LTC2754-12 [Linear]

Dual Serial 18-Bit SoftSpan IOUT DACs;
LTC2754-12
型号: LTC2754-12
厂家: Linear    Linear
描述:

Dual Serial 18-Bit SoftSpan IOUT DACs

文件: 总24页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2758  
Dual Serial 18-Bit  
SoftSpan I DACs  
OUT  
FeaTures  
DescripTion  
The LTC®2758 is a dual 18-bit multiplying serial-input,  
current-output digital-to-analog converter. LTC2758A  
provides full 18-bit performance (INL and DNL of 1LꢀS  
maximum) over temperature without any adjustments.  
18-bit monotonicity is guaranteed in all performance  
grades. This ꢀoftꢀpan™ DAC operates from a single 3V  
to 5V supply and offers six output ranges (up to 1ꢁV)  
that can be programmed through the 3-wire ꢀPI serial  
interface or pin-strapped for operation in a single range.  
n
Maximum 18-Bit INL Error: 1 LSB Oꢀer Temperature  
n
Program or Pin-Strap Six Output Ranges:  
0V to 5V, 0V to 10V, 2.5V to 7.5V, 2.5V, 5V, 10V  
n
Guaranteed Monotonic Oꢀer Temperature  
n
Glitch Impulse 0.4nVs (3V), 2nVs (5V)  
n
18-Bit Settling Time: 2.1µs  
n
2.7V to 5.5V ꢀingle ꢀupply Operation  
n
1µA Maximum ꢀupply Current  
n
Voltage-Controlled Offset and Gain Trims  
n
ꢀerial Interface with Readback of All Registers  
Any on-chip register (including DAC output-range set-  
tings) can be read for verification in just one instruction  
cycle; and if you change register content, the altered  
register will be automatically read back during the next  
instruction cycle.  
n
Clear and Power-On-Reset to ꢁV Regardless of  
Output Range  
48-Pin 7mm × 7mm LQFP Package  
n
applicaTions  
Voltage-controlled offset and gain adjustments are also  
provided; and the power-on reset circuit and CLR pin both  
reset the DAC outputs to ꢁV regardless of output range.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ꢀoftꢀpan is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Instrumentation  
n
Medical Devices  
n
Automatic Test Equipment  
Process Control and Industrial Automation  
n
Typical applicaTion  
Dual 18-Bit VOUT DAC with Software-Selectable Ranges  
LTC2758 Integral Nonlinearity  
REFERENCE  
1.0  
+
5V  
LT1012  
GAIN A  
ADJUST  
0.8  
0.6  
0.4  
0.2  
0
GE  
ADJA  
R
INA  
R
OFSA  
R
COMA  
REFA  
5V  
R
FBA  
27pF  
V
DD  
I
OUT1A  
OUT2A  
–0.2  
0.1µF  
V
OUTA  
DAC A  
I
–0.4  
+
LT1468  
V
V
–0.6  
OSADJA  
OFFSET A ADJUST  
4
SPI WITH  
READBACK  
LTC2758  
R
–0.8  
–1.0  
FBB  
27pF  
I
OUT1B  
0
65536  
131072  
CODE  
196608  
262143  
V
OUTB  
I
DAC B  
+
OUT2B  
2758 TA01b  
LT1468  
OFFSET B ADJUST  
GND  
GE  
OSADJB  
R
OFSB  
REFB  
R
R
INB  
ADJB  
COMB  
2758 TA01a  
+
GAIN B  
ADJUST  
LT1012  
REFERENCE  
5V  
2758fb  
1
For more information www.linear.com/LTC2758  
LTC2758  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
I
, I  
to GND............................................ ꢁ.3V  
OUT1X OUT2X  
R
, R  
, REFX, R , R  
, V  
,
INX COMX  
FSX OFꢀX OꢀADJX  
GE  
to GND ....................................................... 18V  
ADJX  
V
to GND...................................................3V to 7V  
DD  
Digital Inputs to GND....................................3V to 7V  
Digital Outputs to GND .....–ꢁ.3V to V +ꢁ.3V (max 7V)  
Operating Temperature Range  
REF A  
REF A  
1
2
3
4
5
6
7
8
9
36 REF B  
35 REF B  
34 R  
COMB  
DD  
R
COMA  
GE  
LTC2758C ................................................ ꢁ°C to 7ꢁ°C  
LTC2758I .............................................–4ꢁ°C to 85°C  
Maximum Junction Temperature .......................... 15ꢁ°C  
ꢀtorage Temperature Range ..................–65°C to 15ꢁ°C  
Lead Temperature (ꢀoldering, 1ꢁ sec)...................3ꢁꢁ°C  
33 GE  
ADJB  
ADJA  
R
R
32 R  
31 R  
INA  
INB  
INA  
INB  
GND  
30 GND  
I
I
29 I  
28 I  
OUT2AS  
OUT2BS  
OUT2AF  
OUT2BF  
GND 10  
CS/LD 11  
SDI 12  
27 GND  
26 LDAC  
25 S2  
LX PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC LQFP  
T
JMAX  
= 15ꢁ°C, θ = 53°C/W  
JA  
orDer inForMaTion  
http://www.linear.com/product/LTC2758#orderinfo  
LEAD FREE FINISH  
LTC2758SCLX#PSF  
LTC2758SILX#PSF  
LTC2758ACLX#PSF  
LTC2758AILX#PSF  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2758LX  
LTC2758LX  
LTC2758LX  
LTC2758LX  
48-Lead (7mm × 7mm) Plastic LQFP  
48-Lead (7mm × 7mm) Plastic LQFP  
48-Lead (7mm × 7mm) Plastic LQFP  
48-Lead (7mm × 7mm) Plastic LQFP  
ꢁ°C to 7ꢁ°C  
–4ꢁ°C to 85°C  
ꢁ°C to 7ꢁ°C  
–4ꢁ°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/. ꢀome packages are available in 5ꢁꢁ unit reels through  
designated sales channels with #TRMPSF suffix.  
2758fb  
2
For more information www.linear.com/LTC2758  
LTC2758  
elecTrical characTerisTics VDD = 5V, V(RINX) = 5V unless otherwise specified. The l denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = 25°C.  
LTC2758B  
TYP  
LTC2758A  
SYMBOL  
Static Performance  
Resolution  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
18  
18  
18  
18  
Sits  
Sits  
Monotonicity  
DNL  
INL  
GE  
Differential Nonlinearity  
Integral Nonlinearity  
1
2
ꢁ.2  
ꢁ.5  
6
1
1
LꢀS  
LꢀS  
Gain Error  
All Output Ranges  
Gain/Temp  
48  
32  
LꢀS  
Gain Error Temperature Coefficient  
Sipolar Zero Error  
ꢁ.25  
ꢁ.25  
1
ppm/°C  
LꢀS  
l
SZE  
All Sipolar Ranges  
36  
24  
Sipolar Zero Temperature Coefficient  
Unipolar Zero-ꢀcale Error  
Power ꢀupply Rejection  
ꢁ.2  
ꢁ.2  
ꢁ.ꢁ3  
ppm/°C  
LꢀS  
l
Unipolar Ranges (Note 3)  
ꢁ.ꢁ3  
3.2  
3.2  
l
l
PꢀR  
V
DD  
V
DD  
= 5V, 1ꢁ0  
= 3V, 1ꢁ0  
1.6  
4
ꢁ.1  
ꢁ.3  
ꢁ.8  
2
LꢀS/V  
LꢀS/V  
I
I
Leakage Current  
T = 25°C  
MIN  
ꢁ.ꢁ5  
2
5
ꢁ.ꢁ5  
2
5
nA  
nA  
LKG  
OUT1  
A
l
T
to T  
MAX  
VDD = 5V, V(RINX) = 5V unless otherwise specified. The l denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Pins  
l
l
l
l
l
l
Reference Inverting Resistors  
DAC Input Resistance  
Feedback Resistors  
(Note 4)  
16  
8
2ꢁ  
1ꢁ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
R
R
R
R
R
(Notes 5, 6)  
(Note 6)  
REF  
8
1ꢁ  
FS  
Sipolar Offset Resistors  
Offset Adjust Resistors  
Gain Adjust Resistors  
Output Capacitance  
(Note 6)  
16  
2ꢁ  
OFꢀ  
1ꢁ24  
2ꢁ48  
128ꢁ  
256ꢁ  
VOꢀADJ  
GEADJ  
IOUT1  
C
Full-ꢀcale  
Zero-ꢀcale  
9ꢁ  
4ꢁ  
Dynamic Performance  
Output ꢀettling Time  
ꢀpan Code = ꢁꢁꢁꢁ, 1ꢁV ꢀtep. To ꢁ.ꢁꢁꢁ40  
Fꢀ (Note 7)  
2.1  
μs  
Glitch Impulse  
V
V
= 5V (Note 8)  
= 3V (Note 8)  
2
ꢁ.4  
nV•s  
nV•s  
DD  
DD  
Digital-to-Analog Glitch Impulse  
Reference Multiplying SW  
