057HS8#PBF  
LTC2057HVHS8#PBF  
LTC2057HVIS8#TRPBF  
LTC2057HS8#TRPBF  
LTC2057HVHS8#TRPBF  
2057HV  
2057  
2057HV  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2057f  
3
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
(LTC2057/LTC2057HV) The l denotes the specifications which apply  
elecTrical characTerisTics  
over the full operating temperature range, otherwise specifications are at TA = 25°C. Unless otherwise noted, VS = 2.5V; VCM = VOUT = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4
UNITS  
μV  
V
Input Offset Voltage (Note 3)  
0.5  
OS  
l
∆V /∆T  
OS  
Average Input Offset Voltage Drift (Note 3) –40°C to 125°C  
0.015  
μV/°C  
I
Input Bias Current (Note 4)  
–40°C to 85°C  
30  
60  
200  
300  
3.5  
pA  
pA  
nA  
B
l
l
–40°C to 125°C  
I
Input Offset Current (Note 4)  
–40°C to 85°C  
400  
460  
1.0  
pA  
pA  
nA  
OS  
n
l
l
–40°C to 125°C  
i
Input Noise Current Spectral Density  
Input Noise Voltage Spectral Density  
Input Noise Voltage  
1kHz  
170  
11  
fA/√Hz  
nV/√Hz  
e
e
1kHz  
n
DC to 10Hz  
200  
nV  
P-P  
n P-P  
C
Differential Input Capacitance  
3
3
pF  
pF  
IN  
Common Mode Input Capacitance  
+
CMRR  
PSRR  
Common Mode Rejection Ratio (Note 5)  
Power Supply Rejection Ratio (Note 5)  
Open Loop Voltage Gain (Note 5)  
Output Voltage Swing Low  
V
= V – 0.1V to V – 1.5V  
114  
111  
150  
160  
150  
dB  
dB  
CM  
l
l
l
–40°C to 125°C  
V = 4.75V to 36V  
133  
129  
dB  
dB  
S
–40°C to 125°C  
+
A
V
V
= V +0.2V to V –0.2V, R =1kΩ  
118  
117  
dB  
dB  
VOL  
OUT  
L
–40°C to 125°C  
– V  
No Load  
0.2  
35  
10  
15  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OL  
l
l
–40°C to 125°C  
I
= 1mA  
60  
SINK  
–40°C to 125°C  
90  
I
= 5mA  
180  
270  
365  
415  
SINK  
l
l
–40°C to 85°C  
–40°C to 125°C  
+
V – V  
Output Voltage Swing High  
No Load  
0.2  
50  
10  
15  
75  
115  
345  
470  
535  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OH  
l
l
–40°C to 125°C  
I
= 1mA  
SOURCE  
–40°C to 125°C  
I
= 5mA  
250  
SOURCE  
l
l
–40°C to 85°C  
–40°C to 125°C  
I
Short Circuit Current  
Rising Slew Rate  
17  
26  
1.2  
mA  
V/μs  
V/μs  
MHz  
kHz  
SC  
SR  
SR  
A = –1, R = 10kΩ  
V L  
RISE  
FALL  
Falling Slew Rate  
A = –1, R = 10kΩ  
0.45  
1.5  
V
L
GBW  
Gain Bandwidth Product  
Internal Chopping Frequency  
Supply Current  
f
I
100  
0.8  
C
S
No Load  
–40°C to 85°C  
–40°C to 125°C  
1.21  
1.50  
1.70  
mA  
mA  
mA  
l
l
In Shutdown Mode  
–40°C to 85°C  
–40°C to 125°C  
2.5  
μA  
μA  
μA  
l
l
5.6  
6.5  
l
l
l
l
l
V
V
Shutdown Threshold (SD – SDCOM) Low –40°C to 125°C  
Shutdown Threshold (SD – SDCOM) High –40°C to 125°C  
0.8  
V
V
SDL  
SDH  
2
+
SDCOM Voltage Range  
SD Pin Current  
–40°C to 125°C  
–40°C to 125°C, V – V  
V
V –2V  
V
I
I
= 0  
= 0  
–2  
–0.5  
0.5  
μA  
μA  
SD  
SD  
SDCOM  
SDCOM  
SDCOM Pin Current  
–40°C to 125°C, V – V  
2
SDCOM  
SD  
2057f  
4
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
elecTrical characTerisTics  
(LTC2057/LTC2057HV) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. Unless otherwise noted, VS = 15V; VCM = VOUT = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.5  
UNITS  
μV  
V
Input Offset Voltage (Note 3)  
Average Input Offset Voltage Drift (Note 3)  
Input Bias Current (Note 4)  
0.5  
OS  
l
∆V /∆T  
OS  
–40°C to 125°C  
0.015  
μV/°C  
I
B
30  
60  
200  
360  
6.0  
pA  
pA  
nA  
l
l
–40°C to 85°C  
–40°C to 125°C  
I
Input Offset Current (Note 4)  
400  
480  
1.5  
pA  
pA  
nA  
OS  
n
l
l
–40°C to 85°C  
–40°C to 125°C  
i
Input Noise Current Spectral Density  
Input Noise Voltage Spectral Density  
Input Noise Voltage  
1kHz  
150  
12  
fA/√Hz  
nV/√Hz  
e
e
1kHz  
n
DC to 10Hz  
210  
nV  
P-P  
n P-P  
C
Differential Input Capacitance  
3
3
pF  
pF  
IN  
Common Mode Input Capacitance  
+
CMRR  
PSRR  
Common Mode Rejection Ratio (Note 5)  
Power Supply Rejection Ratio (Note 5)  
Open Loop Voltage Gain (Note 5)  
Output Voltage Swing Low  
V
= V – 0.1V to V – 1.5V  
128  
126  
150  
160  
150  
dB  
dB  
CM  
l
l
l
–40°C to 125°C  
V = 4.75V to 36V  
133  
129  
dB  
dB  
S
–40°C to 125°C  
+
A
V
V
= V +0.25V to V –0.25V, R =10kΩ  
130  
128  
dB  
dB  
VOL  
OUT  
L
–40°C to 125°C  
– V  
No Load  
2
12  
45  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OL  
l
l
–40°C to 125°C  
I
= 1mA  
35  
60  
SINK  
–40°C to 125°C  
100  
255  
360  
435  
I
= 5mA  
175  
SINK  
l
l
–40°C to 85°C  
–40°C to 125°C  
+
V – V  
Output Voltage Swing High  
No Load  
3
15  
45  
75  
125  
335  
465  
560  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OH  
l
l
–40°C to 125°C  
I
= 1mA  
50  
SOURCE  
–40°C to 125°C  
I
= 5mA  
235  
SOURCE  
l
l
–40°C to 85°C  
–40°C to 125°C  
I
Short Circuit Current  
Rising Slew Rate  
19  
30  
1.3  
mA  
V/μs  
V/μs  
MHz  
kHz  
SC  
SR  
SR  
A = –1, R = 10kΩ  
V L  
RISE  
FALL  
Falling Slew Rate  
A = –1, R = 10kΩ  
0.45  
1.5  
V
L
GBW  
Gain Bandwidth Product  
Internal Chopping Frequency  
Supply Current  
f
I
100  
0.88  
C
S
No Load  
–40°C to 85°C  
–40°C to 125°C  
1.35  
1.65  
1.83  
mA  
mA  
mA  
l
l
In Shutdown Mode  
–40°C to 85°C  
–40°C to 125°C  
3
μA  
μA  
μA  
l
l
8
9
l
l
l
l
l
V
V
Shutdown Threshold (SD – SDCOM) Low  
Shutdown Threshold (SD – SDCOM) High  
SDCOM Voltage Range  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
0.8  
V
V
SDL  
2
SDH  
+
V–  
V –2V  
V
I
I
SD Pin Current  
–40°C to 125°C, V – V  
= 0  
= 0  
–2.0  
–0.5  
0.5  
µA  
µA  
SD  
SD  
SDCOM  
SDCOM  
SDCOM Pin Current  
–40°C to 125°C, V – V  
2
SDCOM  
SD  
2057f  
5
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
elecTrical characTerisTics  
(LTC2057HV) The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. Unless otherwise noted, VS = 30V; VCM = VOUT = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5
UNITS  
μV  
V
OS  
Input Offset Voltage (Note 3)  
0.5  
l
∆V /∆T  
OS  
Average Input Offset Voltage Drift (Note 3) –40°C to 125°C  
0.025  
μV/°C  
I
Input Bias Current (Note 4)  
–40°C to 85°C  
30  
60  
200  
455  
11  
pA  
pA  
nA  
B
l
l
–40°C to 125°C  
I
Input Offset Current (Note 4)  
–40°C to 85°C  
400  
500  
3
pA  
pA  
nA  
OS  
n
l
l
–40°C to 125°C  
i
Input Noise Current Spectral Density  
Input Noise Voltage Spectral Density  
Input Noise Voltage  
1kHz  
130  
13  
fA/√Hz  
nV/√Hz  
e
e
1kHz  
n
DC to 10Hz  
220  
nV  
P-P  
n P-P  
C
Differential Input Capacitance  
3
3
pF  
pF  
IN  
Common Mode Input Capacitance  
+
CMRR  
PSRR  
Common Mode Rejection Ratio (Note 5)  
Power Supply Rejection Ratio (Note 5)  
Open Loop Voltage Gain (Note 5)  
Output Voltage Swing Low  
V
= V – 0.1V to V – 1.5V  
133  
131  
150  
160  
150  
dB  
dB  
CM  
l
l
l
–40°C to 125°C  
V = 4.75V to 60V  
138  
136  
dB  
dB  
S
–40°C to 125°C  
+
A
V
V
= V +0.25V to V – 0.25V, R = 10kΩ  
135  
130  
dB  
dB  
VOL  
OUT  
L
–40°C to 125°C  
– V  
No Load  
3
15  
45  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OL  
l
l
–40°C to 125°C  
I
= 1mA  
35  
60  
SINK  
–40°C to 125°C  
105  
260  
370  
445  
I
= 5mA  
175  
SINK  
l
l
–40°C to 85°C  
–40°C to 125°C  
+
V – V  
Output Voltage Swing High  
No Load  
3
15  
45  
75  
130  
335  
475  
575  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OH  
l
l
–40°C to 125°C  
I
= 1mA  
50  
SOURCE  
–40°C to 125°C  
I
= 5mA  
235  
SOURCE  
l
l
–40°C to 85°C  
–40°C to 125°C  
I
Short Circuit Current  
Rising Slew Rate  
19  
30  
1.3  
mA  
V/μs  
V/μs  
MHz  
kHz  
SC  
SR  
SR  
A = –1, R = 10kΩ  
V L  
RISE  
FALL  
Falling Slew Rate  
A = –1, R = 10kΩ  
0.45  
1.5  
V
L
GBW  
Gain Bandwidth Product  
Internal Chopping Frequency  
Supply Current  
f
100  
0.90  
C
IS  
No Load  
–40°C to 85°C  
–40°C to 125°C  
1.40  
1.73  
1.92  
mA  
mA  
mA  
l
l
In Shutdown Mode  
–40°C to 85°C  
–40°C to 125°C  
3
μA  
μA  
μA  
l
l
9
11  
l
l
l
l
l
V
V
Shutdown Threshold (SD – SDCOM) Low –40°C to 125°C  
Shutdown Threshold (SD – SDCOM) High –40°C to 125°C  
0.8  
V
V
SDL  
2
SDH  
+
SDCOM Voltage Range  
SD Pin Current  
–40°C to 125°C  
–40°C to 125°C, V – V  
V
V –2V  
V
I
I
= 0  
= 0  
–2  
–0.5  
0.5  
µA  
µA  
SD  
SD  
SDCOM  
SDCOM  
SDCOM Pin Current  
–40°C to 125°C, V – V  
2
SDCOM  
SD  
2057f  
6
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: These specifications are limited by automated test system  
capability. Leakage currents and thermocouple effects reduce test  
accuracy. For tighter specifications, please contact LTC Marketing.  
Note 5: Minimum specifications for these parameters are limited by  
Note 2: The LTC2057I/LTC2057HVI are guaranteed to meet specified  
performance from –40°C to 85°C. The LTC2057H/LTC2057HVH are  
guaranteed to meet specified performance from –40°C to 125°C.  
the capabilities of the automated test system, which has an accuracy of  
approximately 10µV for V measurements. For reference, 10µV/60V is  
OS  
136dB, 10µV/30V is 130dB, and 10µV/5V is 114dB.  
Note 3: These parameters are guaranteed by design. Thermocouple effects  
preclude measurements of these voltage levels during automated testing.  
V
is measured to a limit determined by test equipment capability.  
OS  
2057f  
7
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Input Offset Voltage Distribution  
Input Offset Voltage Distribution  
Input Offset Voltage Distribution  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
160 TYPICAL UNITS  
160 TYPICAL UNITS  
160 TYPICAL UNITS  
V
= 2.5V  
V
= 15V  
V
= 30V  
S
S
S
µ = –0.441 µV  
µ = –0.432 µV  
µ = –0.507 µV  
σ = 0.452µV  
σ = 0.525µV  
σ = 0.548µV  
0
0
0
–3 –2.5 –2 –1.5 –1 –0.5 0 0.5  
(µV)  
1
1.5  
2
2.5  
3
–3 –2.5 –2 –1.5 –1 –0.5 0 0.5  
(µV)  
1
1.5  
2
2.5  
3
–3 –2.5 –2 –1.5 –1 –0.5 0 0.5  
(µV)  
1 1.5 2 2.5 3  
V
V
V
OS  
OS  
OS  
2057 G01  
2057 G02  
2057 G03  
Input Offset Voltage Drift  
Distribution  
Input Offset Voltage Drift  
Distribution  
Input Offset Voltage Drift  
Distribution  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160 TYPICAL UNITS  
2ꢀ5V  
160 TYPICAL UNITS  
15V  
160 TYPICAL UNITS  
30V  
V
=
V
=
V =  
S
S
S
T
= –40°C TO 125°C  
µ = 1ꢀ16nV/°C  
T
= –40°C TO 125°C  
µ = 1.29nV/°C  
T
= –40°C TO 125°C  
µ = 1.32nV/°C  
A
A
A
σ = 0ꢀ97nV/°C  
σ = 1.14nV/°C  
σ = 1.26nV/°C  
1
3
5
7
9
11 13 15 17 19  
1
3
5
7
9
11 13 15 17 19  
1
3
5
7
9
V
OS  
11 13 15 17 19  
TC (nV/°C)  
2057 G06  
V
TC (nV/°C)  
V
TC (nV/°C)  
OS  
OS  
2057 G04  
2057 G05  
Input Offset Voltage vs  
Input Common Mode Voltage  
Input Offset Voltage vs  
Input Common Mode Voltage  
Input Offset Voltage vs  
Input Common Mode Voltage  
5
4
5
4
5
4
5 TYPICAL UNITS  
5 TYPICAL UNITS  
5 TYPICAL UNITS  
V
= 5V  
V
= 30V  
V
= 60V  
S
S
S
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
1
3
4
5
0
10  
20  
25  
30  
0
20  
40  
50  
60  
0
2
5
15  
(V)  
10  
30  
(V)  
V
(V)  
V
V
CM  
CM  
CM  
2057 G07  
2057 G08  
2057 G09  
2057f  
8
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Input Offset Voltage  
vs Supply Voltage  
Long-Term Input Offset Voltage  
Drift  
Input Bias Current vs Temperature  
5
4
5
4
100  
V
CM  
= 0V  
5 TYPICAL UNITS  
40 TYPICAL UNITS  
V = 2ꢀ5V  
S
V
V
V
= ±2.5V  
= ±15V  
= ±±0V  
V
T
= V /2  
S
S
S
CM  
A
S
= 25°C  
3
3
10  
1
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
0.1  
0.01  
–50  
0
50 75 100 125 150  
TEMPERATURE (°C)  
–25  
25  
0
5
20 25  
40 45 50 55 60 65  
1
100  
10  
TIME (HOURS)  
1000  
10 15  
30 35  
(V)  
V
S
2057 G12  
2057 G09  
2057 G10  
Input Bias Current vs Input  
Common Mode Voltage  
Input Bias Current vs Input  
Common Mode Voltage  
Input Bias Current  
vs Supply Voltage  
50  
40  
50  
40  
50  
40  
V
= 5V  
= 25°C  
V
= 30V, 60V  
= 25°C  
V = V /2  
CM S  
T = 25°C  
A
S
A
S
A
T
T
I
(–IN), V = 60V  
S
B
30  
30  
30  
I
B
(–IN)  
I
B
(–IN)  
20  
20  
20  
10  
10  
I
I
(–IN), V = 30V  
10  
B
B
S
0
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
(+IN), V = 30V  
–10  
–20  
–30  
–40  
–50  
S
I
B
(+IN)  
40  
I
(+IN)  
B
I
(+IN), V = 60V  
S
B
0
0.5  
1.5  
2.5  
3
3.5  
4
0
20  
40  
50  
60  
0
20  
50  
60  
70  
1
2
10  
30  
(V)  
10  
30  
V
V
(V)  
V
(V)  
S
CM  
CM  
2057 G13  
2057 G14  
2057 G15  
DC to 10Hz Voltage Noise  
DC to 10Hz Voltage Noise  
Input Voltage Noise Spectrum  
35  
30  
25  
20  
15  
10  
5
V
=
2ꢀ5V  
V = ±±0V  
S
A
= +11  
S
V
V
V
=
=
2.5V  
30V  
S
S
0
2057 G16  
2057 G17  
0.1  
10  
1k 10k 100k 1M  
1
100  
TIME (1s/DIV)  
TIME (1s/DIV)  
FREQUENCY (Hz)  
2057 G18  
2057f  
9
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Common Mode Rejection Ratio  
vs Frequency  
Input Current Noise Spectrum  
0.25  
0.20  
0.15  
0.10  
0.05  
0
120  
100  
80  
60  
40  
20  
0
A
= +11  
V
V
= 30V  
V
S
V
= ±2.5V  
= ±±0V  
= V /2  
S
CM  
S
V
S
0.1  
1
10  
100  
1k  
10k  
100  
1000  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
2057 G19  
2057 G20  
Power Supply Rejection Ratio  
vs Frequency  
Closed Loop Gain vs Frequency  
120  
100  
80  
50  
40  
V
=
15V  
V
V
= 30V  
CM  
S
L
S
A
= +100  
V
R
= 10kΩ  
= V /2  
S
30  
A
= +10  
V
+PSRR  
20  
60  
10  
40  
0
–PSRR  
10k  
20  
–10  
–20  
–30  
A
= +1  
V
0
A
= –1  
V
–20  
100  
1M  
10M  
1k  
100k  
FREQUENCY (Hz)  
10M  
1k  
100k  
10k  
1M  
FREQUENCY (Hz)  
2057 G21  
2057 G22  
Gain/Phase vs Frequency  
Gain/Phase vs Frequency  
80  
70  
150  
120  
90  
80  
70  
150  
120  
90  
PHASE  
PHASE  
60  
60  
50  
60  
50  
60  
40  
30  
40  
30  
30  
0
30  
0
GAIN  
GAIN  
20  
–30  
–60  
–90  
–120  
–150  
–180  
–210  
20  
–30  
–60  
–90  
–120  
–150  
–180  
–210  
10  
10  
0
0
V
= 2ꢀ5V  
V
= 30V  
–10  
–20  
–30  
–40  
S
L
–10  
–20  
–30  
–40  
S
L
R
= 1kΩ  
R
= 1kΩ  
C
L
C
L
= 50pF  
= 200pF  
C
L
C
L
= 50pF  
= 200pF  
10k  
1M  
100k  
10M  
10k  
1M  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
2057 G23  
2057 G24  
2057f  
10  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Shutdown Transient  
with Sinusoid Input  
Shutdown Transient  
with Sinusoid Input  
4
3
2
1
0
4
3
2
1
0
V
=
30Vꢀ A = +1  
V
V
=
2.5Vꢀ A = +1  
V
SD – SDCOM  
S
S
SD – SDCOM  
I
I
SS  
IN  
OUT  
SS  
IN  
OUT  
V
V
V
V
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.1  
–0.2  
–10  
10  
20  
TIME (µs)  
50  
–10  
10  
20  
TIME (µs)  
50  
0
30  
40  
0
30  
40  
2057 G25  
2057 G26  
Start-Up Transient  
with Sinusoid Input  
Start-Up Transient  
with Sinusoid Input  
4
3
2
1
0
4
3
2
1
0
SD – SDCOM  
0.4  
0.4  
0.3  
0.2  
0.1  
0
I
SS  
0.3  
SD – SDCOM  
V
V
IN  
OUT  
I
V
V
SS  
IN  
OUT  
0.2  
0.1  
0.1  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
V
A
=
30V  
V
A
= 2.5V  
S
V
S
V
= +1  
= +1  
–10  
10 20  
TIME (µs)  
70  
0
30 40 50 60  
–10  
0
10 20 30 40 50 60 70  
TIME (µs)  
2057 G27  
2057 G28  
Closed Loop Output Impedance  
vs Frequency  
Closed Loop Output Impedance  
vs Frequency  
THD+N vs Amplitude  
1000  
100  
10  
1000  
100  
0.1  
0.01  
V
=
2.5V  
V = 30V  
S
S
A
= +100  
V
10  
1
A
= +100  
V
A
= +10  
V
A
= +10  
V
1
0.001  
0.0001  
f
= 1kHz  
IN  
S
V
A
= +1  
V
A
= 15V  
V
0.1  
0.01  
A = +1  
V
0.1  
0.01  
= +1  
= 10kΩ  
R
L
BW = 80kHz  
100  
10k  
FREQUENCY (Hz)  
10M  
100  
10k  
FREQUENCY (Hz)  
10M  
0.01  
1
10  
1k  
100k  
1M  
1k  
100k  
1M  
0.1  
OUTPUT AMPLITUDE (V  
)
RMS  
2057 G29  
2057 G30  
2057 G31  
2057f  
11  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
THD+N vs Frequency  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
0.1  
0.01  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
A
= 2V  
15V  
= +1  
= 10kΩ  
OUT  
S
V
RMS  
150°C  
125°C  
=
30ꢀ  
R
L
85°C  
BW = 80kHz  
2.5ꢀ  
25°C  
15ꢀ  
–40°C  
–55°C  
0.001  
0.0001  
10  
1000  
100  
FREQUENCY (Hz)  
10000  
0
5
10 15 20 25 30 35 40 45 50 55 60  
(V)  
–60 –30  
0
30  
60  
90 120 150  
V
TEMPERATURE (°C)  
S
2057 G32  
2057 G33  
2057 G34  
Shutdown Supply Current  
vs Supply Voltage  
Supply Current vs Shutdown  
Control Voltage  
Supply Current vs Shutdown  
Control Voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
9
8
7
6
5
4
3
2
1
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SD = SDCOM = V /2  
V
=
2.5V  
V =  
30V  
S
SDCOM = 0V  
S
S
SDCOM = –2.5V  
150°C  
125°C  
150°C  
125°C  
85°C  
150°C  
125°C  
85°C  
25°C  
25°C  
–40°C  
–55°C  
–40°C  
–55°C  
85°C  
25°C  
–55°C  
–40°C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
0
5
10 15 20 25 30 35 40 45 50 55 60  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
SD – SDCOM (V)  
V
SD – SDCOM (V)  
S
2057 G36  
2057 G35  
2057 G37  
Shutdown Pin Current  
Shutdown Pin Current  
vs Supply Voltage  
vs Shutdown Pin Voltage  
No Phase Reversal  
5
4
1.0  
0.8  
20  
15  
SD = SDCOM = V /2  
V
=
30V  
S
V
V
S
IN  
OUT  
I
150°C  
SDCOM  
SDCOM = 0V  
I
25°C  
3
0.6  
SDCOM  
10  
I
–55°C  
SDCOM  
2
0.4  
5
1
0.2  
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–5  
I
–55°C  
SD  
SD  
I
25°C  
I
I
I
I
–50°C  
–10  
–15  
–20  
SD  
A
V
V
= +1  
V
S
–50°C  
I
150°C  
SDCOM  
=
15V  
1ꢀV  
= 1kΩ  
SD  
125°C  
SD  
=
IN  
R
IN  
125°C  
SDCOM  
2057 G40  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
5
10 15 20 25 30 35 40 45 50 55 60  
(V)  
0.2mS/DIV  
SD – SDCOM (V)  
V
S
2057 G38  
2057 G39  
2057f  
12  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Output Voltage Swing High  
vs Load Current  
Output Voltage Swing High  
vs Load Current  
Output Voltage Swing High  
vs Load Current  
10  
1
100  
10  
100  
V
=
2.5V  
V
=
15V  
V =  
S
30V  
S
S
150°C  
125°C  
85°C  
10  
1
1
0.1  
150°C  
125°C  
–40°C  
25°C  
150°C  
125°C  
0.1  
0.1  
85°C  
85°C  
10m  
1m  
10m  
1m  
10m  
1m  
25°C  
25°C  
1
–40°C  
–40°C  
0.1  
0.1m  
0.1m  
0.1m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
10  
100  
0.001  
0.01  
1
10  
100  
I
(mA)  
I
(mA)  
I
(mA)  
SOURCE  
SOURCE  
SOURCE  
2057 G41  
2057 G42  
2057 G43  
Output Voltage Swing Low  
vs Load Current  
Output Voltage Swing Low  
vs Load Current  
Output Voltage Swing Low  
vs Load Current  
100  
10  
10  
1
100  
10  
V
= ±±0V  
V
= 2.5V  
V
=
15V  
S
S
S
85°C  
125°C  
150°C  
1
1
–40°C  
150°C  
125°C  
85°C  
0.1  
150°C  
125°C  
85°C  
–40°C  
0.1  
0.1  
10m  
1m  
25°C  
10m  
1m  
10m  
1m  
25°C  
25°C  
–40°C  
0.1m  
0.1m  
0.1m  
0.001  
0.01  
0.1  
I
1
(mA)  
10  
100  
0.001  
0.01  
0.1  
1
(mA)  
10  
100  
0.001  
0.01  
0.1  
I
1
(mA)  
10  
100  
I
SINK  
SINK  
SINK  
2057 G46  
2057 G44  
2057 G45  
Short-Circuit Current  
vs Temperature  
Short-Circuit Current  
vs Temperature  
Short-Circuit Current  
vs Temperature  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
=
2ꢀ5V  
V
=
15V  
V = 30V  
S
S
S
SOURCING  
SOURCING  
SOURCING  
SINKING  
SINKING  
SINKING  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2057 G47  
2057 G48  
2057 G49  
2057f  
13  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Large Signal Response  
Large Signal Response  
Large Signal Response  
12  
10  
8
0.6  
0.4  
6
4
V
V
A
C
= ±±0V  
= ±10V  
= +1  
V
V
A
C
=
2.5V  
0.5V  
V
V
A
C
=
S
15V  
5V  
S
IN  
V
S
=
=
IN  
V
IN  
V
= +1  
= +1  
= 200pF  
= 200pF  
= 200pF  
L
L
L
6
4
0.2  
2
2
0
0
0
–2  
–4  
–6  
–8  
–10  
–12  
–0.2  
–0.4  
–0.6  
–2  
–4  
–6  
–20  
0
20 40 60 80 100 120 140 160  
–4 –2  
0
2
4
6
8
10 12 14 16  
–10  
0
10 20 30 40 50 60 70 80  
TIME (µs)  
TIME (µs)  
TIME (µs)  
2057 G52  
2057 G50  
2057 G51  
Small Signal Response  
Small Signal Response  
Small Signal Response  
70  
50  
70  
50  
70  
50  
C = 200pF  
L
C
L
= 200pF  
C
L
= 200pF  
30  
30  
30  
10  
10  
10  
–10  
–30  
–50  
–70  
–10  
–30  
–50  
–70  
–10  
–30  
–50  
–70  
V
V
A
=
IN  
V
30V  
50mV  
= +1  
V
V
A
=
IN  
V
15V  
50mV  
= +1  
V
V
A
=
IN  
V
2ꢀ5V  
50mV  
= +1  
S
S
S
=
=
=
–2 –1  
0
1
2
3
4
5
6
7
–2 –1  
0
1
2
3
4
5
6
7
–2 –1  
0
1
2
3
4
5
6
7
TIME (µs)  
TIME (µs)  
TIME (µs)  
2057 G53  
2057 G54  
2057 G55  
Small Signal Overshoot  
vs Load Capacitance  
Small Signal Overshoot  
vs Load Capacitance  
Small Signal Overshoot  
vs Load Capacitance  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
V
A
=
2ꢀ5V  
V
V
A
=
15V  
V
V
A
= 30V  
S
S
S
= 100mV  
IN  
= +1  
V
= 100mV  
IN  
= +1  
V
= 100mV  
IN  
= +1  
V
+OS  
+OS  
+OS  
–OS  
–OS  
–OS  
0
0
0
10  
100  
(pF)  
1000  
10  
100  
(pF)  
1000  
10  
100  
(pF)  
1000  
C
C
C
L
L
L
2057 G56  
2057 G57  
2057 G58  
2057f  
14  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical perForMance characTerisTics  
Large Signal Settling Transient  
Large Signal Settling Transient  
2
1
0
2
1
0
12  
10  
8
10  
A
= –1  
V
F
S
8
R = 10k  
V
= 15V  
A
= –1  
V
F
S
6
R = 10k  
V
V
V
IN  
OUT  
OUT(AVG)  
6
4
V
=
15V  
V
V
V
4
2
IN  
OUT  
OUT(AVG)  
2
0
0
–2  
–4  
–2  
–5  
0
5
10 15 20 25 30 35 40 45 50 55 60  
–5  
0
5
10 15 20 25 30 35 40 45 50 55 60  
TIME (µs)  
TIME (µs)  
2057 G59  
2057 G60  
Output Overload Recovery  
Output Overload Recovery  
Output Overload Recovery  
0.5  
0
1
0
2
V
IN  
0
V
V
IN  
IN  
–2  
–1  
V
A
=
2.5V  
S
V
F
–0.5  
= –100  
R = 10kΩ  
C
V
OUT  
0
= 100pF  
L
–5  
0
V
OUT  
–10  
–15  
–20  
–3  
0
–6  
V
OUT  
–9  
V
A
=
15V  
–1  
–2  
–3  
V
A
= 30V  
S
V
F
S
V
F
= –100  
= –100 –25  
–12  
–15  
–18  
R = 10kΩ  
= 100pF  
R = 10kΩ  
= 100pF  
–30  
–35  
C
C
L
L
–20 –10  
0
10 20 30 40 50 60 70 80  
–5  
0
5
10 15 20 25 30 35 40 45  
–10  
0
10 20 30 40 50 60 70 80 90  
TIME (µs)  
TIME (µs)  
TIME (µs)  
2057 G61  
2057 G62  
2057 G63  
Output Overload Recovery  
Output Overload Recovery  
Output Overload Recovery  
1
0
2
0
0.5  
V
IN  
V
0
V
IN  
IN  
–1  
–2  
–0.5  
30  
25  
20  
15  
10  
5
15  
12  
9
3
V
OUT  
2
6
V
A
=
30V  
1
V
A
=
15V  
V
A
=
2.5V  
S
V
F
S
V
F
S
V
F
V
OUT  
V
OUT  
= –100  
= –100  
= –100  
3
R = 10kΩ  
= 100pF  
0
R = 10kΩ  
= 100pF  
R = 10kΩ  
= 100pF  
0
0
C
C
C
L
L
L
–3  
–5  
–1  
–10  
0
10 20 30 40 50 60 70 80 90 100  
–20  
0
20 40 60 80 100 120 140  
–10  
0
10 20 30 40 50 60 70 80  
TIME (µs)  
TIME (µs)  
TIME (µs)  
2057 G65  
2057 G66  
2057 G64  
2057f  
15  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
pin FuncTions  
MS8 and S8/DD8  
SD (Pin 1/Pin 1): Shutdown Control Pin.  
–IN (Pin 2/Pin 2): Inverting Input.  
+IN (Pin 3/Pin 3): Non-Inverting Input.  
SDCOM (Pin 8/Pin 8): Reference Voltage for SD.  
+
V (Pin 7/Pin 7): Positive Power Supply.  
OUT (Pin 6/Pin 6): Amplifier Output  
V (Pin 4/Pin 4, 9): Negative Power Supply.  
NC (Pin 5/Pin 5): No Internal Connection.  
MS10  
GRD (Pin 1): Guard Ring. No Internal Connection.  
–IN (Pin 2): Inverting Input.  
SD (Pin 10): Shutdown Control Pin.  
SDCOM (Pin 9): Reference Voltage for SD.  
+
+IN (Pin 3): Non-Inverting Input.  
GRD (Pin 4): Guard Ring. No Internal Connection.  
V (Pin 8): Positive Power Supply.  
NC (Pin 7): No Internal Connection.  
OUT (Pin 6): Amplifier Output.  
V (Pin 5): Negative Power Supply.  
2057f  
16  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
block DiagraMs  
Amplifier  
+
V
+
525Ω  
525Ω  
V
+
–IN  
+IN  
V
+
+
OUT  
V
V
V
V
V
2057 BD1  
Shutdown Circuit  
+
V
+
V
0.5µA  
10k  
10k  
SD  
+
+
V
V
5.25V  
SD  
V
V
≈ 1.4V  
TH  
SDCOM  
+
0.5µA  
2057 BD2  
V
2057f  
17  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
applicaTions inForMaTion  
Input Voltage Noise  
0.25  
0.20  
0.15  
0.01  
0.05  
0
A
V
= +11  
V
S
=
2.5  
ChopperstabilizedamplifiersliketheLTC2057achievelow  
offset and 1/f noise by heterodyning DC and flicker noise  
to higher frequencies. In a classical chopper stabilized  
amplifier, thisprocessresultsinidletonesatthechopping  
frequency and its odd harmonics.  
NO 1/f NOISE  
The LTC2057 utilizes circuitry to suppress these spurious  
artifacts to well below the offset voltage. The typical ripple  
magnitude at 100kHz is much less than 1µV  
.
RMS  
0.1  
10  
FREQUENCY (Hz)  
1k  
10k  
1
100  
The voltage noise spectrum of the LTC2057 is shown in  
Figure 1. If lower noise is required, consider one of the  
following circuits from the Typical Applications section:  
"DC Stabilized, Ultralow Noise Amplifier" or "Paralleling  
Choppers to Improve Noise."  
2057 F02  
Figure 2. Input Current Noise Spectrum  
It is important to note that the current noise is not equal  
to 2 I . This formula is relevant for base current in bipolar  
q B  
transistors and diode currents, but for most chopper and  
auto-zero amplifiers with switched inputs, the dominant  
current noise mechanism is not shot noise.  
35  
A
V
= +11  
V
S
=
2.5V  
30  
25  
20  
15  
10  
5
Input Bias Current  
As illustrated in Figure 3, the LTC2057’s input bias current  
originates from two distinct mechanisms. Below 75°C,  
input bias current is nearly constant with temperature,  
and is caused by charge injection from the clocked input  
switches used in offset correction.  
NO 1/f NOISE  
0
0.1  
10  
1k 10k 100k 1M  
1
100  
FREQUENCY (Hz)  
100  
1 TYPICAL UNIT  
S
2057 F01  
V
= 2.5V  
Figure 1. Input Voltage Noise Spectrum  
10  
1
Input Current Noise  
For applications with high source impedances, input cur-  
rent noise can be a significant contributor to total output  
noise. For this reason, it is important to consider noise  
current interaction with circuit elements placed at an  
amplifier’s inputs.  
25°C MAX I SPEC  
B
0.1  
0.01  
–25  
0
25  
100  
125 150  
–50  
50 75  
TEMPERATURE (°C)  
The current noise spectrum of the LTC2057 is shown in  
Figure 2. The characteristic curve shows no 1/f behavior.  
As with all zero-drift amplifiers, there is a significant cur-  
rentnoisecomponentattheoffset-nullingfrequency. This  
phenomenonisdiscussedintheInputBiasCurrentsection.  
2057 F03  
Figure 3. Input Bias Current vs Temperature  
2057f  
18  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
applicaTions inForMaTion  
The DC average of injection current is the specified input  
bias current, but this current has a frequency component  
at the chopping frequency as well. When these small  
canbemitigatedbymatchingthesourceimpedancesseen  
by the two inputs.  
Thermocouple Effects  
current pulses, typically about 0.7nA  
, interact with  
RMS  
source impedances or gain setting resistors, the resulting  
voltage spikes are amplified by the closed loop gain. For  
high impedances, this may cause the 100kHz chopping  
frequency to be visible in the output spectrum, which is  
a phenomenon known as clock feed-through.  
In order to achieve accuracy on the microvolt level, ther-  
mocouple effects must be considered. Any connection  
of dissimilar metals forms a thermoelectric junction and  
generates a small temperature-dependent voltage. Also  
known as the Seebeck Effect, these thermal EMFs can be  
the dominant error source in low-drift circuits.  
For zero-drift amplifiers, clock feed-through will be  
proportional to source impedance and the magnitude of  
Connectors, switches, relay contacts, sockets, resistors,  
and solder are all candidates for significant thermal EMF  
generation. Even junctions of copper wire from different  
manufacturers can generate thermal EMFs of 200nV/°C,  
which is over 13 times the maximum drift specification of  
theLTC2057.Figures4and5illustratethepotentialmagni-  
tude of these voltages and their sensitivity to temperature.  
injection current, a measure of which is I at 25°C. In  
B
order to minimize clock feed-through, keep gain-setting  
resistors and source impedances as low as possible. If  
high impedances are required, place a capacitor across  
the feedback resistor to limit the bandwidth of the closed  
loop gain. Doing so will effectively filter out the clock  
feed-through signal.  
In order to minimize thermocouple-induced errors, atten-  
tion must be given to circuit board layout and component  
selection. It is good practice to minimize the number of  
junctionsintheamplifier’sinputsignalpathandavoidcon-  
nectors, sockets, switches, andrelayswheneverpossible.  
If such components are required, they should be selected  
for low thermal EMF characteristics. Furthermore, the  
number, type, and layout of junctions should be matched  
for both inputs with respect to thermal gradients on the  
circuitboard.Doingsomayinvolvedeliberatelyintroducing  
dummy junctions to offset unavoidable junctions.  
Injection currents from the two inputs are of equal magni-  
tude but opposite direction. Therefore, input bias current  
effects due to injection currents will not be canceled by  
placing matched impedances at both inputs.  
Above75°C,leakageoftheESDprotectiondiodesbeginsto  
dominate the input bias current and continues to increase  
exponentially at elevated temperatures. Unlike injection  
current,leakagecurrentsareinthesamedirectionforboth  
inputs. Therefore, the output error due to leakage currents  
100  
3.0  
2.8  
SLOPE ≈ 1.5µV/°C  
BELOW 25°C  
2.6  
2.4  
2.2  
2.0  
50  
64% SN/36% Pb  
1.8  
1.6  
1.4  
1.2  
60% Cd/40% SN  
0
SLOPE ≈ 160nV/°C  
BELOW 25°C  
1.0  
0.800  
0.600  
0.400  
0.200  
0
–50  
–100  
35  
0
10  
20  
30  
40  
50  
25  
30  
40  
45  
SOLDER-COPPER JUNCTION DIFFERENTIAL TEMPERATURE  
TEMPERATURE (°C)  
SOURCE: NEW ELECTRONICS 02-06-77  
2057 F04  
2057 F05  
Figure 4. Thermal EMF Generated by Two Copper Wires  
From Different Manufacturers  
Figure 5. Solder-Copper Thermal EMFs  
2057f  
19  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
applicaTions inForMaTion  
§
#
R
F
HEAT SOURCE/  
POWER DISSIPATOR  
RELAY  
**  
V
V
THERMAL  
THERMAL  
GRADIENT  
R
R
+
G
§
LTC2057  
R
L
–IN  
+IN  
THERMAL  
G
**  
V
+
IN  
MATCHING RELAY  
NC  
*
R
F
2057 F06  
* CUT SLOTS IN PCB FOR THERMAL ISOLATION.  
**INTRODUCE DUMMY JUNCTIONS AND COMPONENTS TO OFFSET UNAVOIDABLE JUNCTIONS OR CANCEL THERMAL EMFs.  
§
#
ALIGN INPUTS SYMMETRICALLY WITH RESPECT TO THERMAL GRADIENTS.  
INTRODUCE DUMMY TRACES AND COMPONENTS FOR SYMMETRICAL THERMAL HEAT SINKING.  
LOADS AND FEEDBACK CAN DISSIPATE POWER AND GENERATE THERMAL GRADIENTS. BE AWARE OF THEIR THERMAL EFFECTS.  
COVER CIRCUIT TO PREVENT AIR CURRENTS FROM CREATING THERMAL GRADIENTS.  
Figure 6. Techniques for Minimizing Thermocouple-Induced Errors  
LEAKAGE  
CURRENT  
GRD  
–IN  
SD  
LTC2057  
MS10  
R **  
G
SDCOM  
+
+
V
+IN  
V
V
V
BIAS  
*
GRD  
NC  
HIGH-Z  
SENSOR  
V
OUT  
GUARD  
RING  
OUT  
NO SOLDER MASK  
OVER GUARD RING  
V
R
F
*
**  
NO LEAKAGE CURRENT. V = V  
+IN  
GRD  
SENSOR  
V
= I  
• R ; R << Z  
ERROR LEAK  
G
G
R
F
+
V
R
G
V
BIAS  
LTC2057  
V
OUT  
R
IN  
+
IN  
V
+
R´  
ALTERNATIVE GUARD RING  
F
V
GUARD RING  
DRIVE CIRCUIT IF R MUST  
G
ALTERNATIVE  
GUARD RING  
DRIVE  
HIGH-Z SENSOR  
BE HIGH IMPEDANCE.  
RF R'  
=
F ; R'G <<RG  
R´  
G
LEAKAGE CURRENT  
RG R'G  
2057 F07a  
Figure 7a. Example Layout of Non-Inverting Amplifier with Leakage Guard Ring  
2057f  
20  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
applicaTions inForMaTion  
Air currents can also lead to thermal gradients and cause  
significant noise in measurement systems. It is important  
to prevent airflow across sensitive circuits. Doing so will  
often reduce thermocouple noise substantially.  
Board leakage can be minimized by encircling the input  
connections with a guard ring operated at a potential very  
close to that of the inputs. The ring must be tied to a low  
impedance node. For inverting configurations, the guard  
ring should be tied to the potential of the positive input  
(+IN). For non-inverting configurations, the guard ring  
shouldbetiedtothepotentialofthenegativeinput(–IN).In  
orderforthistechniquetobeeffective,theguardringmust  
not be covered by solder mask. Ringing both sides of the  
printedcircuitboardmayberequired.SeeFigures7aand7b  
for examples of proper layout.  
A summary of techniques can be found in Figure 6.  
Leakage Effects  
Leakage currents into high impedance signal nodes can  
easily degrade measurement accuracy of sub-nanoamp  
signals. High voltage and high temperature applications  
are especially susceptible to these issues. Quality insula-  
tion materials should be used, and insulating surfaces  
should be cleaned to remove fluxes and other residues.  
For humid environments, surface coating may be neces-  
sary to provide a moisture barrier.  
For low-leakage applications, the LTC2057 is available in  
an MS10 package with a special pinout that facilitates the  
layout of guard ring structures. The pins adjacent to the  
inputs have no internal connection, allowing a guard ring  
to be routed through them.  
GUARD RING  
§
R
F
HIGH-Z SENSOR  
LTC2057  
MS10  
SD  
GRD  
–IN  
V
SDCOM  
BIAS  
+
+
LEAKAGE  
CURRENT  
V
V
V
+IN  
NC  
GRD  
NO SOLDER  
MASK OVER  
GUARD RING  
OUT  
V
OUT  
LOW IMPEDANCE  
NODE ABSORBS  
LEAKAGE CURRENT  
V
§
NO LEAKAGE CURRENT. V = V  
–IN  
GRD  
AVOID DISSIPATING SIGNIFICANT AMOUNTS OF POWER IN THIS RESISTOR.  
IT WILL GENERATE THERMAL GRADIENTS WITH RESPECT TO THE INPUT PINS  
AND LEAD TO THERMOCOUPLE-INDUCED ERROR. THERMALLY ISOLATE OR  
ALIGN WITH INPUTS IF RESISTOR WILL CAUSE HEATING.  
R
F
GUARD RING  
HIGH-Z SENSOR  
V
BIAS  
+
V
V
IN  
R
IN  
+
+
LEAKAGE  
CURRENT  
LTC2057  
V
OUT  
V
LEAKAGE CURRENT IS ABSORBED BY GROUND INSTEAD OF  
CAUSING A MEASUREMENT ERROR.  
2057 F07b  
Figure 7b. Example Layout of Inverting Amplifier with Leakage Guard Ring  
2057f  
21  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
applicaTions inForMaTion  
Power Dissipation  
Shutdown Mode  
Since the LTC2057/LTC2057HV is capable of operating at  
>30V total supply, care should be taken with respect to  
powerdissipationintheamplifier.Whendrivingheavyloads  
The LTC2057/LTC2057HV features a shutdown mode for  
low-power applications. In the OFF state, the amplifier  
draws less than 11μA of supply current under all normal  
operating conditions, and the output presents a high-  
impedance to external circuitry.  
at high voltages, use the θ of the package to estimate  
JA  
the resulting die-temperature rise and take measures to  
ensure that the resulting junction temperature does not  
exceedspecifiedlimits.PCBmetallizationandheatsinking  
should also be considered when high power dissipation  
is expected. Thermal information for all packages can be  
found in the Pin Configuration section.  
Shutdown control is accomplished through differential  
signaling. This method allows for low voltage digital  
control logic to operate independently of the amplifier’s  
high voltage supply rails.  
Shutdown operation is accomplished by tying SDCOM to  
logic ground and SD to a 3V or 5V logic signal. A sum-  
mary of control logic and operating ranges is shown in  
Tables 1 and 2.  
Electrical Overstress  
Absolute Maximum Ratings should not be exceeded.  
Avoid driving the input and output pins beyond the rails,  
especially at supply voltages approaching 60V. If these  
fault conditions cannot be prevented, a series resistor at  
thepinofinterestshouldhelptolimittheinputcurrentand  
reduce the possibility of device damage. This technique  
is shown in Figure 8.  
Table 1. Shutdown Control Logic  
SHUTDOWN PIN CONDITION  
SD = Float, SDCOM = Float  
SD – SDCOM > 2V  
AMPLIFIER STATE  
ON  
ON  
SD – SDCOM < 0.8V  
OFF  
Keep the value of the current limiting resistance as low  
as possible to avoid adding noise and error voltages from  
interaction with input bias currents but high enough to  
protect the device. Resistances up to 2k will not seriously  
impact noise or precision.  
Table 2. Operating Voltage Range for Shutdown Pins  
MIN  
MAX  
SD – SDCOM  
SDCOM  
SD  
–0.2V  
5.2V  
+
V
V –2V  
+
V
V
If the shutdown feature is not required, SD and SDCOM  
may be left floating. Internal circuitry will automatically  
keep the amplifier in the ON state.  
For operation in noisy environments, a capacitor between  
SD and SDCOM is recommended to prevent noise from  
changing the shutdown state.  
+
V
I
OVERLOAD  
R
IN  
LTC2057  
OUT  
1k  
V
+
IN  
V
R
IN  
LIMITS I  
TO <10mA  
OVERLOAD  
FOR V < 10V OUTSIDE OF THE SUPPLY RAILS.  
IN  
2057 F08  
When there is a danger of SD and SDCOM being pulled  
beyond the supply rails, resistance in series with the shut-  
down pins is recommended to limit the resulting current.  
Figure 8. Using a Resistor to Limit Input Current  
2057f  
22  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical applicaTions  
DC Stabilized, Ultralow Noise Composite Amplifier  
Input Voltage Noise Spectrum  
of Composite Amplifier  
20V  
R
F
20  
18  
16  
14  
12  
10  
8
A
=
+ 1 = 101  
V
R
G
+
LTC2057HV  
47nF  
20V  
1MΩ  
–20V  
1k  
6
20k  
20V  
OUT  
4
V
+
IN  
8
2
R
G
LT1037  
V
0
20Ω  
0.1  
1
10  
100  
FREQUENCY (Hz)  
2057 TA02b  
R
F
–20V  
2k  
2057 TA02  
COMPOSITE AMPLIFIER COMBINES THE EXCELLENT BROADBAND NOISE  
PERFORMANCE OF THE LT1037 WITH THE ZERO-DRIFT PROPERTIES OF  
THE LTC2057. THE RESULTING CIRCUIT HAS MICROVOLT ACCURACY,  
SUPPRESSED 1/f NOISE, AND LOW BROADBAND NOISE.  
Low-Side Current Sense Amplifier  
Transfer Function  
Low-Side Current Sense Amplifier  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AMPLIFIER OUTPUT SATURATES  
WITH DIODE SHORTED  
28V  
10Ω  
1N4148  
I
SENSE  
+
OR EQUIVALENT  
V
SENSE  
V
LTC2057  
OUT  
+
R
SENSE  
OPTIONAL  
SHORT  
1k  
2057 TA03  
10Ω  
DIODE NOT SHORTED  
DIODE SHORTED  
IDEAL TRANSFER  
FUNCTION  
V
= 101 • R  
• I  
OUT  
SENSE SENSE  
0
10  
15  
30  
5
20  
25  
V
(µV)  
SENSE  
2057 TA03b  
2057f  
23  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical applicaTions  
Paralleling Choppers to Improve Noise  
+
R5  
LTC2057  
R2  
R1  
+
R5  
LTC2057  
R2  
R2  
R1  
R4  
R3  
+1  
+1  
A
=
V
V
+
IN  
LTC2057  
R4  
V
OUT  
R1  
+
R5  
LTC2057  
R2  
R3  
R1  
+
R5  
LTC2057  
R2  
2057 TA04  
R1  
200nV  
N  
11nV/√Hz  
N  
P-P  
DC TO 10Hz NOISE =  
, e  
n
=
, i = √N • 170fA/Hz, I < N • 200pA (MAX)  
n B  
WHERE N IS THE NUMBER OF PARALLELED INPUT AMPLIFIERS.  
FOR N = 4, DC TO 10Hz NOISE = 100nV , e = 5.5nV/√Hz, i = 340fA/Hz, I < 800pA (MAX).  
P-P  
n
n
B
R
SHOULD BE A FEW HUNDRED OHMS TO ISOLATE AMPLIFIER OUTPUTS WITHOUT  
5
CONTRIBUTING SIGNIFICANTLY TO NOISE OR I -INDUCED ERROR.  
B
R2  
R1  
+1 >> √N FOR OUTPUT AMPLIFIER NOISE TO BE INSIGNIFICANT.  
2057f  
24  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical applicaTions  
Wide Input Range Precision Gain-of-100 Instrumentation Amplifier  
30V  
+
–IN  
LTC2057HV  
1ꢀV  
7
–30V  
9
10  
11.5k  
M9  
M3  
M1  
V
CC  
232Ω  
6
LT1991A  
REO  
V
ꢃUT  
11.5k  
ꢃUT  
1
2
3
P1  
P3  
P9  
V
EE  
5
30V  
–1ꢀV  
LTC2057HV  
2057 TA01a  
+IN  
+
INPUT CM RANGE = 2ꢀV ꢁITH ꢂV ꢃO ꢃUTPUT ꢄꢁING  
CMRR = 130dB (TYP), INPUT ꢃOOꢄET VꢃLTAGE = 1µV (TYP)  
–30V  
Ultra-Precision, 135dB Dynamic Range Photodiode Amplifier  
Output Noise Spectrum of Photodiode Amplifier  
400  
20k  
RBW = 1kHz  
360  
320  
280  
240  
200  
160  
120  
80  
V
= I • 20kΩ  
OUT PD  
30pF  
52V  
BW = 300kHz  
I
PD  
V
LTC2057HV  
OUT  
68pF  
PD  
+
–1V  
40  
2057 TA06  
0
OUTPUT RANGE 9µV TO 50V, LIMIT BW TO 1kHz  
TO KEEP OUTPUT NOISE BELOW 5µV  
1k  
10k  
100k  
P-P  
FREQUENCY (Hz)  
2057 TA06b  
NOISE FLOOR IS ONLY SLIGHTLY ABOVE THE 20kΩ RESISTOR`S 18nV/√Hz.  
CLOCK FEEDTHROUGH IS VISIBLE NEAR 100kHz WITH AMPLITUDE OF  
10µV  
OUTPUT REFERRED OR 0.5nA  
INPUT REFERRED.  
RMS  
RMS  
2057f  
25  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical applicaTions  
Differential Thermocouple Amplifier  
10nF  
249k  
1%  
15V  
1k  
8
9
15V  
M9  
M3  
M1  
7
TYPE K  
1%  
V
+ (YELLOW)  
+
CC  
10  
1k  
1%  
LTC2057  
–15V  
6
LT1991A  
REF  
OUT  
V
= 10mV/°C  
OUT  
1
2
3
– (RED)  
P1  
P3  
P9  
V
CM  
V
5
EE  
4
22Ω  
–15V  
100k  
COUPLE THERMALLY  
THERMOCOUPLE TEMP OF  
–200°C TO 1250°C  
0.1µF  
GIVES –2V TO 12.5V V  
OUT  
ASSUMING 40µV/°C TEMPCO.  
CHECK ACTUAL TEMPCO TABLE.  
LT1025  
+
V
V
V
IN  
O
2057 TA07  
+
R
499k  
V–  
V
= V + 0.1V TO V – 1.5V (SMALL SIGNAL)  
CM  
CMRR = 122dB (0.02°C ERROR PER VOLT)  
GND  
2057f  
26  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
Typical applicaTions  
18-Bit DAC with 25V Output Swing  
REF  
5V  
LT5400-1  
10kΩ MATCHED  
RESISTOR NETWORK  
30V  
+
LT1012  
LTC2057HV  
150pF  
+
–30V  
R
IN  
R
COM  
REF  
R
OFS  
R
FB  
SPI WITH  
READBACK  
8pF  
30V  
4
I
I
OUT1  
LTC2756  
5V  
LTC2057HV  
+
V
OUT  
18-BIT DAC WITH SPAN SELECT  
OUT2  
GND  
V
DD  
SET SPAN TO 10V  
0.1µF  
–30V  
GND  
2057 TA08  
Time Domain Response  
10  
5
V
CS/LD  
0
30  
20  
10  
0
V
OUT  
–10  
–20  
–30  
2057 TA09  
TIME (50µs/DIV)  
2057f  
27  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD8 Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
2057f  
28  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 0.127  
(.035 .005)  
5.23  
3.20 – 3.45  
(.206)  
(.126 – .136)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 0.0508  
(.009 – .015)  
(.004 .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2057f  
29  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661 Rev E)  
0.889 0.ꢀꢁ7  
(.035 .005)  
5.ꢁ3  
3.ꢁ0 – 3.45  
(.ꢁ0ꢂ)  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
MIN  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.497 0.07ꢂ  
(.0ꢀ9ꢂ .003)  
REF  
0.50  
(.0ꢀ97)  
BSC  
0.305 0.038  
(.0ꢀꢁ0 .00ꢀ5)  
TYP  
ꢀ0 9  
8
7 ꢂ  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0.ꢁ54  
(.0ꢀ0)  
0° – ꢂ° TYP  
GAUGE PLANE  
3
4 5  
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
0.8ꢂ  
(.034)  
REF  
ꢀ.ꢀ0  
(.043)  
MAX  
DETAIL “A”  
0.ꢀ8  
(.007)  
SEATING  
PLANE  
0.ꢀ7 – 0.ꢁ7  
(.007 – .0ꢀꢀ)  
TYP  
0.ꢀ0ꢀꢂ 0.0508  
(.004 .00ꢁ)  
0.50  
(.0ꢀ97)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
2057f  
30  
For more information www.linear.com/LTC2057  
LTC2057/LTC2057HV  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
2057f  
31  
LTC2057/LTC2057HV  
Typical applicaTion  
Microvolt Precision 18-Bit ADC Driver  
≤ 5 ksps IS RECOMMENDED TO  
MINIMIZE ERROR FROM ADC INPUT  
CURRENT AND 150Ω RESISTOR.  
2.5V  
1.8V  
A
= 50  
V
BW = 1kHz  
10µF  
0.1µF  
5V  
50mV  
0V  
+
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
V
OV  
DD  
DD  
150Ω  
+IN  
–IN  
LTC2057  
LTC2368-18  
REF GND  
1µF  
–5V  
10Ω  
1%  
10k  
CNV  
2057 TA10  
SAMPLE  
100k  
1%  
10nF  
205Ω  
–5V  
RESISTOR DIVIDER AT ADC INPUT ENSURES LIVE  
ZERO OPERATION BY ACCOUNTING FOR 5µV  
LTC6655-2.5  
V
V
IN  
5V  
MAXIMUM V OF THE LTC2057 AND 11LSB  
OUT_F  
OS  
ZERO-SCALE ERROR OF THE ADC. RESULTING  
OFFSET IS CONSTANT AND CAN BE SUBTRACTED  
FROM THE RESULT.  
SHDN  
V
OUT_S  
GND  
47µF  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
Zero-Drift Operational Amplifier  
Dual/Quad, Zero-Drift Operational Amplifier  
COMMENTS  
LTC2050HV  
3µV V , 2.7V to 12V V , 1.5mA I , RR Output  
OS S S  
LTC2051HV/  
LTC2052HV  
3µV V , 2.7V to 12V V , 1.5mA I , RR Output  
OS S S  
LTC2053  
Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable  
Instrumentation Amplifier  
10µV V , 2.7V to 11V V , 1.3mA I , RRIO  
OS S S  
LTC2054HV/  
LTC2055HV  
Micropower, Single/Dual, Zero-Drift Operational Amplifier  
5µV V , 2.7V to 12V V , 0.2mA I , RRIO  
OS S S  
LTC6652  
LT6654  
Precision, Low Drift, Low Noise, Buffered Reference  
5ppm/°C, 0.05% Initial Accuracy, 2.1ppm Noise  
P-P  
Precision, Wide Supply, High Output Drive, Low Noise Reference  
0.25ppm Noise, Low Drift, Precision, Buffered Reference Family  
Dual/Quad, 76V Over-The-Top® Input Operational Amplifier  
140V Operational Amplifier  
10ppm/°C, 0.05% Initial Accuracy, 1.6ppm Noise  
P-P  
LTC6655  
LT6016/LT6017  
LTC6090  
LT5400  
2ppm/°C, 0.025% Initial Accuracy, 0.25ppm Noise  
P-P  
50µV V , 3V to 50V V , 0.335mA I , RRIO  
OS  
S
S
50pA I , 1.6mV V , 9.5V to 140V V , 4.5mA I , RR Output  
B
OS  
S
S
Quad Matched Resistor Network  
0.01%, 0.2ppm/°C Matching  
2057f  
LT 0513 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2057  

相关型号:

LTC2057HV_15

High Voltage, Low Noise Zero-Drift Operational Amplifier
Linear

LTC2057IS8#PBF

LTC2057/LTC2057HV - High Voltage, Low Noise Zero-Drift Operational Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2057_15

High Voltage, Low Noise Zero-Drift Operational Amplifier
Linear

LTC2122

14-Bit, 250Msps to 170Msps Dual ADCs with JESD204B Outputs
Linear

LTC2123

14-Bit, 250Msps to 170Msps Dual ADCs with JESD204B Outputs
Linear

LTC2140-12

12-Bit, 65Msps/ 40Msps/25Msps Low Power Dual ADCs
Linear

LTC2140-12_15

12-Bit, 65Msps/ 40Msps/25Msps Low Power Dual ADCs
Linear

LTC2140-14

12-Bit, 65Msps/ 40Msps/25Msps Low Power Dual ADCs
Linear

LTC2140-14_15

14-Bit, 65Msps/ 40Msps/25Msps Low Power Dual ADCs
Linear

LTC2140CUP-14#PBF

LTC2140-14 - 14-Bit, 25Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2140IUP-14#PBF

LTC2140-14 - 14-Bit, 25Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2141-12_15

12-Bit, 65Msps/ 40Msps/25Msps Low Power Dual ADCs
Linear