LTC2871CUHFPBF

更新时间:2024-09-18 12:01:23
品牌:Linear
描述:RS232/RS485 Multiprotocol Transceivers with Integrated Termination

LTC2871CUHFPBF 概述

RS232/RS485 Multiprotocol Transceivers with Integrated Termination RS232 / RS485多协议收发器,集成终端

LTC2871CUHFPBF 数据手册

通过下载LTC2871CUHFPBF数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
LTC2870/LTC2871  
RS232/RS485 Multiprotocol  
Transceivers with  
Integrated Termination  
DESCRIPTION  
FEATURES  
The LTC®2870/LTC2871 are robust pin-configurable mul-  
tiprotocol transceivers, supporting RS232, RS485, and  
RS422 protocols, operating on a single 3V to 5.5V supply.  
TheLTC2870canbeconfiguredastwoRS232single-ended  
transceiversoroneRS485differentialtransceiveronshared  
I/O lines. The LTC2871 offers independent control of two  
RS232 transceivers and one RS485 transceiver, each on  
dedicated I/O lines.  
n
One RS485 and Two RS232 Transceivers  
n
3V to 5.5V Supply Voltage  
n
20Mbps RS485 and 500kbps RS232  
n
Automatic Selection of Integrated RS485 (120Ω)  
and RS232 (5kΩ)Termination Resistors  
n
Half-/Full-Duplex RS485 Switching  
n
High ESD: 2ꢀkV (TC2870), 1ꢀkV (TC2871)  
n
Logic Loopback Mode  
1.7V to 5.5V Logic Interface  
Supports Up to 256 RS485 Nodes  
n
Pin-controlled integrated termination resistors allow  
for easy interface reconfiguration, eliminating external  
resistors and control relays. Half-duplex switches allow  
four-wire and two-wire RS485 configurations. Loopback  
mode steers the driver inputs to the receiver outputs for  
diagnostic self-test.The RS485 receivers support up to  
256 nodes per bus, and feature full failsafe operation for  
floating, shorted or terminated inputs.  
n
n
RS485 Receiver Failsafe Eliminates UART Lockup  
n
Available in 28-Pin 4mm × 5mm QFN and  
TSSOP (LTC2870), and 38-Pin 5mm × 7mm QFN  
and TSSOP (LTC2871)  
APPLICATIONS  
n
Flexible RS232/RS485/RS422 Interface  
An integrated DC/DC boost converter uses a small induc-  
tor and one capacitor, eliminating the need for multiple  
supplies for driving RS232 levels.  
n
Software Selectable Multiprotocol Interface Ports  
n
Point-of-Sale Terminals  
n
Cable Repeaters  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Protocol Translators  
TYPICAL APPLICATIONS  
Protocol Switching with  
Simultaneous Protocols and  
RS485 Termination Switching  
RS485 Duplex Switching  
Automatic Termination Selection  
1.7V TO V  
1.7V TO V  
1.7V TO V  
3V TO 5.5V  
3V TO 5.5V  
3V TO 5.5V  
CC  
CC  
CC  
LTC2870  
LTC2871  
LTC2870,  
LTC2871  
V
V
V
V
V
V
CC  
L
CC  
L
CC  
L
485/232  
TE485  
RS485  
RS232 RS485  
TERMINATION  
OFF ON  
Y
DY  
120Ω  
120Ω  
Y
Z
Y
Z
DI  
DI,  
DY  
Z
A
DZ  
RA  
RO  
RS485  
FULL HALF  
DUPLEX  
B
H/F  
DIN1  
DOUT1  
RIN1  
A
B
A
B
ROUT1  
DIN2  
RO,  
RB  
DOUT2  
RIN2  
RB  
ROUT2  
28701 TA01  
28701f  
1
LTC2870/LTC2871  
(Notes 1 and 2)  
ABSOLUTE MAXIMUM RATINGS  
Input Supplies  
FEN, RA, RB, RO, ROUT1, ROUT2...–0.3V to (V + 0.3V)  
L
Differential Enabled Terminator Voltage  
V , V ..................................................... –0.3V to 7V  
CC  
L
Generated Supplies  
................................................V – 0.3V to 7.5V  
(A-B or Y-Z) .......................................................... 6V  
Operating Temperature  
V
DD  
CC  
V .........................................................0.3V to –7.5V  
LTC2870C/LTC2871C............................... 0°C to 70°C  
LTC2870I/LTC2871I .............................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
EE  
DD  
V
– V ..............................................................15V  
EE  
SW........................................... –0.3V to (V + 0.3V)  
CAP............................................. 0.3V to (V – 0.3V)  
DD  
EE  
A, B, Y, Z, RIN1, RIN2, DOUT1, DOUT2 ........15V to 15V  
DI, DZ, DY, RXEN, DXEN, LB, H/F, TE485, RX485,  
DX485, RX232, DX232, DIN1, DIN2,  
FE package........................................................300°C  
485/232, CH2........................................... –0.3V to 7V  
PIN CONFIGURATION  
LTC2870  
LTC2870  
TOP VIEW  
TOP VIEW  
1
2
V
V
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
LB  
H/F  
L
CC  
3
GND  
A
TE485  
28 27 26 25 24 23  
4
V
EE  
V
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
A
B
V
Y
EE  
5
B
RA  
RB  
RA  
RB  
6
V
CC  
CC  
7
Y
485/232  
RXEN  
DXEN  
DY  
485/232  
RXEN  
DXEN  
DY  
29  
29  
EE  
V
8
GND  
Z
EE  
V
GND  
Z
9
10  
11  
12  
13  
14  
V
V
V
CC  
CC  
DD  
V
DZ  
DZ  
DD  
9
10 11 12 13 14  
UFD PACKAGE  
SW  
FEN  
GND  
GND  
CAP  
V
EE  
28-LEAD (4mm s 5mm) PLASTIC QFN  
FE PACKAGE  
28-LEAD PLASTIC TSSOP  
T
= 125°C, θ = 43°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 29) IS V  
,
EE  
T
= 125°C, θ = 25°C/W  
JA  
JMAX  
MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 29) IS V  
MUST BE SOLDERED TO PCB  
,
EE  
28701f  
2
LTC2870/LTC2871  
PIN CONFIGURATIONS  
LTC2871  
LTC2871  
TOP VIEW  
TOP VIEW  
1
2
RO  
V
38  
27  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
L
LB  
H/F  
CC  
3
GND  
RIN1  
RIN2  
A
38 37 36 35 34 33 32  
4
TE485  
V
1
2
3
4
5
6
7
8
9
31 RIN1  
30 RIN2  
5
EE  
V
EE  
ROUT1  
ROUT2  
CH2  
6
ROUT1  
ROUT2  
CH2  
A
B
V
Y
29  
28  
27  
26  
7
B
8
V
CC  
RX485  
DX485  
DI  
CC  
9
Y
RX485  
DX485  
DI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
GND  
Z
39  
EE  
39  
25 GND  
24  
V
V
EE  
DIN1  
DIN2  
Z
DOUT1  
DOUT2  
DIN1  
23 DOUT1  
22 DOUT2  
DIN2  
DX232 10  
V
DX232  
RX232  
CC  
RX232 11  
21  
20  
V
V
CC  
DD  
V
V
EE  
12  
DD  
V
V
EE  
13 14 15 16 17 18 19  
UHF PACKAGE  
EE  
SW  
FEN  
GND  
CAP  
GND  
V
EE  
38-LEAD (5mm s 7mm) PLASTIC QFN  
FE PACKAGE  
T
= 125°C, θ = 34°C/W  
JMAX  
JA  
38-LEAD PLASTIC SSOP  
EXPOSED PAD (PIN 39) IS V  
,
EE  
T
JMAX  
= 125°C, θ = 29°C/W  
JA  
MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 39) IS V  
,
EE  
MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
ꢁEAD FREE FINISH  
TAPE AND REEꢁ  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2870CFE#PBF  
LTC2870IFE#PBF  
LTC2870CFE#TRPBF  
LTC2870IFE#TRPBF  
LTC2870FE  
LTC2870FE  
28-Lead Plastic TSSOP  
28-Lead Plastic TSSOP  
0°C to 70°C  
–40°C to 85°C  
LTC2870CUFD#PBF  
LTC2870IUFD#PBF  
LTC2870CUFD#TRPBF  
LTC2870IUFD#TRPBF  
2870  
2870  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
0°C to 70°C  
–40°C to 85°C  
LTC2871CFE#PBF  
LTC2871IFE#PBF  
LTC2871CFE#TRPBF  
LTC2871IFE#TRPBF  
LTC2871FE  
LTC2871FE  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
0°C to 70°C  
–40°C to 85°C  
LTC2871CUHF#PBF  
LTC2871IUHF#PBF  
LTC2871CUHF#TRPBF  
LTC2871IUHF#TRPBF  
2871  
2871  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
PRODUCT SELECTION GUIDE  
PART NUMBER  
LTC2870  
CONFIGURABꢁE TRANSCEIVER COMBINATIONS (RS485 + RS232)  
(0 + 0), (1 + 0), (0 + 2)  
PACKAGES  
28-Lead QFN, 28-Lead TSSOP  
38-Lead QFN, 38-Lead TSSOP  
LTC2871  
(0 + 0), (1 + 0), (1 + 1), (1 + 2), (0 + 1), (0 + 2)  
28701f  
3
LTC2870/LTC2871  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = V= 3.3V, TE485 = 0V, B = 0V unless otherwise noted.  
SYMBOꢁ PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage Operating Range  
3
5.5  
V
V
CC  
L
V
Logic Supply Voltage Operating Range  
V ≤ V  
1.7  
V
CC  
L
CC  
l
V
CC  
Supply Current in Shutdown Mode  
RXEN = V , DXEN = TE485 = FEN = 0V, (LTC2870)  
8
60  
μA  
L
DX485 = DX232 = TE485 = FEN = H/F = 0V,  
RX485 = RX232 = V (LTC2871)  
L
V
Supply Current in Transceiver Mode  
485/232 = DXEN = V , RXEN = 0V,  
3.3  
0
mA  
μA  
CC  
L
(Outputs Unloaded) (Note 3)  
DY/DZ = 0V or V (LTC2870)  
L
DX485 = DX232 = V , RX485 = RX232 = 0V,  
L
l
V Supply Current in Transceiver Mode  
(Outputs Unloaded)  
5
6
L
DI/DIN1/DIN2 = 0V or V (LTC2871)  
L
RS485 Driver  
l
l
l
|V  
OD  
|
Differential Output Voltage  
R = ∞, V = 3V (Figure 1)  
1.5  
1.5  
2
V
V
V
L
CC  
R = 27Ω, V = 3V (Figure 1)  
V
L
CC  
CC  
CC  
R = 50Ω, V = 3.13V (Figure 1)  
V
L
CC  
l
l
Δ|V  
|
OD  
Difference in Magnitude of Differential Output R = 27ꢀ, V = 3V (Figure 1)  
0.2  
0.2  
V
V
L
CC  
Voltage for Complementary Output States  
R = 50ꢀ, V = 3.13V (Figure 1)  
L CC  
l
l
V
Common Mode Output Voltage  
R = 27ꢀ or 50ꢀ (Figure 1)  
3
V
V
OC  
L
Δ|V  
|
Difference in Magnitude of Common Mode  
Output Voltage for Complementary Output  
States  
R = 27ꢀ or 50ꢀ (Figure 1)  
L
0.2  
OC  
l
l
I
I
Three-State (High Impedance) Output Current  
Maximum Short-Circuit Current  
V
= 12V or –7V, V = 0V or 3.3V (Figure 2)  
–100  
–250  
125  
250  
μA  
OZD485  
OUT  
CC  
–7V ≤ V  
≤ 12V (Figure 2)  
mA  
OSD485  
OUT  
RS485 Receiver  
l
l
l
I
Input Current  
V
= 12V or –7V, V = 0V or 3.3V (Figure 3)  
–100  
96  
125  
μA  
kΩ  
mV  
IN485  
IN  
CC  
(Note 5)  
R
Input Resistance  
V
IN  
= 12V or –7V, V = 0V or 3.3V (Figure 3)  
125  
IN485  
CC  
(Note 5)  
Differential Input Signal Threshold Voltage  
(A-B)  
–7V ≤ (A or B) ≤ 12V (Note 5)  
200  
0
Input Hysteresis  
B = 0V (Notes 3, 5)  
130  
–50  
25  
mV  
mV  
mV  
V
l
Differential Input Failsafe Threshold Voltage  
Input DC Failsafe Hysteresis  
Output Low Voltage  
–7V ≤ (A or B) ≤ 12V (Note 5)  
B = 0V (Note 5)  
–200  
l
l
l
l
V
V
Output Low, I(RA, RO) = 3mA (Sinking),  
3V ≤ V ≤ 5.5V  
0.4  
0.4  
OL  
L
Output Low, I(RA, RO) = 1mA (Sinking),  
1.7V ≤ V < 3V  
V
V
V
L
Output High Voltage  
Output High, I(RA, RO) = –3mA (Sourcing),  
3V ≤ V ≤ 5.5V  
V – 0.4  
L
OH  
L
Output High, I(RA, RO) = –1mA (Sourcing),  
1.7V ≤ V < 3V  
V – 0.4  
L
L
l
l
Three-State (High Impedance) Output Current 0V ≤ (RA, RO), ≤V , V = 5.5V  
0
5
μA  
L
L
Short-Circuit Output Current  
0V ≤ (RA, RO), ≤V , V = 5.5V  
125  
mA  
L
L
28701f  
4
LTC2870/LTC2871  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = V= 3.3V, TE485 = 0V, B = 0V unless otherwise noted.  
SYMBOꢁ PARAMETER  
Terminating Resistor  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
R
TE485 = V , A – B = 2V, B = 7V, 0V, 10V  
108  
120  
156  
Ω
TERM  
L
(Figure 8) (Note 5)  
RS232 Driver  
l
l
l
V
Output Low Voltage  
Output High Voltage  
R = 3kΩ; V ≤ –5.9V  
–5  
5
–5.7  
6.2  
–7.5  
7.5  
V
V
OLD  
OHD  
L
EE  
V
R = 3kΩ; V ≥ 6.5V  
L
DD  
Three-State (High Impedance) Output Current Y or Z (LTC2870) = 15V  
RS232 Receiver Enabled  
156  
μA  
l
l
DOUT1 or DOUT2 (LTC2871) = 15V  
10  
90  
μA  
Output Short-Circuit Current  
RS232 Receiver  
Input Threshold Voltage  
Driver Output = 0V  
35  
mA  
l
l
l
0.6  
0.1  
1.5  
0.4  
2.5  
1.0  
0.4  
V
V
V
Input Hysteresis  
Output Low Voltage  
I(RA, RB, ROUT1, ROUT2) = 1mA (Sinking)  
1.7V ≤ V ≤ 5.5V  
L
l
l
Output High Voltage  
Input Resistance  
I(RA, RB, ROUT1, ROUT2) = –1mA (Sourcing)  
V – 0.4  
V
L
1.7V ≤ V ≤ 5.5V  
L
–15V ≤ (A, B, RIN1, RIN2) ≤ 15V,  
RS232 Receiver Enabled  
3
5
7
kΩ  
l
l
Three-State (High Impedance) Output Current 0V ≤ (RA, RB, ROUT1, ROUT2) ≤ V  
0
5
μA  
L
Output Short-Circuit Current  
V = 5.5V  
25  
50  
mA  
L
0V ≤ (RA, RB, ROUT1, ROUT2) ≤ V  
L
ꢁogic Inputs  
l
l
Threshold Voltage  
Input Current  
0.4  
0.75 • V  
5
V
L
0
μA  
Power Supply Generator  
V
V
Regulated V Output Voltage  
RS232 Drivers Enabled, Outputs Loaded with  
7
V
V
DD  
EE  
DD  
R = 3kΩ to GND, DIN1/DY = V , DIN2/DZ = 0V  
L
L
Regulated V Output Voltage  
–6.3  
EE  
(Note 3)  
ESD  
LTC2870 Interface Pins (A, B, Y, Z)  
Human Body Model to GND or V , Powered or  
26  
16  
kV  
kV  
CC  
Unpowered (Note 7)  
LTC2871 Interface Pins (A, B, Y, Z, RIN1, RIN2,  
DOUT1, DOUT2)  
All Other Pins  
Human Body Model (Note 7)  
4
kV  
28701f  
5
LTC2870/LTC2871  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = V= 3.3V, TE485 = 0V, B = 0V unless otherwise noted. V≤ VCC  
.
SYMBOꢁ  
RS485 AC Characteristics  
Maximum Data Rate  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
(Note 3)  
20  
Mbps  
ns  
t
t
Driver Propagation Delay  
R
DIFF  
= 54Ω, C = 100pF (Figure 4)  
20  
1
70  
6
PLHD485  
PHLD485  
L
l
Driver Propagation Delay Difference  
R
DIFF  
= 54Ω, C = 100pF (Figure 4)  
ns  
L
|t  
– t  
|
PHLD485  
PLHD485  
l
l
l
t
t
Driver Skew (Y to Z)  
R
R
= 54Ω, C = 100pF (Figure 4)  
1
6
15  
ns  
ns  
ns  
SKEWD485  
DIFF  
L
, t  
Driver Rise or Fall Time  
= 54Ω, C = 100pF (Figure 4)  
L
RD485 FD485  
DIFF  
t
t
, t  
,
Driver Output Enable or Disable Time  
FEN = V , R = 500Ω, C = 50pF (Figure 5)  
120  
ZLD485 ZHD485  
L
L
L
, t  
LZD485 HZD485  
l
l
t
t
, t  
Driver Enable from Shutdown  
Receiver Input to Output  
R = 500Ω, C = 50pF (Figure 5)  
8
μs  
ns  
ZHSD485 ZLSD485  
L
L
, t  
C = 15pF, V = 1.5V, |A – B| = 1.5V  
65  
1
85  
PLHR485 PHLR485  
L
CM  
(Figure 6) (Note 5)  
l
t
Differential Receiver Skew  
C = 15pF (Figure 6)  
L
6
ns  
SKEWR485  
|t  
– t  
|
PHLR485  
PLHR485  
l
l
t
, t  
Receiver Output Rise or Fall Time  
C = 15pF (Figure 6)  
3
15  
50  
ns  
ns  
RR485 FR485  
L
t
t
, t  
,
Receiver Output Enable or Disable Time FEN = V , R = 1kΩ, C = 15pF (Figure 7)  
ZLR485 ZHR485  
L
L
L
, t  
LZR485 HZR485  
l
t
, t  
Termination Enable or Disable Time  
FEN = V , V = 0V, V = 2V (Figure 8) (Note 5)  
100  
μs  
RTEN485 RTZ485  
L
B
AB  
RS232 AC Characteristics  
Maximum Data Rate  
l
l
R = 3kΩ, C = 2500pF  
100  
500  
kbps  
kbps  
L
L
R = 3kΩ, C = 500pF  
L
L
(Note 3)  
l
l
Driver Slew Rate (Figure 9)  
R = 3kΩ, C = 2500pF  
4
V/μs  
V/μs  
L
L
R = 3kΩ, C = 50pF  
30  
2
L
L
l
t
t
, t  
Driver Propagation Delay  
Driver Skew  
R = 3kΩ, C = 50pF (Figure 9)  
1
μs  
ns  
μs  
PHLD232 PLHD232  
L
L
R = 3kΩ, C = 50pF (Figure 9)  
50  
0.4  
SKEWD232  
L
L
l
l
t
t
, t  
,
Driver Output Enable or Disable Time  
FEN = V , R = 3kΩ, C = 50pF (Figure 10)  
2
ZLD232 ZHD232  
L
L
L
, t  
LZD232 HZD232  
t
t
t
, t  
Receiver Propagation Delay  
Receiver Skew  
C = 150pF (Figure 11)  
L
60  
25  
60  
0.7  
200  
ns  
ns  
ns  
μs  
PHLR232 PLHR232  
SKEWR232  
C = 150pF (Figure 11)  
L
l
l
, t  
Receiver Rise or Fall Time  
C = 150pF (Figure 11)  
L
200  
2
RR232 FR232  
t
t
, t  
,
Receiver Output Enable or Disable Time FEN = V , R = 1kΩ, C = 150pF (Figure 12)  
L L L  
ZLR232 ZHR232  
, t  
LZR232 HZR232  
Power Supply Generator  
l
V /V Supply Rise Time  
DD EE  
0.2  
2
ms  
FEN = , (Notes 3 and 4)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 4: Time from FEN until V ≥ 5V and V ≤ –5V. External  
components as shown in the Typical Application section.  
Note 5: Condition applies to A, B for H/F = 0V, and Y, Z for H/F = V .  
Note ꢀ: This IC includes overtemperature protection that is intended  
DD  
EE  
L
to protect the device during momentary overload conditions.  
Overtemperature protection activates at a junction temperature exceeding  
150°C. Continuous operation above the specified maximum operating  
junction temperature may result in device degradation or failure.  
Note 3: Guaranteed by other measured parameters and not tested directly.  
Note 7: Guaranteed by design and not subject to production test.  
28701f  
6
LTC2870/LTC2871  
TA = 25°C, VCC = V= 3.3V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC Supply Current vs Supply  
Voltage in Shutdown Mode  
VCC Supply Current vs Supply  
Voltage in Fast Enable Mode  
VCC Supply Current  
vs RS485 Data Rate  
100  
30  
25  
20  
15  
10  
5
5
4
3
2
1
V
CC  
V
CC  
= 5V  
= 3.3V  
ALL RS485 DRIVERS  
AND RECEIVERS  
SWITCHING.  
ALL DRIVERS AND RECEIVERS DISABLED  
TE485 LOW  
80  
60  
40  
20  
0
CL = 100pF ON EACH  
DRIVER OUTPUT.  
H/F HIGH  
H/F LOW  
85°C  
25°C  
TE HIGH  
TE LOW  
–40°C  
0
0.1  
1
10  
100  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
DATA RATE (Mbps)  
INPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
28701 G03  
28701 G01  
28701 G02  
VCC Supply Current vs Supply  
Voltage, All Transceivers at Max  
Rate (TC2871)  
VCC Supply Current  
vs RS232 Data Rate  
RS485 Driver Differential Output  
Voltage vs Temperature  
35  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 5V  
ALL RS232 DRIVERS  
AND RECEIVERS  
SWITCHING.  
CC  
CC  
ALL DRIVERS AND  
R
= 100ꢀ  
L
= 3.3V  
RECEIVERS SWITCHING.  
DRIVER OUTPUTS TIED TO  
RECEIVER INPUTS.  
0.5nF  
R
= 54ꢀ  
L
RS232: 0.5Mbps (CL = 500pF)  
RS485: 20Mbps (CL = 100pF)  
TE485 HIGH  
2.5nF  
R
= 100ꢀ  
= 54ꢀ  
L
2.5nF  
0.5nF  
R
L
–40°C  
25°C  
85°C  
0.05nF  
0.05nF  
400 500  
80  
V
CC  
V
CC  
= 5V  
= 3.3V  
70  
0
100  
200  
300  
3
3.5  
4
4.5  
5
5.5  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (kbps)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
28701 G04  
28701 G05  
28701 G06  
RS485 Driver Propagation Delay  
vs Temperature  
RS485 Driver Skew  
vs Temperature  
RS485 Driver Short-Circuit  
Current vs Short-Circuit Voltage  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
150  
100  
50  
V
CC  
V
CC  
= 5V  
= 3.3V  
V
V
V
V
= 3.3V, V = 1.7V  
L
CC  
CC  
CC  
CC  
= 5V, V = 1.7V  
L
= 3.3V, V = 3.3V  
L
= 5V, V = 5V  
L
OUTPUT LOW  
0
–50  
–100  
–150  
OUTPUT HIGH  
10  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–10  
–5  
0
5
15  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHORT-CIRCUIT VOLTAGE (V)  
28701 G06  
28701 G08  
28701 G09  
28701f  
7
LTC2870/LTC2871  
TA = 25°C, VCC = V= 3.3V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
RS485 Receiver Propagation  
Delay vs Temperature  
RS485 Receiver Skew  
vs Temperature  
RS485 Receiver Output Voltage  
vs ꢁoad Current  
80  
70  
60  
50  
40  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
V
V
V
= 5V  
= 3.3V  
= 1.7V  
V
CC  
V
CC  
V
CC  
V
CC  
= 3.3V, V = 1.7V  
L
L
L
L
= 5V, V = 1.7V  
L
5
4
3
2
1
0
= 3.3V, V = 3.3V  
L
= 5V, V = 5V  
L
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
0
2
4
6
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
28701 G10  
28701 G11  
28701 G12  
RS232 Receiver Input Threshold  
vs Temperature  
RS232 Receiver Output Voltage  
vs ꢁoad Current  
RS485 Termination Resistance  
vs Temperature  
6
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
V
V
V
= 5V  
= 3.3V  
= 1.7V  
L
L
L
V
CM  
V
CM  
V
CM  
= –7V  
= 2V  
= 12V  
INPUT HIGH  
INPUT LOW  
V
CC  
V
CC  
= 5V  
= 3.3V  
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
28701 G14  
28701 G13  
28701 G15  
RS232 Operation at 500kbps  
RS485 Operation at 20Mbps  
TC2870 Drivers Changing Modes  
DIN1  
DIN2  
DI  
5V/DIV  
485/232  
Y
Z
Z
DOUT2  
DOUT1  
1V/DIV  
5V/DIV  
5V/DIV  
5V/DIV  
Y
RS232  
MODE  
RS485  
MODE  
RS232  
MODE  
ROUT1  
ROUT2  
RO  
28701 G17  
28701 G16  
28701 G18  
20ns/DIV  
1μs/DIV  
2μs/DIV  
H/F HIGH  
Y, Z LOADS: 120ꢀ (DIFF) + 50pF  
WRAPPING DATA  
DOUT LOADS: 5kꢀ + 50pF  
28701f  
8
LTC2870/LTC2871  
TA = 25°C, VCC = V= 3.3V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
RS232 Driver Outputs Enabling  
and Disabling  
VDD and VEE Powering Up  
VDD and VEE Ripple  
VDD RIPPLE  
DX232  
DOUT1  
FEN  
2V/DIV  
5V/DIV  
FEN = 1  
FEN = 0  
10mV/DIV  
5V/DIV  
DOUT2  
VEE RIPPLE  
VDD  
DOUT1  
DOUT2  
VEE  
28701 G19  
28701 G20  
28701 G21  
40μs/DIV  
TOP CURVES: FAST ENABLE j DX232  
BOTTOM CURVES: SHUTDOWN j DX232  
40μs/DIV  
40μs/DIV  
FAST ENABLE MODE,  
ALL DRIVERS AND RECEIVERS DISABLED.  
PIN FUNCTIONS  
TC2870  
QFN  
TC2870  
TSSOP  
TC2871  
QFN  
TC2871  
TSSOP DESCRIPTION  
PIN NAME  
V
16, 20, 24 19, 23, 27 21, 27, 33 25, 31, 37 Input Supply (3V to 5.5V). Tie all three pins together and connect a 2.2μF or larger  
capacitor between V (adjacent to V ) and GND.  
CC  
CC  
DD  
V
25  
28  
35  
1
Logic Supply (1.7V to 5.5V) for the receiver outputs, driver inputs, and control inputs.  
Bypass this pin to GND with a 0.1μF capacitor if not tied tot V . Keep V ≤ V for  
L
CC  
L
CC  
proper operation. However, V > V will not damage the device, provided that absolute  
L
CC  
maximum limits are respected.  
V
V
15  
18  
20  
24  
Generated Positive Supply Voltage for RS232 Driver (+7V). Connect 1ꢁF capacitor  
between V and GND.  
DD  
DD  
1, 12, 29  
4, 15, 29  
1, 12, 16, 5, 16, 20, Generated Negative Supply Voltage for RS232 Driver (6.3V). Tie all pins together and  
19, 39  
EE  
connect 1ꢁF capacitor between V (adjacent to the CAP pin) and GND.  
23, 39  
EE  
GND  
CAP  
10, 13,  
18, 23  
13, 16,  
21, 26  
14, 17,  
25, 32  
18, 21, Ground. Tie all four pins together.  
29, 36  
11  
14  
15  
19  
Charge Pump Capacitor for Generated Negative Supply Voltage. Connect a 220nF  
capacitor between CAP and SW.  
SW  
14  
22  
21  
2
17  
25  
24  
5
18  
29  
28  
22  
33  
32  
Switch Pin. Connect 10μH inductor between SW and V .  
CC  
A
RS485 Positive Receiver Input (Full-Duplex Mode) or RS232 Receiver Input 1 (LTC2870).  
RS485 Negative Receiver Input (Full-Duplex Mode) or RS232 Receiver Input 2 (LTC2870).  
RS485 Differential Receiver Output or RS232 Receiver Output 1.  
RS232 Receiver Output 2.  
B
RA  
RB  
3
6
RO  
34  
31  
30  
2
38  
35  
34  
6
RS485 Differential Receiver Output.  
RIN1  
RIN2  
ROUT1  
ROUT2  
DIN1  
DIN2  
RS232 Receiver Input 1.  
RS232 Receiver Input 2.  
RS232 Receiver Output 1.  
3
7
RS232 Receiver Output 2.  
8
12  
13  
RS232 Driver Input 1.  
9
RS232 Driver Input 2.  
28701f  
9
LTC2870/LTC2871  
PIN FUNCTIONS  
TC2870  
QFN  
TC2870  
TSSOP  
TC2871  
QFN  
TC2871  
PIN NAME  
DOUT1  
DOUT2  
DI  
TSSOP DESCRIPTION  
23  
22  
7
27  
26  
11  
RS232 Driver Output 1.  
RS232 Driver Output 2.  
RS485 Driver Input.  
DY  
7
8
10  
11  
22  
RS485 Driver Input or RS232 Driver Input 1.  
RS232 Driver Input 2.  
DZ  
Y
19  
26  
24  
30  
28  
RS485 Positive Driver Output. RS232 Driver Output 1 (LTC2870).  
RS485 Positive Receiver Input (LTC2870 or LTC2871 in Half-Duplex Mode).  
Z
17  
4
20  
7
RS485 Negative Driver Output or RS232 Driver Output 2 (LTC2870).  
RS485 Negative Receiver Input (LTC2870 or LTC2871 in Half-Duplex Mode).  
485/232  
Interface Select Input. A logic low enables RS232 mode and a high enables RS485 mode.  
The mode determines which transceiver inputs and outputs are accessible at the LTC2870  
pins as well as which is controlled by the driver and receiver enable pins.  
RXEN  
DXEN  
RX232  
RX485  
5
6
8
9
Receiver Enable. A logic high disables RS232 and RS485 receivers leaving receiver  
outputs Hi-Z. A logic low enables the RS232 or RS485 receivers, depending on the state  
of the interface select input 485/232 .  
Driver Enable. A logic low disables the RS232 and RS485 drivers leaving the driver output  
in a Hi-Z state. A logic high enables the RS232 or RS485 drivers, depending on the state  
of the interface select input 485/232.  
11  
5
15  
9
RS232 Receiver Enable. A logic high disables the RS232 receivers and input termination  
resistors leaving the RS232 receiver outputs in a Hi-Z state. A logic low enables the  
RS232 receivers and resistors, subject to the state of the CH2 pin.  
RS485 Receiver Enable. A logic high disables the RS485 receiver leaving the RS485  
receiver output in a Hi-Z state. A logic low enables the RS485 receiver and resistors,  
subject to the state of the CH2 pin.  
DX232  
DX485  
H/F  
10  
6
14  
10  
3
RS232 Driver Enable. A logic low disables the RS232 drivers leaving the RS232 driver  
outputs in a Hi-Z state. A logic high enables the RS232 drivers.  
RS485 Driver Enable. A logic low disables the RS485 driver leaving the RS485 driver  
output in a Hi-Z state. A logic high enables the RS485 driver.  
27  
2
37  
RS485 Half-Duplex Select Input. A logic low is used for full-duplex operation where pins  
A and B are the receiver inputs and pins Y and Z are the driver outputs. A logic high is  
used for half-duplex operation where pins Y and Z are both the receiver inputs and driver  
outputs and pins A and B do not serve as the receiver inputs. The impedance on A and B  
and state of differential termination between A and B is independent of the state of H/F.  
The H/F pin has no effect on RS232 operation.  
TE485  
FEN  
28  
9
3
38  
13  
4
RS485 Termination Enable. A logic high enables a 120ꢀ resistor between pins A and  
B and also between pins Y and Z. A logic low opens the resistors, leaving A/B and Y/Z  
unterminated. The LTC2870 termination resistors are never enabled in RS232 mode.  
12  
17  
Fast Enable. A logic high enables fast enable mode. In fast enable mode the integrated  
DC/DC converter is active independent of the state of driver, receiver, and termination  
enable pins allowing faster circuit enable times than are otherwise possible. A logic low  
disables fast enable mode leaving the state of the DC/DC converter dependent on the state  
of driver, receiver, and termination enable control inputs. The DC/DC converter powers  
down only when FEN is low and all drivers, receivers, and terminators are disabled (refer  
to Table 1).  
LB  
26  
1
36  
4
2
8
Loopback Enable. A logic high enables logic loopback diagnostic mode, internally routing  
the driver input logic levels to the receiver output pins. This applies to both RS232  
channels as well as the RS485 driver/receiver. The targeted receiver must be enabled for  
the loopback signal to be available on its output. A logic low disables loopback mode. In  
Loopback mode, signals are not inverted from driver inputs to receiver outputs.  
CH2  
RS232 Channel 2 Disable. A logic high disables RS232 receiver 2 and RS232 driver 2  
independent of the state of RX232 and DX232 pins. In this state, the disabled driver  
output becomes Hi-Z and the 5kΩ load resistor on the disabled receiver input is opened.  
A logic low allows both RS232 transceiver channels to be enabled or disabled together  
based on the RX232 and DX232 pins.  
28701f  
10  
LTC2870/LTC2871  
BLOCK DIAGRAM  
TC2870  
1.7V TO 5.5V  
(≤ V  
)
3V TO 5.5V  
2.2μF  
CC  
220nF  
SW  
10μH  
0.1μF  
V
V
CAP  
L
CC  
DXEN  
RXEN  
TE485  
H/F  
V
V
DD  
1μF  
EE  
PULSE-SKIPPING  
BOOST  
REGULATOR  
f = 1.2MHz  
RT232  
RT485  
CONTROL  
LOGIC  
1μF  
485/232  
FEN  
DRIVERS  
LB  
232  
485  
232  
DY  
DZ  
Y
RT485  
120Ω  
Z
125k  
125k  
LOOPBACK  
PATH  
H/F  
RECEIVERS  
232  
RT232  
5k  
5k  
A
B
125k  
RT485  
RA  
RB  
485  
120Ω  
125k  
232  
2870 BD  
GND  
28701f  
11  
LTC2870/LTC2871  
BLOCK DIAGRAM  
TC2871  
1.7V TO 5.5V  
3V TO 5.5V  
(≤ V  
)
CC  
220nF  
SW  
10μH  
0.1μF  
2.2μF  
V
V
CAP  
L
CC  
DX232  
DX485  
RX232  
RX485  
TE485  
H/F  
V
V
DD  
1μF  
EE  
PULSE-SKIPPING  
BOOST  
REGULATOR  
f = 1.2MHz  
RT232  
RT485  
CONTROL  
LOGIC  
CH2  
1μF  
FEN  
DRIVERS  
LB  
232  
485  
DIN1  
DI  
DOUT1  
Y
RT485  
120Ω  
Z
DOUT2  
232  
DIN2  
125k  
125k  
LOOPBACK  
PATH  
H/F  
RECEIVERS  
RT232  
ROUT1  
RO  
232  
RIN1  
A
5k  
5k  
125k  
125k  
RT485  
485  
120Ω  
B
RIN2  
232  
ROUT2  
2871 BD  
GND  
28701f  
12  
LTC2870/LTC2871  
TEST CIRCUITS  
I
, I  
OZD485 OSD485  
Y OR Z  
Z OR Y  
Y
Z
R
R
L
L
GND  
OR  
GND  
DY/DI  
OR  
+
DY/DI  
DRIVER  
DRIVER  
V
OD  
V
V
L
L
+
V
OUT  
+
V
OC  
28701 F02  
28701 F01  
Figure 1. RS485 Driver DC Characteristics  
Figure 2. RS485 Driver Output Current  
I
IN485  
A OR B  
B OR A  
RECEIVER  
+
V
IN  
V
IN  
R
=
IN485  
I
28701 F03  
IN485  
Figure 3. RS485 Receiver Input Current and Resistance (Note 5)  
V
L
t
t
PLHD485  
DY/DI  
Y, Z  
PLHD485  
Y
Z
0V  
t
SKEWD485  
C
C
L
L
DY/DI  
V
½V  
OD  
OD  
R
DRIVER  
DIFF  
90%  
10%  
90%  
10%  
0V  
0V  
Y - Z  
t
t
FD485  
RD485  
28701 F04  
Figure 4. RS485 Driver Timing Measurement  
28701f  
13  
LTC2870/LTC2871  
TEST CIRCUITS  
V
L
GND  
OR  
R
L
DXEN/  
DX485  
½V  
½V  
L
L
t
,
ZLD485  
0V  
V
Y
Z
V
CC  
t
t
t
LZD485  
ZLSD485  
C
C
L
CC  
V
OR  
GND  
L
DY/DI  
½V  
½V  
Y OR Z  
Z OR Y  
CC  
CC  
DRIVER  
0.5V  
0.5V  
V
V
OL  
OH  
R
V
OR  
L
CC  
DXEN/DX485  
0V  
GND  
t
,
HZD485  
ZHD485  
t
L
ZHSD485  
28701 F05  
Figure 5. RS485 Driver Enable and Disable Timing Measurements  
V
AB  
0V  
A-B  
V
V
/2  
/2  
A
B
AB  
AB  
–V  
AB  
t
t
PLHR485  
PHLR485  
RA/RO  
V
CM  
V
RECEIVER  
L
90%  
10%  
90%  
RA/RO  
½V  
½V  
L
C
L
L
10%  
t
0V  
t
RR485  
FR485  
t
= t  
– t  
SKEWR485 PLHR485 PHLR485  
28701 F06  
Figure ꢀ. RS485 Receiver Propagation Delay Measurements (Note 5)  
V
L
RXEN/  
½V  
½V  
L
L
RX485  
t
ZLR485  
0V  
t
t
A
B
LZR485  
V
L
0V TO 3V  
3V TO 0V  
V
OR  
GND  
R
L
L
RA/RO  
½V  
½V  
RA/RO  
L
L
RECEIVER  
0.5V  
0.5V  
V
V
OL  
OH  
C
L
RXEN/RX485  
RA/RO  
0V  
t
HZR485  
ZHR485  
28701 F07  
Figure 7. RS485 Receiver Enable and Disable Timing Measurements (Note 5)  
28701f  
14  
LTC2870/LTC2871  
TEST CIRCUITS  
V
I
AB  
A
R
=
TERM  
V
L
I
A
TE485  
½V  
½V  
L
L
A
B
+
0V  
RECEIVER  
V
V
AB  
t
t
RTZ485  
RTEN485  
90%  
I
TE485  
A
10%  
+
B
28701 F08  
Figure 8. RS485 Termination Resistance and Timing Measurements (Note 5)  
V
L
t
DRIVER  
INPUT  
DRIVER  
OUTPUT  
PHLD232  
DRIVER  
INPUT  
½V  
½V  
L
L
t
PLHD232  
0V  
t
t
R
F
V
V
OHD  
OLD  
R
L
C
L
3V  
3V  
–3V  
DRIVER  
INPUT  
0V  
0V  
–3V  
6V  
t
= |t  
– t  
|
SLEW RATE =  
SKEWD232  
PHLD232 PLHD232  
t
F
OR t  
R
28701 F09  
Figure 9. RS232 Driver Timing and Slew Rate Measurements  
V
L
DRIVER  
OUTPUT  
DXEN/  
DX232  
½V  
½V  
L
L
0V OR V  
0V  
L
t
t
HZD232  
ZHD232  
DXEN/DX232  
R
C
L
L
V
OHD  
0.5V  
0.5V  
DRIVER  
OUTPUT  
5V  
5V  
0V  
0V  
t
t
LZD232  
ZLD232  
DRIVER  
OUTPUT  
V
OLD  
28701 F10  
Figure 10. RS232 Driver Enable and Disable Times  
28701f  
15  
LTC2870/LTC2871  
TEST CIRCUITS  
+3V  
–3V  
RECEIVER  
INPUT  
RECEIVER  
INPUT  
RECEIVER  
OUTPUT  
1.5V  
1.5V  
t
t
PLHR232  
PHLR232  
V
C
L
L
90%  
10%  
90%  
10%  
RECEIVER  
OUTPUT  
½V  
½V  
L
L
0V  
t
t
RR232  
FR232  
t
= |t  
– t  
|
SKEWR232  
PLHR232 PHLR232  
28701 F11  
Figure 11. RS232 Receiver Timing Measurements  
V
L
RECEIVER  
OUTPUT  
RXEN/  
R
½V  
½V  
L
L
L
GND  
OR V  
RX232  
–3V OR +3V  
0V  
L
t
t
HZR232  
ZHR232  
RXEN/RX232  
C
L
V
OHR  
0.5V  
0.5V  
RECEIVER  
OUTPUT  
½V  
½V  
L
L
0V  
t
t
LZR232  
ZLR232  
V
L
RECEIVER  
OUTPUT  
V
OLR  
28701 F12  
Figure 12. RS232 Receiver Enable and Disable Times  
28701f  
16  
LTC2870/LTC2871  
FUNCTION TABLES  
Table 1. TC2870 Mode Selection Table  
DC/DC  
FEN  
0
485/232  
RXEN  
DXEN  
TE485  
H/F ꢁB CONVERTER MODE AND COMMENTS  
X
0
X
0
0
1
1
1
1
1
1
0
1
1
1
X
0
X
0
X
X
X
0
0
0
0
0
1
X
1
X
X
X
X
X
X
0
X
0
X
X
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
X
X
X
0
0
0
0
X
0
0
1
1
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
X
Low Power Shutdown: All Main Functions Off  
0
Low Power Shutdown: All Main Functions Off  
Fast-Enable: DC/DC Converter On Only  
RS232 Drivers On  
1
X
X
RS232 Receivers On  
X
RS485 Driver On  
X
RS485 Receiver On  
X
RS485 Driver and Receiver 120Ω Termination Enabled  
RS485 Full-Duplex Mode  
X
X
X
RS485 Half-Duplex Mode  
X
ON  
ON  
RS485 Loopback Mode  
X
RS232 Loopback Mode  
Table 2. TC2871 Mode Selection Table (CH2 = 0)  
DC/DC  
H/F ꢁB CONVERTER MODE AND COMMENTS  
FEN  
0
RX232  
DX232  
RX485  
DX485  
TE485  
1
1
X
0
X
X
X
X
X
0
0
0
1
X
X
X
X
X
X
X
1
1
X
X
X
0
X
X
0
X
0
0
X
X
1
X
X
X
X
X
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
X
X
0
0
0
0
0
0
1
1
OFF  
ON  
ON  
ON  
ON  
ON  
X
Low Power Shutdown: All Main Functions Off  
Fast-Enable: DC/DC Converter On Only  
RS232 Drivers On  
1
X
X
RS232 Receivers On  
X
RS485 Driver On  
X
RS485 Receiver On  
X
RS485 Full-Duplex Mode  
RS485 Half-Duplex Mode  
RS485 Loopback Mode  
RS232 Loopback Mode  
X
X
X
ON  
ON  
X
Table 3. RS232 Receiver Mode (485/232 = 0 for TC2870, CH2 = 0 for TC2871)  
RECEIVER INPUTS  
(A, B, RIN1, RIN2)  
RECEIVER OUTPUTS  
TC2870 RECEIVER INPUTS TC2871 RECEIVER INPUTS  
RX232 OR RXEN  
CONDITIONS  
No Fault  
(RA, RB, ROUT1, ROUT2)  
(A, B)  
125kΩ  
5kΩ  
(RIN1, RIN2)  
1
0
0
0
X
0
1
X
Hi-Z  
1
Hi-Z  
No Fault  
5kΩ  
No Fault  
0
5kΩ  
5kΩ  
Thermal Fault  
Hi-Z  
5kΩ  
5kΩ  
Table 4. RS232 Driver Mode (485/232 = 0 for TC2870, CH2 = 0 for TC2871)  
DRIVER INPUTS  
TC2870 DRIVER OUTPUTS  
(Y, Z)  
TC2871 DRIVER OUTPUTS  
(DOUT1, DOUT2)  
DX232 OR DXEN  
(DY, DZ, DIN1, DIN2)  
CONDITIONS  
No Fault  
0
1
1
X
X
0
1
X
125kΩ  
Hi-Z  
1
No Fault  
1
0
No Fault  
0
Thermal Fault  
125kΩ  
Hi-Z  
28701f  
17  
LTC2870/LTC2871  
FUNCTION TABLES  
Table 5. TC2871 CH2 CONTROꢁ  
RS232 RECEIVER INPUTS  
RS232 DRIVER OUTPUTS  
CH2  
X
DX232  
RX232  
RIN1  
Hi-Z  
5kΩ  
Hi-Z  
5kΩ  
5kΩ  
Hi-Z  
5kΩ  
RIN2  
Hi-Z  
5kΩ  
Hi-Z  
5kΩ  
Hi-Z  
Hi-Z  
Hi-Z  
DOUT1  
Hi-Z  
DOUT2  
Hi-Z  
COMMENTS  
0
0
1
1
0
1
1
1
0
1
0
0
1
0
Both Drivers and Receivers Disabled  
Both Receivers Enabled, Both Drivers Disabled  
Both Receivers Disabled, Both Drivers Enabled  
Both Receivers and Drivers Enabled  
Channel 2 Drivers and Receivers Disabled  
Channel 2 Drivers and Receivers Disabled  
Channel 2 Drivers and Receivers Disabled  
0
Hi-Z  
Hi-Z  
0
Driven  
Driven  
Hi-Z  
Driven  
Driven  
Hi-Z  
0
1
1
Driven  
Driven  
Hi-Z  
1
Hi-Z  
Table ꢀ. RS485 Driver Mode (TE485 = 0)  
DX485 OR DXEN  
DI  
X
0
CONDITIONS  
No Fault  
Y
125kΩ  
0
Z
0
1
1
X
125kΩ  
No Fault  
1
0
1
No Fault  
1
X
Thermal Fault  
125kΩ  
125kΩ  
Table 7. RS485 Receiver Mode (ꢁB = 0)  
RXEN OR RX485  
A - B (NOTE 5)  
CONDITIONS  
RA, RO  
1
0
0
0
X
X
No Fault  
No Fault  
Hi-Z  
0
< –200mV  
> 200mV  
No Fault  
1
Inputs Open or Shorted Together (DC)  
X
Failsafe  
1
Thermal Fault  
Hi-Z  
Table 8. RS485 Termination (485/232 = 1 for TC2870)  
TE485  
H/F, ꢁB  
CONDITIONS  
No Fault  
R (A TO B)  
Hi-Z  
R (Y TO Z)  
Hi-Z  
0
1
X
X
X
X
No Fault  
120Ω  
Hi-Z  
120Ω  
Hi-Z  
Thermal Fault  
Table 9. RS485 Duplex Control (485/232 = 1 for TC2870)  
H/F  
0
RS485 DRIVER OUTPUTS  
RS485 RECEIVER INPUTS  
Y, Z  
Y, Z  
A, B  
Y, Z  
1
Table 10. TC2870 ꢁoopback Functions  
Table 11. TC2871 ꢁoopback Functions  
ꢁB  
0
RXEN  
MODE  
Not Loopback  
ꢁB  
0
RX232 RX485  
MODE  
Not Loopback  
X
1
0
X
1
0
1
0
X
1
1
0
0
X
Not Loopback  
X
1
Not Loopback  
1
Loopback (RA = DY, RB = DZ)  
Loopback RS232 (ROUT1 = DIN1, ROUT2 = DIN2)  
Loopback RS485 (R0 = DI)  
1
1
Loopback All (ROUT1 = DIN1, ROUT2 = DIN2, RO = DI)  
28701f  
18  
LTC2870/LTC2871  
APPLICATIONS INFORMATION  
Overview  
C1  
L1  
3V TO 5.5V  
C4  
220nF  
10μH  
TheLTC2870andLTC2871areflexiblemultiprotocoltrans-  
ceivers supporting RS485/RS422 and RS232 protocols.  
These parts can be powered from a single 3V to 5.5V  
supply with optional logic interface supply as low as 1.7V.  
An integrated DC/DC converter provides the positive and  
negative supply rails needed for RS232 operation. Auto-  
maticallyselectedintegratedterminationresistorsforboth  
RS232 and RS485 protocols are included, eliminating the  
need for external components and switching relays. Both  
parts include loopback control for self-test and debug as  
well as logically-switchable half- and full-duplex control  
of the RS485 bus interface.  
2.2μF  
V
SW  
CAP  
CC  
V
V
DD  
C2  
1μF  
PULSE-SKIPPING  
BOOST  
REGULATOR  
f = 1.2MHz  
EE  
C3  
1μF  
28701 F13  
Figure 13. DC/DC Converter  
The LTC2870 offers a single port that can be configured  
as either two RS232 receivers and drivers or one RS485/  
RS422 receiver and driver depending on the state of the  
485/232 pin. Control inputs DXEN and RXEN provide  
independent control of driver and receiver operation for  
either RS232 or RS485 transceivers, depending on the  
selected operating protocol.  
The DC/DC converter requires a 10μH inductor (L1) and a  
bypasscapacitor(C4)of2.2μF.Thechargepumpcapacitor  
(C1) is 220nF and the storage capacitors (C2 and C3) are  
F. Larger storage capacitors up to 4.7μF may be used if  
C1 and C4 are scaled proportionately. Locate C1–C4 close  
to their associated pins.  
Up to two LTC2870 or LTC2871 devices can be powered  
from one of the devices; see Figure 48 in the Typical Ap-  
plications section.  
TheLTC2871separatestheRS232andRS485transceivers  
into independent I/Os allowing simultaneous operation  
of two RS232 transceivers and one RS485 transceiver.  
Independent control over driver and receiver mode for  
eachprotocolisprovidedwithlogicinputsDX232,RX232,  
DX485,RX485.SinglechannelRS232operationispossible  
via the CH2 control pin. The disabled channel maintains a  
Hi-Z state on the receiver input and driver output, allowing  
these lines to be shared with other transceivers.  
Inductor Selection  
A 10ꢁH inductor with a saturation current (I ) rating  
SAT  
of at least 220mA and a DCR (copper wire resistance) of  
less than 1.3Ω is required. Some small inductors meeting  
these requirements are listed in Table 12.  
Table 12. Recommended Inductors  
Both parts feature rugged operation with ESD ratings  
of 26kV (LTC2870) and 16kV (LTC2871) HBM on the  
RS232andRS485receiverinputsanddriveroutputs,both  
unpowered and powered. All other pins offer protection  
exceeding 4kV.  
I
MAX  
SAT  
PART NUMBER  
(mA) DCR (Ω)  
SIZE(mm)  
MANUFACTURER  
LBC2016T100K  
CBC2016T100M  
245  
380  
1.07  
1.07  
2 × 1.6 × 1.6 Taiyo Yuden  
2 × 1.6 × 1.6 www.t-yuden.com  
FSLB2520-100K  
220  
1.1  
2.5 × 2 × 1.6 Toko  
www.tokoam.com  
DC/DC Converter  
Capacitor Selection  
Theon-chipDC/DCconverteroperatesfromtheV input,  
generating a 7V V supply and a charge pumped –6.3V  
CC  
The small size of ceramic capacitors makes them ideal  
for the LTC2870 and LTC2871. Use X5R or X7R dielectric  
types; their ESR is low and they retain their capacitance  
over relatively wide voltage and temperature ranges. Use  
a voltage rating of at least 10V.  
DD  
V
supply, as shown in Figure 13. V and V power  
EE  
DD EE  
the output stage of the RS232 drivers and are regulated  
to levels that guarantee greater than 5V output swing.  
28701f  
19  
LTC2870/LTC2871  
APPLICATIONS INFORMATION  
Inrush Current and Supply Overshoot Precaution  
Incertainapplicationsfastsupplyslewratesaregenerated  
V ꢁogic Supply and ꢁogic Pins  
A separate logic supply pin V allows the LTC2870 and  
L
when power is connected. If the V voltage is greater  
LTC2871 to interface with any logic signal from 1.7V to  
CC  
than 4.5V and its rise time is faster than 10ꢁs, the pins  
5.5V. All logic I/Os use V as their high supply. For proper  
L
V
and SW can exceed their absolute maximum values  
operation, V should not be greater than V . During  
L CC  
DD  
duringstart-up. WhensupplyvoltageisappliedtoV , the  
power-up, if V is higher than V , the device will not be  
CC  
L CC  
voltage difference between V and V generates inrush  
damaged, but behavior of the device is not guaranteed.  
CC  
DD  
currentflowingthroughinductorL1andcapacitorsC1and  
C2. The peak inrush current must not exceed 2A. To avoid  
this condition, add a 1Ω resistor as shown in Figure 14.  
This precaution is not relevant for supply voltages below  
4.5V or rise times longer than 10ꢁs.  
If V is not connected to V , bypass V with a 0.1μF  
L
CC  
L
capacitor to GND.  
RS232 and RS485 driver outputs are undriven and the  
RS485 termination resistors are disabled when V or V  
L
CC  
is grounded or V is disconnected.  
CC  
Although all logic input pins reference V as their high  
L
5V  
supply, they can be driven up to 7V, independent of V and  
L
0V  
≤10μs  
V , with the exception of FEN, which must not exceed V  
CC L  
by more than 1V for proper operation. Logic input pins  
do not have internal biasing devices to pull them up or  
down. They must be driven high or low to establish valid  
logic levels; do not float.  
R1  
C1  
220nF  
L1  
1Ω  
10μH  
1/8W  
INRUSH  
CURRENT  
C4  
2.2μF  
SW  
CAP  
GND  
RS485 Driver  
V
CC  
The RS485 driver provides full RS485/RS422 compati-  
bility. When enabled, if DI is high, Y – Z is positive. With  
the driver disabled the Y and Z output resistance is greater  
than 96kΩ (typically 125kΩ) to ground over the entire  
common mode range of –7V to +12V. This resistance is  
equivalent to the input resistance on these lines when the  
driver is configured in half-duplex mode and Y and Z act  
as the RS485 receiver inputs.  
28701 F14  
V
DD  
C2  
1μF  
Figure 14. Supply Current Overshoot Protection  
for Input Supplies of 4.5V of Higher  
Driver Overvoltage and Overcurrent Protection  
The RS232 and RS485 driver outputs are protected from  
short circuits to any voltage within the absolute maximum  
range 15V.Themaximumcurrentinthisconditionis90mA  
for the RS232 driver and 250mA for the RS485 driver.  
If the RS485 driver output is shorted to a voltage greater  
thanV , whenitisactive, positivecurrentofupto100mA  
CC  
may flow from the driver output back to V . If the system  
CC  
power supply or loading cannot sink this excess current,  
clamp V to GND with a Zener diode (e.g., 5.6V, 1W,  
CC  
1N4734) to prevent an overvoltage condition on V .  
CC  
28701f  
20  
LTC2870/LTC2871  
APPLICATIONS INFORMATION  
All devices also feature thermal shutdown protection that  
disables the drivers, receivers, and RS485 terminators in  
case of excessive power dissipation (see Note 6).  
less than approximately 2μs. Increasingly slower signals  
will have increasingly less effective hysteresis, limited by  
the DC failsafe value of about 25mV.  
The LTC2870 and LTC2871 provide full failsafe operation  
that guarantees the receiver output will be a logic high  
state when the inputs are shorted, left open, or terminated  
but not driven, for more than about 2μs. The delay allows  
normal data signals to transition through the threshold  
region without being interpreted as a failsafe condition.  
RS485 Balanced Receiver with Full Failsafe Operation  
The LTC2870 and LTC2871 receivers use a window com-  
parator with two voltage thresholds centered around zero  
forlowpulsewidthdistortion.AsillustratedinFigure15,for  
adifferentialsignalapproachingfromanegativedirection,  
the threshold is typically +65mV. When approaching from  
thepositivedirection,thethresholdistypically65mV.Each  
of these thresholds has about 25mV of hysteresis (not  
shown in the figure). The state of RO reflects the polarity  
of A–B in full-duplex mode or Y–Z in half-duplex mode.  
RS485 Biasing Resistors Not Required  
RS485 networks are often biased with a resistive divider  
to generate a differential voltage of ≥200mV on the data  
lines, which establishes a logic high state when all the  
transmitters on the network are disabled. The values of  
the biasing resistors depend on the number and type  
of transceivers on the line and the number and value of  
terminating resistors. Therefore the values of the biasing  
resistors must be customized to each specific network  
installation, and may change if nodes are added to or  
removed from the network.  
This windowing around 0V preserves pulse width and  
duty cycle for small input signals with heavily slewed  
edges, typical of what might be seen at the end of a very  
long cable. This performance is highlighted in Figure 16,  
whereasignalisdriventhrough4000feetofCAT5ecableat  
3Mbps.Eventhoughthedifferentialsignalpeaksatjustover  
100mVandisheavilyslewed,theoutputmaintainsanearly  
perfect signal with almost no duty cycle distortion.  
The internal failsafe feature of the LTC2870 and LTC2871  
eliminates the need for external biasing resistors. The  
LTC2870 and LTC2871 transceivers will operate correctly  
on unbiased, biased or underbiased networks.  
Anadditionalbenefitofthewindowcomparatorarchitecture  
is excellent noise immunity due to the wide effective dif-  
ferentialhysteresis(orAChysteresis)ofabout130mVfor  
normalsignalstransitioningthroughthewindowregionin  
B
0.1V/DIV  
A
RO  
(A-B)  
RECEIVER  
OUTPUT HIGH  
0.1V/DIV  
RECEIVER  
RO  
OUTPUT LOW  
5V/DIV  
V
AB  
–200mV  
–65mV 0V  
65mV  
200mV  
28701 F16  
28701 F15  
200ns/DIV  
Figure 1ꢀ. A 3Mbps Signal Driven Down 4000ft of CAT 5e  
Cable. Top Traces: Received Signals After Transmission  
Through Cable; Middle Trace: Math Showing Differences  
of Top Two Signals; Bottom Trace: Receiver Output  
Figure 15. RS485 Receiver Input Threshold Characteristics  
28701f  
21  
LTC2870/LTC2871  
APPLICATIONS INFORMATION  
Receiver Outputs  
through logic control, the proper line termination for cor-  
rect operation when configuring transceiver networks.  
Termination should be enabled on transceivers positioned  
at both ends of the network bus. Termination on the driver  
nodes is important for cases where the driver is disabled  
but there is communication on the connecting bus from  
another node. Differential termination resistors are never  
enabled in RS232 mode on the LTC2870.  
The RS232 and RS485 receiver outputs are internally  
driven high (to V ) or low (to GND) with no external pull-  
L
up needed. When the receivers are disabled the output pin  
becomes Hi-Z with leakage of less than 5ꢁA for voltages  
within the V supply range.  
L
RS485 Receiver Input Resistance  
When the TE485 pin is high, the termination resistors are  
enabled and the differential resistance from A to B and Y  
to Z is 120Ω. The resistance is maintained over the entire  
RS485 common mode range of –7V to 12V as shown in  
Figure 18.  
The RS485 receiver input resistance from A or B to GND  
(Y or Z to GND in half-duplex mode with driver disabled) is  
greater than 96kΩ (typically 125kΩ) when the integrated  
termination is disabled. This permits up to a total of 256  
receiverspersystemwithoutexceedingtheRS485receiver  
loading specification. The input resistance of the receiver  
isunaffectedbyenabling/disablingthereceiverorwhether  
the part is in half-duplex, full-duplex, loopback mode, or  
even unpowered. The equivalent input resistance looking  
into the RS485 receiver pins is shown in Figure 17.  
126  
V
CC  
V
CC  
= 5.0V  
= 3.3V  
124  
122  
120  
118  
116  
125k  
A
60Ω  
TE485  
–10  
–5  
0
5
10  
15  
VOLTAGE (V)  
60Ω  
125k  
28701 F18  
B
Figure 18. Typical Resistance of the Enabled RS485  
Terminator vs Common Mode Voltage on A /B  
28701 F17  
Figure 17: Equivalent RS485 Receiver  
Input Resistance Into A and B (Note 5)  
RS485 Half- and Full-Duplex Control  
The LTC2870 and LTC2871 are equipped with a control to  
switch between half- and full-duplex operation. With the  
H/F pin set to a logic low, the A and B pins serve as the  
differential receiver inputs. With the H/F pin set to a logic  
high, the Y and Z pins serve as the differential inputs. In  
either configuration, the RS485 driver outputs are always  
on Y and Z. The impedance looking into the A and B pins  
is not affected by H/F control, including the differential  
termination resistance. The H/F control does not affect  
RS232 operation.  
Selectable RS485 Termination  
Propercableterminationisimportantforgoodsignalfidel-  
ity. When the cable is not terminated with its characteristic  
impedance, reflections cause waveform distortion.  
The LTC2870 and LTC2871 offer integrated switchable  
120Ωterminationresistorsbetweenthedifferentialreceiver  
inputs and also between the differential driver outputs.  
Thisprovidestheadvantageofbeingabletoeasilychange,  
28701f  
22  
LTC2870/LTC2871  
APPLICATIONS INFORMATION  
ꢁogic ꢁoopback  
The solid vertical line represents the specified maximum  
datarateintheRS485/RS422standards. Thedashedlines  
at 20Mbps show the maximum data rates of the LTC2870  
and LTC2871.  
A loopback mode connects the driver inputs to the re-  
ceiver outputs (non-inverting) for self test. This applies to  
both RS232 and RS485 transceivers. Loopback mode is  
entered when the LB pin is high and the relevant receiver  
is enabled.  
ꢁayout Considerations  
All V pins must be connected together on the PC board  
CC  
In loopback mode, the drivers function normally. They can  
be disabled with outputs in a Hi-Z state or left enabled to  
allow loopback testing in normal operation. Loopback  
works in half- or full-duplex mode and does not affect the  
termination resistors.  
with very low impedance traces or with a dedicated plane.  
A 2.2μF or larger decoupling capacitor (C4 in Figure 13)  
must be placed less than 0.7cm away from the V pin  
CC  
that is adjacent to the V pin.  
DD  
0.1μF capacitors to GND can be added on the V pins  
CC  
10k  
adjacent to the B and V pins if the connection to the 2.2μF  
L
decoupling capacitor is not direct or if the trace is very  
narrow. All GND pins must be connected together and  
1k  
all V pins must be connected together, including the  
EE  
exposed pad on the bottom of the package. The bypass  
LTC2870/LTC2871  
MAX DATA RATE  
capacitor at V , C3, should be positioned closest to the  
EE  
V
EE  
pin that is adjacent to the CAP pin, with no more than  
1cm of total trace length between the V and GND pins.  
100  
EE  
RS485/RS422  
MAX DATA RATE  
Place the charge pump capacitor, C1, directly adjacent to  
the SW and CAP pins, with no more than one centimeter  
of total trace length to maintain low inductance. Close  
placement of the inductor, L1, is of secondary importance  
compared to the placement of C1 but should include no  
more than two centimeters of total trace length.  
10  
10k  
100k  
1M  
10M  
100M  
DATA RATE (bps)  
28701 F19  
Figure 19. Cable ꢁength vs Data Rate (RS485/RS422  
Standard Shown in Vertical Solid ꢁine)  
The PC board traces connected to high speed signals A/B  
and Y/Z should be symmetrical and as short as possible  
to minimize capacitive imbalance and maintain good dif-  
ferential signal integrity. To minimize capacitive loading  
effects, the differential signals should be separated by  
more than the width of a trace.  
RS485 Cable ꢁength vs Data Rate  
For a given data rate, the maximum transmission dis-  
tance is bounded by the cable properties. A typical curve  
of cable length vs data rate compliant with the RS485/  
RS422 standards is shown in Figure 19. Three regions  
of this curve reflect different performance limiting fac-  
tors in data transmission. In the flat region of the curve,  
maximum distance is determined by resistive losses in  
the cable. The downward sloping region represents limits  
in distance and data rate due to AC losses in the cable.  
Route outputs away from sensitive inputs to reduce  
feedback effects that might cause noise, jitter, or even  
oscillations. For example, do not route DI or A/B near the  
driver or receiver outputs.  
28701f  
23  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
VCC = 3V to 5.5V, V= 1.7V to VCC. ꢁogic input pins not shown are tied to a valid logic state.  
V
V
L
V
L
L
LTC2870  
LTC2870  
LTC2870  
485/232  
RXEN  
H/F  
485/232  
RXEN  
LB  
DXEN  
LB  
DXEN  
DXEN  
RXEN  
485/232  
TE485  
LB  
DY  
RA  
Y
A
Y
DY  
RA  
Y
A
DY  
120Ω  
Z
DZ  
RB  
Z
DZ  
RB  
Z
A
B
RA  
120Ω  
B
B
GND  
GND  
GND  
28701 F21  
28701 F22  
28701 F20  
Figure 20. TC2870 in  
RS232 Mode  
Figure 21. TC2870 in RS232  
Mode with ꢁoopback  
Figure 22. TC2870 in RS485  
Mode, Terminated  
V
L
V
L
V
L
LTC2870  
LTC2870  
LTC2870  
RXEN  
DXEN  
485/232  
LB  
RXEN  
DXEN  
RXEN  
DXEN  
485/232  
LB  
TE485  
LB  
485/232  
H/F  
H/F  
TE485  
H/F  
TE485  
Y
Z
Y
Z
DY  
RA  
DY  
RA  
Y
DY  
RA  
120ꢀ  
Z
A
B
A
120ꢀ  
B
GND  
GND  
GND  
28701 F24  
28701 F23  
28701 F25  
Figure 23. TC2870 in RS485  
Mode in ꢁoopback  
Figure 24. TC2870 in RS485  
Mode Half-Duplex  
Figure 25. TC2870 in RS485  
Mode, Half-Duplex, with  
ꢁoopback and Terminated  
28701f  
24  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
VCC = 3V to 5.5V, V= 1.7V to VCC. ꢁogic input pins not shown are tied to a valid logic state.  
V
L
V
L
V
L
LTC2870  
LTC2871  
LTC2871  
RXEN  
H/F  
DX485  
DX232  
DX232  
DXEN  
TE485  
DX485  
RX232  
RX485  
RX485  
CH2  
RX232  
LB  
CH2  
TE485  
H/F  
TE485  
H/F  
485/232  
RS RS  
232 485  
LB  
LB  
DY  
Y
Y
Z
A
B
DI  
120Ω  
Z
DIN1  
DOUT1  
RIN1  
DZ  
RA  
ROUT1  
A
RO  
DIN2  
DOUT2  
RIN2  
ROUT2  
120Ω  
B
RB  
GND  
GND  
GND  
28701 F26  
28701 F28  
28701 F27  
Figure 2ꢀ. TC2870 Protocol Switching  
Figure 27. TC2871 in RS485 Mode  
Figure 28. TC2871 in RS232 Mode  
V
L
V
L
V
L
LTC2871  
LTC2871  
LTC2871  
RX232  
RX232  
DX232  
DX485  
DX232  
DX232  
DX485  
LB  
CH2  
RX485  
TE485  
H/F  
RX232  
RX485  
DX485  
CH2  
RX485  
H/F  
TE485  
CH2  
H/F  
TE485  
LB  
LB  
Y
Y
DI  
120Ω  
Z
DI  
Z
A
RO  
A
120Ω  
B
RO  
DIN1  
DOUT1  
RIN1  
B
DIN1  
DOUT1  
ROUT1  
DIN1  
DOUT1  
RIN1  
ROUT1  
DIN2  
ROUT1  
RIN1  
DOUT2  
DIN2  
DOUT2  
RIN2  
ROUT2  
RIN2  
ROUT2  
GND  
GND  
GND  
28701 F30  
28701 F29  
28701 F31  
Figure 29. TC2871 Single  
RS232 Channel Active  
Figure 30. TC2871 in  
RS485 and RS232 Mode  
Figure 31. TC2871 in RS485 and  
RS232 Mode with ꢁoopback and  
RS485 Termination  
28701f  
25  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
VCC = 3V to 5.5V, V= 1.7V to VCC. ꢁogic input pins not shown are tied to a valid logic state.  
V
L
V
V
L
L
LTC2871  
LTC2871  
LTC2871  
CH2  
LB  
RX232  
CH2  
H/F  
DX232  
DX485  
H/F  
RX232  
CH2  
DX232  
DX485  
H/F  
TE485  
RX485  
LB  
RX485  
TE485  
TE485  
D R 485  
D R 232  
DX485  
RX485  
DX232  
LB  
RX232  
Y
Z
Y
Z
Y
DI  
DI  
DI  
120Ω  
Z
A
RO  
RO  
RO  
120Ω  
B
DIN1  
DOUT1  
DIN1  
DIN1  
DOUT1  
RIN1  
DOUT1  
RIN1  
RIN1  
ROUT1  
DIN2  
ROUT1  
DIN2  
ROUT1  
DIN2  
DOUT2  
DOUT2  
RIN2  
DOUT2  
RIN2  
ROUT2  
ROUT2  
RIN2  
ROUT2  
GND  
GND  
GND  
28701 F32  
28701 F34  
28701 F33  
Figure 32. TC2871 in RS485 and  
RS232 Mode, Both Half-Duplex  
Figure 33. TC2871 in RS485 and RS232  
Mode, RS485 Half-Duplex, ꢁoopback  
Figure 34. TC2871 in RS485  
and RS232 Mode, RS485  
Half-Duplex, Terminated  
V
L
LTC2870/  
LTC2871  
H/F  
485/232  
3V TO 5.5V  
LB  
TE485  
1.7V TO V  
LTC2870/  
LTC2871  
CC  
V
V
CC  
L
LTC2870/  
LTC2871  
CONTROL  
SIGNALS  
Y
DY, DIN1  
Y
A
DI  
120Ω  
Z
DY  
RS232  
μP  
RA, ROUT1  
RS485  
FULL HALF  
DUPLEX  
H/F  
DZ, DIN2  
Z
28701 F37  
RB, ROUT2  
B
A
C
L
3k  
DATA RATE  
C
L
RO  
RB  
120Ω  
100kbps 5nF  
500kbps 1nF  
GND  
B
28701 F36  
GND  
Figure 37. Driving ꢁarger  
RS232 ꢁoads  
Figure 3ꢀ. Microprocessor Interface  
28701 F35  
Figure 35. RS485 Duplex Switching  
28701f  
26  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
1.7V TO V  
CC  
3V TO 5.5V  
V
L
LTC2870  
V
V
L
CC  
DXEN  
RXEN  
485/232  
RS485  
RS485  
RS232  
H/F  
FULL-DUPLEX HALF-DUPLEX FULL-DUPLEX  
TE485  
485/232 = 1  
H/F = 0  
485/232 = 1  
H/F = 1  
485/232 = 0  
H/F = X  
DY  
RS485  
RS485  
RS485  
RS485  
RS232  
RS232  
Y
Z
CONTROLLER  
DZ  
RA  
CONNECTOR  
RS485  
RS485  
RS232  
RS232  
A
B
RB  
GND  
28701 F38  
Figure 38. TC2870: Making Use of Shared I/O for Various Communication Configurations  
1.7V TO V  
CC  
3V TO 5.5V  
V
LTC2870  
L
V
V
CC  
L
DXEN  
TE485  
RXEN  
485/232  
RS485  
RS232  
H/F  
HALF-DUPLEX HALF-DUPLEX  
485/232 = 1  
H/F = 0  
485/232 = 0  
H/F = X  
DY  
RS485  
RS485  
RS232  
RS232  
Y
Z
CONNECTOR  
CONTROLLER  
DZ  
RA  
A
B
RB  
GND  
28701 F39  
Figure 39. TC2870: Using External Connections for Half-Duplex RS232 or RS485 Operation  
28701f  
27  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
1.7V TO V  
CC  
3V TO 5.5V  
V
L
V
CC  
V
L
LTC2871  
RS232  
RS232  
DX232  
RX232  
DX485  
RX485  
H/F  
FULL-DUPLEX FULL-DUPLEX  
RS485  
RS485  
FULL-DUPLEX HALF-DUPLEX  
H/F = 0  
H/F = 1  
TE485  
RS232  
RS232  
DOUT1  
DIN1  
RS485  
RS485  
RS485  
RS485  
Y
Z
DI  
CONTROLLER  
RS232  
RS232  
DOUT2  
RIN1  
DIN2  
CONNECTOR  
RS232  
RS232  
ROUT1  
RS485  
RS485  
A
B
RO  
RS232  
RS232  
ROUT2  
RIN2  
GND  
28701 F40  
Figure 40. TC2871: Various Communication Configurations  
1.7V TO V  
CC  
3V TO 5.5V  
V
L
V
CC  
V
LTC2871  
RS232  
RS232  
L
HALF-DUPLEX HALF-DUPLEX  
DX232  
RX232  
DX485  
RX485  
H/F  
TE485  
DIN1  
RS485  
RS485  
FULL-DUPLEX HALF-DUPLEX  
H/F = 0  
H/F = 1  
RS232  
RS232  
DOUT1  
RS485  
RS485  
RS485  
RS485  
Y
Z
DI  
CONTROLLER  
RS232  
RS232  
DOUT2  
RIN1  
DIN2  
CONNECTOR  
ROUT1  
RS485  
RS485  
A
B
RO  
RIN2  
ROUT2  
GND  
28701 F41  
Figure 41. TC2871: More Communication Configurations Using External Connections  
28701f  
28  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
VCC = 3V to 5.5V, V= 1.7V to VCC. ꢁogic input pins not shown are tied to a valid logic state.  
V
L
V
L
LTC2871  
LTC2871  
RX232  
RX232  
DX232  
DX485  
CH2  
DX232  
DX485  
CH2  
LB  
RX485  
H/F  
LB  
RX485  
H/F  
TE485  
TE485  
Y
Z
A
DI  
RO  
120Ω  
120Ω  
B
ROUT1  
RIN1  
DIN1  
RXIN  
DOUT1  
RXOUT  
RS485  
UP TO 4000 FT  
CAT5e CABLE  
RS232  
RS232  
ROUT1  
DIN1  
RIN1  
DRIVER  
OUT  
DRIVER  
IN  
ROUT1  
Y
Z
A
B
RO  
DI  
120Ω  
120Ω  
GND  
GND  
28701 F42  
Figure 42. RS232 Extension Cord Using RS232 to RS485 Conversion  
SLAVE  
SLAVE  
LTC2852  
LTC2852  
SLAVE  
LTC2870/LTC2871  
MASTER  
LTC2855  
120Ω  
120Ω  
120Ω  
V
3.3V  
L
TE485  
TE  
28701 F43  
Figure 43. RS485 Full-Duplex Network  
28701f  
29  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
LTC2871  
LTC2871  
DIN1  
DOUT1  
DIN1  
DOUT1  
RIN1  
PORT 1  
LOGIC  
INTERFACE  
PORT 1  
LINE  
INTERFACE  
PORT 1  
LOGIC  
INTERFACE  
PORT 1  
LINE  
INTERFACE  
ROUT1  
RIN1  
ROUT1  
DIN2  
DOUT2  
RIN2  
DIN2  
DOUT2  
RIN2  
PORT 2A/2B  
LOGIC  
INTERFACE  
PORT 2A  
LINE  
INTERFACE  
PORT 2A  
LOGIC  
INTERFACE  
PORT 2A/2B  
LINE  
ROUT2  
ROUT2  
INTERFACE  
CH2  
CH2  
SELECT LINE 2A  
SELECT LINE 2B  
SELECT LINE 2A  
SELECT LINE 2B  
LTC2871  
LTC2871  
CH2  
CH2  
DIN2  
DOUT2  
RIN2  
DIN2  
DOUT2  
RIN2  
PORT 2B  
LINE  
INTERFACE  
PORT 2B  
LOGIC  
INTERFACE  
ROUT2  
ROUT2  
DIN1  
DOUT1  
RIN1  
DIN1  
DOUT1  
RIN1  
PORT 3  
LOGIC  
INTERFACE  
PORT 3  
LINE  
INTERFACE  
PORT 3  
LOGIC  
INTERFACE  
PORT 3  
LINE  
ROUT1  
ROUT1  
INTERFACE  
28701 F44  
28701 F45  
Figure 44. RS232 Triple Transceiver  
with Selectable ꢁine Interface  
Figure 45. RS232 Triple Transceiver  
with Selectable ꢁogic Interface  
LTC2870/  
LTC2871  
H/F  
SELECT  
RS485  
INTERFACE  
INPUT2 INPUT1  
Y
Z
INPUT1  
INPUT2  
RA,  
RO  
A
B
28701 F46  
Figure 4ꢀ. RS485 Receiver with Multiplexed Inputs  
28701f  
30  
LTC2870/LTC2871  
TYPICAL APPLICATIONS  
3V TO 5.5V  
3V TO 5.5V  
10μH  
220nF  
220nF  
10μH  
2.2μF  
2.2μF  
1.7V TO V  
CC  
V
L
SW  
LTC2871  
CAP  
CAP  
SW  
LTC2870  
V
CC  
CC  
1.7V TO V  
CC  
V
L
V
H/F  
0.1μF  
H/F  
0.1μF  
TE485  
TE485  
RS485  
INTERFACE  
485/232  
Y
Y
DY  
RA  
DI  
120Ω  
120Ω  
Z
Z
A
A
RO  
120Ω  
120Ω  
B
B
DIN1  
DOUT1  
ROUT1  
DIN2  
RIN1  
RS232  
INTERFACE  
DOUT2  
ROUT2  
RIN2  
GND  
V
V
DD  
DD  
1μF  
V
V
1μF  
EE  
EE  
GND  
28701 F47  
1μF  
1μF  
Figure 47. Typical Supply Connections with External Components Shown  
3V TO 5.5V  
470nF  
22μH  
2.2μF  
V
L
SW  
CAP  
CAP  
V
CC  
CC  
V
V
L
LTC2870/  
LTC2871  
LTC2870/  
LTC2871  
SW  
GND  
V
V
V
V
DD  
GND  
DD  
EE  
EE  
28701 F48  
2.2μF  
2.2μF  
INDUCTOR: TAIYO YUDEN CBC2518T220M,  
MURATA LQH32CN220K53  
Figure 48. Running Two TC2870 or TC2871 Devices from One Shared Power Source  
28701f  
31  
LTC2870/LTC2871  
PACKAGE DESCRIPTION  
FE Package  
28-ꢁead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 2726 25 24 23 22 21 20 19 18 1716 15  
6.60 ±0.10  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
4.50 ±0.10  
SEE NOTE 4  
6.40  
(.252)  
BSC  
2.74  
(.108)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
28701f  
32  
LTC2870/LTC2871  
PACKAGE DESCRIPTION  
FE Package  
38-ꢁead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1772 Rev A)  
Exposed Pad Variation AA  
4.75 REF  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
REF  
38  
20  
6.60 0.10  
2.74 REF  
4.50 REF  
SEE NOTE 4  
6.40  
REF (.252)  
BSC  
2.74  
(.108)  
0.315 0.05  
1.05 0.10  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
19  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0o – 8o  
0.50  
(.0196)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.17 – 0.27  
FE38 (AA) TSSOP 0608 REV A  
(.0067 – .0106)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
28701f  
33  
LTC2870/LTC2871  
PACKAGE DESCRIPTION  
UFD Package  
28-ꢁead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 ±0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.50 REF  
2.65 ± 0.05  
3.65 ± 0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
3.50 REF  
4.10 ± 0.05  
5.50 ± 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45° CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 ± 0.05  
4.00 ± 0.10  
(2 SIDES)  
27  
28  
0.40 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 ± 0.10  
(2 SIDES)  
3.50 REF  
3.65 ± 0.10  
2.65 ± 0.10  
(UFD28) QFN 0506 REV B  
0.25 ± 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
28701f  
34  
LTC2870/LTC2871  
PACKAGE DESCRIPTION  
UHF Package  
38-ꢁead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701 Rev C)  
0.70 p 0.05  
5.50 p 0.05  
4.10 p 0.05  
3.00 REF  
5.15 0.05  
3.15 0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
5.5 REF  
6.10 p 0.05  
7.50 p 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 s 45o CHAMFER  
0.75 p 0.05  
3.00 REF  
5.00 p 0.10  
37  
38  
0.00 – 0.05  
0.40 p0.10  
PIN 1  
TOP MARK  
1
2
(SEE NOTE 6)  
5.15 0.10  
5.50 REF  
7.00 p 0.10  
3.15 0.10  
(UH) QFN REF C 1107  
0.200 REF 0.25 p 0.05  
R = 0.125  
TYP  
R = 0.10  
TYP  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
28701f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
35  
LTC2870/LTC2871  
TYPICAL APPLICATION  
Quad RS232 Transceiver with RS485 Communication Over Half-Duplex, Terminated Bus  
3V TO 5.5V  
470nF  
22μH  
2.2μF  
V
L
SW  
LTC2871  
CAP  
CAP  
V
V
L
CC  
CC  
LTC2804  
SW  
V
T1IN  
T1OUT1  
TE485  
ROUT1  
T2IN  
RIN1  
DIN1  
DOUT1  
T2OUT  
ROUT1  
DIN2  
RIN1  
ROUT2  
RIN2  
DOUT2  
ROUT2  
RO  
RIN2  
A
V
V
GND  
EE  
DD  
3.3V  
120Ω  
B
V
CC  
LTC2854  
0.1μF  
TE  
DI  
Y
A
B
DI  
120Ω  
Z
120Ω  
RO  
GND  
V
V
EE  
DD  
GND  
28701 TA02  
2.2μF  
2.2μF  
RELATED PARTS  
PART NUMBER  
LTC1334  
DESCRIPTION  
COMMENTS  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Dual Port, Single 5V Supply, Configurable, 10kV ESD  
Single Port, Configurable  
LTC1387  
LTC2801/LTC2802/ 1.8V to 5.5V RS232 Single and Dual Transceivers  
LTC2803/LTC2804  
Up to 1Mbps, 10kV ESD, Logic Supply Pin, Tiny DFN Packages  
LTC2854/LTC2855 3.3V 20Mbps RS485 Transceiver with Integrated  
Switchable Termination  
3.3V Supply, Integrated, Switchable, 120Ω Termination Resistor, 25kV ESD  
5V Supply, Integrated, Switchable, 120Ω Termination Resistor, 15kV ESD  
LTC2859/LTC2861 20Mbps RS485 Transceiver with Integrated  
Switchable Termination  
LTM2881  
Complete Isolated RS485/RS422 μModule  
Transceiver + Power  
20Mbps, 2500V  
Isolation with Integrated DC/DC Converter, Integrated,  
RMS  
Switchable, 120Ω Termination Resistor, 15kV ESD  
LTM2882  
Dual Isolated RS232 μModule Transceiver + Power 1Mbps, 2500V  
Isolation with Integrated DC/DC Converter, 10kV ESD  
RMS  
28701f  
LT 1210 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
36  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

LTC2871CUHFPBF 相关器件

型号 制造商 描述 价格 文档
LTC2871IFE#PBF Linear LTC2871 - RS232/RS485 Multiprotocol Transceivers with Integrated Termination; Package: TSSOP; Pins: 38; Temperature Range: -40&amp;deg;C to 85&amp;deg;C 获取价格
LTC2871IFEPBF Linear RS232/RS485 Multiprotocol Transceivers with Integrated Termination 获取价格
LTC2871IUHF#PBF Linear LTC2871 - RS232/RS485 Multiprotocol Transceivers with Integrated Termination; Package: QFN; Pins: 38; Temperature Range: -40&amp;deg;C to 85&amp;deg;C 获取价格
LTC2871IUHFPBF Linear RS232/RS485 Multiprotocol Transceivers with Integrated Termination 获取价格
LTC2871_15 Linear RS232/RS485 Multiprotocol Transceivers with Integrated Termination 获取价格
LTC2872 Linear Systems RS232/RS485 Dual Multiprotocol Transceiver with Integrated Termination 获取价格
LTC2872 ADI 具集成型终端的 RS232 / RS485 双通道多协议收发器 获取价格
LTC2872IUHF#PBF Linear LTC2872 - RS232/RS485 Dual Multiprotocol Transceiver with Integrated Termination; Package: QFN; Pins: 38; Temperature Range: -40&amp;deg;C to 85&amp;deg;C 获取价格
LTC2873 ADI 具可通断终端的单总线 RS485 / RS232 多协议收发器 获取价格
LTC2873CUFD#PBF Linear LTC2873 - Single-Bus RS485/RS232 Multiprotocol Transceiver with Switchable Termination; Package: QFN; Pins: 24; Temperature Range: 0&amp;deg;C to 70&amp;deg;C 获取价格

LTC2871CUHFPBF 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6