Multiplying Feedthrough Error  
V
V
= 5V (Note 9)  
= 3V (Note 9)  
2.6  
ꢁ.6  
nV•s  
nV•s  
DD  
DD  
ꢁV to 5V Range,  
Code = Full ꢀcale, –3dS Sandwidth  
1
MHz  
ꢁV to 5V Range, V  
ꢀine Wave  
=
1ꢁV, 1ꢁkHz  
ꢁ.4  
mV  
REF  
Analog Crosstalk  
(Note 1ꢁ)  
–1ꢁ9  
–11ꢁ  
13  
dS  
dS  
THD  
Total Harmonic Distortion  
Output Noise Voltage Density  
(Note 11) Multiplying  
(Note 12) at I  
nV/√Hz  
OUT1  
2758fb  
3
For more information www.linear.com/LTC2758  
LTC2758  
elecTrical characTerisTics VDD = 5V, V(RINX) = 5V unless otherwise specified. The l denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
l
l
V
ꢀupply Voltage  
2.7  
5.5  
2
V
DD  
I
DD  
V
ꢀupply Current  
Digital Inputs = ꢁV or V  
DD  
ꢁ.5  
μA  
DD  
Digital Inputs  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
3.3V ≤ V ≤ 5.5V  
2.4  
2
V
V
IH  
DD  
2.7V ≤ V < 3.3V  
DD  
l
l
V
IL  
4.5V < V ≤ 5.5V  
ꢁ.8  
ꢁ.6  
V
V
DD  
2.7V ≤ V ≤ 4.5V  
DD  
Hysteresis Voltage  
ꢁ.1  
V
µA  
pF  
l
l
I
IN  
Digital Input Current  
Digital Input Capacitance  
V
V
= GND to V  
DD  
1
6
IN  
IN  
C
= ꢁV (Note 13)  
IN  
Digital Outputs  
l
l
V
OH  
V
OL  
I
I
= 2ꢁꢁµA  
= 2ꢁꢁµA  
2.7V ≤ V ≤ 5.5V  
V – ꢁ.4  
DD  
V
V
OH  
OL  
DD  
2.7V ≤ V ≤ 5.5V  
ꢁ.4  
DD  
TiMing characTerisTics The l denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
= 4.5V to 5.5V  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
t
t
ꢀDI Valid to ꢀCK ꢀet-Up  
ꢀDI Valid to ꢀCK Hold  
ꢀCK High Time  
7
7
ns  
ns  
1
2
11  
11  
9
ns  
3
ꢀCK Low Time  
ns  
4
CS/LD Pulse Width  
ns  
5
LꢀS ꢀCK High to CS/LD High  
CS/LD Low to ꢀCK Positive Edge  
CS/LD High to ꢀCK Positive Edge  
ꢀRO Propagation Delay  
CLR Pulse Width Low  
LDAC Pulse Width Low  
CLR Low to RFLAG Low  
CS/LD High to RFLAG High  
ꢀCK Frequency  
4
ns  
6
4
ns  
7
4
ns  
8
C
= 1ꢁpF  
18  
ns  
9
LOAD  
36  
15  
ns  
1ꢁ  
11  
12  
13  
ns  
C
C
= 1ꢁpF (Note 13)  
= 1ꢁpF (Note 13)  
5ꢁ  
4ꢁ  
4ꢁ  
ns  
LOAD  
ns  
LOAD  
5ꢁ0 Duty Cycle (Note 14)  
MHz  
V
DD  
= 2.7V to 3.3V  
l
l
l
l
l
l
t
t
t
t
t
t
ꢀDI Valid to ꢀCK ꢀet-Up  
ꢀDI Valid to ꢀCK Hold  
ꢀCK High Time  
9
9
ns  
ns  
ns  
ns  
ns  
ns  
1
(Note 13)  
2
3
4
5
6
C = 1ꢁpF  
L
15  
15  
12  
5
ꢀCK Low Time  
CS/LD Pulse Width  
LꢀS ꢀCK High to CS/LD High  
2758fb  
4
For more information www.linear.com/LTC2758  
LTC2758  
TiMing characTerisTics The l denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
5
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
CS/LD Low to ꢀCK Positive Edge  
CS/LD High to ꢀCK Positive Edge  
ꢀRO Propagation Delay  
CLR Pulse Width Low  
LDAC Pulse Width Low  
CLR Low to RFLAG Low  
CS/LD High to RFLAG high  
ꢀCK Frequency  
7
5
ns  
8
C
LOAD  
= 1ꢁpF  
26  
ns  
9
6ꢁ  
2ꢁ  
ns  
1ꢁ  
11  
12  
13  
ns  
C
C
= 1ꢁpF (Note 13)  
= 1ꢁpF (Note 13)  
7ꢁ  
6ꢁ  
25  
ns  
LOAD  
ns  
LOAD  
5ꢁ0 Duty Cycle (Note 14)  
MHz  
Note 1: ꢀtresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 8: Measured at the major carry transition, ꢁV to 5V range. Output  
amplifier: LT1468; C = 5ꢁpF.  
FS  
Note 9: Full-scale transition; REF = ꢁV.  
Note 10: Analog Crosstalk is defined as the AC voltage ratio V  
/V  
,
OUTS REFA  
expressed in dS. REFS is grounded, and DAC S is set to ꢁV-5V span and  
zero-, mid- or full- scale code. V is a 3V , 1kHz sine wave.  
REFA  
RMꢀ  
Note 3: Calculation from feedback resistance and I  
specifications; not production tested. In most applications, unipolar zero-  
scale error is dominated by contributions from the output amplifier.  
leakage current  
OUT1  
Note 11: REF = 6V  
amplifier = LT1468.  
Note 12: Calculation from V = √4kTRB, where k = 1.38E-23 J/°K  
(Soltzmann constant), R = resistance (Ω), T = temperature (°K), and S =  
bandwidth (Hz). ꢁV to 5V Range; zero-, mid-, or full-scale.  
at 1kHz. ꢁV to 5V range. DAC code = Fꢀ. Output  
RMꢀ  
n
Note 4: Input resistors measured from R to R  
; feedback resistors  
INX  
COMX  
measured from R  
to REFX.  
COMX  
Note 5: DAC input resistance is independent of code.  
Note 6: Parallel combination of the resistances from the specified pin to  
and from the specified pin to I  
Note 13: Guaranteed by design; not production tested.  
Note 14: When using ꢀRO, maximum ꢀCK frequency f  
is limited by  
MAX  
I
.
OUT2X  
OUT1X  
ꢀRO propagation delay t as follows:  
9
Note 7: Using LT1468 with C  
= 27pF. A .ꢁꢁꢁ40 settling time  
FEEDSACK  
1
of 1.8µs can be achieved by optimizing the time constant on an individual  
basis. ꢀee Application Note 12ꢁ, 1ppm Settling Time Measurement for a  
Monolithic 18-Bit DAC.  
fMAX  
=
, where t is the setup time of the receiving device.  
2 t + t  
(
)
9
2758fb  
5
For more information www.linear.com/LTC2758  
LTC2758  
Typical perForMance characTerisTics  
VDD = 5V, V(RINX) = 5V, TA = 25°C, unless otherwise noted.  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL ꢀs Output Range  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2.5V –2.5V 0V  
–5V  
TO  
5V  
0V  
TO  
10V  
–10V  
TO  
10V  
0
65536  
131072  
CODE  
196608  
262143  
0
65536  
131072  
CODE  
196608  
262143  
TO  
TO  
TO  
5V  
2.5V 7.5V  
2758 G01  
2758 G02  
OUTPUT RANGE  
2758 G03  
INL ꢀs Temperature  
DNL ꢀs Temperature  
Gain Error ꢀs Temperature  
1.0  
0.8  
1.0  
0.8  
32  
28  
24  
20  
16  
12  
8
0ꢀ25ꢁꢁpm°C TꢂP  
2ꢀ5ꢃ  
0V TO 10V RANGE  
0V TO 10V RANGE  
5ꢃ  
10ꢃ  
0.6  
0.6  
0ꢃ TO 5ꢃ  
+INL  
0ꢃ TO 10ꢃ  
0.4  
0.4  
–2ꢀ5ꢃ TO 7ꢀ5ꢃ  
0.2  
0.2  
+DNL  
0
0
–INL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–DNL  
4
0
–40  
–20  
0
20  
40  
60  
8085  
–40  
–20  
0
20  
40  
60  
8085  
–40  
–20  
0
20  
40  
60  
8085  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2758 G04  
2758 G05  
2758 G06  
Bipolar Zero Error  
ꢀs Temperature  
DNL ꢀs Reference Voltage  
INL ꢀs Reference Voltage  
16  
12  
8
1.0  
0.8  
1.0  
0.8  
0ꢁ15ꢂꢂpm°C TꢃP  
5V RꢀNGꢁ  
5V RꢀNGꢁ  
0.6  
0.6  
+INL  
–INL  
+INL  
–INL  
0.4  
0.4  
4
0.2  
0.2  
+DNL  
–DNL  
+DNL  
–DNL  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–4  
–8  
–12  
–16  
5ꢀ  
10ꢀ  
2ꢁ5ꢀ  
–2ꢁ5ꢀ TO 7ꢁ5ꢀ  
40 60 8085  
TEMPERATURE (°C)  
–40  
–20  
0
20  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
V(R ) (V)  
V(R ) (V)  
IN  
IN  
2758 G07  
2758 G08  
2758 G09  
2758fb  
6
For more information www.linear.com/LTC2758  
LTC2758  
Typical perForMance characTerisTics  
VDD = 5V, V(RINX) = 5V, TA = 25°C, unless otherwise noted.  
Multiplying Frequency Response  
ꢀs Digital Code  
INL ꢀs VDD  
DNL ꢀs VDD  
1.0  
0.8  
1.0  
0.8  
ALL BITS ON  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
0
–20  
0V TO 10V RANGE  
0V TO 10V RANGE  
0.6  
0.6  
+INL  
–INL  
0.4  
0.4  
–40  
0.2  
0.2  
+DNL  
–DNL  
D8  
–60  
D7  
0
0
D6  
D5  
–80  
D4  
D3  
D2  
D1  
D0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–100  
–120  
–140  
0V TO 5V OUTPUT RANGE  
LT1468 OUTPUT AMPLIFIER  
FEEDBACK  
ALL BITS OFF  
C
= 15pF  
100  
1k  
10k  
100k  
1M  
10M  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
DD  
FREQUENCY (Hz)  
DD  
2758 G10  
2758 G11  
2758 G12  
Settling Full-Scale Step  
Mid-Scale Glitch (VDD = 3V)  
Mid-Scale Glitch (VDD = 5V)  
0.4nVs TYP  
2nVs TYP  
CS/LD  
5V/DIV  
CS/LD  
5V/DIV  
CS/LD  
5V/DIV  
GATED  
SETTLING  
WAVEFORM  
100µV/DIV  
(AVERAGED)  
V
OUT  
V
OUT  
5mV/DIV  
5mV/DIV  
(AVERAGED)  
(AVERAGED)  
2758 G14  
2758 G13  
2758 G15  
500ns/DIV  
500ns/DIV  
500ns/DIV  
0V TO 5V RANGE  
LT1468 AMP; C  
= 20pF  
0V TO 5V RANGE  
FEEDBACK  
LT1468 OUTPUT AMPLIFIER  
0V TO 10V STEP  
LT1468 OUTPUT AMPLIFIER  
C
= 50pF  
FEEDBACK  
V
= –10V; SPAN CODE = 0000  
= 1.8µs to 0.0004% (18 BITS)  
C
= 50pF  
REF  
FEEDBACK  
RISING MAJOR CARRY TRANSITION.  
FALLING TRANSITION IS SIMILAR OR BETTER.  
t
RISING MAJOR CARRY TRANSITION.  
FALLING TRANSITION IS SIMILAR OR BETTER.  
SETTLE  
Supply Current  
ꢀs Logic Input Voltage  
Logic Threshold  
ꢀs Supply Voltage  
Supply Current  
ꢀs Update Frequency  
2
1.75  
1.5  
5
4
3
2
1
0
100  
10  
ALTERNATING ZERO-SCALE  
AND FULL-SCALE  
CLR, LDAC, SDI, SCK,  
CS/LD TIED TOGETHER  
RISING  
1
V
DD  
= 5V  
1.25  
1
0.1  
FALLING  
V
DD  
= 3V  
0.01  
0.001  
V
= 5V  
DD  
3
0.75  
0.5  
V
= 3V  
DD  
2
0.0001  
2.5  
3.5  
4
4.5  
5
5.5  
3
0
1
4
5
1
100  
10k  
1M  
100M  
V
(V)  
DD  
DIGITAL INPUT VOLTAGE (V)  
SCK FREQUENCY (Hz)  
2758 G16  
2758 G18  
2758 G17  
2758fb  
7
For more information www.linear.com/LTC2758  
LTC2758  
pin FuncTions  
REFA (Pins 1, 2): Feedback Resistor for the DAC A Refer-  
ence Inverting Amplifier, and Reference Input for DAC A.  
The 2ꢁk feedback resistor is connected internally from  
SRO (Pin 14): ꢀerial Readback Output. Data is clocked out  
on the falling edge of ꢀCK. Readback data begins clocking  
out after the last address bit Aꢁ is clocked in. ꢀRO is an  
active output only when the chip is selected (i.e., when  
CS/LDislow). Otherwise ꢀROpresents a high-impedance  
output in order to allow other parts to control the bus.  
REFA to R . For normal operation tie this pin to the  
COMA  
output of the DAC A reference inverting amplifier (see  
Typical Application). Typically –5V; accepts up to 15V.  
Pins 1 and 2 are internally shorted together.  
V
(Pin16):PositiveupplyInput;2.7V≤V ≤5.5V. Sy-  
DD  
DD  
R
(Pin 3): Virtual Ground Point for the DAC A Ref-  
pass with a ꢁ.1μF low-EꢀR ceramic capacitor to ground.  
COMA  
erence Amplifier Inverting Resistors. The 2ꢁk reference  
CLR (Pin 19): Asynchronous Clear Input. When this pin is  
low, all DAC registers (both code and span) are cleared to  
zero. All DAC outputs are cleared to zero volts.  
inverting resistors are connected internally from R to  
INA  
R
COMA  
and from R  
to REFA, respectively (see Slock  
COMA  
Diagram). For normal operation tie R  
to the negative  
COMA  
RFLAG (Pin 20): Reset Flag Output. An active low output  
is asserted when there is a power-on reset or a clear event.  
Returns high when an Update command is executed.  
input of the external reference inverting amplifier (see  
Typical Application).  
GE  
(Pin 4): Gain Adjust Pin for DAC A. This control pin  
ADJA  
DNC (Pin 21): Do Not Connect.  
canbeusedtonullgainerrorortocompensateforreference  
errors. The gain change expressed in LꢀS is the same for  
anyoutputrange.eeSystemOffsetandGainAdjustments  
in the Operation section. Tie to ground if not used.  
M-SPAN (Pin 22): Manual ꢀpan Control Pin. M-ꢀPAN is  
used in conjunction with pins ꢀ2, ꢀ1 and ꢀꢁ (Pins 25, 24  
and 23) to configure all DACs for operation in a single,  
fixed output range.  
R
(Pins 5, 6): Input Resistor for the DAC A External  
INA  
Reference Inverting Amplifier. The 2ꢁk input resistor is  
To configure the part for manual-span use, tie M-ꢀPAN  
connected internally from R to R  
. For normal op-  
INA  
COMA  
directly to V . The DAC output range is then set via  
DD  
eration tie R to the external positive reference voltage  
INA  
hardware pin strapping of pins ꢀ2, ꢀ1 and ꢀꢁ (rather than  
through the ꢀPI port); and Write and Update commands  
have no effect on the active output span.  
(seeTypicalApplication).Eitherorbothoftheseprecision-  
matched resistor sets (each set comprising R , R  
INX COMX  
and REFX) may be used to invert positive references to  
provide the negative voltages needed by the DACs. Typi-  
cally 5V; accepts up to 15V. Pins 5 and 6 are internally  
shorted together.  
Toconfigurethepartforoftꢀpanuse,tieM-ꢀPANdirectly  
to GND. The output ranges are then individually control-  
lable through the ꢀPI port; and pins ꢀ2, ꢀ1 and ꢀꢁ have  
no effect.  
GND (Pins 7, 10, 15, 17, 18, 27, 30): Ground; tie to  
ground.  
ꢀeeManualSpanConfigurationintheOperationsection.M-  
ꢀPANmust be connectedeitherdirectly to GND (ꢀoftꢀpan  
I
, I  
(Pins 8, 9): DAC A Current Output  
OUT2AS OUT2AF  
configuration) or to V (manual-span configuration).  
DD  
Complement ꢀense and Force Pins. Tie to ground via a  
clean, low-impedance path. These pins may be used with  
a precision ground buffer amp as a Kelvin sensing pair  
(see the Applications Information section).  
S0 (Pin 23): ꢀpan Sit ꢁ Input. In Manual ꢀpan mode (M-  
ꢀPAN tied to V ), Pins ꢀꢁ, ꢀ1 and ꢀ2 are pin-strapped  
DD  
to select a single fixed output range for all DACs. These  
pins should be tied to either GND or V even if they are  
DD  
CS/LD (Pin 11): ꢀynchronous Chip ꢀelect and Load Input  
Pin.  
unused.  
S1 (Pin 24): ꢀpan Sit 1 Input. In Manual ꢀpan mode (M-  
SDI (Pin 12): ꢀerial Data Input. Data is clocked in on the  
rising edge of the serial clock (ꢀCK) when CS/LD is low.  
ꢀPAN tied to V ), Pins ꢀꢁ, ꢀ1 and ꢀ2 are pin-strapped to  
DD  
select a single fixed output range for all DACs. These pins  
shouldbetiedtoeitherGNDorV eveniftheyareunused.  
SCK (Pin 13): ꢀerial Clock Input.  
DD  
2758fb  
8
For more information www.linear.com/LTC2758  
LTC2758  
pin FuncTions  
S2 (Pin 25): ꢀpan Sit 2 Input. In Manual ꢀpan mode (M-  
R
(Pins 37, 38): Sipolar Offset Resistor for DAC S.  
OFSB  
These pins provide the translation of the output voltage  
range for bipolar spans. Accepts up to 15V; for normal  
ꢀPAN tied to V ), Pins ꢀꢁ, ꢀ1 and ꢀ2 are pin-strapped to  
DD  
select a single fixed output range for all DACs. These pins  
operation tie to the positive reference voltage atR (Pins  
31, 32). Pins 37 and 38 are internally shorted together.  
shouldbetiedtoeitherGNDorV eveniftheyareunused.  
INS  
DD  
LDAC (Pin 26): Asynchronous DAC Load Input. When  
LDAC is a logic low, all DACs are updated (CS/LD must  
be high).  
R
(Pins 39, 40): DAC S Feedback Resistor. For normal  
FBB  
operation tie to the outputofthe I/V converteramplifierfor  
DAC S (see Typical Application). The DAC output current  
I
, I  
(Pins 28, 29): DAC S Current Output  
OUT2BF OUT2BS  
from I  
R
flows through the feedback resistor to the  
OUT1S  
Complement Force and ꢀense Pins. Tie to ground via a  
clean, low-impedance path. These pins may be used with  
a precision ground buffer amp as a Kelvin sensing pair  
(see the Applications Information section).  
pins. Pins 39 and 4ꢁ are internally shorted together.  
FSS  
I
(Pin 41): DAC S Current Output. This pin is a virtual  
OUT1B  
ground when the DAC is operating and should reside at  
V. For normal operation tie to the negative input of the  
I/VconverteramplifierforDACS(seeTypicalApplication).  
R
(Pins 31, 32): Input Resistor for the DAC S External  
INB  
Reference Inverting Amplifier. The 2ꢁk input resistor is  
V
(Pin 42): DAC S Offset Adjust Pin. This voltage-  
connected internally from R to R  
. For normal op-  
OSADJB  
INS  
COMS  
control pin can be used to null unipolar offset or bipolar  
zero error. The offset change expressed in LꢀS is the same  
for any output range. ꢀee System Offset and Gain Adjust-  
ments in the Operation section. Tie to ground if not used.  
eration tie R to the external positive reference voltage  
INS  
(seeTypicalApplication).Eitherorbothoftheseprecision-  
matched resistor sets (each set comprising R , R  
INX COMX  
and REFX) may be used to invert positive references to  
provide the negative voltages needed by the DACs. Typi-  
cally 5V; accepts up to 15V. Pins 31 and 32 are internally  
shorted together.  
V
(Pin 43): DAC A Offset Adjust Pin. This voltage-  
OSADJA  
control pin can be used to null unipolar offset or bipolar  
zero error. The offset change expressed in LꢀS is the same  
for any output range. ꢀee System Offset and Gain Adjust-  
ments in the Operation section. Tie to ground if not used.  
GE  
(Pin 33): Gain Adjust Pin for DAC S. This control  
ADJB  
pin can be used to null gain error or to compensate for  
reference errors. The gain change expressed in LꢀS is  
the same for any output range. ꢀee System Offset and  
Gain Adjustments in the Operation section. Tie to ground  
if not used.  
I
(Pin 44): DAC A Current Output. This pin is a virtual  
OUT1A  
ground when the DAC is operating and should reside at  
V. For normal operation tie to the negative input of the  
I/VconverteramplifierforDACA(seeTypicalApplication).  
R
(Pin 34): Virtual Ground Point for the DAC S Ref-  
R
(Pins 45, 46): DAC A Feedback Resistor. For normal  
COMB  
FBA  
erence Amplifier Inverting Resistors. The 2ꢁk reference  
operation tie to the outputofthe I/V converteramplifier for  
DAC A (see Typical Application). The DAC output current  
inverting resistors are connected internally from RINS to  
R
and from R  
to REFS, respectively (see Slock  
COMS  
from I  
flows through the feedback resistor to the  
COMS  
OUT1A  
Diagram). For normal operation tie R  
to the negative  
R
FSA  
pins. Pins 45 and 46 are internally shorted together.  
COMS  
input of the external reference inverting amplifier (see  
Typical Application).  
R
(Pins 47, 48): Sipolar Offset Resistor for DAC A.  
OFSA  
This pin provides the translation of the output voltage  
range for bipolar spans. Accepts up to 15V; for normal  
REFB (Pins 35, 36): Feedback Resistor for the DAC S  
Reference Inverting Amplifier, and Reference Input for  
DAC S. The 2ꢁk feedback resistor is connected internally  
operation tie to the positive reference voltage at R  
(Pins 5, 6). Pins 47 and 48 are internally shorted together.  
INA  
from REFS to R  
. For normal operation tie this pin to  
COMS  
the output of the DAC S reference inverting amplifier (see  
Typical Application). Typically –5V; accepts up to 15V.  
Pins 35 and 36 are internally shorted together.  
2758fb  
9
For more information www.linear.com/LTC2758  
LTC2758  
block DiagraM  
V
DD  
16  
31,32  
INB  
5,6  
INA  
R
R
2.56M  
GE  
2.56M  
ADJB  
GE  
ADJA  
33  
34  
20k  
20k  
4
3
20k  
20k  
R
COMB  
R
COMA  
LTC2758  
1,2  
REFA  
35,36  
REFB  
37,38  
OFSB  
47,48  
OFSA  
R
R
39,40  
FBB  
45,46  
FBA  
CODE REGISTERS  
CODE REGISTERS  
R
R
18  
3
18  
3
DAC REG INPUT REG  
INPUT REG DAC REG  
DAC A  
18-BIT WITH  
SPAN SELECT  
DAC B  
18-BIT WITH  
SPAN SELECT  
I
I
OUT1A  
OUT1B  
44  
8
41  
29  
28  
SPAN REGISTERS  
SPAN REGISTERS  
I
I
OUT2AS  
OUT2BS  
DAC REG INPUT REG  
INPUT REG DAC REG  
I
I
OUT2AF  
OUT2BF  
9
V
V
OSADJA  
OSADJB  
43  
42  
POWER-ON  
RESET  
CONTROL AND READBACK LOGIC  
7, 10, 15, 17,  
18, 27, 30  
GND  
M-SPAN  
S0  
S1  
S2  
RFLAG  
CLR  
CS/LD  
SDI  
SCK  
LDAC  
SRO  
22  
23  
24  
25  
20  
19  
11  
12  
13  
26  
14  
2758 BD  
TiMing DiagraM  
t
1
t
6
t
t
t
2
3
4
1
2
31  
32  
SCK  
SDI  
t
8
LSB  
t
t
7
5
CS/LD  
LDAC  
SRO  
t
11  
t
9
Hi-Z  
LSB  
2758 TD  
2758fb  
10  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
V
V
Output Ranges  
DD  
DD  
TheLTC2758isadual,current-output,serial-inputprecision  
multiplyingDACwithselectableoutputranges.Rangescan  
either be programmed in software for maximum flexibility  
(each of the DACs can be programmed to any one of six  
output ranges) or hardwired through pin-strapping. Two  
unipolarrangesareavailable(Vto5VandVto1ꢁV), and  
four bipolar ranges ( 2.5V, 5V, 1ꢁV and –2.5V to 7.5V).  
These ranges are obtained when an external precision 5V  
reference is used. The output ranges for other reference  
voltagesareeasytocalculatebyobservingthateachrange  
is a multiple of the external reference voltage. The ranges  
can then be expressed: ꢁ to 1×, ꢁ to 2×, ꢁ.5×, 1×, 2×,  
and –ꢁ.5× to 1.5×.  
LTC2758  
+
DAC A  
DAC B  
10V  
M-SPAN  
S2  
S1  
+
10V  
S0  
CS/LD SDI SCK  
2754 F01  
Figure 1. Using M-SPAN to Configure the LTC2758  
for Single-Span Operation ( 10V Range Shown)  
capabilitytosimultaneouslyupdatethespan(outputrange)  
and code, which allows smooth voltage transitions when  
changing output ranges. It also permits the simultaneous  
updating of multiple DACs.  
Manual Span Configuration  
Multiple output ranges are not needed in some applica-  
tions. To configure the LTC2758 to operate in a single span  
without additional operational overhead, tie the M-ꢀPAN  
Each set of double-buffered registers comprises an Input  
register and a DAC register.  
pin directly to V . The active output range for all DACs is  
DD  
then set via hardware pin strapping of pins ꢀ2, ꢀ1 and ꢀꢁ  
(rather than through the ꢀPI port); and Write and Update  
commands have no effect on the active output span. ꢀee  
Figure 1 and Table 3.  
Input register: The Write operation shifts data from the  
ꢀDI pin into a chosen Input register. The Input registers  
are holding buffers; Write operations do not affect the  
DAC outputs.  
Tie the M-ꢀPAN pin to ground for normal ꢀoftꢀpan  
operation.  
DAC register: The Update operation copies the contents  
of an Input register to its associated DAC register. The  
contents of a DAC register directly updates the associated  
DAC output voltage or output range.  
Input and DAC Registers  
The LTC2758 has 5 internal registers for each DAC, a total  
of 1ꢁ registers (see Slock Diagram). Each DAC channel  
has two sets of double-buffered registers, one set for  
the code data, and one for the output range of the DAC,  
plus one readback register. Double buffering provides the  
Note that updates always include both Code and ꢀpan  
register sets; but the values held in the DAC registers will  
only change if the associated Input register values have  
previously been altered via a Write operation.  
2758fb  
11  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
Serial Interface  
data occupies the first 18 bits of the 24-bit field; and the  
span bits are the last four bits of the second data byte  
when checking the output range. In both cases, all other  
bits in the 24-bit data field are filled by zeros. Figure 2  
shows the input and readback sequences.  
When the CS/LD pin is taken low, the data on the ꢀDI pin  
is loaded into the shift register on the rising edge of the  
clock (ꢀCK pin). The loading sequence required for the  
LTC2758 is one byte consisting of a 4-bit command word  
(C3 C2 C1 Cꢁ) and a 4-bit address word (A3 A2 A1 Aꢁ),  
then three bytes (24 bits) of data.  
The data outputted by ꢀRO is always in the same position  
and sequence as the input data. Note, however, that this  
means that the ꢀRO data shifts out one-half clock cycle  
earlier than the corresponding bit shifting in on ꢀDI. For  
example, code bit D9, which is shifted in to ꢀDI on the  
rising edge of ꢀCK clock 17, is clocked out of ꢀRO on the  
falling edge of clock 16. This allows D9 to be clocked to an  
external microprocessor on the rising edge of clock 17.  
When writing a code, the code data is left (MꢀS) justified;  
so that the 24-bit data field consists of 18 code bits fol-  
lowed by 6 don’t-care bits.  
When writing an output range, the span data should oc-  
cupy the last 4 bits of the second data byte, ordered ꢀ3  
through ꢀꢁ. Figure 2 shows the ꢀDI input word syntax  
for writing.  
For Read commands, the requested data is shifted out  
of ꢀRO in the 3-byte (24-bit) data field immediately after  
the command/address byte. There is no instruction-cycle  
latencyforReadcommands;thedatashiftsoutinthesame  
instruction cycle in which it was requested.  
When CS/LD is low, the ꢀRO pin (ꢀerial Readback Output)  
is an active output. The readback data begins after the  
command (C3-Cꢁ) and address (A3-Aꢁ) words have been  
shifted in to ꢀDI. ꢀRO outputs a logic low from the falling  
edge of CS/LD until the Readback data begins.  
For non-read (i.e., Write and/or Update) commands, ꢀRO  
automatically shifts out the contents of the buffer that  
was acted upon in the preceding command. This “rolling  
readback” default mode of operation can dramatically re-  
duce the number of instruction cycles needed, since most  
commands can be verified during subsequent commands  
with no additional overhead. A conceptual flow diagram  
is shown in Figure 3. Table 1 shows, for each anteced-  
ent command, which register (‘readback pointer’) will be  
copiedintotheReadbackregisterandoutputtedfromRO  
during the following instruction cycle.  
When CS/LD is high, the ꢀRO pin presents a high imped-  
ance (three-state) output.  
LDAC is an asynchronous update pin. When LDAC is  
taken low, all DACs are updated with code and span data  
(data in the Input buffers is copied into the DAC buffers).  
CS/LD must be high during this operation; otherwise  
LDAC is locked out and will have no effect. The use of  
LDAC is functionally identical to the “Update All DACs”  
serial input command.  
Span Readback in Manual Span Configuration  
Thecodesforthecommand(C3-Cꢁ)aredefinedinTable1;  
Table 2 defines the codes for the address (A3-Aꢁ).  
If a ꢀpan DAC register is chosen for readback, ꢀRO re-  
sponds by outputting the actual output span; this is true  
whethertheLTC2758isconfiguredforoftꢀpan(M-ꢀPAN  
Readback  
tied to GND) or manual span (M-ꢀPAN tied to V ).  
In addition to the Code and ꢀpan register sets, each DAC  
hasoneReadbackregisterassociatedwithit.Everyinstruc-  
tion cycle, the contents of one of the on-chip registers is  
copied into a Readback register and serially shifted out  
through the ꢀRO pin.  
DD  
In ꢀoftꢀpan configuration, ꢀRO outputs the span code  
from the ꢀpan DAC register (programmed through the  
ꢀPI port). In manual span configuration, the active output  
range is controlled by pins ꢀ2, ꢀ1 and ꢀꢁ, so ꢀRO outputs  
the logic values of these pins. The span code bits ꢀ2, ꢀ1  
and ꢀꢁ always appear in the same order and positions in  
the ꢀRO output sequence; see Figure 2.  
Readback data always appears in the 24-bit data field,  
starting on the falling ꢀCK edge immediately after the last  
addressbitisshiftedinonDI. Whenreadingacode, code  
2758fb  
12  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
Table 1. Command Codes  
CODE  
READBACK POINTER–  
CURRENT INPUT WORD W  
READBACK POINTER–  
NEXT INPUT WORD W  
C3  
C2  
C1  
C0  
COMMAND  
0
+1  
1
Write ꢀpan DAC n  
Write Code DAC n  
Update DAC n  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
Input ꢀpan Register DAC n  
Input Code Register DAC n  
DAC ꢀpan Register DAC n  
DAC Code Register DAC n  
DAC ꢀpan Register DAC n  
1
1
1
1
1
Update All DACs  
1
1
Write ꢀpan DAC n  
Update DAC n  
1
1
1
1
1
1
Write Code DAC n  
Update DAC n  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
DAC Code Register DAC n  
DAC ꢀpan Register DAC n  
DAC Code Register DAC n  
Write ꢀpan DAC n  
Update All DACs  
Write Code DAC n  
Update All DACs  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Read Input ꢀpan Register DAC n  
Read Input Code Register DAC n  
Read DAC ꢀpan Register DAC n  
Read DAC Code Register DAC n  
No Operation  
Input ꢀpan Register DAC n  
Input Code Register DAC n  
DAC ꢀpan Register DAC n  
DAC Code Register DAC n  
ꢀet by Previous Command  
DAC Code Register DAC n  
DAC ꢀpan Register DAC A  
DAC ꢀpan Register DAC A  
ꢀystem Clear  
Initial Power-Up or Power Interrupt  
Codes not shown are reserved–do not use  
Table 2. Address Codes  
Table 3. Span Codes  
n
DAC A  
A3  
A2  
A1  
A0  
×
S3 S2 S1 S0 SPAN  
×
×
×
×
×
×
1
1
1
1
1
1
1
Unipolar ꢁV to 5V  
Unipolar ꢁV to 1ꢁV  
Sipolar –5V to 5V  
×
1
DAC S  
×
1
1
1
All DACs (Note 1)  
Sipolar –1ꢁV to 1ꢁV  
Sipolar –2.5V to 2.5V  
Sipolar –2.5V to 7.5V  
Codes not shown are reserved–do not use.  
× = Don’t Care.  
Note 1. If readback is taken using the All DACs address, the LTC2758  
defaults to DAC A.  
Codes not shown are reserved–do not use.  
× = Don’t Care.  
2758fb  
13  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
Examples  
2. Load DAC S with 2.5V range with its output at zero  
volts. Use readback to check Input register contents  
before updating the DAC output (i.e., before copying  
Input register contents into DAC registers). Note that  
after power-on, the code in Input registers is zero.  
1. Load DAC A with ꢁV to 1ꢁV range, output at zero  
volts; and DAC S with 1ꢁV range, output at zero  
volts. Note the DAC outputs should change at the  
same time.  
a) CS/LD. Clock ꢀDI:  
a) CS/LD. Clock ꢀDI:  
ꢁꢁ11ꢁꢁ1ꢁ 1ꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁXXXXXX  
ꢁꢁ1ꢁ1111 ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁ11 ꢁꢁꢁꢁꢁꢁꢁꢁ  
b) CS/LD↑  
b) CS/LD↑  
Code Input register- DAC S set to mid-scale.  
ꢀpan Input register- Range of DACs set to bipolar 1ꢁV.  
c) CS/LD. Clock ꢀDI:  
c) CS/LD. Clock ꢀDI:  
ꢁꢁ1ꢁꢁꢁ1ꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁ1ꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ  
Data out on ꢀRO:  
ꢁꢁ1ꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁ1 ꢁꢁꢁꢁꢁꢁꢁꢁ  
d) CS/LD↑  
1ꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ  
Verifies Code Input register- DAC S set to mid-scale.  
ꢀpan Input register- Range of DAC A set to unipolar  
ꢁV to 1ꢁV.  
d) CS/LD↑  
e) CS/LD. Clock ꢀDI:  
ꢀpan Input register- Range of DAC S set to Sipolar  
2.5V range.  
ꢁꢁ111111 1ꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁXXXXXX  
f) CS/LD↑  
e) CS/LD. Clock ꢀDI:  
Code Input register- Code of all DACs set to mid-scale.  
1ꢁ1ꢁꢁꢁ1ꢁ XXXXXXXX XXXXXXXX XXXXXXXX  
Data Out on ꢀRO:  
g) CS/LD. Clock ꢀDI:  
ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁ1ꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ  
Verifies ꢀpan Input register- DAC S set to Sipolar  
2.5V Range.  
ꢁꢁ11ꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁꢁꢁꢁꢁꢁꢁ ꢁꢁXXXXXX  
h) CS/LD↑  
Code Input register- Code of DAC A set to zero.  
CS/LD↑  
i) CS/LD. Clock ꢀDI:  
f) CS/LD. Clock ꢀDI:  
ꢁ1ꢁꢁ1111 XXXXXXXX XXXXXXXX XXXXXXXX  
ꢁ1ꢁꢁꢁꢁ1ꢁ XXXXXXXX XXXXXXXX XXXXXXXX  
j) CS/LD↑  
g) CS/LD↑  
Update all DACs for both Code and Range.  
Update DAC S for both Code and Range  
k) Alternatively steps i and j could be replaced with  
h) Alternatively steps f and g could be replaced with  
LDAC  
.
LDAC  
.
2758fb  
14  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
System Offset and Reference Adjustments  
not use voltages divided down from power supplies; ref-  
erence-quality, low-noise inputs are required to maintain  
the best DAC performance.  
Many systems require compensation for overall system  
offset. This may be an order of magnitude or more greater  
than the offset of the LTC2758, which is so low as to be  
dominated by external output amplifier errors even when  
using the most precise op amps.  
The V  
pins have an input impedance of 1.28MΩ.  
OꢀADJX  
These pins should be driven with a Thevenin-equivalent  
impedance of 1ꢁk or less to preserve the settling perfor-  
mance of the LTC2758. They should be shorted to GND  
if not used.  
Theoffset adjustpinsV  
canbe used to null unipolar  
OꢀADJX  
offset or bipolar zero error. The offset change expressed  
in LꢀS is the same for any output range:  
TheGE  
pinshaveaninputimpedanceof2.56MΩ, and  
ADJX  
are intended for use with fixed reference voltages only.  
They should be shorted to GND if not used.  
5V  
V
REF  
Power-On Reset and Clear  
A 5V control voltage applied to V  
produces V  
=
Oꢀ  
OꢀADJX  
–2ꢁ48 LꢀS in any output range, assuming a 5V reference  
voltage at R  
When power is first applied to the LTC2758, all DACs  
power-up in unipolar 5V mode (ꢀ3 ꢀ2 ꢀ1 ꢀꢁ = ꢁꢁꢁꢁ). All  
internal DAC registers are reset to ꢁ and the DAC outputs  
initialize to zero volts.  
.
INX  
In voltage terms, the offset delta is attenuated by a factor  
of 32, 64 or 128, depending on the output range. (These  
functions hold regardless of reference voltage.)  
If the part is configured for manual span operation, all  
DACs will be set into the pin-strapped range at the first  
Update command. This allows the user to simultaneously  
update span and code for a smooth voltage transition into  
the chosen output range.  
1
V = –( / )V  
[ꢁV to 5V, 2.5V spansꢂ  
Oꢀ  
128 OꢀADJX  
1
V = –( / )V  
[ꢁV to 1ꢁV, 5V, 2.5V to  
7.5V spansꢂ  
Oꢀ  
64 OꢀADJX  
1
V = –( / )V  
[ 1ꢁV spanꢂ  
Oꢀ  
32 OꢀADJX  
When the CLR pin is taken low, a system clear results.  
The DAC buffers are reset to ꢁ and the DAC outputs are  
all reset to zero volts. The Input buffers are left intact, so  
that any subsequent Update command (including the use  
of LDAC) restores the addressed DACs to their respective  
previous states.  
The gain error adjust pins GE  
can be used to null  
ADJX  
gain error or to compensate for reference errors. The  
gain error change expressed in LꢀS is the same for any  
output range:  
V(GEADJX  
)
GE=  
2ꢁ48  
If CLR is asserted during an instruction, i.e., when CS/LD  
is low, the instruction is aborted. Integrity of the relevant  
Input buffers is not guaranteed under these conditions,  
therefore the contents should be checked using readback  
or replaced.  
V(RINX  
)
The gain-error delta is non-inverting for positive reference  
voltages.  
Note that this pin compensates the gain by altering the  
inverted reference voltage V(REFX). In voltage terms, the  
V(REFX) delta is inverted and attenuated by a factor of  
128.  
The RFLAG pin is used as a flag to notify the system of a  
loss of data integrity. The RFLAG output is asserted low  
at power-up, system clear, or if the supply V dips below  
DD  
approximately2V;andstaysasserteduntilanyvalidUpdate  
1
V(REFX) = –( / )GE  
128  
ADJX  
command is executed.  
The nominal input range of these pins is 5V; other volt-  
ages of up to 15V may be used if needed. However, do  
2758fb  
15  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
2758fb  
16  
For more information www.linear.com/LTC2758  
LTC2758  
operaTion  
WRITE CODE  
DAC A  
WRITE CODE  
DAC B  
WRITE SPAN  
DAC A  
WRITE SPAN  
DAC B  
UPDATE  
ALL DACs  
...  
SDI  
READ  
CODE INPUT  
REGISTER DAC A  
READ  
CODE INPUT  
REGISTER DAC B  
READ  
SPAN INPUT  
REGISTER DAC A  
READ  
SPAN INPUT  
REGISTER DAC B  
READ  
...  
SRO  
CODE DAC  
REGISTER DAC A  
2758 F03  
Figure 3. Rolling Readback  
2758fb  
17  
For more information www.linear.com/LTC2758  
LTC2758  
applicaTions inForMaTion  
Op Amp Selection  
Table 4. Coefficients for the Equations of Table 5  
OUTPUT RANGE  
A1  
1.1  
2.2  
2
A2  
2
A3  
1
A4  
A5  
1
Secause of the extremely high accuracy of the 18-bit  
LTC2758, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
INL and DNL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
5V  
1ꢁV  
3
ꢁ.5  
1
1.5  
1.5  
2.5  
1
5V  
2
1
1
1ꢁV  
4
4
ꢁ.83  
1.4  
ꢁ.7  
2.5V  
1
1
1
–2.5V to 7.5V  
1.9  
3
ꢁ.5  
1.5  
Tables 4 and 5 contain equations for evaluating the ef-  
fects of op amp parameters on the LTC2758’s accuracy  
when programmed in a unipolar or bipolar output range.  
These are the changes the op amp can cause to the INL,  
DNL, unipolar offset, unipolar gain error, bipolar zero and  
bipolar gain error.  
Table 6 contains a partial list of LTC precision op amps  
recommended for use with the LTC2758. The easy-to-use  
designequationssimplifytheselectionofopampstomeet  
the system’s specified error budget. ꢀelect the amplifier  
from Table 6 and insert the specified op amp parameters  
in Table 5. Add up all the errors for each category to de-  
termine the effect the op amp has on the accuracy of the  
part.Arithmeticsummationgivesan(unlikely)worst-case  
effect. A root-sum-square (RMꢀ) summation produces a  
more realistic estimate.  
Table 5. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges (Circuit of Page 1). Subscript 1  
Refers to Output Amp, Subscript 2 Refers to Reference Inꢀerting Amp.  
UNIPOLAR  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
5V  
DNL (LSB)  
5V  
OFFSET (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mV)  
(nA)  
V
12.1•  
V
3.1•  
A3V  
52.4•  
A3V  
78.6•  
V
52.4•  
V
I
52.4•  
(V  
(V  
(V  
(V  
(V  
(V  
)
)
)
)
)
)
)
)
OS1  
OS1  
OS1  
OS1  
OS1  
OS1  
OS1  
REF  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
I
I
B1  
0.0012•  
I
0.00032•  
I
0.524•  
I
0.524•  
I
0.0072•  
0.0072•  
(V  
(V  
B1  
B1  
B1  
B1  
B1  
B1  
)
(V  
(V  
(V  
(V  
REF  
)
)
)
66  
VOL1  
6
VOL1  
524  
VOL1  
524  
VOL1  
A
A
(V/mV)  
(mV)  
A1•  
A2•  
0
0
0
0
0
A5•  
A5•  
VOL1  
)
)
(A  
0
(A  
)
)
(A  
(A  
5V  
REF  
5V  
REF  
5V  
REF  
V
0
A4V  
52.4•  
V
104.8•  
V
104.8•  
1.048•  
OS2  
OS2  
OS2  
OS2  
(V  
)
(V  
(V  
)
)
5V  
REF  
5V  
REF  
5V  
I
B2  
(nA)  
0
0
0
0
A4I 0.524•  
I
B2  
1.048•  
I
B2  
B2  
(V  
)
)
)
(V  
(V  
REF  
262  
VOL2  
524  
(A  
524  
(A  
(V/mV)  
A4•  
VOL2  
)
(A  
)
)
VOL2  
VOL2  
Table 6. Partial List of LTC Precision Amplifiers Recommended for Use with the LTC2758 with Releꢀant Specifications  
AMPLIFIER SPECIFICATIONS  
VOLTAGE CURRENT  
SLEW  
RATE  
V/µs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
t
POWER  
SETTLING  
V
I
A
VOL  
NOISE  
NOISE  
with LTC2758 DISSIPATION  
OS  
B
AMPLIFIER  
LTC115ꢁ  
LT1ꢁꢁ1  
µV  
1ꢁ  
25  
25  
5ꢁ  
75  
nA  
ꢁ.ꢁ5  
2
V/mV  
56ꢁꢁ  
8ꢁꢁ  
nV/√Hz  
pA/√Hz  
µs  
1ꢁms  
12ꢁ  
12ꢁ  
12ꢁ  
2.1  
mW  
24  
9ꢁ  
1ꢁ  
14  
14  
5
ꢁ.ꢁꢁ18  
ꢁ.12  
3
2.5  
ꢁ.8  
1
ꢁ.25  
ꢁ.2  
ꢁ.2  
22  
46  
LT1ꢁ12  
ꢁ.1  
ꢁ.35  
1ꢁ  
2ꢁꢁꢁ  
25ꢁꢁ  
5ꢁꢁꢁ  
ꢁ.ꢁ2  
11.4  
11  
LT1ꢁ97  
ꢁ.ꢁꢁ8  
ꢁ.6  
ꢁ.7  
9ꢁ  
LT1468  
117  
2758fb  
18  
For more information www.linear.com/LTC2758  
LTC2758  
applicaTions inForMaTion  
Op amp offset contributes mostly to DAC output offset  
and gain error, and has minimal effect on INL and DNL.  
For example, consider the LTC2758 in unipolar 5V output  
range. (Note that for this example, the LꢀS size is 19µV.)  
An op amp offset of 35µV will cause 1.8LꢀS of output  
offset, and 1.8LꢀS of gain error; but ꢁ.4LꢀS of INL, and  
just ꢁ.1LꢀS of DNL.  
and a high gain-bandwidth product (3ꢁMHz typ). The high  
speed path consists of an LTC624ꢁHV, which is an 18MHz  
ultralow bias current amplifier, followed by an LT136ꢁ, a  
5ꢁMHz fast-slewing amplifier which provides additional  
gain and the ability to swing to 1ꢁV at the output. Com-  
pensation is taken from the output of the LTC624ꢁHV,  
allowing the use of a much larger compensation capacitor  
than if taken after the gain-of-five stage. An LTC2ꢁ54HV  
While not directly addressed by the simple equations in  
Tables 4 and 5, temperature effects can be handled just as  
easily for unipolar and bipolar applications. First, consult  
auto-zero amplifier senses the voltage at I  
and drives  
OUT1  
the non-inverting input of the LTC624ꢁHV to eliminate the  
offset of the high speed path. The 1ꢁꢁ:1 attenuator and  
input filter reduce the low frequency noise in this stage  
while maintaining low DC offset.  
an op amp’s data sheet to find the worst-case V and I  
Oꢀ  
S
over temperature. Then, plug these numbers in the V  
Oꢀ  
and I equations from Table 5 and calculate the tempera-  
S
ture-induced effects.  
Precision Voltage Reference Considerations  
For applications where fast settling time is important, Ap-  
plication Note 12ꢁ, 1ppm ꢀettling Time Measurement for  
a Monolithic 18-Sit DAC, offers a thorough discussion of  
18-bit DAC settling time and op amp selection.  
Much in the same way selecting an operational amplifier  
for use with the LTC2758 is critical to the performance of  
the system, selecting a precision voltage reference also  
requires due diligence. The output voltage of the LTC2758  
is directly affected by the voltage reference; thus, any  
voltage reference error will appear as a DAC output volt-  
age error.  
Recommendations  
For DC or low-frequency applications, the LTC115ꢁ is the  
simplest 18-bit accurate output amplifier. An auto-zero  
amp, its exceptionally low offset (1ꢁµV max) and offset  
drift (ꢁ.ꢁ1µV/°C) make nulling unnecessary. For swings  
above 8V, use an LT1ꢁ1ꢁ buffer to boost the load current  
capability. Thesettlingofauto-zeroampsisaspecialcase;  
seeApplicationNote12ꢁ,1ppmettlingTimeMeasurement  
for a Monolithic 18-Sit DAC, Appendix E, for details.  
There are three primary error sources to consider  
when selecting a precision voltage reference for 18-bit  
applications:outputvoltageinitialtolerance,outputvoltage  
temperature coefficient and output voltage noise.  
Initial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
( ꢁ.ꢁ50),minimizesthegainerrorcausedbythereference;  
however, a calibration sequence that corrects for system  
zero- and full-scale error is always recommended.  
TheLT1ꢁ12andLT1ꢁꢁ1aregoodintermediateoutput-amp  
solutionsthatachievemoderatespeedandgoodaccuracy.  
They are also excellent choices for the reference inverting  
amplifier in fixed-reference applications.  
Areference’soutputvoltagetemperaturecoefficientaffects  
not only the full-scale error, but can also affect the circuit’s  
INL and DNL performance. If a reference is chosen with  
a loose output voltage temperature coefficient, then the  
DAC output voltage along its transfer characteristic will  
be very dependent on ambient conditions. Minimizing  
the error due to reference temperature coefficient can be  
achieved by choosing a precision reference with a low  
output voltage temperature coefficient and/or tightly con-  
trolling the ambient temperature of the circuit to minimize  
For high speed applications, the LTC1468 settles in 2.1µs.  
Note that the 75µV max offset will degrade the INL at the  
DAC output by up to ꢁ.9LꢀS. For high-speed applications  
demanding higher precision, the amplifier offset can be  
nulled with a digital potentiometer.  
TheTypicalApplicationonthelastpageshowsacomposite  
output amplifier that achieves fast settling (8µs) and very  
low offset (3µV max) without offset nulling. This circuit  
offers high open-loop gain (1ꢁꢁꢁV/mV min), low input  
bias current (ꢁ.15nA max), fast slew rate (25V/µs min),  
temperature gradients.  
2758fb  
19  
For more information www.linear.com/LTC2758  
LTC2758  
applicaTions inForMaTion  
Table 7. Partial List of LTC Precision References Recommended  
Grounding  
for Use with the LTC2758 with Releꢀant Specifications  
As with any high-resolution converter, clean grounding  
is important. A low-impedance analog ground plane is  
necessary, as are star grounding techniques. Keep the  
board layer used for star ground continuous to minimize  
ground resistances; that is, use the star-ground concept  
INITIAL  
TEMPERATURE 0.1Hz to 10Hz  
REFERENCE  
TOLERANCE  
DRIFT  
NOISE  
LT1ꢁ19A-5,  
LT1ꢁ19A-1ꢁ  
ꢁ.ꢁ50 max  
ꢁ.ꢁ50 max  
ꢁ.ꢁ750 max  
5ppm/°C max  
12µV  
P-P  
LT1236A-5,  
LT1236A-1ꢁ  
5ppm/°C max  
1ꢁppm/°C max  
3µV  
P-P  
without using separate star traces. The I  
pins are  
OUT2  
LT146ꢁA-5,  
LT146ꢁA-1ꢁ  
2ꢁµV  
12µV  
P-P  
of particular concern; INL will be degraded by the code-  
dependent currents carried by the I and I  
OUT2XF  
OUT2Xꢀ  
LT179ꢁA-2.5  
LTC6652A-5  
ꢁ.ꢁ50 max  
ꢁ.ꢁ50 max  
ꢁ.ꢁ250 max  
1ꢁppm/°C max  
5ppm/°C max  
2ppm/°C max  
P-P  
pins if voltage drops to ground are allowed to develop.  
The best strategy here is to tie the pins to the star ground  
planebymultipleviaslocateddirectlyunderneaththepart.  
Alternatively, the pins may be routed to the star ground  
point if necessary; join the force and sense pins together  
at the part and route one trace for each channel of no more  
than 3ꢁ squares of 1oz copper.  
2.8ppm  
P-P  
LTC6655A-2.5  
LTC6655A-5  
ꢁ.25ppm  
P-P  
As precision DAC applications move to 18-bit perfor-  
mance, reference output voltage noise may contribute a  
dominantshareofthesystem’snoiseoor.Thisinturncan  
degrade system dynamic range and signal-to-noise ratio.  
Care should be exercised in selecting a voltage reference  
with as low an output noise voltage as practical for the  
system resolution desired. Precision voltage references  
like the LT1236 or LTC6655 produce low output noise in  
the ꢁ.1Hz to 1ꢁHz region, well below the 18-bit LꢀS level  
in 5V or 1ꢁV full-scale systems. However, as the circuit  
bandwidths increase, filtering the output of the reference  
may be required to minimize output noise.  
In the rare case in which neither of these alternatives is  
practicable, a force/sense amplifier should be used as a  
ground buffer (see Figure 4). Note, however, that the volt-  
age offset of the ground buffer amp directly contributes to  
the effects on accuracy specified in Table 5 under ‘V ’.  
Oꢀ1  
The combined effects of the offsets can be calculated by  
substituting the total offset from I  
Oꢀ1  
to I  
for  
OUT1X  
OUT2Xꢀ  
V
in the equations.  
2758fb  
20  
For more information www.linear.com/LTC2758  
LTC2758  
applicaTions inForMaTion  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
8
8
9
I
OUT2AS  
I
OUT2AS  
200Ω  
200  
+
2
3
2
6
I
9
LT1012  
6
OUT2AF  
1000pF  
LT1468  
I
OUT2AF  
1
2
+ 3  
1
2
ZETEX  
BAT54S  
ZETEX*  
BAT54S  
3
3
*SCHOTTKY BARRIER DIODE  
V
REF  
5V  
R
OFSA  
INA  
R
FBA  
45, 46  
44  
47, 48  
R
15pF  
5, 6  
I
I
OUT1A  
2
3
+ 3  
GE  
ADJA  
4
6
6
V
LT1468  
DAC A  
OUTA  
LT1012  
OUT2A  
8, 9  
43  
+
3 R  
2
COMA  
V
OSADJA  
150pF  
REFA  
1, 2  
+
DAC B  
LTC2758  
2758 F05  
Figure 4. Optional Circuits for Driꢀing IOUT2 from GND with a Force/Sense Amplifier  
2758fb  
21  
For more information www.linear.com/LTC2758  
LTC2758  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2758#packaging for the most recent package drawings.  
LX Package  
48-Lead Plastic LQFP (7mm × 7mm)  
(Reference LTC DWG # 05-08-1760 Rev A)  
7.15 – 7.25  
5.50 REF  
9.00 BSC  
7.00 BSC  
48  
48  
SEE NOTE: 4  
1
2
1
2
0.50 BSC  
9.00 BSC  
7.00 BSC  
5.50 REF  
7.15 – 7.25  
0.20 – 0.30  
A
A
PACKAGE OUTLINE  
C0.30 – 0.50  
1.30 MIN  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
1.60  
1.35 – 1.45 MAX  
11° – 13°  
R0.08 – 0.20  
GAUGE PLANE  
0.25  
0° – 7°  
11° – 13°  
1.00 REF  
0.50  
BSC  
0.09 – 0.20  
0.17 – 0.27  
0.05 – 0.15  
0.45 – 0.75  
SECTION A – A  
e 3  
NOTE:  
1. PACKAGE DIMENSIONS CONFORM TO JEDEC #MS-026 PACKAGE OUTLINE  
2. DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT  
4. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER  
5. DRAWING IS NOT TO SCALE  
COMPONENT  
PIN “A1”  
LX48 LQFP 0113 REV A  
TRAY PIN 1  
BEVEL  
PACKAGE IN TRAY LOADING ORIENTATION  
2758fb  
22  
For more information www.linear.com/LTC2758  
LTC2758  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
ꢁ9/13 Fixed R  
(Pin 3) description  
8
COMA  
Updated Typical Application  
24  
19  
S
11/16 Updated amplifier part numbers  
2758fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2758  
Typical applicaTion  
Composite Amplifier Circuit Achieꢀes Both Fast Settling and 18-Bit Precision with No Adjustments  
15V  
IN  
OUT  
LTC6655-5  
LT1012  
100pF  
+
0.1µF  
10µF  
–15V  
47, 48 5, 6 37, 38  
34  
31, 32  
3
1, 2, 35, 36  
REFA, REFB  
R
R
R
R
R
R
COMA  
OFSA  
INA OFSB  
COMB  
INB  
45, 46  
R
FBA  
V
OUTA  
16  
V
DD  
1k  
44  
I
OUT1A  
10k  
10k  
5V  
26  
19  
LDAC  
CLR  
100pF  
10k  
10k  
5V  
15V  
+
LTC2054HV  
LT1360  
1k  
+
+
1µF  
LTC6240HV  
–5V  
10Ω  
8, 9  
5pF  
I
OUT2A  
–15V  
–5V  
1µF  
43  
4
V
OSADJA  
4.02k  
GE  
ADJA  
42  
33  
22  
25  
24  
23  
1k  
LTC2758  
V
OSADJB  
39, 40  
GE  
ADJB  
R
V
OUTB  
FBB  
1k  
41  
M-SPAN  
S2  
I
I
OUT1B  
5V  
100pF  
10k  
10k  
5V  
15V  
+
LTC2054HV  
LT1360  
1k  
+
+
S1  
1µF  
LTC6240HV  
S0  
–5V  
10Ω  
28, 29  
5pF  
OUT2B  
–15V  
–5V  
1µF  
4.02k  
7, 10, 15, 17,  
18, 27, 30  
GND  
CS/LD SDI SCK SRO  
1k  
2758 TA02  
11  
12  
13  
14  
SPI BUS  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC2757  
LTC1592  
LTC2752  
LTC2754-12  
LTC27ꢁ4-12  
References  
LTC6655  
LT1236  
ꢀingle Parallel 18-Sit I  
ꢀoftꢀpan DAC  
1LꢀS INL/DNL, ꢀoftware-ꢀelectable Ranges, 7mm × 7mm LQFP-48 Package  
1LꢀS INL, DNL, ꢀoftware-ꢀelectable Ranges, 16-Lead ꢀꢀOP Package  
1LꢀS INL/DNL, ꢀoftware-ꢀelectable Ranges, 7mm × 7mm LQFP-48 Package  
1LꢀS INL/DNL, ꢀoftware-ꢀelectable Ranges, 7mm × 8mm QFN-52 Package  
1LꢀS INL/DNL, ꢀoftware-ꢀelectable Ranges, Integrated Amplifiers  
OUT  
ꢀingle ꢀerial 16-/14-/12-Sit I  
ꢀoftꢀpan DACs  
OUT  
Dual ꢀerial 16-Sit I  
ꢀoftꢀpan DAC  
OUT  
Quad ꢀerial 16-/12-Sit I  
ꢀoftꢀpan DACs  
OUT  
Quad ꢀerial 16-/14-/12-Sit V  
ꢀoftꢀpan DACs  
OUT  
Low Drift Precision Suffered Reference  
Precision Reference  
ꢁ.ꢁ250 Max Tolerance, 2ppm/°C Max, ꢁ.25ppm ꢁ.1Hz to 1ꢁHz Noise  
P-P  
ꢁ.ꢁ50 Max Tolerance, 5ppm/°C Max, 3µV ꢁ.1Hz to 1ꢁHz Noise  
P-P  
LT146ꢁ  
Micropower Precision ꢀeries Reference  
Micropower Low Dropout Reference  
ꢁ.ꢁ750 Max Tolerance, 1ꢁppm/°C Max, 2ꢁµV ꢁ.1Hz to 1ꢁHz Noise  
P-P  
LT179ꢁ  
ꢁ.ꢁ50 Max Tolerance, 1ꢁppm/°C Max, 12µV ꢁ.1Hz to 1ꢁHz Noise  
P-P  
LTC6652  
Amplifiers  
LTC115ꢁ  
LT1ꢁ12  
Precision Low Drift Low Noise Suffered Reference ꢁ.ꢁ50 Max Tolerance, 5ppm/°C Max, 2.1ppm ꢁ.1Hz to 1ꢁHz Noise  
P-P  
Zero-Drift Op Amp with Internal Capacitors  
Precision Op Amp  
1ꢁµV Max Offset, 16V High Voltage Operation, 1.8µV Noise  
P-P  
25µV Max Offset, 1ꢁꢁpA Max Input Current, ꢁ.5µV Noise, 38ꢁµA ꢀupply Current  
P-P  
LT1ꢁꢁ1  
Precision Op Amp  
25µV Max Offset, ꢁ.3µV Noise, High Output Drive  
P-P  
LT1468  
ꢀingle 16-Sit Accurate Op Amp  
9ꢁꢁns ꢀettling, 9ꢁMHz GSW, 22V/μs ꢀlew Rate, 75µV Max Offset  
2758fb  
LT 1116 REV B • PRINTED IN USA  
LinearTechnology Corporation  
163ꢁ McCarthy Slvd., Milpitas, CA 95ꢁ35-7417  
24  
(4ꢁ8)432-19ꢁꢁ FAX: (4ꢁ8) 434-ꢁ5ꢁ7 www.linear.com/LTC2758  
LINEAR TECHNOLOGY CORPORATION 2011  

相关型号:

LTC2754ACUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754ACUKG-16#PBF

LTC2754-12 - Quad 12-/16-Bit SoftSpan IOUT DACs; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2754ACUKG-16PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754ACUKG-16TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754AIUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754AIUKG-16#PBF

LTC2754-12 - Quad 12-/16-Bit SoftSpan IOUT DACs; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2754AIUKG-16PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754AIUKG-16TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BCUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BCUKG-16PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BCUKG-16TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BIUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear