LTC2254CUH [Linear]

14-Bit, 125/105Msps Low Power 3V ADCs; 14位, 125 / 105MSPS低功耗ADC的3V
LTC2254CUH
型号: LTC2254CUH
厂家: Linear    Linear
描述:

14-Bit, 125/105Msps Low Power 3V ADCs
14位, 125 / 105MSPS低功耗ADC的3V

文件: 总24页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2255/LTC2254  
14-Bit, 125/105Msps  
Low Power 3V ADCs  
U
FEATURES  
DESCRIPTIO  
The LTC®2255/LTC2254 are 14-bit 125Msps/105Msps,  
low power 3V A/D converters designed for digitizing high  
frequency, wide dynamic range signals. The LTC2255/  
LTC2254 are perfect for demanding imaging and commu-  
nications applications with AC performance that includes  
72.3dB SNR and 85dB SFDR for signals at the Nyquist  
frequency.  
Sample Rate: 125Msps/105Msps  
Single 3V Supply (2.85V to 3.4V)  
Low Power: 395mW/320mW  
72.4dB SNR  
88dB SFDR  
No Missing Codes  
Flexible Input: 1VP-P to 2VP-P Range  
640MHz Full Power Bandwidth S/H  
DCspecsinclude±1LSBINL(typ), ±0.5LSBDNL(typ)and  
Clock Duty Cycle Stabilizer  
no missing codes over temperature. The transition noise  
Shutdown and Nap Modes  
is a low 1.3 LSBRMS  
.
Pin Compatible Family  
A single 3V supply allows low power operation. A separate  
output supply allows the outputs to drive 0.5V to 3.3V  
logic.  
125Msps: LTC2253 (12-Bit), LTC2255 (14-Bit)  
105Msps: LTC2252 (12-Bit), LTC2254 (14-Bit)  
80Msps: LTC2229 (12-Bit), LTC2249 (14-Bit)  
65Msps: LTC2228 (12-Bit), LTC2248 (14-Bit)  
40Msps: LTC2227 (12-Bit), LTC2247 (14-Bit)  
25Msps: LTC2226 (12-Bit), LTC2246 (14-Bit)  
10Msps: LTC2225 (12-Bit), LTC2245 (14-Bit)  
Asingle-endedCLKinputcontrolsconverteroperation.An  
optional clock duty cycle stabilizer allows high perfor-  
mance at full speed for a wide range of clock duty cycles.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
32-Pin (5mm × 5mm) QFN Package  
U
APPLICATIO S  
Wireless and Wired Broadband Communication  
Imaging Systems  
Ultrasound  
Spectral Analysis  
Portable Instrumentation  
U
TYPICAL APPLICATIO  
LTC2255: SNR vs Input Frequency,  
–1dB, 2V Range, 125Msps  
75  
REFH  
FLEXIBLE  
REFERENCE  
REFL  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
OV  
DD  
D13  
+
14-BIT  
PIPELINED  
ADC CORE  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
D0  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
0
100 150 200 250 300 350  
50  
33554 G09  
INPUT FREQUENCY (MHz)  
22554 TA01a  
CLK  
22554f  
1
LTC2255/LTC2254  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
OV = V (Notes 1, 2)  
DD  
SuDpDply Voltage (VDD)................................................. 4V  
Digital Output Ground Voltage (OGND) .......0.3V to 1V  
Analog Input Voltage (Note 3) ..... –0.3V to (VDD + 0.3V)  
Digital Input Voltage .................... –0.3V to (VDD + 0.3V)  
Digital Output Voltage................0.3V to (OVDD + 0.3V)  
Power Dissipation............................................ 1500mW  
Operating Temperature Range  
TOP VIEW  
ORDER PART  
NUMBER  
32 31 30 29 28 27 26 25  
LTC2255CUH  
LTC2255IUH  
LTC2254CUH  
LTC2254IUH  
+
AIN  
AIN  
1
2
3
4
5
6
7
8
24 D10  
23 D9  
REFH  
REFH  
REFL  
REFL  
D8  
OV  
22  
21  
DD  
33  
20 OGND  
D7  
LTC2255C, LTC2254C ............................. 0°C to 70°C  
LTC2255I, LTC2254I ...........................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
19  
QFN PART*  
MARKING  
V
18 D6  
17 D5  
DD  
GND  
9
10 11 12 13 14 15 16  
UH PACKAGE  
2255  
2254  
32-LEAD (5mm × 5mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 34°C/W  
EXPOSED PAD (PIN 33) IS GND  
MUST BE SOLDERED TO PCB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
U
CO VERTER CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
LTC2255  
TYP  
LTC2254  
TYP  
PARAMETER  
CONDITIONS  
MIN  
14  
MAX  
MIN  
14  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 5)  
Differential Analog Input  
(Note 6)  
–5  
±1  
±0.5  
±2  
5
1
–5.5  
–1  
±1  
±0.5  
±2  
5.5  
1
LSB  
–1  
LSB  
–12  
–2.5  
12  
2.5  
–12  
–2.5  
12  
2.5  
mV  
Gain Error  
External Reference  
±0.5  
±10  
±30  
±5  
±0.5  
±10  
±30  
±5  
%FS  
Offset Drift  
µV/°C  
ppm/°C  
ppm/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
SENSE = 1V  
Transition Noise  
1.3  
1.3  
LSB  
RMS  
22554f  
2
LTC2255/LTC2254  
U
U
A ALOG I PUT  
The  
denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±0.5V to ±1V  
1.5  
MAX  
UNITS  
V
+
V
V
Analog Input Range (A –A  
)
2.85V < V < 3.4V (Note 7)  
IN  
IN  
IN  
DD  
Analog Input Common Mode  
Differential Input (Note 7)  
1
1.9  
1
V
IN,CM  
+
I
I
I
t
t
Analog Input Leakage Current  
SENSE Input Leakage  
MODE Pin Leakage  
0V < A , A < V  
DD  
–1  
–3  
–3  
µA  
µA  
µA  
ns  
IN  
IN  
IN  
0V < SENSE < 1V  
3
SENSE  
MODE  
AP  
3
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
Full Power Bandwidth  
0
0.2  
80  
ps  
RMS  
JITTER  
CMRR  
dB  
Figure 8 Test Circuit  
640  
MHz  
U W  
DY A IC ACCURACY  
The  
IN  
denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at T = 25°C. A = –1dBFS. (Note 4)  
A
LTC2255  
TYP  
LTC2254  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
72.4  
72.3  
72.1  
71.7  
88  
72.5  
72.4  
72.3  
71.7  
88  
30MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
68.9  
69.4  
SFDR  
SFDR  
S/(N+D)  
IMD  
Spurious Free Dynamic Range  
2nd or 3rd Harmonic  
30MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
85  
88  
73  
77  
68  
82  
71  
79  
84  
78  
80  
90  
90  
Spurious Free Dynamic Range  
4th Harmonic or Higher  
30MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
90  
90  
90  
90  
90  
90  
72.2  
72  
72.4  
72.2  
72  
Signal-to-Noise Plus  
Distortion Ratio  
30MHz Input  
70MHz Input  
140MHz Input  
71.9  
70.2  
85  
68.5  
70.6  
85  
Intermodulation  
Distortion  
f
f
= 28.2MHz  
= 26.8MHz  
IN1  
IN2  
22554f  
3
LTC2255/LTC2254  
U U  
U
(Note 4)  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
CM  
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
1.475 1.500 1.525  
OUT  
±25  
3
ppm/°C  
mV/V  
2.85V < V < 3.4V  
DD  
–1mA < I  
< 1mA  
4
OUT  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2
TYP  
MAX  
UNITS  
LOGIC INPUTS (CLK, OE, SHDN)  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
DD  
V
DD  
V
IN  
= 3V  
V
V
IH  
= 3V  
0.8  
10  
IL  
I
= 0V to V  
–10  
µA  
pF  
IN  
DD  
C
IN  
Input Capacitance  
(Note 7)  
3
LOGIC OUTPUTS  
OV = 3V  
DD  
C
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
OE = High (Note 7)  
3
pF  
mA  
mA  
OZ  
I
I
V
OUT  
V
OUT  
= 0V  
= 3V  
50  
50  
SOURCE  
SINK  
V
High Level Output Voltage  
I = –10µA  
O
2.995  
2.99  
V
V
OH  
O
I = –200µA  
2.7  
V
OL  
Low Level Output Voltage  
I = 10µA  
0.005  
0.09  
V
V
O
I = 1.6mA  
0.4  
O
OV = 2.5V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
2.49  
0.09  
V
V
O
I = 1.6mA  
O
OV = 1.8V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
1.79  
0.09  
V
V
O
I = 1.6mA  
O
W U  
POWER REQUIRE E TS  
The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 8)  
A
LTC2255  
TYP  
LTC2254  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 9)  
MIN  
2.85  
0.5  
MAX  
3.4  
MIN  
2.85  
0.5  
MAX  
3.4  
UNITS  
V
V
DD  
Analog Supply Voltage  
Output Supply Voltage  
Supply Current  
3
3
3
3
OV  
DD  
(Note 9)  
3.6  
3.6  
V
IV  
DD  
132  
395  
2
156  
468  
107  
320  
2
126  
378  
mA  
mW  
mW  
P
P
Power Dissipation  
Shutdown Power  
DISS  
SHDN = H,  
SHDN  
OE = H, No CLK  
P
NAP  
Nap Mode Power  
SHDN = H,  
OE = L, No CLK  
15  
15  
mW  
22554f  
4
LTC2255/LTC2254  
W U  
TI I G CHARACTERISTICS The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
LTC2255  
TYP  
LTC2254  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
f
t
Sampling Frequency  
CLK Low Time  
(Note 9)  
1
125  
1
105  
MHz  
s
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
(Note 7)  
3.8  
3
4
4
500  
500  
4.5  
3
4.76  
4.76  
500  
500  
ns  
ns  
L
t
CLK High Time  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
(Note 7)  
3.8  
3
4
4
500  
500  
4.5  
3
4.76  
4.76  
500  
500  
ns  
ns  
H
t
t
Sample-and-Hold  
Aperture Delay  
0
0
ns  
AP  
D
CLK to DATA delay  
C = 5pF (Note 7)  
1.4  
2.7  
4.3  
5.4  
10  
1.4  
2.7  
4.3  
5.4  
10  
ns  
ns  
L
Data Access Time  
C = 5pF (Note 7)  
L
After OE  
BUS Relinquish Time  
(Note 7)  
3.3  
6
8.5  
3.3  
6
8.5  
ns  
Pipeline Latency  
Cycles  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground with GND and OGND  
Note 5: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
wired together (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 6: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and  
11 1111 1111 1111.  
DD  
of greater than 100mA below GND or above V without latchup.  
Note 7: Guaranteed by design, not subject to test.  
DD  
Note 4: V = 3V, f  
= 125MHz (LTC2255) or 105MHz (LTC2254),  
Note 8: V = 3V, f  
= 125MHz (LTC2255) or 105MHz (LTC2254),  
SAMPLE  
DD  
SAMPLE  
DD  
input range = 2V with differential drive, clock duty cycle stabilizer on,  
input range = 1V with differential drive.  
P-P  
P-P  
unless otherwise noted.  
Note 9: Recommended operating conditions.  
22554f  
5
LTC2255/LTC2254  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2255: 8192 Point FFT,  
f = 5MHz, –1dB, 2V Range,  
IN  
125Msps  
LTC2255: Typical INL,  
2V Range, 125Msps  
LTC2255: Typical DNL,  
2V Range, 125Msps  
1.0  
0.8  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
2.0  
1.5  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
60  
0
4096  
8192  
12288  
16384  
0
10  
20  
30  
40  
50  
0
4096  
8192  
12288  
16384  
CODE  
FREQUENCY (MHz)  
22554 G03  
CODE  
22554 G01  
22554 G02  
LTC2255: 8192 Point FFT,  
= 140MHz, –1dB, 2V Range,  
LTC2255: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
LTC2255: 8192 Point FFT,  
f = 70MHz, –1dB, 2V Range,  
IN  
125Msps  
f
f
IN  
IN  
125Msps  
125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
60  
60  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
22554 G05  
FREQUENCY (MHz)  
22554 G06  
FREQUENCY (MHz)  
22554 G04  
LTC2255: 8192 Point 2-Tone FFT,  
= 28.2MHz and 26.8MHz,  
LTC2255: Grounded Input  
Histogram, 125Msps  
f
LTC2255: SNR vs Input Frequency,  
–1dB, 2V Range, 125Msps  
IN  
–1dB, 2V Range, 125Msps  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
25000  
20000  
15000  
10000  
5000  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
20331  
18639  
11975  
6939  
2727  
3684  
704  
419  
79  
3
26 1  
60  
8181  
8185 8187 8189 8191  
0
100  
150 200 250 300 350  
0
10  
20  
30  
40  
50  
50  
8183  
33554 G09  
CODE  
22554 G08  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
22554 G07  
22554f  
6
LTC2255/LTC2254  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2255: SNR and SFDR vs  
LTC2255: SNR vs Input Level,  
IN  
LTC2255: SFDR vs Input Frequency,  
–1dB, 2V Range, 125Msps  
Sample Rate, 2V Range,  
f
= 70MHz, 2V Range, 125Msps  
f
IN  
= 5MHz, –1dB  
80  
100  
95  
90  
80  
70  
60  
dBFS  
SFDR  
70  
60  
90  
85  
80  
75  
70  
50  
40  
30  
20  
10  
SNR  
dBc  
0
50  
65  
–60 –50  
–30 –20 –10  
0
–70  
–40  
0
20 40 60 80 100 120 140 160  
200  
INPUT FREQUENCY (MHz)  
300 350  
0
50 100 150  
250  
SAMPLE RATE (Msps)  
22554 G11  
INPUT LEVEL (dBFS)  
22554 G13  
22554 G10  
LTC2255: SFDR vs Input Level,  
IN  
LTC2255: I  
vs Sample Rate,  
VDD  
f
= 70MHz, 2V Range, 125Msps  
5MHz Sine Wave Input, –1dB  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
2V RANGE  
1V RANGE  
dBc  
–40 –30  
0
20  
40  
60  
80 100 120 140  
–80 –70 –60 –50  
–20 –10  
0
22554 G14  
22554 G15  
SAMPLE RATE (Msps)  
INPUT LEVEL (dBFS)  
LTC2255: I  
vs Sample Rate,  
OVDD  
LTC2255: SNR vs SENSE,  
= 5MHz, –1dB  
5MHz Sine Wave Input, –1dB,  
f
O
= 1.8V  
IN  
VDD  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
8
7
6
5
4
3
2
1
0
0.4  
0.6 0.7 0.8  
SENSE PIN (V)  
0.9 1.0 1.1  
0.5  
20  
40  
80 100 120 140  
0
60  
22554 G32  
22554 G16  
SAMPLE RATE (Msps)  
22554f  
7
LTC2255/LTC2254  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2254: 8192 Point FFT,  
= 5MHz, –1dB, 2V Range,  
f
LTC2254: Typical INL,  
LTC2254: Typical DNL,  
IN  
105Msps  
2V Range, 105Msps  
2V Range, 105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
2.0  
1.5  
1.0  
0.8  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
30  
FREQUENCY (MHz)  
40  
0
10  
20  
50  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
CODE  
12288  
16384  
22554 G19  
CODE  
22554 G17  
22554 G018  
LTC2254: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
LTC2254: 8192 Point FFT,  
= 70MHz, –1dB, 2V Range,  
LTC2254: 8192 Point FFT,  
= 140MHz, –1dB, 2V Range,  
f
f
IN  
IN  
f
IN  
105Msps  
105Msps  
105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
30  
20  
FREQUENCY (MHz)  
40  
30  
20  
FREQUENCY (MHz)  
40  
0
10  
50  
0
10  
50  
30  
20  
FREQUENCY (MHz)  
40  
0
10  
50  
22554 G20  
22554 G21  
22554 G22  
LTC2254: 8192 Point 2-Tone FFT,  
= 28.2MHz and 26.8MHz,  
LTC2254: Grounded Input  
Histogram, 105Msps  
LTC2254: SNR vs Input Frequency,  
–1dB, 2V Range, 105Msps  
f
IN  
–1dB, 2V Range, 105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
18027  
17646  
11299  
10516  
3380  
581  
3316  
637  
54  
68  
1
3
30  
20  
FREQUENCY (MHz)  
40  
0
10  
50  
8183 8185 8187 8189 8191 8193  
200  
INPUT FREQUENCY (MHz)  
350  
33554 G25  
0
100 150  
250 300  
50  
22554 G23  
22554 G24  
CODE  
22554f  
8
LTC2255/LTC2254  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2254: SNR and SFDR vs  
LTC2254: SFDR vs Input Frequency,  
–1dB, 2V Range, 105Msps  
Sample Rate, 2V Range,  
LTC2254: SNR vs Input Level,  
IN  
f
IN  
= 5MHz, –1dB  
f
= 70MHz, 2V Range, 105Msps  
80  
100  
95  
90  
80  
70  
60  
dBFS  
SFDR  
70  
60  
90  
85  
80  
75  
70  
50  
40  
30  
20  
10  
SNR  
dBc  
0
65  
50  
–60 –50  
–30 –20 –10  
0
200  
INPUT FREQUENCY (MHz)  
300 350  
0
20  
40  
60  
80 100 120 140  
–70  
–40  
0
50 100 150  
250  
SAMPLE RATE (Msps)  
22554 G27  
22554 G28  
22554 G26  
INPUT LEVEL (dBFS)  
LTC2254: SFDR vs Input Level,  
IN  
LTC2254: I  
vs Sample Rate,  
VDD  
f
= 70MHz, 2V Range, 105Msps  
5MHz Sine Wave Input, –1dB  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
115  
110  
105  
100  
95  
dBFS  
2V RANGE  
1V RANGE  
dBc  
90  
85  
80  
75  
–40 –30  
–80 –70 –60 –50  
–20 –10  
0
0
20  
40  
60  
120  
80  
100  
22554 G29  
INPUT LEVEL (dBFS)  
SAMPLE RATE (Msps)  
22554 G30  
LTC2254: I  
vs Sample Rate,  
OVDD  
LTC2254: SNR vs SENSE,  
= 5MHz, –1dB  
5MHz Sine Wave Input, –1dB,  
= 1.8V  
f
O
VDD  
IN  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
7
6
5
4
3
2
1
0
0.4  
0.6 0.7 0.8  
SENSE PIN (V)  
0.9 1.0 1.1  
0.5  
0
60  
80  
100  
22554 G31  
120  
20  
40  
22554 G33  
SAMPLE RATE (Msps)  
22554f  
9
LTC2255/LTC2254  
U
U
U
PI FU CTIO S  
AIN+ (Pin 1): Positive Differential Analog Input.  
D0 – D13 (Pins 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24,  
25, 26, 27): Digital Outputs. D13 is the MSB.  
AIN- (Pin 2): Negative Differential Analog Input.  
OGND (Pin 20): Output Driver Ground.  
REFH(Pins3,4):ADCHighReference.Shorttogetherand  
bypass to pins 5, 6 with a 0.1µF ceramic chip capacitor as  
close to the pin as possible. Also bypass to pins 5, 6 with  
an additional 2.2µF ceramic chip capacitor and to ground  
with a 1µF ceramic chip capacitor.  
OVDD (Pin 21): Positive Supply for the Output Drivers.  
Bypasstogroundwith0.1µFceramicchipcapacitor.OVDD  
can be 0.5V to 3.6V.  
OF (Pin 28): Over/Under Flow Output. High when an over  
or under flow has occurred.  
REFL (Pins 5, 6): ADC Low Reference. Short together and  
bypass to pins 3, 4 with a 0.1µF ceramic chip capacitor as  
close to the pin as possible. Also bypass to pins 3, 4 with  
an additional 2.2µF ceramic chip capacitor and to ground  
with a 1µF ceramic chip capacitor.  
MODE (Pin 29): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to GND selects  
offset binary output format and turns the clock duty cycle  
stabilizer off. 1/3 VDD selects offset binary output format  
andturnstheclockdutycyclestabilizeron.2/3VDD selects  
2’s complement output format and turns the clock duty  
cycle stabilizer on. VDD selects 2’s complement output  
format and turns the clock duty cycle stabilizer off.  
V
DD (Pins 7, 32): 3V Supply. Bypass to GND with 0.1µF  
ceramic chip capacitors.  
GND (Pin 8): ADC Power Ground.  
CLK (Pin 9): Clock Input. The input sample starts on the  
positive edge.  
SENSE(Pin30):ReferenceProgrammingPin.Connecting  
SENSE to VCM selects the internal reference and a ±0.5V  
input range. VDD selects the internal reference and a ±1V  
input range. An external reference greater than 0.5V and  
less than 1V applied to SENSE selects an input range of  
±VSENSE. ±1V is the largest valid input range.  
SHDN (Pin 10): Shutdown Mode Selection Pin. Connect-  
ing SHDN to GND and OE to GND results in normal  
operation with the outputs enabled. Connecting SHDN to  
GND and OE to VDD results in normal operation with the  
outputs at high impedance. Connecting SHDN to VDD and  
OE to GND results in nap mode with the outputs at high  
impedance. Connecting SHDN to VDD and OE to VDD  
results in sleep mode with the outputs at high impedance.  
VCM (Pin 31): 1.5V Output and Input Common Mode Bias.  
Bypass to ground with 2.2µF ceramic chip capacitor.  
GND (Exposed Pad) (Pin 33): ADC Power Ground. The  
exposed pad on the bottom of the package needs to be  
soldered to ground.  
OE (Pin 11): Output Enable Pin. Refer to SHDN pin  
function.  
22554f  
10  
LTC2255/LTC2254  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
+
A
IN  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
SIXTH PIPELINED  
ADC STAGE  
A
IN  
V
CM  
1.5V  
REFERENCE  
SHIFT REGISTER  
AND CORRECTION  
2.2µF  
RANGE  
SELECT  
REFH  
REFL  
INTERNAL CLOCK SIGNALS  
OV  
DD  
REF  
BUF  
SENSE  
OF  
D13  
D0  
CLOCK/DUTY  
DIFF  
REF  
AMP  
CONTROL  
LOGIC  
OUTPUT  
DRIVERS  
CYCLE  
CONTROL  
22554 BD01  
REFH  
REFL  
0.1µF  
2.2µF  
OGND  
SHDN  
OE  
CLK  
M0DE  
1µF  
1µF  
Figure 1. Functional Block Diagram  
W U  
W
TI I G DIAGRA  
Timing Diagram  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
N + 5  
t
H
N + 1  
t
L
CLK  
t
D
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D13, OF  
22554 TD01  
22554f  
11  
LTC2255/LTC2254  
W U U  
U
APPLICATIO S I FOR ATIO  
DYNAMIC PERFORMANCE  
input tone to the RMS value of the largest 3rd order  
intermodulation product.  
Signal-to-Noise Plus Distortion Ratio  
Spurious Free Dynamic Range (SFDR)  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band limited  
to frequencies above DC to below half the sampling  
frequency.  
Spurious free dynamic range is the peak harmonic or  
spurious noise that is the largest spectral component  
excluding the input signal and DC. This value is expressed  
in decibels relative to the RMS value of a full scale input  
signal.  
Signal-to-Noise Ratio  
Input Bandwidth  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC.  
The input bandwidth is that input frequency at which the  
amplitude of the reconstructed fundamental is reduced by  
3dB for a full scale input signal.  
Aperture Delay Time  
Total Harmonic Distortion  
ThetimefromwhenCLKreachesmid-supplytotheinstant  
that the input signal is held by the sample and hold circuit.  
Total harmonic distortion is the ratio of the RMS sum of all  
harmonicsoftheinputsignaltothefundamentalitself.The  
out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency. THD is  
expressed as:  
Aperture Delay Jitter  
Thevariationintheaperturedelaytimefromconversionto  
conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
THD = 20Log (V22 + V32 + V42 + . . . Vn2)/V1  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through Vn are the amplitudes of the  
secondthroughnthharmonics. TheTHDcalculatedinthis  
data sheet uses all the harmonics up to the fifth.  
SNRJITTER = –20log (2π) • fIN • tJITTER  
CONVERTER OPERATION  
As shown in Figure 1, the LTC2255/LTC2254 is a CMOS  
pipelined multistep converter. The converter has six  
pipelined ADC stages; a sampled analog input will result in  
a digitized value six cycles later (see the Timing Diagram  
section). For optimal AC performance the analog inputs  
should be driven differentially. For cost sensitive applica-  
tions, the analog inputs can be driven single-ended with  
slightly worse harmonic distortion. The CLK input is  
single-ended. The LTC2255/LTC2254 has two phases of  
operation, determined by the state of the CLK input pin.  
Intermodulation Distortion  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at the sum and differ-  
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3,  
etc. The 3rd order intermodulation products are 2fa + fb,  
2fb + fa, 2fa – fb and 2fb – fa. The intermodulation  
distortion is defined as the ratio of the RMS value of either  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC and an interstage residue amplifier.  
In operation, the ADC quantizes the input to the stage and  
the quantized value is subtracted from the input by the  
DAC to produce a residue. The residue is amplified and  
22554f  
12  
LTC2255/LTC2254  
U
W U U  
APPLICATIO S I FOR ATIO  
outputbytheresidueamplifier.Successivestagesoperate  
out of phase so that when the odd stages are outputting  
their residue, the even stages are acquiring that residue  
and vice versa.  
to the ADC core for processing. As CLK transitions from  
high to low, the inputs are reconnected to the sampling  
capacitors to acquire a new sample. Since the sampling  
capacitors still hold the previous sample, a charging glitch  
proportionaltothechangeinvoltagebetweensampleswill  
be seen at this time. If the change between the last sample  
and the new sample is small, the charging glitch seen at  
the input will be small. If the input change is large, such as  
the change seen with input frequencies near Nyquist, then  
a larger charging glitch will be seen.  
WhenCLKislow, theanaloginputissampleddifferentially  
directly onto the input sample-and-hold capacitors, inside  
the “Input S/H” shown in the block diagram. At the instant  
that CLK transitions from low to high, the sampled input is  
held. While CLK is high, the held input voltage is buffered  
by the S/H amplifier which drives the first pipelined ADC  
stage. The first stage acquires the output of the S/H during  
this high phase of CLK. When CLK goes back low, the first  
stage produces its residue which is acquired by the  
second stage. At the same time, the input S/H goes back  
to acquiring the analog input. When CLK goes back high,  
the second stage produces its residue which is acquired  
by the third stage. An identical process is repeated for the  
third, fourth and fifth stages, resulting in a fifth stage  
residue that is sent to the sixth stage ADC for final  
evaluation.  
LTC2255/LTC2254  
V
DD  
C
C
SAMPLE  
3.5pF  
15  
15Ω  
A
+
IN  
IN  
C
PARASITIC  
1pF  
V
DD  
SAMPLE  
3.5pF  
A
C
PARASITIC  
1pF  
V
DD  
CLK  
Each ADC stage following the first has additional range to  
accommodate flash and amplifier offset errors. Results  
from all of the ADC stages are digitally synchronized such  
thattheresultscanbeproperlycombinedinthecorrection  
logic before being sent to the output buffer.  
22554 F02  
Figure 2. Equivalent Input Circuit  
Single-Ended Input  
For cost sensitive applications, the analog inputs can be  
driven single-ended. With a single-ended input the har-  
monic distortion and INL will degrade, but the SNR and  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Sample/Hold Operation  
+
DNLwillremainunchanged.Forasingle-endedinput,AIN  
Figure 2 shows an equivalent circuit for the LTC2255/  
LTC2254 CMOS differential sample-and-hold. The analog  
inputsareconnectedtothesamplingcapacitors(CSAMPLE  
should be driven with the input signal and AINshould be  
connected to 1.5V or VCM  
.
)
through NMOS transistors. The capacitors shown at-  
tached to each input (CPARASITIC) are the summation of all  
other capacitance associated with each input.  
Common Mode Bias  
For optimal performance the analog inputs should be  
driven differentially. Each input should swing ±0.5V for  
the 2V range or ±0.25V for the 1V range, around a  
common mode voltage of 1.5V. The VCM output pin (Pin  
31) may be used to provide the common mode bias level.  
VCM can be tied directly to the center tap of a transformer  
tosettheDCinputlevelorasareferenceleveltoanopamp  
differentialdrivercircuit. TheVCM pinmustbebypassedto  
ground close to the ADC with a 2.2µF or greater capacitor.  
During the sample phase when CLK is low, the transistors  
connect the analog inputs to the sampling capacitors and  
they charge to and track the differential input voltage.  
When CLK transitions from low to high, the sampled input  
voltageisheldonthesamplingcapacitors.Duringthehold  
phase when CLK is high, the sampling capacitors are  
disconnectedfromtheinputandtheheldvoltageispassed  
22554f  
13  
LTC2255/LTC2254  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Drive Impedance  
Figure 5 shows a single-ended input circuit. The imped-  
ance seen by the analog inputs should be matched. This  
circuit is not recommended if low distortion is required.  
As with all high performance, high speed ADCs, the  
dynamic performance of the LTC2255/LTC2254 can be  
influenced by the input drive circuitry, particularly the  
second and third harmonics. Source impedance and reac-  
tance can influence SFDR. At the falling edge of CLK, the  
sample-and-hold circuit will connect the 3.5pF sampling  
capacitor to the input pin and start the sampling period.  
The sampling period ends when CLK rises, holding the  
sampled input on the sampling capacitor. Ideally the input  
circuitry should be fast enough to fully charge  
the sampling capacitor during the sampling period  
1/(2FENCODE);however, thisisnotalwayspossibleandthe  
incomplete settling may degrade the SFDR. The sampling  
glitch has been designed to be as linear as possible to  
minimize the effects of incomplete settling.  
The25resistorsand12pFcapacitorontheanaloginputs  
serve two purposes: isolating the drive circuitry from the  
sample-and-hold charging glitches and limiting the  
wideband noise at the converter input.  
V
CM  
2.2µF  
0.1µF T1  
+
25Ω  
A
IN  
1:1  
ANALOG  
INPUT  
LTC2255/  
LTC2254  
0.1µF  
25Ω  
25Ω  
12pF  
A
IN  
25Ω  
T1 = MA/COM ETC1-1T  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
22554 F03  
For the best performance, it is recommended to have a  
source impedance of 100or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer  
V
CM  
2.2µF  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
Input Drive Circuits  
+
25  
25Ω  
A
IN  
Figure 3 shows the LTC2255/LTC2254 being driven by an  
RF transformer with a center tapped secondary. The  
secondary center tap is DC biased with VCM, setting the  
ADC input signal at its optimum DC level. Terminating on  
the transformer secondary is desirable, as this provides a  
common mode path for charging glitches caused by the  
sample and hold. Figure 3 shows a 1:1 turns ratio trans-  
former. Other turns ratios can be used if the source  
impedance seen by the ADC does not exceed 100for  
each ADC input. A disadvantage of using a transformer is  
the loss of low frequency response. Most small RF trans-  
formers have poor performance at frequencies below  
1MHz.  
LTC2255/  
LTC2254  
ANALOG  
INPUT  
+
+
CM  
12pF  
A
IN  
22554 F04  
Figure 4. Differential Drive with an Amplifier  
V
CM  
2.2µF  
1k  
1k  
25  
0.1µF  
+
A
IN  
ANALOG  
INPUT  
LTC2255/  
LTC2254  
12pF  
Figure 4 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. Theadvantageofthismethodisthatitprovideslow  
frequencyinputresponse;however,thelimitedgainband-  
width of most op amps will limit the SFDR at high input  
frequencies.  
IN  
25Ω  
A
224876 F05  
0.1µF  
Figure 5. Single-Ended Drive  
22554f  
14  
LTC2255/LTC2254  
W U U  
APPLICATIO S I FOR ATIO  
U
For input frequencies above 70MHz, the input circuits of Reference Operation  
Figure 6, 7 and 8 are recommended. The balun trans-  
Figure 9 shows the LTC2255/LTC2254 reference circuitry  
consisting of a 1.5V bandgap reference, a difference  
amplifier and switching and control circuit. The internal  
voltage reference can be configured for two pin selectable  
input ranges of 2V (±1V differential) or 1V (±0.5V differ-  
ential). Tying the SENSE pin to VDD selects the 2V range;  
tying the SENSE pin to VCM selects the 1V range.  
former gives better high frequency response than a flux  
coupled center tapped transformer. The coupling capaci-  
tors allow the analog inputs to be DC biased at 1.5V. In  
Figure 8, the series inductors are impedance matching  
elements that maximize the ADC bandwidth.  
V
CM  
The 1.5V bandgap reference serves two functions: its  
output provides a DC bias point for setting the common  
mode voltage of any external input circuitry; additionally,  
the reference is used with a difference amplifier to gener-  
ate the differential reference levels needed by the internal  
ADC circuitry. An external bypass capacitor is required for  
the 1.5V reference output, VCM. This provides a high  
frequency low impedance path to ground for internal and  
external circuitry.  
2.2µF  
0.1µF  
0.1µF  
+
12  
A
8pF  
A
IN  
ANALOG  
INPUT  
LTC2255/  
LTC2254  
0.1µF  
25Ω  
25Ω  
T1  
12Ω  
IN  
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
22554 F06  
Figure 6. Recommended Front End Circuit for  
Input Frequencies Between 70MHz and 170MHz  
The difference amplifier generates the high and low refer-  
ence for the ADC. High speed switching circuits are  
connected to these outputs and they must be externally  
bypassed. Each output has two pins. The multiple output  
V
CM  
2.2µF  
0.1µF  
0.1µF  
+
A
A
IN  
ANALOG  
INPUT  
LTC2255/LTC2254  
LTC2255/  
LTC2254  
0.1µF  
25Ω  
25Ω  
4  
V
CM  
1.5V BANDGAP  
REFERENCE  
1.5V  
T1  
2.2µF  
1V  
0.5V  
IN  
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
22554 F07  
RANGE  
DETECT  
AND  
CONTROL  
Figure 7. Recommended Front End Circuit for  
Input Frequencies Between 170MHz and 300MHz  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
REFH  
TIE TO V FOR 1V RANGE;  
CM  
RANGE = 2 • V  
FOR  
< 1V  
SENSE  
SENSE  
BUFFER  
0.5V < V  
INTERNAL ADC  
HIGH REFERENCE  
V
1µF  
CM  
2.2µF  
0.1µF  
+
8.2nH  
0.1µF  
A
A
IN  
ANALOG  
INPUT  
2.2µF  
1µF  
LTC2255/  
LTC2254  
0.1µF  
DIFF AMP  
25Ω  
25Ω  
T1  
REFL  
0.1µF  
8.2nH  
INTERNAL ADC  
IN  
T1 = MA/COM, ETC 1-1-13  
LOW REFERENCE  
RESISTORS, CAPACITORS, INDUCTORS  
ARE 0402 PACKAGE SIZE  
22554 F08  
22554 F09  
Figure 8. Recommended Front End Circuit for  
Input Frequencies Above 300MHz  
Figure 9. Equivalent Reference Circuit  
22554f  
15  
LTC2255/LTC2254  
W U U  
U
APPLICATIO S I FOR ATIO  
CLEAN  
SUPPLY  
pins are needed to reduce package inductance. Bypass  
capacitors must be connected as shown in Figure 9.  
4.7µF  
FERRITE  
BEAD  
Other voltage ranges in-between the pin selectable ranges  
can be programmed with two external resistors as shown  
inFigure10.Anexternalreferencecanbeusedbyapplying  
its output directly or through a resistor divider to SENSE.  
It is not recommended to drive the SENSE pin with a logic  
device. The SENSE pin should be tied to the appropriate  
levelasclosetotheconverteraspossible. IftheSENSEpin  
is driven externally, it should be bypassed to ground as  
close to the device as possible with a 1µF ceramic capacitor.  
0.1µF  
1k  
0.1µF  
SINUSOIDAL  
CLOCK  
CLK  
LTC2255/  
LTC2254  
INPUT  
501k  
NC7SVU04  
22554 F11  
Figure 11. Sinusoidal Single-Ended CLK Drive  
1.5V  
V
Figures 12 and 13 show alternatives for converting a  
differential clock to the single-ended CLK input. The use of  
a transformer provides no incremental contribution to  
phase noise. The LVDS or PECL to CMOS translators  
provide little degradation below 70MHz, but at 140MHz  
will degrade the SNR compared to the transformer solu-  
tion. The nature of the received signals also has a large  
CM  
2.2µF  
12k  
LTC2255/  
LTC2254  
0.75V  
12k  
SENSE  
1µF  
22554 F10  
Figure 10. 1.5V Range ADC  
CLEAN  
SUPPLY  
4.7µF  
Input Range  
FERRITE  
BEAD  
The input range can be set based on the application. The  
2Vinputrangewillprovidethebestsignal-to-noiseperfor-  
mance while maintaining excellent SFDR. The 1V input  
range will have better SFDR performance, but the SNR will  
degrade by 5.7dB.  
0.1µF  
CLK  
LTC2255/  
LTC2254  
100  
Driving the Clock Input  
22554 F12  
The CLK input can be driven directly with a CMOS or TTL  
levelsignal. Asinusoidalclockcanalsobeusedalongwith  
a low-jitter squaring circuit before the CLK pin (see  
Figure 11).  
IF LVDS USE FIN1002 OR FIN1018.  
FOR PECL, USE AZ1000ELT21 OR SIMILAR  
Figure 12. CLK Drive Using an LVDS or PECL to CMOS Converter  
The noise performance of the LTC2255/LTC2254 can  
depend on the clock signal quality as much as on the  
analog input. Any noise present on the clock signal will  
resultinadditionalaperturejitterthatwillbeRMSsummed  
with the inherent ADC aperture jitter.  
ETC1-1T  
CLK  
LTC2255/  
LTC2254  
5pF-30pF  
DIFFERENTIAL  
CLOCK  
INPUT  
In applications where jitter is critical, such as when digitiz-  
ing high input frequencies, use as large an amplitude as  
possible. Also, if the ADC is clocked with a sinusoidal  
signal, filter the CLK signal to reduce wideband noise and  
distortion products generated by the source.  
22554 F13  
0.1µF  
FERRITE  
BEAD  
V
CM  
Figure 13. LVDS or PECL CLK Drive Using a Transformer  
22554f  
16  
LTC2255/LTC2254  
W U U  
APPLICATIO S I FOR ATIO  
U
require a hundred clock cycles for the PLL to lock onto the  
input clock.  
bearing on how much SNR degradation will be experi-  
enced. For high crest factor signals such as WCDMA or  
OFDM,wherethenominalpowerlevelmustbeatleast6dB  
to 8dB below full scale, the use of these translators will  
have a lesser impact.  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
the duty cycle stabilizer is disabled, care should be taken  
to make the sampling clock have a 50% (±5%) duty cycle.  
The transformer in the example may be terminated with  
the appropriate termination for the signaling in use. The  
use of a transformer with a 1:4 impedance ratio may be  
desirable in cases where lower voltage differential signals  
areconsidered. Thecentertapmaybebypassedtoground  
through a capacitor close to the ADC if the differential  
signals originate on a different plane. The use of a capaci-  
tor at the input may result in peaking, and depending on  
transmission line length may require a 10to 20ohm  
series resistor to act as both a low pass filter for high  
frequency noise that may be induced into the clock line by  
neighboring digital signals, as well as a damping mecha-  
nism for reflections.  
DIGITAL OUTPUTS  
Table 1 shows the relationship between the analog input  
voltage, the digital data bits, and the overflow bit.  
Table 1. Output Codes vs Input Voltage  
+
A
– A  
D13 – D0  
D13 – D0  
IN  
IN  
(2V Range)  
OF  
(Offset Binary)  
(2’s Complement)  
>+1.000000V  
+0.999878V  
+0.999756V  
1
0
0
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
+0.000122V  
0.000000V  
–0.000122V  
–0.000244V  
0
0
0
0
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
Maximum and Minimum Conversion Rates  
–0.999878V  
–1.000000V  
<–1.000000V  
0
0
1
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
The maximum conversion rate for the LTC2255/LTC2254  
is 125Msps (LTC2255) and 105Msps (LTC2254). The  
lower limit of the LTC2255/LTC2254 sample rate is deter-  
mined by droop of the sample-and-hold circuits. The  
pipelined architecture of this ADC relies on storing analog  
signals on small valued capacitors. Junction leakage will  
discharge the capacitors. The specified minimum operat-  
ing frequency for the LTC2255/LTC2254 is 1Msps.  
Digital Output Buffers  
Figure 14 shows an equivalent circuit for a single output  
buffer. Each buffer is powered by OVDD and OGND, iso-  
lated from the ADC power and ground. The additional  
N-channel transistor in the output driver allows operation  
down to low voltages. The internal resistor in series with  
the output makes the output appear as 50to external  
Clock Duty Cycle Stabilizer  
An optional clock duty cycle stabilizer circuit ensures high  
performance even if the input clock has a non  
50% duty cycle. Using the clock duty cycle stabilizer is  
recommended for most applications. To use the clock  
dutycyclestabilizer, theMODEpinshouldbeconnectedto  
1/3VDD or 2/3VDD using external resistors.  
LTC2255/LTC2254  
OV  
DD  
0.5V  
TO 3.6V  
V
V
DD  
DD  
0.1µF  
OV  
DD  
DATA  
FROM  
LATCH  
PREDRIVER  
LOGIC  
This circuit uses the rising edge of the CLK pin to sample  
the analog input. The falling edge of CLK is ignored and  
the internal falling edge is generated by a phase-locked  
loop. Theinputclockdutycyclecanvaryfrom40%to60%  
and the clock duty cycle stabilizer will maintain a constant  
50% internal duty cycle. If the clock is turned off for a  
long period of time, the duty cycle stabilizer circuit will  
43  
TYPICAL  
DATA  
OUTPUT  
OE  
OGND  
22554 F14  
Figure 14. Digital Output Buffer  
22554f  
17  
LTC2255/LTC2254  
W U U  
U
APPLICATIO S I FOR ATIO  
circuitry and may eliminate the need for external damping  
resistors.  
to 1V and must be less than OVDD. The logic outputs will  
swing between OGND and OVDD.  
As with all high speed/high resolution converters, the  
digital output loading can affect the performance. The  
digital outputs of the LTC2255/LTC2254 should drive a  
minimal capacitive load to avoid possible interaction be-  
tween the digital outputs and sensitive input circuitry. For  
full speed operation the capacitive load should be kept  
under 10pF.  
Output Enable  
The outputs may be disabled with the output enable pin,  
OE.OEhighdisablesalldataoutputsincludingOF.Thedata  
access and bus relinquish times are too slow to allow the  
outputs to be enabled and disabled during full speed  
operation. TheoutputHi-Zstateisintendedforuseduring  
long periods of inactivity.  
Lower OVDD voltages will also help reduce interference  
from the digital outputs.  
Sleep and Nap Modes  
The converter may be placed in shutdown or nap modes  
to conserve power. Connecting SHDN to GND results in  
normaloperation.ConnectingSHDNtoVDD andOEtoVDD  
results in sleep mode, which powers down all circuitry  
includingthereferenceandtypicallydissipates1mW.When  
exiting sleep mode it will take milliseconds for the output  
datatobecomevalidbecausethereferencecapacitorshave  
torechargeandstabilize.ConnectingSHDNtoVDD andOE  
to GND results in nap mode, which typically dissipates  
15mW. In nap mode, the on-chip reference circuit is kept  
on,sothatrecoveryfromnapmodeisfasterthanthatfrom  
sleepmode,typicallytaking100clockcycles.Inbothsleep  
and nap modes, all digital outputs are disabled and enter  
the Hi-Z state.  
Data Format  
Using the MODE pin, the LTC2255/LTC2254 parallel  
digital output can be selected for offset binary or 2’s  
complementformat.ConnectingMODEtoGNDor1/3VDD  
selects offset binary output format. Connecting MODE to  
2/3VDD or VDD selects 2’s complement output format. An  
external resistor divider can be used to set the 1/3VDD or  
2/3VDD logicvalues. Table2showsthelogicstatesforthe  
MODE pin.  
Table 2. MODE Pin Function  
Clock Duty  
Cycle Stablizer  
MODE Pin  
Output Format  
Offset Binary  
0
Off  
On  
On  
Off  
1/3V  
2/3V  
Offset Binary  
DD  
DD  
2’s Complement  
2’s Complement  
Grounding and Bypassing  
V
DD  
The LTC2255/LTC2254 requires a printed circuit board  
with a clean, unbroken ground plane. A multilayer board  
withaninternalgroundplaneisrecommended.Layoutfor  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, careshouldbetakennottorunanydigitaltrack  
alongside an analog signal track or underneath the ADC.  
Overflow Bit  
When OF outputs a logic high the converter is either  
overranged or underranged.  
Output Driver Power  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
supply for the digital output buffers, OVDD, should be tied  
to the same power supply as for the logic being driven. For  
exampleiftheconverterisdrivingaDSPpoweredbya1.8V  
supply,thenOVDD shouldbetiedtothatsame1.8Vsupply.  
High quality ceramic bypass capacitors should be used at  
the VDD, OVDD, VCM, REFH, and REFL pins. Bypass  
capacitors must be located as close to the pins as pos-  
sible. Of particular importance is the 0.1µF capacitor  
between REFH and REFL. This capacitor should be placed  
as close to the device as possible (1.5mm or less). A size  
0402ceramiccapacitorisrecommended. Thelarge2.2µF  
capacitor between REFH and REFL can be somewhat  
22554f  
OVDD can be powered with any voltage from 500mV up to  
3.6V.OGNDcanbepoweredwithanyvoltagefromGNDup  
18  
LTC2255/LTC2254  
W U U  
APPLICATIO S I FOR ATIO  
U
further away. The traces connecting the pins and bypass  
capacitorsmustbekeptshortandshouldbemadeaswide  
as possible.  
The lowest phase noise oscillators have single-ended  
sinusoidal outputs, and for these devices the use of a filter  
close to the ADC may be beneficial. This filter should be  
close to the ADC to both reduce roundtrip reflection times,  
as well as reduce the susceptibility of the traces between  
thefilterandtheADC. Ifyouaresensitivetoclose-inphase  
noise, the power supply for oscillators and any buffers  
must be very stable, or propagation delay variation with  
supply will translate into phase noise. Even though these  
clock sources may be regarded as digital devices, do not  
operate them on a digital supply. If your clock is also used  
todrivedigitaldevicessuchasanFPGA, youshouldlocate  
the oscillator, and any clock fan-out devices close to the  
ADC, and give the routing to the ADC precedence. The  
clock signals to the FPGA should have series termination  
at the driver to prevent high frequency noise from the  
FPGA disturbing the substrate of the clock fan-out device.  
If you use an FPGA as a programmable divider, you must  
re-time the signal using the original oscillator, and the re-  
timing flip-flop as well as the oscillator should be close to  
the ADC, and powered with a very quiet supply.  
The LTC2255/LTC2254 differential inputs should run par-  
allel and close to each other. The input traces should be as  
shortaspossibletominimizecapacitanceandtominimize  
noise pickup.  
Heat Transfer  
Most of the heat generated by the LTC2255/LTC2254 is  
transferred from the die through the bottom-side exposed  
pad and package leads onto the printed circuit board. For  
goodelectricalandthermalperformance, theexposedpad  
should be soldered to a large grounded pad on the PC  
board. It is critical that all ground pins are connected to a  
ground plane of sufficient area.  
Clock Sources for Undersampling  
Undersampling raises the bar on the clock source and the  
higher the input frequency, the greater the sensitivity to  
clock jitter or phase noise. A clock source that degrades  
SNR of a full-scale signal by 1dB at 70MHz will degrade  
SNR by 3dB at 140MHz, and 4.5dB at 190MHz.  
For cases where there are multiple ADCs, or where the  
clock source originates some distance away, differential  
clock distribution is advisable. This is advisable both from  
the perspective of EMI, but also to avoid receiving noise  
from digital sources both radiated, as well as propagated  
in the waveguides that exist between the layers of multi-  
layer PCBs. The differential pairs must be close together  
and distanced from other signals. The differential pair  
should be guarded on both sides with copper distanced at  
least 3x the distance between the traces, and grounded  
with vias no more than 1/4 inch apart.  
In cases where absolute clock frequency accuracy is  
relatively unimportant and only a single ADC is required,  
a 3V canned oscillator from vendors such as Saronix or  
Vectron can be placed close to the ADC and simply  
connected directly to the ADC. If there is any distance to  
the ADC, some source termination to reduce ringing that  
may occur even over a fraction of an inch is advisable. You  
must not allow the clock to overshoot the supplies or  
performance will suffer. Do not filter the clock signal with  
a narrow band filter unless you have a sinusoidal clock  
source, as the rise and fall time artifacts present in typical  
digital clock signals will be translated into phase noise.  
22554f  
19  
LTC2255/LTC2254  
W U U  
U
APPLICATIO S I FOR ATIO  
22554f  
20  
LTC2255/LTC2254  
W U U  
APPLICATIO S I FOR ATIO  
U
Silkscreen Top  
Topside  
Inner Layer 2 GND  
22554f  
21  
LTC2255/LTC2254  
W U U  
U
APPLICATIO S I FOR ATIO  
Inner Layer 3 Power  
Bottomside  
Silkscreen Bottom  
22554f  
22  
LTC2255/LTC2254  
U
PACKAGE DESCRIPTIO  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693)  
0.70 ±0.05  
5.50 ±0.05  
4.10 ±0.05  
3.45 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.30 TYP  
R = 0.115  
0.75 ± 0.05  
OR 0.35 × 45° CHAMFER  
5.00 ± 0.10  
(4 SIDES)  
TYP  
31 32  
0.00 – 0.05  
0.40 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 ± 0.10  
(4-SIDES)  
(UH32) QFN 1004  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
22554f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC2255/LTC2254  
RELATED PARTS  
PART NUMBER  
LTC1747  
LTC1748  
LTC1749  
LTC1750  
LT1993  
DESCRIPTION  
COMMENTS  
12-Bit, 80Msps ADC  
72dB SNR, 87dB SFDR, 48-Pin TSSOP Package  
76.3dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
Up to 500MHz IF Undersampling, 87dB SFDR  
Up to 500MHz IF Undersampling, 90dB SFDR  
600MHz BW, 75dBc Distortion at 70MHz  
14-Bit, 80Msps ADC  
12-Bit, 80Msps Wideband ADC  
14-Bit, 80Msps Wideband ADC  
High Speed Differential Op Amp  
12-Bit, 170Msps ADC  
LTC2220  
LTC2220-1  
LTC2221  
LTC2222  
LTC2223  
LTC2224  
LTC2225  
LTC2228  
LTC2229  
LTC2248  
LTC2249  
LTC2252  
LTC2253  
LTC2292  
LTC2293  
LTC2294  
LTC2297  
LTC2298  
LTC2299  
LT5512  
890mW, 67.5dB SNR, 9mm x 9mm QFN Package  
910mW, 67.5dB SNR, 9mm x 9mm QFN Package  
660mW, 67.5dB SNR, 9mm x 9mm QFN Package  
475mW, 67.9dB SNR, 7mm x 7mm QFN Package  
366mW, 68dB SNR, 7mm x 7mm QFN Package  
660mW, 67.5dB SNR, 7mm x 7mm QFN Package  
60mW, 71.4dB SNR, 5mm x 5mm QFN Package  
210mW, 71dB SNR, 5mm x 5mm QFN Package  
230mW, 71.6dB SNR, 5mm x 5mm QFN Package  
210mW, 74dB SNR, 5mm x 5mm QFN Package  
230mW, 73dB SNR, 5mm x 5mm QFN Package  
320mW, 70.2dB SNR, 5mm x 5mm QFN Package  
395mW, 70.2dB SNR, 5mm x 5mm QFN Package  
240mW, 71dB SNR, 9mm x 9mm QFN Package  
410mW, 71dB SNR, 9mm x 9mm QFN Package  
445mW, 70.6dB SNR, 9mm x 9mm QFN Package  
240mW, 74dB SNR, 9mm x 9mm QFN Package  
410mW, 74dB SNR, 9mm x 9mm QFN Package  
445mW, 73dB SNR, 9mm x 9mm QFN Package  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
12-Bit, 185Msps ADC  
12-Bit, 135Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 80Msps ADC  
12-Bit, 135Msps ADC  
12-Bit, 10Msps ADC  
12-Bit, 65Msps ADC  
12-Bit, 80Msps ADC  
14-Bit, 65Msps ADC  
14-Bit, 80Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 125Msps ADC  
Dual 12-Bit, 40Msps ADC  
Dual 12-Bit, 65Msps ADC  
Dual 12-Bit, 80Msps ADC  
Dual 14-Bit, 40Msps ADC  
Dual 14-Bit, 65Msps ADC  
Dual 14-Bit, 80Msps ADC  
DC-3GHz High Signal Level Downconverting Mixer  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
450MHz 1dB BW, 47dB OIP3, Digital Gain Control  
10.5dB to 33dB in 1.5dB/Step  
LT5522  
600MHz to 2.7GHz High Linearity Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz,  
NF = 12.5dB, 50Single-Ended RF and LO Ports  
22554f  
LT/LWI/TP 0605 500 • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY