LTC2970CUFD [Linear]

Dual I2C Power Supply Monitor and; 双I2C电源监视器和
LTC2970CUFD
型号: LTC2970CUFD
厂家: Linear    Linear
描述:

Dual I2C Power Supply Monitor and
双I2C电源监视器和

监视器
文件: 总36页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2970/LTC2970-1  
2
Dual I C Power  
Supply Monitor and  
Margining Controller  
U
DESCRIPTIO  
FEATURES  
The LTC®2970 is a dual power supply monitor and  
margining controller with an SMBus compatible I C bus  
Less Than ±±0.5 Total Unadjusted Error 14-Bit ΔΣ  
2
ADC with On-Chip Reference  
Dual, 8-Bit IDACs with 1x Voltage Buffers  
interface. A low-drift, on-chip reference and 14-bit ΔΣ A/D  
converterallowprecisemeasurementsofsupplyvoltages,  
load currents or internal die temperature. Fault manage-  
ment allows ALERT to be asserted for configurable over  
and under voltage fault conditions. Two voltage buffered,  
8-bit IDACs allow highly accurate programming of DC/DC  
converter output voltages. The IDACs can be configured  
to automatically servo the power supplies to the desired  
voltages using the ADC. The LTC2970-1 adds a tracking  
feature that can be used to turn multiple power supplies  
on or off in a controlled manner.  
Linear, Voltage Servo Adjusts Supply Voltages by  
Ramping IDAC Outputs Up/Down  
2
I C™ Bus Interface (SMBus Compatible)  
Extensive, User Configurable Fault Monitoring  
On-Chip Temperature Sensor  
Available in 24-Lead 4mm × 5mm QFN Package  
U
APPLICATIO S  
Dual Power Supply Voltage Servo  
Monitoring Supply Voltage and Current  
Programmable Power Supplies  
Programmable Reference  
The bus address is set to 1 of 9 possible combinations by  
pin strapping the ASEL0 and ASEL1 pins. The LTC2970/  
LTC2970-1 are packaged in the 24-lead, 4mm × 5mm  
QFN package.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Dual Power Supply Monitor and Controller (One of Two Channels Shown)  
ADC Total Unadjusted Error  
vs Temperature  
8V TO 15V  
0.50  
0.25  
0
15 PARTS MOUNTED ON PCB  
0.1μF  
0.1μF  
12V  
IN  
V
V
DD  
IN  
OUT  
IN  
1/2 LTC2970  
GPIO_CFG  
I+  
I–  
V
V
V
IN0_BM  
IN0_BP  
OUT0  
ALERT  
SCL  
DC/DC  
2
I C BUS  
SMBUS  
COMPATIBLE  
CONVERTER  
–0.25  
SDA  
V
I
(
)
IN0_AP  
ADC V = 5V  
IN  
RUN/SS FB  
GPIO_0  
REF  
LOAD  
OUT0  
–0.50  
–25  
0
50  
–50  
75  
100  
25  
TEMPERATURE (°C)  
V
SGND  
GND  
IN0_AM  
29701 TA01b  
GND ASEL0 ASEL1  
0.1μF  
29701 TA01  
29701fc  
1
LTC2970/LTC2970-1  
W W U W  
ABSOLUTE AXI U RATI GS  
PIN CONFIGURATION  
(Notes 1 and 2)  
TOP VIEW  
Supply Voltages:  
V
DD  
......................................................... –0.3V to 6V  
12V .................................................... –0.3V to 15V  
IN  
24 23 22 21 20  
Digital Input/Output Voltages:  
V
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
SDA  
IN0_AP  
ASEL0, ASEL1 ............................ –0.3V to V + 0.3V  
V
V
V
SCL  
DD  
IN0_AM  
V
ALERT  
GPIO_0  
GPIO_1  
SDA, SCL, GPIO_CFG,  
IN0_BP  
IN0_BM  
25  
ALERT, GPIO_0, GPIO_1.......................... –0.3V to 6V  
Analog Voltages:  
V
IN1_AP  
IN1_AM  
I
OUT0  
V
V
V
, V  
, V  
,
IN0_AP IN0_AM IN0_BP  
V
I
IN1_BP  
OUT1  
, V  
, V  
,
8
9
10 11 12  
IN0_BM IN1_AP IN1_AM  
, V  
, V  
, V  
.............. –0.3V to 6V  
OUT0 OUT1 DD  
IN1_BP IN1_BM OUT0 OUT1  
I
, I  
, REF......................... –0.3V to V + 0.3V  
UFD PACKAGE  
24-LEAD (4mm × 5mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
RGND.................................................... –0.3V to 0.3V  
Operating Temperature Range:  
LTC2970C ................................................ 0°C to 70°C  
LTC2970I ............................................. –40°C to 85°C  
Storage Temperature Range...................65°C to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
T
JMAX  
JA  
EXPOSED PAD (PIN 25) IS GND MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2970CUFD#PBF  
LTC2970CUFD-1#PBF  
LTC2970IUFD#PBF  
LTC2970IUFD-1#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
24-Lead (4mm × 5mm) Plastic DFN  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2970CUFD#TRPBF  
2970  
LTC2970CUFD-1#TRPBF 29701  
24-Lead (4mm × 5mm) Plastic DFN  
24-Lead (4mm × 5mm) Plastic DFN  
24-Lead (4mm × 5mm) Plastic DFN  
0°C to 70°C  
LTC2970IUFD#TRPBF  
LTC2970IUFD-1#TRPBF  
2970  
–40°C to 85°C  
–40°C to 85°C  
29701  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
29701fc  
2
LTC2970/LTC2970-1  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 2.°C0 V12VIN = 12V, VDD and REF pins floating unless otherwise indicated,  
CVDD = 1±±nF and CREF = 1±±nF0  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Characteristics  
I
I
12V Supply Current  
V
V
V
= 12V, V Floating  
4.24  
3.7  
7.5  
5
mA  
V12  
IN  
12VIN  
DD  
V
V
V
Supply Current  
= 5V, V  
= V  
DD  
mA  
DD  
DD  
DD  
DD  
DD  
DD  
12VIN  
V
Undervoltage Lockout  
Undervoltage Lockout Hysteresis  
Ramping-Down, V  
= V  
DD  
3.7  
4.14  
118  
4.4  
V
LKO  
DD  
12VIN  
mV  
V
Supply Input Operating Range  
Regulator Output Voltage  
4.5  
5.75  
5.25  
V
V
8V ≤ V  
≤ 15V, 1mA ≤ I  
≤ 0  
VDD  
4.75  
4.95  
10  
12VIN  
Regulator Output Voltage  
Temperature Coefficient  
ppm/°C  
Regulator Output Voltage Load  
Regulation  
–1mA ≤ I  
≤ 0  
160  
ppm/mA  
VDD  
Regulator Line Regulation  
8V ≤ V  
≤ 15V, I  
= 0mA  
80  
ppm/V  
mA  
12VIN  
VDD  
Regulator Output Short-Circuit Current  
V
= 12V, V = 0V  
–5  
8
–34  
–63  
15  
12VIN  
DD  
V
12V Supply Operating Range  
V
12VIN  
IN  
Voltage Reference Characteristics  
V
Reference Output Voltage  
1.229  
2
V
REF  
Reference Voltage Temperature  
Coefficient  
ppm/°C  
Reference Overdrive Voltage Input  
Range  
1
1.5  
V
ADC Characteristics  
N_ADC  
Resolution  
N_ADC = 8.192V/16384  
= 3V, V = V – V (Note 3)  
INn_xM  
500  
2
μV/LSB  
%
TUE_ADC  
INL_ADC  
DNL_ADC  
Total Unadjusted Error  
Integral Nonlinearity  
Differential Nonlinearity  
Input Voltage Range  
Offset Error  
V
0.5  
4.5  
IN  
IN  
INn_xP  
(Note 4)  
(Note 7)  
–4.5  
LSB  
LSB  
V
0.5  
V
0
6
IN_ADC  
OS_ADC  
V
–1000  
–316  
0.19  
1000  
μV  
Offset Error Drift  
μV/°C  
%
GAIN_ADC  
Gain Error  
Full-Scale V = 6V  
0.4  
0.1  
IN  
Gain Error Drift  
3
ppm/°C  
ms  
T
Conversion Time  
33.3  
3
CONV_ADC  
C
Input Sampling Capacitance  
Input Sampling Frequency  
Input Leakage Current  
pF  
IN_ADC  
IN_ADC  
F
61.4  
kHz  
μA  
I
0V < V < 6V  
IN  
LEAK_ADC  
IDAC Output Current Characteristics  
N_I  
Resolution (Guaranteed Monotonic)  
Integral Nonlinearity  
8
Bits  
LSB  
OUT  
INL_I  
V
V
V
< V – 1.5V  
1
1
OUT  
IOUTn  
IOUTn  
IOUTn  
DD  
DNL_I  
Differential Nonlinearity  
Full-Scale Output Current  
Output Current Drift  
< V – 1.5V  
LSB  
OUT  
DD  
I
I
I
I
< V – 1.5V, DAC Code = 'hff  
–236  
–255  
32  
–276  
μA  
FS- OUT  
DD  
I
DAC Code = 'hff  
DAC Code = 'h00  
ppm/°C  
DRIFT- OUT  
I
Offset Current  
0.1  
μA  
OS- OUT  
29701fc  
3
LTC2970/LTC2970-1  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2.°C0 V12VIN = 12V, VDD and REF pins floating unless otherwise indicated,  
CVDD = 1±±nF and CREF = 1±±nF0  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage Buffered IDAC Output Characteristics  
INL_V  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Voltage  
R
R
= 10kΩ, No Load on V  
= 10kΩ, No Load on V  
(Note 5)  
(Note 5)  
1
1
LSB  
LSB  
OUT  
IOUTn  
IOUTn  
OUTn  
OUTn  
DNL_V  
OUT  
V
V
V
= V  
– V , No Load on V  
IOUTn  
OUTn  
1.6  
0.17  
–57  
100  
1
10  
mV  
OS- OUT  
OS  
OUTn  
OUTn  
Output Voltage Drift  
Load Regulation  
No Load on V  
μV/°C  
ppm/mA  
ppm/mA  
nA  
V
OUT  
0.1V < V  
0.1V < V  
< V – 1.5V, I  
Source = 1mA  
Sink = 1mA  
OUTn  
OUTn  
DD  
VOUTn  
VOUTn  
< V – 1.5V, I  
DD  
Leakage Current  
V
V
V
High-Z, 0V ≤ V  
≤ V  
DD  
100  
–50  
50  
OUTn  
OUTn  
OUTn  
OUTn  
Short-Circuit Current Low  
Short-Circuit Current High  
Shorted to GND  
Shorted to V  
mA  
mA  
DD  
Soft Connect Comparator Characteristics (CMP±, CMP1)  
Offset Voltage  
Temperature Sensor Characteristics  
TMP Gain  
12V Voltage Divider Characteristics  
V
OS  
3
mV  
°C/LSB  
V/V  
0.25  
0.333  
IN  
GAIN_12V  
Gain  
0.329  
0.335  
IN  
Digital Inputs SCL, SDA, GPIO_CFG, GPIO_±, GPIO_1  
V
V
V
Input High Threshold Voltage  
Input Low Threshold Voltage  
SDA, SCL  
2.1  
1.6  
V
V
IH  
GPIO_CFG, GPIO_0, GIPO_1  
SDA, SCL  
1.5  
1.0  
V
IL  
GPIO_CFG, GPIO_0, GIPO_1  
V
Input Hysteresis  
0.08  
10  
V
HYST  
LEAK  
I
Input Leakage Current  
Input Capacitance  
0V ≤ V ≤ 6V  
1
μA  
pF  
IN  
C
IN  
Three State Inputs ASEL[1:±]  
V
V
Input High Threshold Voltage  
Input Low Threshold Voltage  
High, Low Input Current  
High Z Input Current  
V
DD  
– 0.5  
V
V
IH_ASEL  
IL_ASEL  
IN,HL  
0.5  
2
I
I
ASEL[1:0] = 0, V  
20  
μA  
μA  
DD  
IN,Z  
Open Drain Outputs SDA, GPIO_CFG, GPIO_±, GPIO_1, ALERT  
V
Output Low Voltage  
I
= 3mA  
SINK  
0.4  
1
V
OL  
OH  
I
Input Leakage Current  
0V ≤ V ≤ 6V  
μA  
IN  
29701fc  
4
LTC2970/LTC2970-1  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2.°C0  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C Interface Timing Characteristics  
f
t
t
t
t
t
t
t
Serial Clock Frequency  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
10  
1.3  
0.6  
1.3  
600  
600  
600  
400  
kHz  
μs  
μs  
μs  
ns  
ns  
ns  
SCL  
Serial Clock Low Period  
LOW  
Serial Clock High Period  
HIGH  
Bus Free Time Between Stop and Start  
Start Condition Hold Time  
Start Condition Setup Time  
Stop Condition Setup Time  
BUF  
HD,STA  
SU,STA  
SU,STO  
HD,DAT  
Data Hold Time (LTC2970 Receiving Data)  
Data Hold Time (LTC2970 Transmitting Data)  
0
300  
ns  
ns  
900  
t
t
t
Data Setup Time (LTC2970 Receiving Data)  
Pulse Width of Spike Suppressed  
GPIO_0 and GPIO_1 Setup Time  
(Note 6)  
(Note 6)  
100  
ns  
ns  
μs  
SU,DAT  
98  
SP  
GPIO_0 and GPIO_1 input setup time  
prior to the 26th rising SCL of an IO()  
2.5  
SETUP_GPIO  
2
I C read. These inputs must be valid and  
stable by this time to be returned in the  
IO() read result. (Note 6)  
t
t
GPIO_0 and GPIO_1 Hold Time  
GPIO_0 and GPIO_1 Output Time  
GPIO_0 and GPIO_1 input hold time  
2.5  
μs  
μs  
HOLD_GPIO  
OUT_GPIO  
2
after the 26th rising SCL of an IO() I C  
read. These inputs must be held until  
this amount of time has elapsed to be  
returned in the IO() read result. (Note 6)  
GPIO_0 and GPIO_1 output delay after  
2.5  
39  
2
the 35th rising SCL of an I C write. These  
outputs will become high impedance or  
begin driving low by this time. (Note 6)  
Internal Timers  
2
t
t
t
Stuck BUS Timer  
The LTC2970 will release the I C bus and  
24  
32  
304  
255  
32  
ms  
μs  
TIMEOUT_SMB  
SETUP_ADC  
TIMEOUT_  
terminate the current command if the  
command is not completed before this  
amount of time has elapsed.  
ADC Channel Setup Time  
Tracking SYNC Failure Timer  
Tracking IDAC Disconnect Delay  
After selecting a new ADC channel, the  
LTC2970 will wait this amount of time  
to allow the analog input to settle before  
beginning an ADC conversion.  
LTC2970-1 Only: The LTC2970-1 will  
abort a pending SYNC() command if a  
tracking command is not received before  
this amount of time has elapsed.  
ms  
ms  
SYNC  
t
LTC2970-1 Only: After the tracking  
algorithm asserts CPIO_CFG low, the  
LTC2970-1 will delay disconnecting the  
IDACs from the power supply feedback  
nodes by this amount of time. Used while  
tracking power supplies on.  
HOLD_TRACK  
29701fc  
5
LTC2970/LTC2970-1  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2.°C0  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Tracking IDAC Disconnect Delay  
LTC2970-1 Only: After the tracking  
algorithm asserts CPIO_CFG high, the  
LTC2970-1 will wait this amount of time  
before starting to decrement Chn_a_  
delay_track[9:0]. Used while tracking  
power supplies off.  
32  
ms  
SETUP_TRACK  
t
Tracking IDAC Decrement Rate  
LTC2970-1 Only: The LTC2970-1 changes  
Chn_a_delay_track[9:0] at this rate.  
88  
μs/LSB  
DEC_TRACK  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Integral nonlinearity (INL) is defined as the deviation of a code  
from a straight line passing through the actual endpoints (0V and 6V)  
of the transfer curve. The deviation is measured from the center of the  
quantization band.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
Note .: Nonlinearity is defined from the first code that is greater than or  
equal to the maximum offset specification to code 255 (full-scale).  
Note 6: Maximum capacitive load, C , for SCL and SDA is 400pF. Data and  
B
Note 3: TUE (%) is defined as:  
clock risetime (t ) and falltime (t ) are: (20 + 0.1 • C )(ns) < t < 300ns and  
r f B r  
(20 + 0.1 • C )(ns) < t < 300ns. C = capacitance of one bus line in pF.  
B
f
B
(INL 500μV/LSB+ VOS  
)
SCL and SDA external pull-up voltage, V , is 3V < V < 5.5V.  
% Gain Error +  
100  
IO  
IO  
V
IN  
Note 7: This specification is guaranteed by design.  
TIMING DIAGRAM  
The I2C Bus Specification  
SDA  
t
SU;DAT  
t
t
t
t
f
t
t
SP  
t
t
BUF  
f
LOW  
r
HD;STA  
r
SCL  
t
t
SU;STA  
t
HD;STA  
SU;STO  
t
t
HIGH  
HD;DAT  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
CONDITION CONDITION  
29701 TD  
29701fc  
6
LTC2970/LTC2970-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
ADC Total Unadjusted Error  
vs Temperature  
ADC INL  
ADC DNL  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.050  
0.025  
0
1.00  
BASED ON AVERAGE OF 15 PARTS  
ASSEMBLED ON 1/8" THICK PCB  
0.75  
0.50  
0.25  
1V  
–0.025  
–0.050  
–0.075  
–0.100  
–0.125  
–0.150  
1.8V  
2.5V  
0
3.3V  
–0.25  
ADC V = 5V  
IN  
–0.50  
–0.75  
–1.00  
–0.5  
–1.0  
–0.175  
4
6
0
1
2
3
5
–50  
–25  
0
25  
100  
0
1
2
4
5
6
50  
75  
3
INPUT VOLTAGE (V)  
TEMPERATURE (oC)  
INPUT VOLTAGE (V)  
29701 G02  
29701 G01  
29701 G03  
ADC Rejection vs Frequency  
at VIN  
ADC Rejection vs Frequency  
at VIN  
ADC Zero Code Center Offset  
Voltage vs Temperature  
–305  
–310  
–315  
–320  
–325  
–330  
–335  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–50  
0
25  
50  
75  
100  
–25  
1
10  
100  
1000  
10000  
0
5000  
15000 20000 25000 30000  
10000  
TEMPERATURE (oC)  
FREQUENCY AT V (Hz)  
FREQUENCY AT V (Hz)  
IN  
IN  
29701 G04  
29701 G05  
29701 G06  
ADC Noise Histogram  
Voltage Buffered IDAC INL  
Voltage Buffered IDAC DNL  
0.50  
0.25  
0
10,000,000  
1,000,000  
0.50  
0.25  
0
CHANNELS 0 AND 1 SHOWN  
V
= 0V  
CHANNELS 0 AND 1 SHOWN  
IN  
R
IOUT0  
= R  
= 10k7  
IOUT1  
R
IOUT0  
= R  
= 10k7  
IOUT1  
100000  
10,000  
1000  
100  
–0.25  
–0.50  
–0.25  
–0.50  
10  
1
–1  
0
2
50  
–2  
1
0
100  
150  
DAC CODE  
200  
250  
0
50  
100  
150  
200  
250  
OUTPUT CODE (LSBs)  
DAC CODE  
29701 G07  
29701 G08  
29701 G09  
29701fc  
7
LTC2970/LTC2970-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
IDAC Output Current  
vs Temperature  
V
OUTn Offset Voltage  
Voltage Buffered IDAC Load  
Regulation Sourcing  
vs Temperature  
257.4  
257.2  
257.0  
256.8  
256.6  
256.4  
256.2  
3.500  
3.498  
3.496  
3.494  
3.492  
3.490  
1.620  
1.615  
1.610  
1.605  
1.600  
1.595  
1.590  
IDAC CODE = 'hff  
IDAC CODE = 'h00  
R
= 13kΩ  
IOUT  
25oC  
–45oC  
90oC  
V
= 3.5V  
–2  
IOUTn  
–50  
0
25  
50  
75  
100  
0
–8  
–10  
–25  
–4  
–6  
CURRENT (mA)  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (oC)  
29701 G10  
29701 G12  
29701 G11  
Voltage Buffered IDAC Load  
Regulation Sinking  
Voltage Buffered IDAC Transient  
Voltage Buffered IDAC Soft-  
Connect Transient Response  
Response to 1LSB DAC Code Change  
0.35  
0.30  
V
= 0.1V  
IOUT  
100k7 SERIES RESISTANCE ON V  
OUTn  
100k7 SERIES RESISTANCE ON V  
OUTn  
90oC  
25oC  
R
= 10k7  
R
= 10k7  
IOUT  
IOUT  
CODE 'h80  
0.25  
0.20  
0.15  
0.10  
0.05  
0
CODE 'h80  
HIGH-Z  
–45oC  
CODE 'h7f  
CONNECTED  
2
4
6
10  
0
8
CURRENT (mA)  
5Ms PER DIVISION  
1Ms PER DIVISION  
29701 G13  
29701 G15  
29701 G14  
Voltage Buffered IDAC Transient  
Response During Transition from  
On State to High-Z State  
Temperature Sensor Error  
vs Temperature  
V
DD Regulator Output Voltage  
vs Temperature  
1.5  
1.0  
4.945  
4.944  
4.943  
4.942  
4.941  
4.940  
4.939  
4.938  
V
I
= 12V  
100k7 SERIES RESISTANCE ON V  
OUTn  
12VIN  
= 0A  
R
IOUT  
= 10k7  
VDD  
0.5  
HIGH-Z  
0
CONNECTED  
–0.5  
–1.0  
–1.5  
–50  
0
25  
50  
75  
100  
50  
TEMPERATURE (oC)  
100  
–25  
–50 –25  
0
25  
75  
10Ms PER DIVISION  
TEMPERATURE (oC)  
29701 G17  
29701 G16  
29701 G18  
29701fc  
8
LTC2970/LTC2970-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VDD Regulator Short-Circuit  
Current vs Temperature  
–25  
VDD Regulator Load Regulation  
VDD Regulator Line Regulation  
0
–100  
–200  
–300  
400  
300  
NO LOAD ON V  
V
= 12V  
12VIN  
DD  
V
DD  
= 0V  
200  
100  
–30  
–35  
–40  
–45°C  
0
–45°C  
–400  
–500  
–100  
–200  
–300  
–400  
25°C  
90°C  
–600  
–700  
–800  
25°C  
90°C  
V
= 12V  
–1  
12VIN  
–500  
–2  
–4  
0
–5  
–3  
–50  
–25  
0
25  
50  
75  
100  
8
9
10  
10  
15  
12  
13  
14  
TEMPERATURE (°C)  
CURRENT (mA)  
V
(V)  
12VIN  
29701 G19  
29701 G21  
29701 G20  
U
U
U
PI FU CTIO S  
V
(Pin7):PositiveCH1_B ADCMultiplexerInput.The  
V
(Pin 1): Positive CH0_A ADC Multiplexer Input.  
IN1_BP  
IN±_AP  
output of the differential, 7:1 multiplexer connects to the  
The output of the differential, 7:1 multiplexer connects to  
the input of the ADC. CH0_A can be configured to servo  
IDAC0.  
input of the ADC. CH1_B is a voltage monitor input only.  
V
(Pin 8): Negative CH1_B ADC Multiplexer Input.  
IN1_BM  
Theoutputofthedifferential,7:1multiplexerconnectstothe  
V
(Pin 2): Negative CH0_A ADC Multiplexer Input.  
IN±_AM  
input of the ADC. CH1_B is a voltage monitor input only.  
The output of the differential, 7:1 multiplexer connects to  
the input of the ADC. CH0_A can be configured to servo  
IDAC0.  
V
(Pin 9): V Power Supply, Voltage Monitor Input,  
DD  
DD  
and Internal 5V Regulator Output. The supply input range  
is 4.5V to 5.75V. The V pin voltage can be connected  
V
(Pin3):PositiveCH0_B ADCMultiplexerInput.The  
DD  
IN±_BP  
to the ADC through an internal mux. Bypass the V pin  
output of the differential, 7:1 multiplexer connects to the  
DD  
to device ground with a 100nF capacitor (C ). If no 5V  
input of the ADC. CH0_B is a voltage monitor input only.  
VDD  
input voltage supply is available, float the V pin and  
DD  
V
(Pin 4): Negative CH0_B ADC Multiplexer Input.  
IN±_BM  
power the LTC2970 from the 12V pin.  
IN  
Theoutputofthedifferential,7:1multiplexerconnectstothe  
12V (Pin 1±): 12V Power Supply and Voltage Monitor  
input of the ADC. CH0_B is a voltage monitor input only.  
IN  
Input. An internal regulator generates 5V from 12V . The  
IN  
V
(Pin .): Positive CH1_A ADC Multiplexer Input.  
IN1_AP  
input range for 12V is 8V to 15V. Bypass this pin with a  
IN  
The output of the differential, 7:1 multiplexer connects to  
the input of the ADC. CH1_A can be configured to servo  
IDAC1.  
100nFcapacitor.Theregulator’soutputisconnectedtothe  
V
pin. The 12V pin voltage can also be monitored by  
DD  
IN  
the ADC through a 3:1 attenuator and the internal mux. If  
no 12V supply input is available, tie the 12V to the V  
V
(Pin 6): Negative CH1_A ADC Multiplexer Input.  
IN1_AM  
IN  
DD  
The output of the differential, 7:1 multiplexer connects to  
the input of the ADC. CH1_A can be configured to servo  
IDAC1.  
pin and operate from 4.5V to 5.75V.  
V
(Pin 11): CH0 Voltage Output. Buffered version of  
OUT±  
IDAC0 output voltage.  
29701fc  
9
LTC2970/LTC2970-1  
U
U
U
PI FU CTIO S  
V
(Pin 12): CH1 Voltage Output. Buffered version of  
SDA (Pin 19): Serial Bus Data Input and Output.  
OUT1  
IDAC1 output voltage.  
GPIO_CFG (Pin 2±): GPIO Configuration Digital Input and  
Open Drain Output. Pulling GPIO_CFG high will cause the  
GPIO_0 and GPIO_1 open-drain outputs to automatically  
assert low after a power-on reset. If GPIO_CFG is pulled  
low, then GPIO_0 and GPIO_1 do not assert low after  
power-up.  
I
(Pin 13): IDAC1 Current Output. Connect a resistor  
OUT1  
between this pin and the point-of-load ground for channel  
1. The IDAC sources between 0 and 255μA.  
I
(Pin 14): IDAC0 Current Output. Connect a resistor  
OUT±  
between this pin and the point-of-load ground for channel  
0. The IDAC sources between 0 and 255μA.  
ASEL1 (Pin 21): Slave Address Select Bit 1. Tie this pin to  
the V pin, ground, or float in order to select the address  
DD  
GPIO_1 (Pin 1.): General Purpose Input or Open Drain  
Digital Output. GPIO_1 can be configured as the IDAC  
Fault or Faults output, a digital input, or an open-drain  
digital output.  
location (see Table 2).  
ASEL± (Pin 22): Slave Address Select Bit 0. Tie this pin to  
the V pin, ground, or float in order to select the address  
DD  
location (see Table 2).  
GPIO_± (Pin 16): General Purpose Input or Open Drain  
Digital Output. GPIO_0 can be configured as the voltage  
monitor power-good or power-good bar output, a digital  
input, or a programmable open-drain output. Power good  
is the NOR of all instantaneous OV and UV faults; it does  
not include IDAC faults.  
REF(Pin23):InternalReferenceOutputorADCReference  
Overdrive Input. The voltage at this pin determines the  
full-scale input voltage of the delta-sigma ADC (V  
FULL-  
= 6.65 • V , typically). An internal 3.5k resistor  
SCALE  
REF  
decouples the reference output from this pin. Bypass this  
pin to RGND with a 100nF capacitor (C ).  
REF  
ALERT (Pin 17): Open Drain Digital Output. Connect the  
SMBALERT signal to this pin. ALERT is asserted low when  
either IDAC0 or IDAC1 rails out (optional), or when one  
of the monitored voltages ventures outside its UV and OV  
thresholds (also optional).  
RGND (Pin 24): Reference Ground. Connect to device  
ground.  
GND (Pin 2.): Device Ground. Must be soldered to  
ground.  
SCL (Pin 18): Serial Bus Clock Input.  
29701fc  
10  
LTC2970/LTC2970-1  
W
BLOCK DIAGRA  
5V REGULATOR  
0μA TO 255μA  
12V  
10  
V
V
IN  
IN  
OUT  
IDAC0  
8 BITS  
2R  
14  
I
OUT0  
R
V
DD  
V
9
DD  
+
12V  
P
CMP0  
12V  
M
DDP  
DDM  
V
V
+
GND 25  
VBUF0  
11 V  
OUT0  
V
DD  
TEMP  
SENSOR  
TSNSP  
TSNSM  
POR  
UVLO  
V
1
CH0_AP  
CH0_AM  
CH0_BP  
CH0_BM  
CH1_AP  
CH1_AM  
CH1_BP  
CH1_BM  
IN0_AP  
0μA TO 255μA  
V
2
3
4
5
6
7
8
IN0_AM  
IDAC1  
8 BITS  
13  
I
OUT1  
+
V
IN0_BP  
14-BIT  
DELTA-SIGMA  
A/D  
V
V
V
IN0_BM  
V
+
IN1_AP  
IN1_AM  
CMP1  
ADC  
CLOCKS  
V
+
IN1_BP  
IN1_BM  
6.65X  
(TYP)  
V
DD  
12  
V
OUT1  
VBUF1  
7:1 MUX  
3.5k  
REFERENCE  
1.229V (TYP)  
REF 23  
RGND 24  
RAM  
20Ω  
ADC_Results  
MONITOR LIMITS  
SERVO TARGETS  
SCL 18  
SDA 19  
18  
2
CLOCK  
GENERATION  
I C BUS INTERFACE  
OSCILLATOR  
POR  
(400kHz, SMBUS COMPATIBLE)  
ASEL0 22  
ASEL1 21  
REGISTERS  
I/O CONFIGURATION  
IDAC0  
IDAC1  
ADC MONITOR  
FAULT ENABLE  
INSTANTANEOUS FAULTS  
LATCHED FAULTS  
SERVO CONTROLLER  
GPIO_0 16  
GPIO_1 15  
ALERT 17  
DAC SOFT CONNECT FUNCTION  
SERVO FUNCTION  
7
2
MONITOR FUNCTION  
MANAGE FAULT REPORTING  
WATCH DOG  
GPIO_CFG 20  
TRACKING CONTROL (LT2970-1)  
POR  
29701 BD  
29701fc  
11  
LTC2970/LTC2970-1  
U U  
TABLE OF CO TE TS  
(For Operations Sections)  
10 LTC297± Operation Overview.............................................................................................................................13  
2
20 I C Serial Digital Interface .................................................................................................................................14  
30 Register Command Set.......................................................................................................................................15  
2
40 Detailed I C Command Register Descriptions...................................................................................................16  
.0 Soft Connecting the LTC297± to the Power Supply Feedback Node..................................................................20  
60 Hard Connecting the LTC297± to the Power Supply Trim Pin............................................................................20  
70 Programming a Previously Connected IDAC......................................................................................................21  
80 Disconnecting the LTC297± from the Power Supply Trim Pin ...........................................................................21  
90 Tracking Power Supplies Overview (LTC297±-1 Only).......................................................................................21  
1±0 Tracking Power Supplies On (LTC297±-1 Only) .................................................................................................21  
110 Tracking Power Supplies Off (LTC297±-1 Only) .................................................................................................22  
120 Continuous Power Supply Voltage Servo...........................................................................................................23  
130 One Time Power Supply Voltage Servo .............................................................................................................24  
140 One Time Power Supply Voltage Servo with Repeat On Fault ..........................................................................24  
1.0 Configuring ADC to Monitor Input Channels and Internal Temperature Sensor................................................24  
160 Generating and Monitoring Instantaneous Faults..............................................................................................25  
170 Generating and Monitoring Latched Faults........................................................................................................26  
180 General Purpose Input/Output Pins....................................................................................................................27  
190 Advanced Development Features.......................................................................................................................27  
29701fc  
12  
LTC2970/LTC2970-1  
U
OPERATIO  
10 LTC297± Operation Overview  
All communication with the LTC2970 is performed over  
2
2
an industry standard I C bus. The LTC2970 I C interface  
alsomeetsallSMBussetuptimes,holdtimes,andtimeout  
requirements. The ALERT pin may be used to signal that  
one or more of the fourteen configurable fault limits have  
been reached. Each fault may be individually masked. The  
The LTC2970 is designed to control and monitor two  
power supplies. The LTC2970’s superior accuracy allows  
it to precisely servo each supply’s output voltage over a  
wide range of operating conditions; increasing accuracy,  
reducingpowerrequirementsandcomponentcosts. Mar-  
gining may be performed with equal ease and precision.  
The monitoring functions allow for increased reliability  
by alerting a system host about incipient failures before  
they occur. The seven channel ADC may also be used to  
monitor current, temperature, and the 5V or optional 12V  
supply.  
2
I C interface supports word reads, word writes and the  
SMBus Alert Response Address protocol. Two general  
purpose IO pins may be used to provide additional fault  
informationoruserdefinedsystemcontrol.Poweringdown  
2
the LTC2970 will not interfere with I C operation.  
The LTC2970-1 enables power supply tracking and se-  
quencing with the addition of a few external components.  
A special global address and synchronization command  
allowmultipleLTC2970-1’stotrackandsequencemultiple  
pairs of power supplies.  
The LTC2970’s unique architecture and control algorithm  
have been especially tailored for power supply manage-  
ment.ThesoftconnectfeatureallowstheLTC2970tobegin  
controlling a power supply without perturbing its initial  
value. The delta-sigma ADC architecture was specifically  
chosen to average out power-supply noise and allow the  
LTC2970 to ignore fast transients. Unlike discrete time  
DACs, the LTC2970’s continuous time, voltage buffered  
IDAC is ideal for noise sensitive applications. The servo  
algorithmlimitstheIDACstepsizetooneLSBperiteration  
in order to minimize power supply transients. The point  
of load ground reference for the IDAC outputs minimize  
errors that would otherwise occur in a power system that  
experiences ground bounce. By selecting two resistor  
values, the user can choose the appropriate resolution  
while providing an important hardware range limit beyond  
which the supply may not be driven. The servo on fault  
optionallowstheLTC2970tofurtherreduceoutputvoltage  
disturbances by only stepping the IDAC when the output  
voltage drifts outside of a user programmable window.  
The LTC2970 powers up in a high impedance state and  
will not interfere with default power supply operation.  
Similarly, powering down the LTC2970 will restore its  
high impedance state.  
The LTC2970 can perform the following operations:  
• Accept all programming commands and report status  
2
over the I C or SMBus bus.  
• CommandeachvoltagebufferedIDACtoconnecttothe  
corresponding power supply’s feedback node through  
an external resistor using the IDAC code that most  
closely approximates the feedback node’s regulation  
voltage (Soft Connect).  
• CommandeachvoltagebufferedIDACoutputtoconnect  
to the corresponding power supply’s feedback node  
through an external resistor with a user-selected IDAC  
code (Hard Connect).  
• Change the code of a previously connected IDAC.  
• Disconnect each voltage buffered IDAC output from the  
power supply’s feedback node.  
LTC2970-1 Only: Track two power supplies up or down.  
Multiple LTC2970-1’s can be configured to track simul-  
taneously or in a sequence.  
29701fc  
13  
LTC2970/LTC2970-1  
U
OPERATIO  
The two bus lines, SDA and SCL, must be high when the  
bus is not in use. External pull-up resistors or current  
sources are required on these lines.  
• Continuously servo one or both supplies to a pro-  
grammed voltage.  
• Perform a one-time servo of one or both supplies to a  
programmed voltage and hold the servo codes in the  
controlling IDAC.  
2
The LTC2970 I C interface is SMBus compatible; it meets  
all SMBus setup times, hold times and timeout require-  
ments.  
• Perform a one time servo of one or both supplies to  
a programmed voltage and hold the code(s) in the  
controlling IDAC(s) until over/under voltage monitor-  
ing detects a fault, at which point a control bit may be  
used to allow the LTC2970 to servo back to the initial  
voltage target.  
TheLTC2970isareceive-only(slave)device.TheLTC2970  
cansignalthehostthroughtheSMBALERTprotocolthatit  
wants to talk by asserting ALERT low. The LTC2970 sup-  
2
ports the three I C protocols summarized in Table 1.  
Slave Address  
• SelectanycombinationofsevenpossibleADCchannels  
to be monitored by the ADC.  
The LTC2970 can respond to one of nine 7-bit addresses.  
The two slave address select pins (ASEL1 and ASEL0) are  
programmedbytheuseranddeterminetheslaveaddress,  
as shown in Table 2.  
• Generate instantaneous faults based on user program-  
mable over-voltage and under-voltage limits and fixed  
IDAC limits. The status of OR’d voltage limit faults and  
IDAC faults may be output over GPIO_0 and GPIO_1,  
respectively.  
The LTC2970 also supports the ARA address and a global  
address that allows multiple LTC2970s to be programmed  
with the same data simultaneously, as shown in Table 3.  
• Enable instantaneous faults to set associated latched  
faults using the FAULT_EN register. The status of OR’d  
latched faults may be signalled using ALERT.  
Table 10 Supported I2C Command Types  
READ DATA WORD:  
S:ADR:W:A:CMD:A:Sr:ADR:R:A:DATA:A:DATA:NACK:P  
WRITE DATA WORD:  
• Configure the GPIO_0 and GPIO_1 pins to act as inputs  
or outputs.  
S:ADR:W:A:CMD:A:DATA:A:DATA:A:P  
ALERT RESPONSE  
2
20 I C Serial Digital Interface  
S:ARA:R:A:ADR:NACK:P:  
The LTC2970 communicates with a host (master) using  
2
the 2-wire, I C serial bus interface. The Timing Diagram  
shows the timing relationship of the signals on the bus.  
29701fc  
14  
LTC2970/LTC2970-1  
U
OPERATIO  
Table 20 LTC297± Address Table  
Table 30 Special LTC297± Addresses  
ADDRESS[7:±] ADDRESS[7:1] FUNCTION  
(R/W = ±)  
ADDRESS[7:±]  
(R/W = ±)  
ADDRESS[7:1]  
ASEL1  
ASEL±  
ARA  
8’h18  
7’h0C  
7’h5B  
This is the standard Alert  
Response Address for all  
SMBus devices. This address is  
independent of the value of the  
ASEL1 and ASEL0 pins.  
8’hB8  
8’hBA  
8’hBC  
8’hBE  
8’hD6  
8’hD8  
8’hDA  
8’hDC  
8’hDE  
7’h5C  
7’h5D  
7’h5E  
7’h5F  
7’h6B  
7’h6C  
7’h6D  
7’h6E  
7’h6F  
L
L
L
F
L
F
H
L
F
Global  
8’hB6  
This a global address to which  
all LTC2970s will respond. This  
address is independent of the  
value of the ASEL1 and ASEL0  
pins.  
F
F
H
L
F
H
H
H
H
L: V  
< V  
F: ASELn Floating H: V  
> V  
ASELn  
IL_ASEL  
ASELn IH_ASEL  
30 Register Command Set  
COMMAND FUNCTION  
DESCRIPTION  
R/W  
DATA  
LENGTH  
COMMAND  
BYTE VALUE  
FAULT()  
Instantaneous Fault Status For All Channels  
Enable For All Latched Faults and Servo On Fault  
Index to All Latched Faults  
Read Only  
Read/Write  
Read Only  
Read Only  
Read/Write  
Read/Write  
Read/Write  
Read Only  
Read/Write  
Read/Write  
Read Only  
Read/Write  
Read/Write  
Read Only  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read Only  
Read/Write  
Read/Write  
Read Only  
Read/Write  
Read/Write  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
‘h00  
‘h08  
‘h10  
‘h11  
‘h17  
‘h18  
‘h1F  
‘h28  
‘h29  
‘h2A  
‘h38  
‘h39  
‘h3A  
‘h40  
‘h41  
‘h42  
‘h43  
‘h44  
‘h45  
‘h46  
‘h48  
‘h49  
‘h4A  
‘h50  
‘h51  
‘h52  
FAULT_EN()  
FAULT_LA_INDEX()  
FAULT_LA()  
IO()  
Latched Fault Status For All Channels  
IO Control and Status Register  
ADC_MON()  
*SYNC()  
Control Register For Selecting ADC Channels to Monitor  
Control Register For Synchronizing Tracking Across Multiple Devices  
VDD_ADC()  
VDD_OV()  
V
V
V
ADC Conversion Result Register  
DDIN  
DDIN  
DDIN  
Over-Voltage Monitor Control Register  
Under-Voltage Monitor Control Register  
VDD_UV()  
V12_ADC()  
12V ADC Conversion Result Register  
IN  
V12_OV()  
12V Over-Voltage Monitor Control Register  
IN  
V12_UV()  
12V Under-Voltage Monitor Control Register  
IN  
CH0_A_ADC()  
CH0_A_OV()  
CH0_A_UV()  
CH0_A_SERVO()  
CH0_A_IDAC()  
*CH0_A_IDAC_TRACK()  
CH0_A ADC Conversion Result Register  
CH0_A Over-Voltage Monitor Control Register  
CH0_A Under-Voltage Monitor Control Register  
CH0_A Voltage Servo Control Register  
CH0_A IDAC Control Register  
CH0_A IDAC Track Final Value Register  
*CH0_A_DELAY_TRACK() CH0_A IDAC Track Delay Register  
CH0_B_ADC()  
CH0_B_OV()  
CH0_B_UV()  
CH1_A_ADC()  
CH1_A_OV()  
CH1_A_UV()  
CH0_B ADC Conversion Result Register  
CH0_B Over-Voltage Monitor Control Register  
CH0_B Under-Voltage Monitor Control Register  
CH1_A ADC Conversion Result Register  
CH1_A Over-Voltage Monitor Control Register  
CH1_A Under-Voltage Monitor Control Register  
29701fc  
15  
LTC2970/LTC2970-1  
U
OPERATIO  
30 Register Command Set (Cont0)  
COMMAND FUNCTION  
DESCRIPTION  
R/W  
DATA  
LENGTH  
COMMAND  
BYTE VALUE  
CH1_A_SERVO()  
CH1_A Voltage Servo Control Register  
CH1_A IDAC Control Register  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read Only  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
‘h53  
‘h54  
‘h55  
‘h56  
‘h58  
‘h59  
‘h5A  
‘h68  
‘hXX  
CH1_A_IDAC()  
*CH1_A_IDAC_TRACK()  
CH1_A IDAC Track Control Register  
*CH1_A_DELAY_TRACK() CH1_A IDAC Track Delay Register  
CH1_B_ADC()  
CH1_B_OV()  
CH1_B_UV()  
TEMP_ADC()  
RESERVED()  
CH1_B ADC Conversion Result Register  
CH1_B Over-Voltage Monitor Control Register  
CH1_B Under-Voltage Monitor Control Register  
Temperature ADC Conversion Result Register  
All other commands are reserved for future expansion and should not be  
written or read.  
*LTC2970-1 Only. LTC2970 will not acknowledge these commands.  
2
40 Detailed I C Command Register Descriptions  
FAULT_EN: Fault Enabling Register – Read/Write  
BIT(s)  
SYMBOL  
OPERATION  
FAULT: Instantaneous Fault Register – Read  
b[0]  
Fault_en_ch0_a_ov  
Fault_en_ch0_a_uv  
Fault_en_ch0_a_idac  
Fault_en_ch0_b_ov  
Fault_en_ch0_b_uv  
Fault_en_ch1_a_ov  
Fault_en_ch1_a_uv  
Fault_en_ch1_a_idac  
Fault_en_ch1_b_ov  
Fault_en_ch1_b_uv  
Fault_en_vdd_ov  
0 = The associated bit in the  
FAULT_LA register will always be 0.  
(default)  
BIT(s)  
SYMBOL  
OPERATION  
b[1]  
b[0]  
b[1]  
b[2]  
b[3]  
b[4]  
b[5]  
b[6]  
b[7]  
b[8]  
b[9]  
b[10]  
b[11]  
b[12]  
b[13]  
Fault_ch0_a_ov  
Fault_ch0_a_uv  
Fault_ch0_a_idac  
Fault_ch0_b_ov  
Fault_ch0_b_uv  
Fault_ch1_a_ov  
Fault_ch1_a_uv  
Fault_ch1_a_idac  
Fault_ch1_b_ov  
Fault_ch1_b_uv  
Fault_vdd_ov  
0 = The associated channel is clear of  
instantaneous faults.  
b[2]  
1 = Instantaneous faults reported in  
the FAULT register will set associated  
bit in the FAULT_LA register.  
b[3]  
1 = The associated channel has an  
instantaneous fault.  
b[4]  
The reported faults are instantaneous  
and not latched. When used in  
conjunction with latched faults they  
may indicate faults that are transient in  
nature.  
b[5]  
b[6]  
b[7]  
b[8]  
b[9]  
b[10]  
b[11]  
b[12]  
b[13]  
b[14]  
Fault_en_vdd_uv  
Fault_en_v12_ov  
Fault_vdd_uv  
Fault_en_v12_uv  
Fault_v12_ov  
Fault_en_ch0_a_servo 0 = Do not re-servo CH0_A in  
response to instantaneous OV or UV  
fault.  
Fault_v12_uv  
b[15:14] Reserved  
Always Returns 0  
1 = Repeat a one time servo of CH0_A  
in response to instantaneous OV or  
UV fault. CH0_A must have servo  
operation enabled with Ch0_a_idac_  
servo_repeat set low, and Adc_mon_  
ch0_a set high.  
b[15]  
Fault_en_ch1_a_servo 0 = Do not re-servo CH1_A in  
response to instantaneous OV or UV  
fault.  
1 = Repeat a one time servo of CH1_A  
in response to instantaneous OV or  
UV fault. CH1_A must have servo  
operation enabled with Idac_ch1_a_  
servo_repeat set low, and Adc_mon_  
ch1_a set high.  
29701fc  
16  
LTC2970/LTC2970-1  
U
OPERATIO  
2
40 Detailed I C Command Register Descriptions  
IO: Input/Output Data and General Purpose Control Register  
– Read/Write unless specified otherwise0  
(Cont0)  
BIT(s)  
SYMBOL  
OPERATION  
FAULT_INDEX: Latched Fault Index Register – Read  
b[1:0]  
Io_cfg_0[1:0] Io_cfg_0[1:0] is used to configure the function of  
the GPIO_0 pin and IO(Io_gpio_0).  
BIT(s)  
SYMBOL  
OPERATION  
b[0]  
Fault_la_index  
0 = All faults indicated by FAULT_LA  
are clear.  
00: Io_gpio_0 = GPIO_0 = Power_good. Power_  
good asserts high if there are no instantaneous  
over-voltage or under-voltage faults.  
1 = One or more faults indicated by  
FAULT_LA are set.  
01: Io_gpio_0 = GPIO_0 = Power_good_bar.  
Power_good_bar is the complement of  
Power_good.  
This register allows a summary of all  
latched faults to be viewed in a single  
read without resetting latched faults.  
10: GPIO_0 is a general-purpose open-drain  
output and mirrors the value written to Io_gpio_0  
(default).  
b[15:1] Reserved  
Always Returns 0  
11: GPIO_0 is a general-purpose digital input  
with Io_gpio_0 = GPIO_0  
FAULT_LA: Latched Fault Register – Read  
BIT(s)  
SYMBOL  
OPERATION  
b[3:2]  
Io_cfg_1[1:0] Io_cfg_1[1:0] is used to configure the function  
of the GPIO_1 pin and IO(Io_gpio_1).  
b[0]  
b[1]  
b[2]  
b[3]  
b[4]  
b[5]  
b[6]  
b[7]  
b[8]  
b[9]  
b[10]  
b[11]  
b[12]  
b[13]  
Fault_la_ch0_a_ov  
Fault_la_ch0_a_uv  
Fault_la_ch0_a_idac  
Fault_la_ch0_b_ov  
Fault_la_ch0_b_uv  
Fault_la_ch1_a_ov  
Fault_la_ch1_a_uv  
Fault_la_ch1_a_idac  
Fault_la_ch1_b_ov  
Fault_la_ch1_b_uv  
Fault_la_vdd_ov  
0 = The associated channel is clear of  
faults.  
00: Io_gpio_1 = GPIO_1 = Idac_fault.  
Idac_fault asserts if either IDAC value is faulted  
(Chn_idac[7:0] = 8’h00 or 8’hff)  
1 = The associated channel has faulted  
and is enabled.  
The latched faults are set and held  
when the associated channel's  
instantaneous fault has occured with  
faults enabled. Clearing the enable bit  
for the associated channel in FAULT_EN  
will immediately clear its corresponding  
latched fault bit.  
01: Io_gpio_1 = GPIO_1 = Idac_fault_bar.  
Idac_fault_bar is the complement of Idac_fault.  
10 = GPIO_1 is a general-purpose open-  
drain output and mirrors the value written to  
Io_gpio_1 (default).  
11 = GPIO_1 is a general-purpose digital input  
with Io_gpio_1 = GPIO_1  
All latched channel faults are cleared  
when this register is read. They may  
be set again if the instantaneous  
fault condition and fault_en have not  
changed.  
b[4]  
b[5]  
Io_gpio_0  
Io_gpio_1  
Io_alertb  
See Io_cfg_0.  
If the GPIO_CFG pin is pulled-high during a  
power on reset, Io_gpio_0 is cleared and the  
GPIO_0 open-drain output will assert low.  
Fault_la_vdd_uv  
Fault_la_v12_ov  
See Io_cfg_1.  
Fault_la_v12_uv  
If the GPIO_CFG pin is pulled-high during a  
power on reset, Io_gpio_1 is cleared and the  
GPIO_1 open-drain output will assert low.  
b[15:14] Reserved  
Always Returns 0  
b[6]  
b[7]  
Mirrors the value of the ALERT pin.  
Read only.  
Io_alertb_enb 1 = ALERT pin never asserts (default).  
0 = ALERT pin asserts low when one or more  
FAULT_LA bits are set.  
b[8]  
Io_i2c_adc_  
wen  
1 = Special test mode that inhibits ADC from  
writing to ADC result register and allows user  
2
to update registers over the I C serial interface.  
0 = Normal operation (default).  
b[9]  
Io_gpio_cfg  
Read only. GPIO_CFG digital input and open-  
drain output. Reading this bit returns the  
current state of the GPIO_CFG pin voltage.  
b[10]  
Io_track_start Writing a 1 to this bit will start tracking all  
enabled channels. Returns a 1 when tracking  
is pending (LTC2970-1). Reserved on LTC2970  
and always returns 0.  
b[15:11] Reserved  
Always Returns 0  
29701fc  
17  
LTC2970/LTC2970-1  
U
OPERATIO  
2
40 Detailed I C Command Register Descriptions  
VDD_ADC, V12_ADC, CH±_A_ADC, CH±_B_ADC, CH1_A_ADC,  
CH1_B_ADC, and TEMP_ADC: ADC Conversion Result Registers  
– Read Only Unless Specified Otherwise  
(Cont0)  
ADC_MON: ADC Monitoring Mux Control Register – Read/Write  
BIT(s)  
SYMBOL  
OPERATION  
BIT(s)  
SYMBOL  
OPERATION  
b[14:0] Vdd_adc[14:0]  
V12_adc[14:0]  
Measured data from ADC conversion.  
b[0]  
b[1]  
b[2]  
b[3]  
b[4]  
b[5]  
b[6]  
Adc_mon_vdd  
0 = ADC will not convert associated  
channel. (Default)  
'h4000 corresponds to negative full-  
scale input voltage.  
'h0000 corresponds to 0V.  
'h3fff corresponds to full-scale input  
voltage.  
Adc_mon_v12  
Ch0_a_adc[14:0]  
Ch0_b_adc[14:0]  
Ch1_a_adc[14:0]  
Ch1_b_adc[14:0]  
Temp_adc[14:0]  
1 = ADC will continuously convert  
associated channel.  
Adc_mon_ch0_a  
Adc_mon_ch0_b  
Adc_mon_ch1_a  
Adc_mon_ch1_b  
Adc_mon_temp  
2’s complement format, b[14] = sign.  
Read/Write when Io_i2c_adc_wen = 1.  
Default value is undefined.  
b[15:7] Reserved  
Always Returns 0  
b[15]  
Vdd_adc_new  
1 = The ADC has updated the  
associated result register since the last  
time the data was read.  
V12_adc_new  
SYNC: Tracking Synchronization Control Register – Read/Write  
LTC297±-1 Only  
Ch0_a_adc_new  
Ch0_b_adc_new  
Ch1_a_adc_new  
Ch1_b_adc_new  
Temp_adc_new  
0 = Previously read data. (Default)  
BIT(s)  
SYMBOL  
OPERATION  
b[0]  
Sync_track  
Write  
0 = Do not synchronize.  
1 = Synchronize all tracking enabled  
registers to the same starting point.  
VDD_OV, V12_OV, CH±_A_OV, CH±_B_OV, CH1_A_OV, CH1_B_  
OV: Over Voltage Limit Registers – Read/Write  
BIT(s)  
Read  
0 = The LTC2970-1 is not synchronized  
for tracking (default).  
SYMBOL  
OPERATION  
1 = The LTC2970-1 is synchronized for  
tracking.  
b[14:0] Vdd_ov[14:0]  
V12_ov[14:0]  
ADC over-voltage threshold limit.  
The associated instantaneous over  
voltage fault is asserted if the channel’s  
ADC result is greater than this limit.  
Code 'h3fff disables OV threshold  
detect feature for that channel.  
Use of the global address will allow  
the synchronization status of multiple  
LTC2970-1s to be verified in a single  
read; since a one can only be returned  
if all LTC2970-1s are synchronized. The  
IO_track_start command may then be  
issued with the same global address  
to begin synchronized tracking across  
multiple ICs.  
Ch0_a_ov[14:0]  
Ch0_b_ov[14:0]  
Ch1_a_ov[14:0]  
Ch1_b_ov[14:0]  
2’s complement format, b[14] = sign.  
Default value is undefined.  
Always Returns 0  
b[15]  
Reserved  
b[15:1] Reserved  
Always Returns 0  
VDD_UV, V12_UV, CH±_A_UV, CH±_B_UV, CH1_A_UV, CH1_B_  
UV: Under Voltage Limit Registers – Read/Write  
BIT(s)  
SYMBOL  
OPERATION  
b[14:0] Vdd_uv[14:0]  
V12_uv[14:0]  
ADC under-voltage threshold limit.  
The associated instantaneous under  
voltage fault is asserted if the channel’s  
ADC result is greater than this limit.  
Code 'h4000 disables UV threshold  
detect feature for that channel.  
Ch0_a_uv[14:0]  
Ch0_b_uv[14:0]  
Ch1_a_uv[14:0]  
Ch1_b_uv[14:0]  
2’s complement format, b[14] = sign.  
Default value is undefined.  
Always Returns 0  
b[15]  
Reserved  
29701fc  
18  
LTC2970/LTC2970-1  
U
OPERATIO  
2
40 Detailed I C Command Register Descriptions  
b[10]  
Ch0_a_idac_pol  
Ch1_a_idac_pol  
0 = Use this setting when  
increasing V causes  
(VINn_AP-VINn_AM) to decrease.  
Inverting configuration common  
to DC/DC converters with external  
feedback networks.  
(Cont0)  
OUTn  
CH±_A_SERVO, CH1_A_SERVO: Voltage Servo Control  
Registers – Read/Write  
BIT(s)  
SYMBOL  
OPERATION  
1 = Use this setting when  
b[14:0] Ch0_a_servo[14:0]  
Ch1_a_servo[14:0]  
During servo operation  
increasing V  
causes  
OUTn  
(VINn_AP-VINn_AM) to increase.  
Non-inverting configuration  
common to DC/DC converters  
with trim pins.  
Chn_a_idac[7:0] output current is  
stepped to force Chn_a_adc[14:0]  
code to equal target code stored in  
Chn_a_servo[14:0].  
b[11]  
Ch0_a_idac_servo_repeat 0 = During servo operation, servo  
2’s complement format, b[14] = sign  
Default value is undefined.  
Chn_a until the measured result  
Ch1_a_idac_servo_repeat  
is stable and matches the target  
code.  
b[15]  
Ch0_a_servo_en  
Ch1_a_servo_en  
0 = Chn_a servo disabled (default).  
1 = Chn_a servo enabled.  
1 = During servo operation,  
continuously servo Chn_a to the  
target code.  
CH±_A_IDAC, CH1_A_IDAC: IDAC Control/Data Registers –  
Read/Write  
b[15:12] Reserved  
Always Returns 0  
BIT(s)  
SYMBOL  
OPERATION  
CH±_A_IDAC_TRACK and CH1_A_IDAC_TRACK: IDAC Tracking  
data and control registers – Read/Write  
LTC297±-1 Only  
b[7:0]  
Ch0_a_idac[7:0]  
Ch1_a_idac[7:0]  
Ch0_a_idac_en  
Ch1_a_idac_en  
Chn_a IDAC data value.  
b[8]  
0 = V  
1 = V  
output tri-stated.  
output enabled.  
OUTn  
OUTn  
BIT(s)  
SYMBOL  
OPERATION  
b[7:0]  
Ch0_a_idac_  
track[7:0]  
Final target value for of Chn_a_  
idac[7:0]. During tracking, Chn_a_  
idac[7:0] is incremented/decremented  
by 1 until it is equal to this value.  
There are two ways to enable  
V
.
OUTn  
Ch1_a_idac_  
track[7:0]  
1) When Chn_a_idac_en is set  
high with Chn_a_idac_con low,  
the LTC2970 will perform a soft  
connect. During a soft connect,  
b[8]  
Ch0_a_idac_track_en 0 = inhibit tracking of Chn_a_idac[7:0].  
Ch1_a_idac_track_en 1 = enable tracking of Chn_a_idac[7:0]  
the V  
voltage buffer output  
OUTn  
b[15:9] Reserved  
Always Returns 0  
will not be connected to the V  
OUTn  
pin until the internal algorithm  
has servo’d the voltage at the  
CH±_A_DELAY_TRACK and CH1_A_DELAY_TRACK: IDAC  
Tracking delay register – Read/Write  
LTC297±-1 Only  
IDACn pin to match the V  
OUTn  
pin voltage. Resolution is one  
Chn_a_idac LSB.  
BIT(s)  
SYMBOL  
OPERATION  
2) When Chn_a_idac_en is  
enabled with Chn_a_idac_con  
high, the LTC2970 will perform  
a hard connect. The V  
voltage buffer will be immediately  
connected to the V pin.  
b[9:0]  
Ch0_a_delay_track[9:0] Delay used to synchronize or offset  
tracking events.  
Ch1_a_delay_track[9:0]  
OUTn  
b[1510] Reserved  
Always Returns 0  
OUTn  
b[9]  
Ch0_a_idac_con  
Ch1_a_idac_con  
0 = V  
is not enabled or  
OUTn  
has been enabled but is not yet  
connected to the output of the  
CHn voltage buffer. (Default)  
1 = V  
is enabled and has been  
OUTn  
connected to the output of the  
CHn voltage buffer.  
See Chn_a_idac_en for additional  
information.  
29701fc  
19  
LTC2970/LTC2970-1  
U
OPERATIO  
.0 Soft Connecting the LTC297± to the Power Supply  
onthatchannelorthepreviouslyissuedsoftconnectfailed  
with an IDAC fault (Fault_chn_a_idac = 1). Recall that the  
Chn_a_idac_en bit must initially have been set to 0.  
Feedback Node  
The soft connect feature allows the LTC2970 to connect to  
thepowersupply’sfeedbacknodewithminimaldisturbance  
to the supply’s output voltage. This is accomplished by  
LTC2970-1 Only: Soft connect requests will be ignored  
and the user will not be able to change Chn_a_idac_pol or  
Chn_a_idac[7:0] if GPIO_CFG is high and either GPIO_0  
or GPIO_1 are high.  
comparing the buffered voltage of I  
OUT  
to the voltage at  
OUTn  
V
n andincrementingordecrementingChn_a_idac[7:0]  
until the comparator output (COMPn) changes. The value  
ofChn_a_idac[7:0]whenthecomparatortransitionsisthe  
appropriate value for a soft connect. The voltage buffer  
LTC2970-1Only:Softconnectrequestswillbeignoredand  
the user will not be able to change the Chn_a_idac_pol bit  
if there is a pending tracking operation.  
output is only connected to V  
if the IDAC reaches this  
OUTn  
soft connect value without generating an instantaneous  
60 Hard Connecting the LTC297± to the Power Supply  
Trim Pin  
IDAC fault (Fault_chn_a_idac).  
Soft-Connect Procedure:  
ThehardconnectfeatureallowstheLTC2970tobypassthe  
soft connect algorithm and connect directly to the power  
supply’s feedback node using the value programmed into  
Chn_a_idac[7:0]. This feature is useful for systems that  
havecalculatedormeasuredanacceptablevoltageatwhich  
Determine the appropriate polarity for Chn_a_idac_pol.  
Select Chn_a_idac_pol = 1 if incrementing V  
differential voltage (VINn_AP – VINn_AM) to increase.  
When properly programmed, lowering the value in Chn_  
a_idac[7:0] will always cause the output of the controlled  
power supply to decrease.  
causes  
OUTn  
to connect the IDAC’s buffered voltage V  
to V  
.
BUFn  
OUTn  
Hard Connect Procedure:  
Ensure that the channel’s IDAC is not currently enabled for  
connection, i.e., the Chn_a_idac_en bit must be 0.  
Determine the appropriate polarity for Chn_a_idac_pol.  
Select Chn_a_idac_pol = 1 if incrementing V causes  
OUTn  
(VINn_AP – VINn_AP) to increase. When properly pro-  
grammed,loweringthevalueintheIDACwillalwayscause  
the output of the controlled power supply to decrease.  
UpdateCHn_A_IDAC()withChn_a_idac_pol,Chn_a_idac_  
con = 0, Chn_a_idac_en = 1, and Chn_a_idac[7:0] = 0x80.  
The value programmed into Chn_a_idac[7:0] is ignored  
and Chn_a_idac[7:0] is initially set to 8’h80.  
Determine the value for Chn_a_idac[7:0]. The values ‘h00  
or ‘hff are allowed, but they will trip the IDAC’s fault bit  
(Fault_chn_a_idac = 1).  
The LTC2970 will now ramp Chn_a_idac[7:0] while moni-  
toringtheoutputofthesoftconnectcomparator. Ifthesoft  
connect comparator trips, the LTC2970 will connect the  
When the IDAC is already connected, the value Chn_a_  
idac[7:0]andChn_a_idac_polwillbeprogrammedintothe  
IDACprovidedallotherconditionsaremet.SeeProgram-  
ming a Previously Connected Current DAC” for details  
output of V  
to V  
and set Chn_a_idac_con high.  
BUFn  
OUTn  
If the soft connect comparator does not trip before the  
IDAC value reaches ‘h00 or ‘hFF, then the soft connection  
willfail,anIDACfaultwillbeindicated(Fault_chn_a_idac),  
and Chn_a_idac_con will remain low.  
UpdateCHn_A_IDAC()withChn_a_idac_pol,Chn_a_idac_  
con = 1, Chn_a_idac_en = 1, and Chn_a_idac[7:0].  
Soft-Connect Rules:  
Hard Connect Rules:  
When both channels are requesting a soft connect, chan-  
nel 0 has priority.  
Hardconnectrequestswillbeignoredandtheuserwillnot  
be able to change Chn_a_idac_pol, Chn_a_idac_con or  
Chn_a_idac[7:0] if the LTC2970 is servicing a previously  
issuedsoftconnectonthatchannelorthepreviouslyissued  
Soft connect requests will be ignored and the user will not  
be able to change Chn_a_idac_pol or Chn_a_idac[7:0] if  
the LTC2970 is servicing a previously issued soft connect  
29701fc  
20  
LTC2970/LTC2970-1  
U
OPERATIO  
soft connect failed with an IDAC fault (Fault_chn_a_idac =  
1).Recallthatanewhardconnectionrequirestheprevious  
value of Chn_a_idac_en = 0.  
80 Disconnecting the LTC297± from the Power Supply  
Trim Pin  
V
OUTn  
can be placed in a high impedance state simply by  
LTC2970-1 Only: Hard connect requests will be ignored  
and the user will not be able to change Chn_a_idac_pol,  
Chn_a_idac_con or Chn_a_idac[7:0] if GPIO_CFG is high  
and either GPIO_0 or GPIO_1 are high.  
clearing the Chn_a_idac_en bit. In order to minimize the  
resulting disturbance to the power supply voltage, the  
IDAC code should not be changed from its current value  
when clearing the Chn_a_idac_en bit. This is not an issue  
if the channel’s associated servo_en bit is high.  
LTC2970-1Only:Hardconnectrequestswillbeignoredand  
theuserwillnotbeabletochangeChn_a_idac_pol,Chn_a_  
idac_con or Chn_a_idac[7:0] if there is a pending tracking  
operation.  
Disconnect Procedure:  
Update CHn_IDAC() with Chn_a_idac_en set low.  
The LTC2970 will immediately disconnect the buffered  
70 Programming a Previously Connected IDAC  
I
from V  
.
OUTn  
OUTn  
The LTC2970 IDAC’s may be programmed after they have  
been connected with a soft connect or a hard connect  
provided a servo operation is not enabled on the associ-  
ated channel.  
Disconnect Rules:  
Clearing Chn_a_idac_con with Chn_a_idac_en high will  
not disconnect the IDAC. Only setting Chn_a_idac_en low  
will clear Chn_a_idac_con.  
Procedure:  
LTC2970-1 Only: Chn_a_idac_en may not be changed if  
the feedback node connection is configured for tracking.  
Tracking is enabled when GPIO_CFG is high and either  
GPIO_0 or GPIO_1 are high.  
Determine the value for Chn_a_idac[7:0]. The values  
‘h00 or ‘hff are allowed, but will trip the IDAC’s fault bit  
(Fault_chn_a_idac = 1).  
Verify that the IDAC is already connected, and that  
Chn_a_idac_con is high.  
90 Tracking Power Supplies Overview (LTC297±-1  
Only)  
Ensure that servo mode is not enabled for the channel  
being programmed. Chn_a_servo_en must be low. This  
requirement prevents the user from interfering with a  
previously requested servo operation.  
2
The LTC2970-1 tracking feature allows the I C interface  
to initiate a controlled power up or power down of two  
or more supplies (Figure 2 shows a typical LTC2970-1  
application circuit). Multiple LTC2970-1’s with different  
addresses may be simultaneously programmed using  
the LTC2970 group address and the SYNC() command.  
Tracking is enabled when GPIO_CFG is pulled high and  
either GPIO_0 or GPIO_1 are high.  
Update the CHn_A_IDAC() register with Chn_a_idac_pol,  
Chn_a_idac_con = 1, Chn_a_idac_en = 1, and Chn_a_  
idac[7:0].  
Note: Care should be taken to preserve the current value  
of the Chn_a_idac_pol bit, since the LTC2970 does not  
prevent the user from changing this value when writing  
to the IDAC control registers.  
1±0 Tracking Power Supplies On (LTC297±-1 Only)  
2
The LTC2970-1 tracking feature allows the I C to initiate  
a controlled power up of two or more supplies.  
Rules:  
Procedure: This procedure describes all the steps neces-  
sary to track up two or more power supplies. Steps that  
require I C interaction are prefixed with the required I C  
command function.  
Setting Chn_a_idac_con to zero will not disconnect the  
DAC unless Chn_a_idac_en is also set low.  
2
2
All Hard Connect rules apply.  
Power-up the LTC2970-1 with GPIO_CFG pulled high.  
29701fc  
21  
LTC2970/LTC2970-1  
U
OPERATIO  
This causes open-drain outputs GPIO_1 and GPIO_0 to  
automatically pull the power supplies’ run/soft-start pins  
to ground.  
Power-Up Tracking Rules:  
TrackingcannotbeginifChn_a_idac_conisnotconnected.  
This condition is met when the previous procedure is  
followed.  
CHn_A_IDAC():HardconnectChn_a_idac[7:0]withavalue  
that forces the power supplies off when GPIO_CFG = 1.  
Verify that Chn_a_idac_pol is at the appropriate value.  
Chn_a_idac_track_pol, Chn_a_idac_track_en, and ch0_  
idac[7:0] updates will be ignored after IO(Io_track_start)  
isasserteduntiltrackingiscompleteorwhenevertracking  
is pending, i.e., GPIO_CFG pulled high with either GPIO_0  
or GPIO_1 asserted pulled high.  
CHn_A_IDAC_TRACK(): Set Chn_a_idac_track_en = 1,  
and set the Chn_a_idac_track[7:0] target value to the  
code that causes V  
to most closely approximate the  
OUTn  
corresponding power supply’s feedback node voltage  
when it is in regulation.  
110 Tracking Power Supplies Off (LTC297±-1 Only)  
2
The LTC2970-1 tracking feature allows the I C to initiate  
CHn_A_DELAY_TRACK(): Set the value by which the  
incrementing of IDACn should be delayed with respect to  
thestartoftrackingevent.Thiscontrolswhetherthepower  
supplies track up coincidentally or sequentially.  
a controlled power down of two or more supplies.  
Procedure: This procedure describes all steps necessary  
to track down two or more power supplies. Steps that  
2
2
require I C interaction are prefixed with the required I C  
command function.  
IO(): Release the run/soft-start pins by programming  
io_gpio_n = 1. This will enable the power supplies without  
allowing their outputs to move since these are held low  
by Chn_a_idac[7:0]. Wait until power supplies have had  
sufficient time to start running before starting tracking.  
CHn_IDAC(): Disable the IDAC’s for each tracking enabled  
channel (Chn_a_idac_en = 0). Ensure Chn_a_idac_pol is  
at the appropriate value.  
SYNC():OptionalcommandthatallowsmultipleLTC2970-  
1’s to be synchronized for tracking. Writing Sync_track  
= 1 will allow the LTC2970-1 to finish its current ADC  
conversion before having it wait to receive io_track_start  
= 1. The LTC2970-1 will timeout this wait command after  
CHn_IDAC_TRACK(): Select the channels to be tracked  
by setting Chn_a_idac_track_en = 1, and set the target  
value for each Chn_a_idac_track[7:0] to that which forces  
the supply off.  
CHn_A_DELAY_TRACK(): Set the value by which the  
decrementing of that channel’s DAC should be delayed  
with respect to the start of the tracking event. This con-  
trols whether the supplies track down coincidentally or  
sequentially.  
t
. Reading back Sync_track = 1 using the  
TIMEOUT_SYNC  
globaladdresswillensureallLTC2970-1’saresynchronized  
before proceeding with the tracking operation.  
IO():SetIo_track_start=1andkeeptherun/soft-startpins  
2
enabled.UsetheglobalI Caddresstosimultaneouslytrack  
SYNC():OptionalcommandthatallowsmultipleLTC2970-  
1’s to be synchronized for tracking. Writing Sync_track  
= 1 will allow the LTC2970-1 to finish its current ADC  
conversion before having it wait to receive io_track_start  
= 1. The LTC2970-1 will timeout this wait command after  
up power supplies across multiple LTC2970-1’s.  
LTC2970-1 response: For each tracking enabled channel,  
the LTC2970-1 will decrement the CHn_A_delay_track  
counter at a rate of t  
. As soon as a channel’s  
DEC_TRACK  
tracking counter reaches zero, the LTC2970-1 will begin  
stepping the value of Chn_a_idac[7:0] by one count until  
thenalvalueofChn_a_idac_track[7:0]isreached,atwhich  
point Chn_a_idac_track_en is de-asserted. When the final  
value is reached for all channels, GPIO_CFG is asserted  
t
. Reading back Sync_track = 1 using the  
TIMEOUT_SYNC  
global address will ensure all LTC2970’s are synchronized  
before proceeding with the tracking operation.  
2
IO(): Set Io_track_start = 1. Use the global I C address  
to simultaneously track down power supplies across  
multiple LTC2970’s.  
low. After a time delay of t , Chn_a_idac_en is  
HOLD_TRACK  
de-asserted.  
29701fc  
22  
LTC2970/LTC2970-1  
U
OPERATIO  
LTC2970-1response:Eachtrackingenabledchannelissoft  
connected. The GPIO_CFG pin is released allowing it to be  
Determine the target servo voltage, Chn_a_servo[14:0].  
Update CHn_A_SERVO() with Chn_a_servo_en = 1, and  
Chn_a_servo[14:0].  
pulled high. The LTC2970-1 waits t  
to allow  
SETUP_TRACK  
GPIO_CFG to settle. For each tracking enabled channel,  
Update CHn_A_IDAC() with Chn_a_idac_servo_repeat =  
1. This step may be skipped if Chn_a_idac_servo_repeat  
was set high during the soft or hard connect procedure.  
the Chn_a_delay_track counter is decremented at a rate  
of t . As soon as a channel’s tracking counter  
DEC_TRACK  
reaches zero, the LTC2970-1 will begin stepping the value  
of Chn_a_idac[7:0] by one count until the final value of  
Chn_a_idac_track[7:0] is reached. The tracking enable bit  
is then cleared for both channels (Chn_a_idac_track_en  
= 0).  
LTC2970 response: The LTC2970 will continuously in-  
crement, decrement or hold Chn_a_idac[7:0] in order  
to match the measured value of (VINn_AP-VINn_AM) to  
Chn_a_servo[14:0].  
2
IO(): The I C interface may then be used to set GPIO_1  
Whenever the CHn_A_SERVO() register is updated an in-  
ternal flag is cleared indicating that a successful servo has  
notbeencompleted.Thisinternalag,Chn_a_servo_done,  
initially causes the ADC to operate in an accelerated 12-bit  
mode. Once the channel reaches the servo target, the ADC  
switches back to 14-bit mode for two conversions before  
asserting Chn_a_servo_done high.  
and GPIO_0 low, disabling the power supplies.  
Power Down Tracking Rules:  
Power down tracking requests will be ignored until the  
user has disabled the IDAC’s by setting Chn_a_idac_en =  
0 for each tracking enabled channel.  
Chn_a_idac_track_pol, Chn_a_idac_track_en, and ch0_  
idac[7:0]updateswillbeignoredafterIO(IO_track_start)is  
asserted until tracking is complete and whenever tracking  
range is configured; (GPIO_CFG high with either GPIO_0  
or GPIO_1 asserted high).  
IncontinuousvoltageservomodetheChn_a_servo_done  
flags allow the initial servo target to be reached quickly.  
During this time, ADC conversions for all non-servo chan-  
nels are temporarily inhibited.  
Rules:  
120 Continuous Power Supply Voltage Servo  
The IDAC associated with the servo channel must be  
enabled. If Chn_a_idac_en is low the servo enable bit  
Chn_a_servo_en is always forced low.  
The continuous voltage servo feature allows the LTC2970  
to servo an external power supply to a programmed  
value. The voltage of the external supply is monitored  
over Chn_A_ADC and compared to a target value stored  
in Chn_a_servo. After each conversion, Chn_A_IDAC is  
incremented by 1, decremented by 1, or held; whichever  
bringsorkeepsthemeasuredvoltageclosertothetargeted  
servo value.  
The IDAC associated with the servo channel must be con-  
nected (Chn_a_idac_con = 1).  
AnIDACfaultmaybegeneratedduringacontinuousservo  
operation. The LTC2970 will report the fault and continue  
trying to servo that channel.  
LTC2970-1 Only: There must be no pending tracking  
commands. A pending tracking command will clear  
Chn_a_servo_en.  
Procedure:  
Follow procedure for hard connecting or soft connecting  
the LTC2970 to power supply trim pin; when updating  
CHn_A_IDAC(), Chn_a_idac_servo_repeat should be as-  
serted high. The servo channel’s IDAC must be enabled  
before Chn_A_servo_en can be set high.  
LTC2970-1 Only: The tracking range must not be enabled;  
(GPIO_CFG high with either GPIO_0 or GPIO_1 asserted  
high).AnenabledtrackingrangewillclearChn_a_servo_en  
low.  
29701fc  
23  
LTC2970/LTC2970-1  
U
OPERATIO  
130 One Time Power Supply Voltage Servo  
Procedure:  
The one time voltage servo feature allows the LTC2970 to  
servo an external power supply to a programmed value  
and then stop updating the IDAC once the target value  
has been reached.  
Follow procedure outlined for “One Time Power Supply  
Voltage Servo”.  
Update FAULT_EN() with Fault_en_chn_a_servo = 1.  
Enable detection of the appropriate instantaneous faults  
for all servo channels; see “Generating and Monitoring  
Instantaneous Faults”.  
Procedure:  
Follow procedure for hard connecting or soft connecting  
the LTC2970 to power supply trim pin; when updating  
CHn_A_IDAC(), Chn_a_idac_servo_repeat should be de-  
asserted low. The servo channel’s IDAC must be enabled  
before Chn_a_servo_en may be set high.  
LTC2970 response: Any time an instantaneous under-  
voltage or over-voltage fault is detected on the servo  
channel(Fault_ov_a_chnorFault_uv_a_chn), theinternal  
Chn_a_servo_done flag for that channel is cleared, and  
the LTC2970 will perform a complete one time servo. This  
allows the LTC2970 to precisely restore the power supply  
to the target servo value, after it has drifted beyond a user  
defined operating window.  
UpdateCHn_A_IDAC()withChn_a_idac_servo_repeat=0.  
ThisstepmaybeskippedifChn_a_idac_servo_repeatwas  
cleared low during the soft or hard connect procedure.  
Update FAULT_EN() with Fault_en_chn_a_servo = 0. This  
prevents the LTC2970 from reinitiating a servo after an  
over-voltage or under-voltage fault.  
Rules:  
All “Continuous Power Supply Voltage Servo” rules  
apply.  
Determine the target servo voltage, Chn_a_servo[14:0].  
Update CHn_A_SERVO() register with Chn_a_servo_en  
= 1, and Chn_a_servo[14:0].  
During a permanent under-voltage or over-voltage fault  
the LTC2970 will continuously try to correct the faulted  
channel, after each failed attempt all other channels that  
need monitoring by the ADC will be serviced.  
LTC2970response:TheLTC2970willincrement,decrement  
or hold Chn_a_idac[7:0] in order to match the measured  
value of (VINn_AP-VINn_AM) to Chn_a_servo[14:0]. The  
servo procedure will end when the internal Chn_a_servo_  
done flag is set (see “Continuous Power Supply Voltage  
Servo”). At this point the IDAC is either programmed to  
the appropriate servo value or faulted.  
1.0 Configuring ADC to Monitor Input Channels and  
Internal Temperature Sensor  
The LTC2970 is able to perform ADC conversions on any  
combination of seven different input channels. A channel  
is converted if its associated ADC_MON() bit is set high.  
Refer to Table 7 for details.  
Rules:  
All “Continuous Power Supply Voltage Servo” rules  
apply.  
Procedure:  
Update ADC_MON() with the control bit of each channel  
that is to be monitored set high.  
140 One Time Power Supply Voltage Servo with  
Repeat On Fault  
LTC2970 response: All enabled channels will be sequen-  
tially converted. The result of the most recent conversion  
may be read from the ADC result register. Each time a  
conversion is completed the new data bit associated with  
the result register is asserted high. The new data bit is  
The LTC2970 one time voltage servo feature may be  
modified to allow the LTC2970 to perform an additional  
power supply servo operation after an under-voltage or  
over-voltage fault is detected on the servo channel.  
29701fc  
24  
LTC2970/LTC2970-1  
U
OPERATIO  
Table 70 LTC297± ADC Conversion and Fault Limit Registers  
INPUT CHANNEL  
ADC_MON()  
CONTROL BIT  
ADC RESULT REGISTER  
(2s COMPLEMENT)  
OV FAULT REGISTER  
(2s COMPLEMENT)  
UV FAULT REGISTER  
(2s COMPLEMENT)  
TEMPERATURE  
VIN1_BP-VIN1_BM  
VIN1_AP-VIN1_AM  
VIN0_BP-VIN0_BM  
VIN0_AP-VIN0_AM  
12VIN  
Adc_mon_temp  
Adc_mon_b_ch1  
Adc_mon_a_ch1  
Adc_mon_b_ch0  
Adc_mon_a_ch0  
Adc_mon_v12  
Temp_adc[14:0]  
Ch1_b_adc[14:0]  
Ch1_a_adc[14:0]  
Ch0_b_adc[14:0]  
Ch0_a_adc[14:0]  
V12_adc[14:0]  
-
-
Ch1_b_ov[14:0]  
Ch1_a_ov[14:0]  
Ch0_b_ov[14:0]  
Ch0_a_ov[14:0]  
V12_ov[14:0]  
Vdd_ov[14:0]  
Ch1_b_uv[14:0]  
Ch1_a_uv[14:0]  
Ch0_b_uv[14:0]  
Ch0_a_uv[14:0]  
V12_uv[14:0]  
Vdd_uv[14:0]  
VDD  
Adc_mon_vdd  
Vdd_adc[14:0]  
reset each time the result register is read. This provides a  
simple mechanism for supervisory software to determine  
if a new conversion has been completed since data was  
last read.  
160 Generating and Monitoring Instantaneous Faults  
The LTC2970 supports fourteen different types of instan-  
taneous faults. These faults together with the conditions  
that trigger them are defined in Table 8. There are six  
under-voltage faults, six over-voltage faults and two IDAC  
limit faults. The FAULT() command may be used to read  
the status of all instantaneous fault bits. The IO() com-  
mand may be used to configure GPIO_0 and GPIO_1 to  
view voltage limit and IDAC faults respectively. The state  
of GPIO_0 and GPIO_1 may be read using IO().  
Rules:  
The LTC2970 assigns priority to ADC conversions of  
CH1_A_ADC and CH0_A_ADC when these channels are  
in their initial fast servo mode.  
The IO() register control bit Io_i2c_adc_wen must be low  
in order for ADC conversions to be performed.  
LTC2970-1 Only: ADC conversions are suspended during  
any pending tracking requests.  
Table 80 LTC297± Fault Reporting Bits and Conditions  
CONDITION THAT GENERATES AN  
INSTANTANEOUS FAULT  
FAULT()  
FAULT_EN()  
FAULT_LA()  
INSTANTANEOUS FAULT REPORTING ENABLE FOR LATCHED FAULT REPORTING LATCHED FAULT REPORTING  
V12_adc[14:0] < V12_uv[14:0]  
V12_adc[14:0] > V12_ov[14:0]  
Vdd_adc[14:0] < Vdd_uv[14:0]  
Vdd_adc[14:0] > Vdd_ov[14:0]  
Ch1_b_adc[14:0] < Ch1_b_uv[14:0]  
Ch1_b_adc[14:0] > Ch1_b_ov[14:0]  
Idac_a_ch1[7:0] = 8’ff or 8’h00  
Ch1_a_adc[14:0] < Ch1_a_uv[14:0]  
Ch1_a_adc[14:0] > Ch1_a_ov[14:0]  
Ch0_b_adc[14:0] < Ch0_b_uv[14:0]  
Ch0_b_adc[14:0] > Ch0_b_ov[14:0]  
Idac_a_ch0[7:0] = 8’ff or 8’h00  
Ch0_a_adc[14:0] < Ch0_a_uv[14:0]  
Ch0_a_adc[14:0] > Ch0_a_ov[14:0]  
Fault_v12_uv  
Fault_v12_ov  
Fault_en_v12_uv  
Fault_en_v12_ov  
Fault_la_v12_uv  
Fault_la_v12_ov  
Fault_vdd_uv  
Fault_en_vdd_uv  
Fault_la_vdd_uv  
Fault_vdd_ov  
Fault_en_vdd_ov  
Fault_la_vdd_ov  
Fault_ch1_b_uv  
Fault_ch1_b_ov  
Fault_ch1_a_idac  
Fault_ch1_a_uv  
Fault_ch1_a_ov  
Fault_ch0_b_uv  
Fault_ch0_b_ov  
Fault_ch0_a_idac  
Fault_ch0_a_uv  
Fault_ch0_a_ov  
Fault_en_ch1_b_uv  
Fault_en_ch1_b_ov  
Fault_en_ch1_a_idac  
Fault_en_ch1_a_uv  
Fault_en_ch1_a_ov  
Fault_en_ch0_b_uv  
Fault_en_ch0_b_ov  
Fault_en_ch0_a_idac  
Fault_en_ch0_a_uv  
Fault_en_ch0_a_ov  
Fault_la_ch1_b_uv  
Fault_la_ch1_b_ov  
Fault_la_ch1_a_idac  
Fault_la_ch1_a_uv  
Fault_la_ch1_a_ov  
Fault_la_ch0_b_uv  
Fault_la_ch0_b_ov  
Fault_la_ch0_a_idac  
Fault_la_ch0_a_uv  
Fault_la_ch0_a_ov  
29701fc  
25  
LTC2970/LTC2970-1  
U
OPERATIO  
Procedure:  
Instantaneous Ch0_a and Ch1_a faults may be used to  
trigger a servo on fault event.  
Update the over-voltage limit register with the value above  
whichtheADCresultshouldgenerateanover-voltagefault.  
Instantaneous over-voltage faults are updated after each  
ADC conversion. They are asserted high when the ADC  
resultisgreaterthantheover-voltagelimit.Theyarecleared  
if the ADC result is less than or equal to the over-voltage  
limit. Setting the over-voltage limit to 14’h3fff inhibits  
instantaneous faults for the associated channel.  
Over-voltage and under-voltage faults require that the  
associated ADC_MON control bit be asserted high for  
instantaneous fault detection to be updated.  
170 Generating and Monitoring Latched Faults  
TheLTC2970isabletoselectivelylatchinstantaneousfaults  
inthelatchedfaultregisterFAULT_LA.Eachinstantaneous  
fault has an associated latched fault bit in FAULT_LA and  
a fault enable bit in FAULT_EN; (see Table 8) for details.  
When an instantaneous fault enable bit is high, any event  
that sets the instantaneous fault will simultaneously set  
the latched fault. The latched fault will remain set even if  
conditions permit the instantaneous fault to be cleared.  
The latched faults are immediately cleared whenever the  
associated fault enable bit is cleared. All latched faults are  
also cleared when the latched fault register is read over  
FAULT_LA().  
Updatetheunder-voltagelimitregisterwiththevaluebelow  
which the ADC result should generate an under-voltage  
fault. Instantaneous under-voltage faults are updated  
after each ADC conversion. They are asserted high when  
the ADC result is less than the under-voltage limit. They  
are cleared if the ADC result is greater than or equal to  
the under-voltage limit. Setting the over-voltage limit to  
14’h4000 inhibits instantaneous faults for the associated  
channel.  
UpdateADC_MON()controlbitstoallowADCconversions  
on all channels that are to be monitored for over and under  
voltage limits. Instantaneous IDAC faults are polled after  
all ADC conversions are completed and set when the as-  
sociated IDAC registers are at ‘h00 of ‘hff.  
The FAULT_INDEX() command may be read to determine  
ifanylatchedfaultsareasserted. ReadingFAULT_INDEX()  
does not clear latched faults. The ALERT output may also  
be configured to view whether any latched faults are as-  
serted.  
Read FAULT() to view the value of all instantaneous  
faults.  
Procedure:  
Follow procedure for generating instantaneous faults.  
The IO(Io_cfg_0) command may be used to configure  
the GPIO_0 pin to output the internal Power_good flag.  
Power_goodisassertedhighiftherearenoinstantaneous  
over-voltage or under-voltage faults. IO() may be used to  
read the value of Power_good through io_gpio_0.  
Write FAULT_EN() to enable any combination of latched  
faults.  
Read FAULT_INDEX() to determine if any latched faults  
are asserted without clearing latched faults.  
The IO(Io_cfg_1) command may be used to configure the  
GPIO_1pintooutputtheinternalIdac_faultag.Idac_fault  
is asserted high if either IDAC value is faulted. IO() may be  
used to read the value of Idac_fault through io_gpio_1.  
Read FAULT_LA() to monitor all latched faults. Reading  
FAULT_LA() will clear all latched faults. These will remain  
clear until the next time the LTC2970 polls and sets an  
associated instantaneous fault.  
Rules:  
Setting IO(Io_alert_enb) low will cause ALERT to be as-  
serted low whenever any one of the fourteen latched faults  
is asserted high. The value of the ALERT pin may also be  
read through IO(Alertb).  
The over-voltage and under-voltage limits must be initial-  
ized; they do not have a default value.  
All over-voltage limits, under-voltage limits and ADC re-  
sults use 2’s complement notation with bit position [14]  
of register [14:0] being used for the sign.  
29701fc  
26  
LTC2970/LTC2970-1  
U
OPERATIO  
Rules:  
Rules:  
ThepoweronresetconfigurationsforGPIO_0andGPIO_1  
are output pins with a value equal to the complement of  
the GPIO_CFG level.  
See “Generating and Monitoring Instantaneous Faults”.  
180 General Purpose Input/Output Pins  
The GPIO_0 and GPIO_1 may be used to: (1) monitor  
instantaneous faults (see “Generating and Monitoring  
Instantaneous faults”); (2) control switcher run/start pins  
duringtracking(seeTrackingPowerSuppliesOverview”);  
or (3) provide general purpose input/output pins.  
190 Advanced Development Features  
The internal ADC may be disabled with the ADC result  
2
registers accepting written I C data. This feature allows  
faults to be generated for diagnostic purposes, without  
having to generate an actual overvoltage or undervoltage  
event.  
Procedure:  
To program GPIO_n as an open drain output set Io_cfg_n  
= 2’b10. The value written to lo_gpio_n will be output  
over GPIO_n.  
Procedure:  
SetIO(Io_i2c_adc_wen)hightoenableADCresultregister  
writes and disable internal ADC updates.  
To program GPIO_n as an input set Io_cfg_n = 2’b11. The  
value of GPIO_n may now be read through lo_gpio_n.  
Rules:  
Io_i2c_adc_wen must be clear for normal operation.  
U
W U U  
APPLICATIO S I FOR ATIO  
8V TO 15V  
Margining DC/DC Converters with External Feedback  
Resistors  
0.1μF  
V
IN  
R50  
V
IN  
V
DD  
IN  
OUT  
Figure 1 shows a typical application circuit for margining  
a power supply with an external feedback network. The  
1/2 LTC2970  
0.1μF  
GPIO_CFG  
+
I
V
V
V
IN0_BM  
IN0_BP  
OUT0  
V
andV  
differentialinputssensetheloadvolt-  
IN0_AP  
IN0_AM  
I
ALERT  
SCL  
age directly, and differential inputs V  
and V  
IN0_BM  
DC/DC  
2
IN0_BP  
I C BUS  
CONVERTER  
R30  
are connected across load current sense resistor R50. A  
correctionvoltageisdevelopedattheI pinbysourcing  
SDA  
V
IN0_AP  
R20  
R10  
+
V
OUT0  
RUN/SS FB  
I
GPIO_0  
REF  
LOAD  
OUT0  
DC0  
IDAC0’scurrentintoresistorR40.R40isKelvinconnected  
R40  
V
SGND  
GND  
IN0_AM  
to the point-of-load GND in order to isolate V from  
IOUT0  
GND ASEL0 ASEL1  
0.1μF  
ground bounce due to load current changes. V  
is  
IOUT0  
replicatedatV  
byanon-chip,unity-gainvoltagebuffer.  
OUT0  
29701 F01  
V
isthenconnectedtothefeedbacknodeofthepower  
OUT0  
supply through resistor R30. The feedback node can be  
Figure 10 Typical LTC297± Application Circuit for  
DC/DC Converters with External Feedback Resistors  
isolated from the DAC’s correction voltage by placing the  
V
pin in high-impedance mode. Since the GPIO_CFG  
OUT0  
pin is pulled-up to V , the LTC2970’s GPIO_0 pin will  
DD  
automatically hold the power supply’s RUN/SS pin low  
2
after power-up until the I C interface releases it.  
29701fc  
27  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
R20  
R10  
VDC0,NOM = V 1+  
+I R20  
(4)  
(5)  
4-Step Resistor Selection Procedure for DC/DC  
FB  
FB  
Converters with External Feedback Resistors  
The following 4-step procedure should be used to quickly  
calculatetheresistorvaluesshownfortheTypicalApplica-  
tion Circuit shown in Figure 1.  
R20  
R30  
VDC0,MIN VDC0,NOM  
R40236μA V 10mV  
(
)
1. Assume values for feedback resistor R20 and the  
FB0  
nominal DC/DC converter output voltage V  
solve for R10.  
, and  
DC0,NOM  
R20  
R30  
VDC0,MAX VDC0,NOM  
+
V 10mV  
(6)  
(7)  
(
)
FB0  
V
is the desired output voltage of the DC/DC con-  
DC0,NOM  
verterwhentheLTC2970’sV  
pinisinahighimpedance  
The margining resolution is bounded by:  
OUT0  
state. V is the voltage at the converter’s feedback node  
when the loop is in regulation, and I  
node’s input current.  
FB0  
R20  
is the feedback  
FB0  
R40276μA  
R30  
VRES  
volts/DAC LSB  
256  
R20VFB0  
R10=  
(1)  
VDC,NOM IFB0 R20V  
Margining DC/DC Converters with a TRIM Pin  
FB0  
Figure2illustratesatypicalapplicationcircuitformargining  
the output voltage of a DC/DC converter with a TRIM Pin.  
2. Solve for the maximum value of R30 that yields the  
maximum required DC/DC converter output voltage  
DC0,max  
The LTC2970’s V  
pin connects directly to the TRIM  
OUT0  
V
.
pin through resistor R30 and the I  
pin is terminated  
OUT0  
When V  
is at 0V, the output of the DC/DC converter  
OUT0  
at the converter's point-of-load ground throught R40.  
Resistors R30 and R40 give this application circuit two  
degrees of freedom so that the margin-up and margin-  
down percentages can be specified independently.  
is at its maximum voltage. Note that the 10mV term cor-  
responds to the maximum offset voltage of the IDAC 1X  
voltage buffer.  
Followingpower-up,theLTC2970'sV pindefaultstoa  
OUT0  
high-impedance state. If the soft-connect feature is used,  
R20V 10mV  
VDC,MAX VDC,NOM  
(
)
FB  
R30≤  
(2)  
8V TO 15V  
3. Solve for the minimum value of R40 that’s needed  
to yield the minimum required DC/DC converter output  
0.1μF  
12V  
IN  
V
V
DD  
VO+  
voltage V  
.
IN  
DC0,MIN  
1/2 LTC2970  
0.1μF  
The DC/DC converter output voltage will be a minimum  
whenIDAC0isatitsfull-scalecurrent.Inordertoguarantee  
that R40 is large enough, assume that IDAC0’s full-scale  
current is at the datasheet minimum of 236μA.  
GPIO_CFG  
R30  
TRIM  
DC/DC  
CONVERTER  
V
V
ALERT  
SCL  
OUT0  
2
I C BUS  
IN0_AP  
SDA  
V
SENSE+  
+
V
ON/OFF  
V
I
GPIO_0  
REF  
LOAD  
OUT0  
DC0  
R30  
R20  
236μA  
R40  
V
DC,NOM VDC,MIN  
+ V +10mV  
FB  
(
)
V
SENSE–  
VO–  
IN0_AM  
R40≥  
(3)  
GND ASEL0 ASEL1  
0.1μF  
29701 F02  
4. Re-calculate the minimum, nominal, and maximum  
DC/DC converter output voltages and the resulting mar-  
gining resolution.  
Figure 20 LTC297± Application Circuit for  
DC/DC Converters with a TRIM Pin  
29701fc  
28  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
theLTC2970willautomaticallyndtheIDACcodethatmost  
closely approximates the TRIM pin's open-circuit voltage  
. Note: The relationship between  
and the converter's output is typically non-invert-  
ing, so be sure to set the LTC2970's CH0_a_idac_pol bit  
to 1 in order to allow the voltage servo feature to function  
properly.  
Tracking with the LTC297±-1  
AtypicalLTC2970-1trackingapplicationcircuitisshownin  
Figure3(thesequenceofeventsfortrackingaredescribed  
insections9and10oftheOperationsection). TheGPIO_0  
andGPIO_1pinsaretieddirectlytotheirrespectiveDC/DC  
converter RUN/SS pins. Since GPIO_CFG is pulled-up to  
before enabling V  
OUT0  
V
TRIM  
V , the LTC2970-1 will automatically hold off the DC/DC  
DD  
DC/DC converters with a TRIM pin are usually margined  
high or low by connecting an external resistor between  
convertersafterpower-upbyassertingopendrainoutputs  
GPIO_0 and GPIO_1 low. N-channel FETs Q10/11 and  
diodes D10/11 form unidirectional range switches around  
resistors R30A/31A while GPIO_CFG is high. These range  
the TRIM pin and either the V  
or V  
pin. The  
SENSE+  
SENSE–  
relationships between these resistors and the Δ% change  
in the output voltage of the DC/DC converter are typically  
expressed as:  
switches allow the LTC2970-1’s V  
and V  
pins to  
OUT0  
OUT1  
drive the converter outputs all the way to/from ground  
through resistors R30B/31B. When GPIO_CFG pulls low,  
N-channel FETs Q10 and Q11 will turn off. R30A/31A  
and R30B/31B then combine in series for normal margin  
operation. The 100k/0.1μF low-pass filter in series with  
the gates of Q10/11 minimizes charge injection into the  
feedback nodes of the DC/DC converters when GPIO_CFG  
pulls low.  
R
TRIM • 50  
RTRIM_DOWN  
RTRIM  
=
RTRIM  
(8)  
ΔDOWN  
%
_
=
UP  
RTRIM VDC • 100 + Δ  
%
(
)
RTRIM • 50  
UP  
RTRIM  
2 • VREF ΔUP  
%
ΔUP%  
(9)  
8V TO 15V  
0.1μF  
where R  
is the resistance looking into the TRIM pin,  
TRIM  
12V  
IN  
V
V
is the TRIM pin's opern-circuit output voltage and  
is the DC/DC converter's nominal output voltage.  
V
REF  
DC  
Δ % and Δ  
UP  
DD  
Q10, Q11: 2N7002  
10k  
0.1μF  
D10, D11: MMBD4448V  
*SOME DETAILS OMITTED FOR CLARITY  
GPIO_CFG  
GPIO_0  
% denote the percentage change in the  
DOWN  
100k  
converter's output voltage when margining up or down  
respectively.  
V
V
RUN/SS IN  
IN  
D10  
DC/DC  
CONVERTER  
LTC2970-1  
Q10  
R30A  
V
FB  
OUT  
OUT0  
OUT0  
DC0  
2-Step Resistor Selection Procedure for DC/DC  
Converters with a TRIM Pin  
R30B  
ALERT  
SCL  
R20  
R10  
2
I C BUS  
I
0.1μF  
The following two-step procedure should be used to  
calculate values for resistors R30 and R40 shown in  
Figure 2.  
SDA  
R40  
V
V
GPIO_1  
RUN/SS IN  
IN  
D11  
DC/DC  
CONVERTER  
1. Solve for R30:  
Q11  
R31A  
V
FB  
OUT  
OUT1  
DC1  
R31B  
50 − ΔDOWN  
%
R21  
R30 RTRIM  
R11  
ΔDOWN  
%
I
OUT1  
GND  
(10)  
(11)  
R41  
29701 F03  
2. Solve for R40:  
Figure 30 LTC297±-1 Tracking Application Circuit  
ΔUP  
ΔDOWN  
%
%
VREF  
R40 1+  
236μA  
29701fc  
29  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
7-Step Procedure for Calculating Tracking Application  
Circuit Resistor Values, Counter Delay Values, and  
Terminal IDAC Codes  
Due to the forward drop of diodes D10 and D11 (0.8V  
max), the minimum value for R40 = R41 from expression  
(14) may result in small or even negative values of R30  
and R31 in Step 4. If this is the case, assume a minimum  
allowablevalueforR3nB,andusethefollowingexpression  
to calculate the minimum value R40 = R41:  
Thefollowing7-stepprocedureshouldbeusedtocalculate  
the resistor values, tracking counter delays, and terminal  
IDAC codes for the Tracking Application Circuit shown in  
Figure 3.  
R40=R41≥  
R3nB R3nB  
(15)  
1. Assume a value for R20 and solve for R21.  
VFBn 1+  
+
+ 0.8V +10mV  
V
istheoutputvoltageoftheDC/DCconverterwhen  
R1n  
R2n  
236μA  
DCn,NOM  
the LTC2970’s V  
pin is in a high impedance state.  
OUTn  
VDC1,NOM  
VDC0,NOM  
Note: Use the channel whose parameters yield the maxi-  
mum value for R40 = R41.  
(12)  
R21=R20•  
4. Solve for R30B and R31B.  
2. Solve for R10 and R11.  
Solve for the upper limits of R30B and R31B and then  
determine which resistor value constrains the maximum  
value of the other resistor using Equation 17.  
R2n  
R1n =  
(13)  
V
DCn,NOM 1  
VFBn  
R4n 236μA V 0.8V 10mV  
(
)
FBn  
R3nB≤  
(16)  
(17)  
1
1
VFBn  
+
3. Solve for R40 and R41.  
For simplicity, this procedure assumes that R40 = R41.  
and V are the maximum and minimum  
R1n R2n  
R30B R31B  
=
V
DCn,MAX  
DCn,MIN  
R20 R21  
converter output margin voltages, respectively.  
The value of R40 = R41 is constrained by:  
5. Solve for R30A and R31A.  
R30A and R31A are constrained by:  
(14)  
R40=R41≥  
(18)  
R3nA ≤  
R2n  
V
DCn,NOM VDCn,MIN  
(
)
VFBn  
+1 +10mV  
VDCn,MAX VDCn,NOM  
(
)
R3nB  
VDCn,MAX VDCn,NOM  
R2n  
R1n  
236μA  
1+  
⎟ ⎜  
VDCn,NOM  
29701fc  
30  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
6. Solve for Channel 1’s tracking counter delay relative to  
Channel 0, CH1_A_DELAY_TRACK().  
2. Solve for the value of R30 that yields the maximum  
required DC/DC converter output voltage V  
DC0,MAX  
From Equation 2:  
(19)  
CH1_ A _DELAY _TRACK()=  
R31B  
R21  
R20V 10mV  
VDC,MAX VDC,NOM  
(
)
FB  
VDC1,NOM VDC0,NOM  
R30≤  
=
(
)
(counts)  
1μA / countR41  
10.0kΩ0.8V 10mV  
(
)
= 7,861Ω  
Note: V  
ʹ is based on the final values of R2n and  
3.63V 2.625V  
DCn,NOM  
R1n. If the result for CH1_A_DELAY_TRACK() is less than  
0,applytheunsignedresulttotheCH0_A_DELAY_TRACK()  
register.  
Let R30 = 7.68kΩ.  
3. Solve for the value of R40 that’s needed to yield the  
minimum required DC/DC converter output voltage  
7. Solve for the IDAC0 and IDAC1 terminal tracking codes,  
V
.
DC0,MIN  
Chn_a_idac_track[7:0].  
From Equation 3:  
(20)  
Chn _a _idac _ track[7:0]=  
R30  
R20  
VFBn  
1μA /LSBR4n  
V
DC,NOM VDC,MIN  
+ V  
FB  
(
)
255−  
(LSB’s)  
R40≥  
=
236μA  
Note: This formula assumes that the Chn_a_idac_pol bit  
7.96kΩ  
)
10kΩ  
2.625V 1.62V •  
+ 0.8V  
(
is set to 0.  
= 6,780Ω  
236μA  
Margining Application Circuit Design Example  
Let R40 = 6.81kΩ.  
Consider the LTC2970 application circuit shown in Figure  
1. Channel 0 is a DC/DC converter whose output needs  
4. Re-calculate the minimum, nominal, and maximum  
DC/DC converter output voltages and the resulting mar-  
gining resolution.  
to be varied between 3.63V and 1.62V. V  
= 0.8V and  
FB0  
assume that I = 0A.  
FB0  
1. Assume values for feedback resistor R20 and the  
From Equations 4, 5, and 6:  
nominal DC/DC converter output voltage V  
solve for R10.  
, and  
DC0,NOM  
R20  
R10  
VDC0,NOM = V 1+  
+I R20=  
FB  
FB  
Let V  
= 2.625V (the average of 3.63V and 1.62V)  
DC0,NOM  
10kΩ  
4.37kΩ  
and assume that R20 = 10kΩ. From Equation 1:  
0.8V1+  
= 2.631V  
R20VFB0  
VDC,NOM IFB0 R20V  
R10=  
=
R20  
R30  
FB0  
VDC0,MIN < VDC0,NOM  
236μAR40V  
(
FB0  
)
10kΩ0.8V  
2.625V 0.8V  
= 4,384Ω  
10kΩ  
VDC0,MIN <2.631V −  
Let R10 = 4.37kΩ (the nearest E192 series resistor  
value).  
7.68kΩ  
236μA6.81kΩ0.8V 10mV =1.59V  
(
)
29701fc  
31  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
R20  
R30  
Tracking Application Circuit Design Example  
VDC0,MAX > VDC0,NOM  
+
V 10mV  
(
)
FB0  
ConsidertheLTC2970-1applicationcircuitshowninFigure  
3. Channel 0 is a 1.8V DC/DC converter while channel 1  
is a 2.5V switching power supply. Both converters have  
a feedback node voltage of 0.8V and need to track on and  
off coincidentally. In addition, a margin range of +5% and  
–10% is required for each supply.  
10kΩ  
7.68kΩ  
VDC0,MAX >2.631V +  
0.8V 10mV = 3.660V  
(
)
From Equation 7, the margining resolution will be less  
than:  
1. Assume a value for R20 and solve for R21.  
Let R20 = 5,970Ω. From Equation 12:  
R20  
R40276μA  
R30  
VDC1,NOM  
VDC0,NOM  
2.5V  
1.8V  
VRES  
<
=
R21=R20•  
= 5,970Ω•  
= 8,292Ω  
256  
6.65kΩ276μA  
256  
10kΩ  
Let R21 = 8,250Ω (the nearest E192 Series resistor  
value).  
7.68kΩ  
= 9.33mV/LSB  
2. Solve for R10 and R11.  
From Equation 13:  
Margining DC/DC Converter with TRIM Pin Design  
Example  
R20  
5,970Ω  
TheoutputvoltageoftheDC/DCconverterinFigure2needs  
to be margined 10% about its nominal value. Assume  
R10=  
=
= 4,776Ω  
= 3,882Ω  
1.8V  
0.8V  
V
DC0,NOM 1  
1  
that R  
= 10.22kΩ and V = 1.225V.  
TRIM  
REF  
VFB0  
1. Solve for R30 using Equation 10:  
R21  
8,250Ω  
R11=  
=
50 − ΔDOWN  
%
V
2.5V  
0.8V  
R30 RTRIM  
= 10.22kΩ •  
DC1,NOM 1  
1  
ΔDOWN  
%
VFB1  
50 10  
= 40,880Ω  
Let R10 = 4,750Ω and R11 = 3,880Ω.  
3. Solve for R40 and R41.  
10  
Let R30 = 39.2kΩ.  
2. Solve for R40 using Equations 11:  
Assume that R40 = R41.  
R40=R41≥  
ΔUP%  
VREF  
236μA  
V
DCn,NOM VDCn,MIN  
(
)
R40 1+  
VFBn  
+1 +10mV  
ΔDOWN  
%
VDCn,MAX VDCn,NOM  
(
)
=
10 1.225V  
10  
236μA  
= 1+  
= 10,381Ω  
236μA  
(10.9)  
0.8V•  
+1 +10mV  
(1.051)  
236μA  
Let R40 = 10.5kΩ.  
=10,212Ω  
Let R40 = R41 = 10.5kΩ  
29701fc  
32  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
4. Solve for R30B and R31B.  
R21  
R31A ≤  
R31B=  
VDC1,MAX VDC1,NOM  
R21  
R11  
R40236μA V 0.8V 10mV  
(
)
=
FB0  
1+  
⎟ ⎜  
R30B≤  
VDC1,NOM  
1
1
VFB0  
+
8,250Ω  
R10 R20  
2,890Ω= 49,888Ω  
8,250Ω  
3,880Ω  
1.051  
⎞ ⎛  
(10.5kΩ236μA 0.8V 0.8V 10mV)  
1+  
= 2,870Ω  
⎟ ⎜  
⎠ ⎝  
1
1
1
0.8V•  
+
4,750Ω 5,970Ω  
Let R30A = 49.9kΩ and R31A = 48.7kΩ.  
6. Solve for Channel 1’s tracking counter delay relative to  
Channel 0, CH1_A_DELAY_TRACK().  
R41236μA V 0.8V 10mV  
(
)
=
FB1  
R31B≤  
1
1
VFB1  
+
First, recalculate the values of V  
based on the final  
R11 R21  
DCn,NOM  
values of R1n and R2n:  
(10.5kΩ236μA 0.8V 0.8V 10mV)  
= 2,863Ω  
1
1
R20  
R10  
0.8V•  
+
VDC0,NOM = V 1+  
+I R20=  
FB  
FB  
3,880Ω 8,250Ω  
5,970Ω  
4,750Ω  
For coincident tracking to occur Equation 17 also must  
be satisfied:  
0.8V1+  
+ 0=1.805V  
R30B R31B  
=
8,250Ω  
3,880Ω  
VDC1,NOM = 0.8V1+  
+ 0= 2.501V  
R20 R21  
R31B  
R21  
2,863Ω  
8,250Ω  
Next, apply Equation 19:  
R30B=  
R31B=  
R20=  
R21=  
5,970Ω= 2,078Ω  
8,250Ω= 3,957Ω  
CH1_ A _DELAY _TRACK()=  
R30B  
R20  
2,870Ω  
5,970Ω  
R31B  
R21  
VDC1,NOM VDC0,NOM  
(
(
)
=
1μA / countR41  
Let R30B = 2,100Ω and R31B = 2,890Ω.  
5. Solve for R30A and R31A.  
Referring to Equation 18:  
2,890Ω  
2.501V 1.805V •  
)
8,250Ω  
= 23counts  
1μA / count10.5kΩ  
R20  
7. Solve for the IDAC0 and IDAC1 terminal tracking codes,  
R30A ≤  
R30B=  
Chn_a_idac_track[7:0].  
VDC0,MAX VDC0,NOM  
R20  
R10  
1+  
⎟ ⎜  
VDC0,NOM  
Ch0_a _idac[7:0]=Ch1_a _idac[7:0]=  
5,970Ω  
0.8V  
1μA /LSB10.5kΩ  
2,100Ω= 50,806Ω  
255−  
=179  
5,970Ω  
4,750Ω  
1.051  
⎞ ⎛  
1+  
⎟ ⎜  
⎠ ⎝  
1
29701fc  
33  
LTC2970/LTC2970-1  
U
W U U  
APPLICATIO S I FOR ATIO  
2.7  
drop across resistor R  
. Since the V pin voltage  
DD  
SENSE  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
V
DC1  
is monitored by the LTC2970, its tolerance can be ac-  
counted for when calculating the point of load voltage.  
V
DC0  
Transistor Q1 allows the I  
pin to force current into  
OUT0  
the converter’s feedback node without forward biasing  
the LTC2970’s I  
body diode. Note that I  
’s output  
OUT0  
OUT0  
current defaults to 128μA after the LTC2970 comes out  
of power-on reset.  
0
29701 F04  
5ms/DIV  
1.-Bit Programmable Power Supply Application  
Circuit  
Figure 40 Tracking Design Example DC/DC  
Converter Output Waveforms  
Figure6illustrateshowbothservochannelsoftheLTC2970  
can be configured to adjust a single DC/DC converter over  
a 15-bit dynamic range. R30 and R31 are sized to force  
1 bit of overlap between the coarse (channel 0) and fine  
(channel1)servoloops.Onecoarseservoiterationshould  
be performed first on channel 0 with IDAC1 programmed  
to mid-scale, and then channel 1 can be programmed to  
servo to the desired voltage.  
Figure 4 shows the DC/DC converter output voltages for  
this design example tracking-up and tracking-down.  
Temperature Sensor Conversion  
The LTC2970's internal temperature sensor output is  
proportional to absolute temperature (PTAT). In order to  
convert the ADC reading to degress Celsius, apply the  
following formula:  
Programmable Reference Application Circuit  
ADC_temp_sensor_reading  
result(°C)=  
273.15  
(21)  
Figure 7 shows a LTC2970 configured as a program-  
mable reference that can span a 0V to 3.5V range with  
a resolution of 100μV and an absolute accuracy of less  
than 0.5%. The two IDAC’s are paralleled by terminating  
4
Negative Power Supply Application Circuit  
IDAC1’s output resistor in the V  
output and taking the  
OUT1  
Figure 5 shows the LTC2970 controlling a negative power  
supply. The R30/R40 resistor divider translates the point  
OUT0  
output of the composite DAC from V  
. IDAC0 should  
servo once with IDAC1 set to mid-scale, and then IDAC1  
can servo once, continuously, or trigger on drift to the  
desired target voltage.  
of load voltage to the LTC2970’s V  
inputs while the  
IN0_A  
V
inputs monitor the converter’s input current I • R  
IN0_B  
8V TO 15V  
8V TO 15V  
0.1μF  
0.1μF  
12V  
IN  
12V  
V
DD  
IN  
V
IN  
IN  
OUT  
0.1μF  
V
R20  
R10  
DD  
V
V
IN0_AP  
+
0.1μF  
LTC2970  
C
LOAD  
IN0_AM  
GPIO_CFG  
ALERT  
SCL  
1/2 LTC2970  
V
V
V
V
OUT1  
V
ALERT  
IN0_BP  
OUT0  
R31  
DC/DC  
2
2
I C BUS  
SCL  
SDA  
I C BUS  
R
SENSE  
CONVERTER  
IN0_AP  
IN1_AP  
OUT1  
R30  
SDA  
V
I
IN0_BM  
Q1  
R20  
R10  
I
I
TP0610K  
RUN/SS FB  
GPIO_0  
REF  
OUT0  
LOAD  
R41  
GND  
OUT0  
REF  
R40  
OUT  
GND ASEL0 ASEL1  
0.1μF  
V
V
SGND  
GND  
IN0_AM  
DC/DC  
CONVERTER  
R20  
R10  
IN1_AM  
29701 F05  
R31 R30 • 128  
R41 = R40  
FB  
LOAD  
GND ASEL0 ASEL1  
0.1μF  
R30  
R40  
V  
– V  
V
OUT  
= V – 1+  
DD  
(
)
IN0_AP  
IN0_AM  
)
(
V
IN  
V
EE  
29701 F06  
Figure 60 Programmable Power Supply Application Circuit  
Figure .0 Negative Power Supply Application Circuit  
29701fc  
34  
LTC2970/LTC2970-1  
U
PACKAGE DESCRIPTIO  
UFD Package  
24-Lead Plastic QFN (4mm × .mm)  
(Reference LTC DWG # 05-08-1696)  
2.65 0.10  
PIN 1 NOTCH  
R = 0.30 TYP  
(2 SIDES)  
R = 0.115  
TYP  
0.75 0.05  
4.00 0.10  
(2 SIDES)  
23 24  
0.70 0.05  
0.40 0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
4.50 0.05  
3.10 0.05  
1
2
2.65 0.05  
(2 SIDES)  
5.00 0.10  
(2 SIDES)  
3.65 0.10  
(2 SIDES)  
0.25 0.05  
0.50 BSC  
3.65 0.05  
(2 SIDES)  
4.10 0.05  
5.50 0.05  
(UFD24) QFN 0505  
0.25 0.05  
0.50 BSC  
0.200 REF  
PACKAGE OUTLINE  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
U
TYPICAL APPLICATIO  
8V TO 15V  
0.1μF  
12V  
IN  
V
DD  
LTC2970  
IN1_AP  
0.1μF  
V
V
V
V
V
IN1_AM  
IN0_AP  
IN0_AM  
OUT1  
ALERT  
SCL  
2
I C BUS  
SDA  
I
OUT1  
22μF  
100Ω  
+
V
V
OUT  
OUT0  
10Ω  
I
REF  
OUT0  
12.7k  
GND ASEL0 ASEL1  
0.1μF  
29701 F07  
Figure 70 Programmable Reference Application Circuit  
29701fc  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
35  
LTC2970/LTC2970-1  
U
TYPICAL APPLICATIO  
8V TO 15V  
10  
0.1μF  
0.1μF  
12V  
IN  
R50  
9
V
V
DD  
IN  
OUT  
IN  
10k  
GPIO_CFG  
4
3
20  
I+  
I–  
V
V
V
IN0_BM  
IN0_BP  
OUT0  
11  
DC/DC  
CONVERTER 0  
1
R30  
V
I
IN0_AP  
R20  
R10  
14  
RUN/SS FB  
LOAD  
OUT0  
R40  
V
SGND  
PGND  
IN0_AM  
17  
18  
19  
2
ALERT  
SCL  
2
I C BUS  
SMBUS  
16  
GPIO_0  
SDA  
(
)
COMPATIBLE  
LTC2970  
R51  
V
IN  
OUT  
IN  
8
7
I+  
I–  
V
V
V
IN1_BM  
IN1_BP  
OUT1  
12  
DC/DC  
CONVERTER 1  
5
R31  
V
I
IN1_AP  
R21  
R11  
13  
R41  
6
RUN/SS FB  
LOAD  
OUT1  
23  
24  
V
SGND  
PGND  
REF  
IN1_AM  
0.1μF  
15  
GPIO_1  
RGND  
GND ASEL0 ASEL1  
25 22 21  
29701 TA01  
Figure 80 Typical LTC297± Application Circuit for  
DC/DC Converters with External Feedback Resistors  
RELATED PARTS  
PART NUMBER  
LTC2920-1/LTC2920-2  
LTC2921/LTC2922  
LTC2923  
DESCRIPTION  
COMMENTS  
Single/Dual Power Supply Margining Controllers  
Power Supply Trackers with Input Monitors  
Power Supply Tracking Controller  
Symmetric/Asymmetric High and Low Voltage Margining  
3 (LTC2921) or 5 (LTC2922) Remote Sense Switches  
Up to 3 Supplies  
LTC2924  
Quad Power Supply Sequencer  
Voltage Monitoring and Sequence Error Detection and Reporting  
Power Good Timer, Remote Sense Switch  
Up to 3 Modules  
LTC2925  
Multiple Power Supply Tracking Controller  
MOSFET Controller Power Supply Tracker  
Single Power Supply Tracker  
LTC2926  
LTC2927  
Point of Load Applications  
29701fc  
0308 REV C • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
36  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2970CUFD#PBF

LTC2970 - Dual I<sup>2</sup>C Power Supply Monitor and Margining Controller; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear System

LTC2970CUFD#PBF

LTC2970 - Dual I<sup>2</sup>C Power Supply Monitor and Margining Controller; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2970CUFD#TR

LTC2970 - Dual I<sup>2</sup>C Power Supply Monitor and Margining Controller; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear System

LTC2970CUFD-1

Dual I2C Power Supply Monitor and
Linear

LTC2970CUFD-1#PBF

LTC2970 - Dual I<sup>2</sup>C Power Supply Monitor and Margining Controller; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2970CUFD-1#TRPBF

LTC2970 - Dual I<sup>2</sup>C Power Supply Monitor and Margining Controller; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2970CUFD-1-PBF

Dual I2C Power Supply Monitor and Margining Controller
Linear

LTC2970CUFD-1-TRPBF

Dual I2C Power Supply Monitor and Margining Controller
Linear

LTC2970CUFD-PBF

Dual I2C Power Supply Monitor and Margining Controller
Linear

LTC2970CUFD-TRPBF

Dual I2C Power Supply Monitor and Margining Controller
Linear

LTC2970IUFD

Dual I2C Power Supply Monitor and
Linear

LTC2970IUFD-1

Dual I2C Power Supply Monitor and
Linear