LTC3459EDCBPBF [Linear]

10V Micropower Synchronous Boost Converter; 10V微功率同步升压转换器
LTC3459EDCBPBF
型号: LTC3459EDCBPBF
厂家: Linear    Linear
描述:

10V Micropower Synchronous Boost Converter
10V微功率同步升压转换器

转换器 升压转换器
文件: 总12页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3459  
10V Micropower  
Synchronous Boost Converter  
FEATURES  
DESCRIPTION  
TheLTC®3459isalowcurrent,highefficiencysynchronous  
boost converter intended for low power, size constrained  
portable applications. The LTC3459 can be powered from  
a single lithium ion battery, a 2- to 3-cell stack of alkaline  
or nickel batteries, or any low impedance voltage source  
between 1.5V and 5.5V. The output is programmable via  
an external divider between 2.5V and 10V. Although the  
n
Small Solution Size  
n
>85% Efficiency over Wide Load Range  
n
Internal Synchronous Rectifier  
n
V Range: 1.5V to 5.5V  
IN  
n
5V at 30mA from 3.3V Input  
n
3.3V at 20mA from 2 AA Cell Input  
n
Programmable Output Voltages Up to 10V  
Burst Mode® Operation  
n
part is primarily intended for boost applications, V  
maintain regulation below V (at reduced efficiency).  
will  
OUT  
n
Inrush Current Limiting  
Output Disconnect in Shutdown  
IN  
n
The LTC3459 offers Burst Mode operation with a fixed  
peak current, providing high conversion efficiency over  
a wide range of load currents. During start-up, inductor  
current is controlled preventing the inrush surge current  
found in many boost converters. In shutdown the output  
is disconnected from the input and quiescent current is  
reduced to <1μA.  
n
Ultralow Quiescent (10μA) and Shutdown (<1μA)  
Currents  
n
Low Profile 2mm × 2mm DFN, 2mm × 3mm DFN or  
SOT-23 Package  
APPLICATIONS  
The LTC3459 is offered in low profile 6-pin 2mm × 2mm  
DFN, 2mm × 3mm DFN or SOT-23 (ThinSOTTM) packages,  
allowing a tiny footprint for the total solution.  
, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology  
Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
General Purpose Micropower Boost  
n
Digital Cameras  
n
PDAs  
LCD Bias  
Small OLED Displays  
Supercap Charging  
n
n
n
TYPICAL APPLICATION  
5V to 8V Converter  
Efficiency  
100  
V
V
= 5V  
IN  
OUT  
= 8V  
22μH  
90  
80  
70  
60  
50  
SW  
V
OUT  
8V  
5V  
V
V
OUT  
IN  
30mA  
2M  
47pF  
LTC3459  
OFF ON  
SHDN  
GND  
FB  
1μF  
4.7μF  
365k  
3459 TA01a  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA01b  
3459fc  
1
LTC3459  
ABSOLUTE MAXIMUM RATINGS  
Referred to GND (Note 1)  
Storage Temperature Range.................. –65°C to 150°C  
Reflow Temperature.............................................. 260°C  
Lead Temperature, S6 Package  
V , FB Voltage ........................................... –0.3V to 7V  
OUT  
IN  
V
, SHDN Voltage ................................. –0.3V to 10V  
SW Voltage .............................................. –0.3V to 12V  
Operating Temperature Range  
(Soldering, 10 sec) .......................................... 300°C  
(Notes 2, 3) ......................................... –40°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
6
5
4
SW  
GND  
FB  
V
1
2
3
6
5
4
V
IN  
SHDN  
1
2
3
IN  
SW 1  
GND 2  
FB 3  
6 V  
5 V  
IN  
7
V
7
V
OUT  
GND  
SW  
OUT  
OUT  
SHDN  
FB  
4 SHDN  
S6 PACKAGE  
DC PACKAGE  
DCB PACKAGE  
6-LEAD PLASTIC TSOT-23  
6-LEAD (2mm s 2mm) PLASTIC DFN  
6-LEAD (2mm × 3mm) PLASTIC DFN  
T
= 125°C, θ = 192°C/W  
JMAX  
JA  
T
JMAX  
= 125°C, θ = 64°C/W  
JA  
EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 102°C/W  
JA  
EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3459EDC#PBF  
LTC3459EDCB#PBF  
LTC3459ES6#PBF  
TAPE AND REEL  
PART MARKING  
LDTG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3459EDC#TRPBF  
LTC3459EDCB#TRPBF  
LTC3459ES6#TRPBF  
Low Profile (2mm × 2mm) Plastic DFN  
Low Profile (2mm × 3mm) Plastic DFN  
Low Profile SOT-23  
LDMM  
–40°C to 85°C  
LTAHA  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3459fc  
2
LTC3459  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
IN  
l
Input Voltage Range  
1.5  
5.5  
20  
1
V
μA  
μA  
V
V
V
Quiescent Current  
Shutdown Current  
SHDN = V  
10  
IN  
IN  
CC  
SHDN = GND  
0.1  
OUT  
l
Programmable Voltage Range  
2.5  
10  
4
V
μA  
μA  
V
OUT  
V
OUT  
Quiescent Supply Current  
Shutdown Current  
SHDN = V  
2
CC  
SHDN = GND  
0.1  
1
Reference  
l
l
Feedback Voltage  
V
= 3.3V, V  
= 7.5V  
OUT  
1.19  
1.22  
10  
1.25  
50  
V
IN  
FB Input Leakage Current  
Converter Performance  
Measured on FB  
nA  
Peak Switch Current (V = 3.3V)  
L = 22μH  
60  
75  
400  
0
90  
mA  
ns  
IN  
t
Timer (V = 3.3V, V  
= 5V)  
Varies by 1/(V  
L = 22μH  
– V )  
225  
550  
OFF  
IN  
OUT  
OUT  
IN  
Zero Current Comparator Threshold  
Main NMOS Switch  
On-Resistance  
mA  
V
V
= 5V  
2.8  
Ω
OUT  
Leakage Current  
= 10V, V  
= 10V  
0.01  
1
μA  
SWITCH  
OUT  
Main PMOS Switch  
On-Resistance  
V
V
= 5V  
4.2  
Ω
OUT  
Leakage Current  
= 5V, V  
= 5V, V  
= 0V  
OUT  
0.02  
2
1
μA  
IN  
SWITCH  
Logic Inputs  
SHDN Threshold (Rising Edge)  
SHDN Hysteresis  
0.3  
V
mV  
nA  
80  
0
SHDN Input Leakage Current  
SHDN = 3.3V  
50  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3459E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
3459fc  
3
LTC3459  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, unless otherwise noted).  
VIN and VOUT Quiescent Current  
vs Temperature  
Minimum ROUT vs VIN  
Maximum POUT vs VIN  
16  
4000  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
= 3.3V  
= 5V  
V
V
V
V
= 10V  
= 7.5V  
= 5V  
V
V
V
V
= 10V  
= 7.5V  
= 5V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
14  
12  
3500  
3000  
= 3.3V  
= 3.3V  
L = 22μH  
L = 22μH  
I
IN  
10  
8
2500  
2000  
1500  
1000  
500  
6
4
I
OUT  
2
0
0
0
–20  
0
40  
60  
80  
–40  
20  
2
2.5  
3.5  
(V)  
4
4.5  
5
5.5  
1.5  
3
3.5  
(V)  
4.5  
5
5.5  
1.5  
2
2.5  
3
4
TEMPERATURE (°C)  
V
V
IN  
IN  
3459 G03  
3459 G01  
3459 G02  
Switching Frequency  
vs VIN at Various VOUTs  
N-Channel and P-Channel  
MOSFET RDS(ON) vs Temperature  
VOUT Regulation vs VIN and COUT  
6
5
4
3
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
V
= 5V  
V
V
V
V
= 10V  
= 7.5V  
= 5V  
OUT  
4.7μF  
10μF  
22μF  
47μF  
OUT  
OUT  
OUT  
OUT  
= 3.3V  
PCH  
1.0  
L = 22μH  
V
= 5V  
OUT  
L = 22μH  
0.5  
NCH  
0
–0.5  
–1.0  
–1.5  
–2.0  
2
1
0
40  
TEMPERATURE (°C)  
80  
–40 –20  
0
20  
60  
3.5  
(V)  
1.5  
2
2.5  
3
4
4.5  
5
5.5  
3.5  
(V)  
4
1.5  
2
2.5  
3
4.5  
5
5.5  
V
V
IN  
IN  
3459 G06  
3459 G04  
3459 G05  
Shutdown Threshold Voltage  
vs Temperature  
Burst Cycle  
Switch Pin Waveform  
1.2  
1.0  
0.8  
0.6  
SW  
CURRENT  
50mA/DIV  
SHDN RISING  
SHDN FALLING  
SW  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
0.4  
0.2  
0
3459 G08  
3459 G09  
V
V
= 3.3V  
OUT  
1μs/DIV  
V
V
= 3.3V  
OUT  
100ns/DIV  
IN  
IN  
= 5V  
= 5V  
L = 22μH  
L = 22μH  
40  
TEMPERATURE (°C)  
80  
–40 –20  
0
20  
60  
3459 G07  
3459fc  
4
LTC3459  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, unless otherwise noted).  
VOUT AC Ripple  
Burst Cycle  
Burst Cycle  
V
OUT  
50mV/DIV  
SW  
CURRENT  
50mA/DIV  
SW  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
3459 G11  
3459 G10  
3459 G12  
V
= 5V  
1μs/DIV  
V
V
= 3.3V  
= 5V  
5μs/DIV  
V
V
= 2V  
1μs/DIV  
250μs/DIV  
3459 G17  
IN  
V
IN  
OUT  
L = 22μH  
IN  
OUT  
= 10V  
= 10V  
OUT  
L = 22μH  
L = 22μH  
C
C
= 4.7μF  
= 47pF  
OUT  
FF  
VOUT Regulated Below  
VIN Burst Cycle  
Shorted Output  
Start-Up  
V
OUT  
VOLTAGE  
50mA/DIV  
SW  
CURRENT  
50mA/DIV  
SW  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INPUT  
CURRENT  
50mA/DIV  
3459 G15  
3459 G13  
3459 G14  
V
V
= 3.6V  
= 0V TO 8V  
V
V
= 5V  
= 3.5V  
1μs/DIV  
V
V
= 5V  
500ns/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 0V  
L = 22μH  
= 2.2μF  
L = 22μH  
L = 22μH  
C
IN  
Load Steps  
Load Steps  
V
V
OUT  
OUT  
AC RIPPLE  
50mV/DIV  
AC RIPPLE  
50mV/DIV  
WITH 5kΩ  
(TRACE 2  
WITH 50kΩ  
(TRACE 2  
GROUNDED)  
TO 500Ω  
(TRACE 2 = 5V)  
GROUNDED)  
TO 500Ω  
(TRACE 2 = 5V)  
3459 G16  
V
V
= 3.6V  
OUT  
L = 22μH  
100μs/DIV  
V
V
= 3.6V  
OUT  
L = 22μH  
100μs/DIV  
IN  
IN  
= 8V  
= 8V  
C
C
= 4.7μF  
C
C
= 4.7μF  
OUT  
FF  
OUT  
= 47pF  
FF  
= 47pF  
3459fc  
5
LTC3459  
PIN FUNCTIONS (DC/DCB/S6 Packages)  
V (Pin 1/Pin 6/Pin 6): Input Supply Pin. Bypass V with  
GND(Pin5/Pin5/Pin2):SignalandPowerGround.Provide  
IN  
IN  
a low ESR, ESL ceramic capacitor of at least 1μF.  
a short, direct PCB path between GND and the (–) side of  
the filter capacitors on V and V  
.
IN  
OUT  
V
(Pin 2/Pin 2/Pin 5): Regulated Output Voltage of  
OUT  
the Boost Regulator. Bypass V  
with a low ESR, ESL  
SW (Pin 6/Pin 4/Pin 1): Switch Pin. Connect a 15μH to  
OUT  
ceramic capacitor between 2.2μF and 10μF. V  
increases with smaller capacitors.  
ripple  
33μHinductorbetweenSWandV .KeepPCBtracelengths  
OUT  
IN  
as short and wide as possible to reduce EMI and voltage  
overshoot. If the inductor current falls to zero, the internal  
P-channel MOSFET synchronous rectifier is turned off to  
prevent reverse charging of the inductor.  
SHDN(Pin3/Pin1/Pin4):MasterShutdownInput.Driving  
SHDN low disables all IC functions and reduces quiescent  
current from the battery to less than 1μA. This pin must  
be pulled above 1V to enable the IC.  
Exposed Pad (Pin 7/Pin 7, DC and DCB Packages Only):  
Ground. The Exposed Pad must be soldered to PCB.  
FB(Pin4/Pin3/Pin3):InputtotheBurstModeComparator.  
An external resistor divider connected between V  
GND and this pin sets the output voltage to:  
,
OUT  
V
= 1.22(1 + R1/R2)  
OUT  
BLOCK DIAGRAM  
V
CC  
SW  
V
IN  
V
SELECT  
t
OFF  
t
OFF  
V
OUT  
TIMER  
+
I
PEAK  
Q
SD  
R
SW1  
I
V
BEST  
ZO  
QB  
I
ZERO  
DETECT  
Q
S
P/~N  
I
V
OUT  
FB  
QB RD  
THERMAL  
SD  
SLEEP  
DELAY  
P-DRIVE  
V
SELECT  
S
Q
ZO  
R1  
R2  
RD QB  
+
V
CC  
V
BEST  
HYSTCOMP  
I
PEAK  
DETECT  
V
CC  
N-DRIVE  
REFOK  
N-DRIVE  
SDB  
REFERENCE  
P-DRIVE  
SD  
SD  
SDB  
GND  
OFF ON  
SHDN  
3459 BD  
3459fc  
6
LTC3459  
OPERATION  
Operation  
converter disconnects V  
from V during shutdown to  
OUT IN  
avoid loading the input power source.  
The LTC3459 synchronous boost converter utilizes a  
Burst Mode control technique to achieve high efficiency  
over a wide dynamic range. A 2.5% accurate comparator  
Peak Current Overshoot  
The LTC3459’s peak current comparator has a delay of ap-  
proximately 100ns from the time inductor current reaches  
currentlimituntiltheinternalN-channelMOSFETturnsoff.  
This delay causes the peak current to overshoot based on  
is used to monitor the output voltage (V ), if V  
is  
OUT  
OUT  
above the comparator threshold, no switching occurs and  
only quiescent current (10μA) is drawn from the power  
source.WhenV dropsbelowthecomparatorthreshold,  
OUT  
the inductor value and V , as follows (Figure 2 is based  
IN  
switchingcommencesandtheoutputcapacitorischarged.  
During the on time of the switching period, inductor cur-  
rent is ramped through an internal N-channel MOSFET to  
GND until a peak current (75mA) is detected. A P-channel  
on a 65mA initial I ).  
LIMIT  
V
IN  
IPEAK = ILIMIT + 100ns  
(
)
L
MOSFET connects the inductor to V  
during the off time  
OUT  
delivering energy to the load. The off time is controlled by  
an internal timer which is proportional to 1/(V – V ).  
t
Timer  
OFF  
OUT  
IN  
The LTC3459’s t timer is designed to keep the inductor  
OFF  
AnticrossconductioncircuitryensurestheN-andP-chan-  
currentcontinuousduringaBurstModeswitchingpacket,  
therebyincreasingcurrentcapabilityattheoutput.Alarger  
inductorvaluewillhavelowerpeak-to-peakcurrentripple,  
increasing the available current to the load. This improve-  
nel switches are never on simultaneously.  
Only three power components and two feedback resistors  
arerequiredtocompletethedesignoftheboostconverter,  
an external Schottky diode is not required. The high op-  
erating frequency allows the use of low value, low profile  
inductors and tiny external ceramic capacitors. The boost  
ment is offset somewhat by the reduced I  
overshoot.  
PEAK  
The t timer is designed to maintain a relatively constant  
OFF  
peak-to-peak current in the inductor despite V changes.  
IN  
~50mV  
P-P  
V
OUT  
AC  
RIPPLE  
I
PEAK  
~100mA  
t
t
t
t
OFF  
OFF  
P
OFF  
P
OFF  
P
N
P
N
N
N
P
N
N
BURST ON  
I
WAIT  
SLEEP  
BURST ON  
ZERO  
3459 F01  
Figure 1. Inductor Current and VOUT Ripple Waveforms  
110  
100  
90  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
15μH  
22μH  
80  
33μH  
70  
60  
50  
1.5  
4
4.5  
2
2.5  
3
3.5  
5
5.5  
7.5  
3459 F03  
0.5  
4.5  
– V (V)  
6.5  
1.5 2.5 3.5  
V
5.5  
8.5  
3459 F02  
V
(V)  
IN  
OUT  
IN  
Figure 2. Typical IPEAK Values  
Figure 3. tOFF Times  
3459fc  
7
LTC3459  
OPERATION  
This is accomplished by varying the t  
period by ap-  
OFF  
0.8pF 1.25V  
VOUT – V  
proximately 1/(V  
– V ). Due to propagation delays  
tOFF 100ns +  
OUT  
IN  
IN  
and a 0.6μA bias current in the timer, the t time can be  
0.6μA +  
OFF  
500k  
more accurately predicted as follows:  
If V  
is less than V , the t delay is fixed at approxi-  
OUT  
IN  
OFF  
mately 750ns.  
APPLICATIONS INFORMATION  
Inductor Selection  
Capacitor Selection  
Aninductorwithaminimumvalueof1Hisrecommended  
for use with the LTC3459. Values larger than 15μH will  
result in lower ripple current and switching frequency.  
High frequency ferrite core materials are strongly recom-  
mended. Some inductors meeting these requirements are  
listed in Table 1.  
The boost converter requires two capacitors. The input  
capacitorshouldbeanX5Rtypeofatleast1.0μF. TheV  
OUT  
capacitor should also be an X5R type between 2.2μF and  
10μF. A larger capacitor should be used if lower peak-to-  
peak output ripple and better line regulation is desired.  
Table 2. Capacitor Vendor Information  
Table 1. Example Inductors  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
L
(μH)  
DCR (Ω)/ DIMENSIONS  
MAX  
CONTACT  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
(847) 803-6100  
www.avxcorp.com  
www.murata.com  
VENDOR/PART  
Chip Inductors  
I
(mA)  
(mm)  
INFORMATION  
Murata  
Taiyo Yuden  
TDK  
www.t-yuden.com  
www.component.tdk.com  
Murata  
www.murata.com  
LQH31C  
22  
3/160  
3.2 × 1.6 × 1.8  
LQH32C-Low Profile 22  
0.7/250 3.2 × 2.5 × 1.6  
Taiyo Yuden  
www.t-yuden.com  
PCB Layout Guidelines  
LB2016  
15  
22  
33  
0.7/130 2.0 × 1.6 × 1.6 (408) 573-4150  
1/105  
The high speed operation of the LTC3459 demands care-  
ful attention to board layout. You will not get advertised  
performance with a careless layout. Figure 4 shows the  
recommended component placement for the TSOT ver-  
sion of the part. A large ground pin copper area will help  
to lower the chip temperature.  
1.7/85  
Toko  
LLB2520  
www.tokoam.com  
1.7/180 2.5 × 2.0 × 1.6 (847) 297-0070  
15  
22  
33  
2.5/160  
3.8/130  
Coilcraft  
DO3314  
www.coilcraft.com  
15 0.86/650 3.3 × 3.3 × 1.4 (847) 639-6400  
RECOMMENDED COMPONENT  
PLACEMENT. TRACES CARRYING  
CURRENT ARE DIRECT. TRACE  
AREA AT FB PIN IS SMALL. LEAD  
LENGTH TO BATTERY IS SHORT  
22  
15  
22  
1.2/500  
0.4/700 6.5 × 5.3 × 2.0  
0.5/500  
DO1606T  
33 0.74/450  
1
2
3
SW  
V
6
5
4
Sumida  
www.sumida.com  
IN  
V
IN  
CMD4D06  
15  
22  
33  
0.5/400 6.6 × 5.8 × 0.8 (847) 956-0666  
GND V  
OUT  
0.8/300  
1.3/240  
CDRJ2D1BLD  
FB SHDN  
SHDN  
15 0.175/350 3.2 × 3.2 × 2.0  
22 0.255/300  
33 0.37/240  
V
OUT  
3459 F04  
Figure 4. Recommended Component  
Placement for a Single-Layer Board  
3459fc  
8
LTC3459  
TYPICAL APPLICATIONS  
Very low operating quiescent current and synchronous  
operationallowforgreaterthan85%conversionefficiency  
in many applications. Lower output voltages will result in  
The LTC3459 is designed to control peak inductor current  
when V is greater than or less than V . This allows  
IN  
OUT  
current to be controlled during start-up in a boost applica-  
tion, for example, or V to be regulated below V when  
lower efficiencies since the N- and P-channel R  
s
OUT  
IN  
DS(ON)  
powered from a fresh battery. Peak current control makes  
the LTC3459 an ideal candidate for charging a back-up  
source such as a SuperCap. Figure 5 shows an application  
where the LTC3459 is used to charge a two-farad, 5V Su-  
perCapfroma3.3Vinput. ANiCdbatterycouldbecharged  
by the LTC3459 as well, but that application may require  
additional circuitry for proper charge termination.  
will increase. The switching frequency and output power  
capability of the LTC3459 are also dependant on input and  
output voltages.  
Charging a SuperCap®  
SuperCaps have become a popular alternative to NiCd  
batteries as back-up power sources in portable equip-  
ment. Capacitance values of one farad and higher are  
achievable in small package sizes with leakage currents  
in the low microamps. SuperCaps are typically charged  
at low currents for several minutes until they reach the  
required back-up voltage.  
When V  
is less than ~3.5V, the body of the internal  
OUT  
synchronous P-channel MOSFET rectifier is connected to  
V , and the SW pin rises a diode above V when current  
IN  
IN  
is delivered to the load. While efficiency is compromised  
in this mode of operation, current to the SuperCap is  
5V from Li-Ion Input  
100  
90  
80  
70  
60  
50  
15μH*  
V
= 5V  
OUT  
V
= 4.2V  
= 2.5V  
IN  
SW  
V
V
OUT  
IN  
V
V
OUT  
IN  
5V  
2.5V TO 4.2V  
47pF  
1M  
LTC3459  
V
IN  
+
Li-Ion  
BATTERY  
1μF  
4.7μF  
OFF ON  
SHDN  
GND  
FB  
332k  
3459 TA04a  
*COILCRAFT DO3314  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA04b  
10V from 3.3V or 5V Input  
100  
90  
80  
70  
60  
50  
33μH*  
SW  
V
= 10V  
OUT  
V
= 5V  
IN  
V
V
OUT  
IN  
V
V
OUT  
IN  
3.3V TO 5V  
10V  
47pF  
2M  
LTC3459  
V
= 3.3V  
IN  
4.7μF  
1μF  
OFF ON  
SHDN  
GND  
FB  
280k  
3459 TA05a  
*COILCRAFT DO3314  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA05b  
3459fc  
9
LTC3459  
TYPICAL APPLICATIONS  
L1  
controlled, preventing any damaging effects of inrush  
current. Proper heat sinking of the package is required in  
thisapplicationasthediemaydissipate100mWto200mW  
SW  
V
OUT  
V
V
OUT  
IN  
5V  
during initial charging. When V  
is greater than ~3.5V,  
1μF  
OFF ON  
1M  
1μF  
OUT  
LTC3459  
SHDN  
GND  
+
normal boost mode operation and efficiency begin, with  
the P-channel MOSFET acting as a synchronous switch.  
Average input current is a constant 50mA during charg-  
ing, where the current delivered to the SuperCap varies  
somewhat with duty cycle. Once the SuperCap is charged  
to 5V, the LTC3459 begins to regulate and the input cur-  
rent is reduced to the amount required to support the load  
and/or self discharge of the SuperCap.  
3.3V  
C
OUT  
2F  
FB  
332k  
3459 F05  
C
: MAXWELL TECHNOLOGIES ULTRACAP PC5-5, 2F, 5V  
L1: 33μH, 1.7Ω TAIYO YUDEN LB2016  
OUT  
Figure 5. Charging a SuperCap from a 3.3V Source  
PACKAGE DESCRIPTION  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
R = 0.115  
TYP  
0.56 p 0.05  
(2 SIDES)  
0.38 p 0.05  
4
6
0.675 p0.05  
2.50 p0.05  
0.61 p0.05  
(2 SIDES)  
2.00 p0.10  
(4 SIDES)  
1.15 p0.05  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
PACKAGE  
OUTLINE  
CHAMFER OF  
EXPOSED PAD  
(DC6) DFN 1103  
3
1
0.25 p 0.05  
0.25 p 0.05  
0.50 BSC  
0.50 BSC  
0.75 p0.05  
0.200 REF  
1.37 p0.05  
(2 SIDES)  
1.42 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3459fc  
10  
LTC3459  
PACKAGE DESCRIPTION  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715)  
R = 0.115  
TYP  
2.00 0.10  
(2 SIDES)  
0.40 0.10  
R = 0.05  
4
6
TYP  
0.70 0.05  
PACKAGE  
OUTLINE  
1.65 0.05  
(2 SIDES)  
3.00 0.10  
(2 SIDES)  
1.65 0.10  
(2 SIDES)  
3.55 0.05  
2.15 0.05  
PIN 1 BAR  
PIN 1 NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
TOP MARK  
(SEE NOTE 6)  
3
1
0.25 0.05  
0.25 0.05  
0.50 BSC  
0.50 BSC  
0.75 0.05  
0.200 REF  
1.35 0.10  
(2 SIDES)  
1.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD  
PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
3459fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC3459  
TYPICAL APPLICATION  
3.3V from a 2 AA Alkaline Input  
L1  
15μH  
100  
V
= 3.3V  
OUT  
SW  
90  
80  
70  
60  
50  
V
V
OUT  
3.3V  
IN  
V
V
V = 3V  
IN  
IN  
OUT  
1.8V TO 3V  
C1  
C2  
R1  
+
+
2.2μF  
LTC3459  
SHDN  
GND  
47pF  
604k  
V
= 1.8V  
2 AA  
CELLS  
IN  
C3  
4.7μF  
OFF ON  
FB  
R2  
365k  
3459 TA06a  
C1: TDK C1608X5R1A225MT  
C2: TDK C0603COG1E470J  
C3: TDK C2012X5ROJ475K  
L1: COILCRAFT DO3314-153MXB  
R1: PANASONIC ERJ3EKF6043V  
R2: PANASONIC ERJ3EKF3653V  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA06b  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
V : 2.75V to 18V, V  
LT1310  
LT1613  
1.5A I , 4.5MHz, High Efficiency Step-Up DC/DC Converter  
= 35V, I = 12mA, I < 1μA, MS10E  
OUT(MAX) Q SD  
SW  
IN  
550mA I , 1.4MHz, High Efficiency Step-Up DC/DC Converter V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1μA, ThinSOT  
Q SD  
SW  
IN  
OUT(MAX)  
= 34V, I = 20μA, I < 1μA, ThinSOT  
OUT(MAX) Q SD  
LT1615/  
LT1615-1  
300mA/80mA I , Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
IN  
SW  
Step-Up DC/DC Converter  
LT1618  
1.5A I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V : 1.6V to 18V, V  
= 35V, I = 1.8mA, I < 1μA, MS10  
OUT(MAX) Q SD  
= 34V, I = 20μA, I < 1μA, MS10  
OUT(MAX) Q SD  
SW  
IN  
LT1944 (Dual) Dual Output 350mA I , Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
IN  
SW  
Step-Up DC/DC Converter  
LT1945 (Dual) Dual Output Pos/Neg 350mA I , Constant Off-Time,  
V : 1.2V to 15V, V  
= 34V, I = 20μA, I < 1μA, MS10  
OUT(MAX) Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
LT1946/  
LT1946A  
1.5A I , 1.2MHz/2.7MHz, High Efficiency Step-Up  
V : 2.45V to 16V, V  
= 34V, I = 3.2mA, I < 1μA, MS8  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converter  
LT1949/  
LT1949-1  
550mA I , 600kHz/1.1MHz, High Efficiency Step-Up  
V : 1.5V to 12V, V  
= 28V, I = 4.5mA, I < 25μA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converter  
SO-8, MS8  
LT1961  
1.5A I , 1.25MHz, High Efficiency Step-Up DC/DC Converter  
V : 3V to 25V, V  
= 35V, I = 0.9mA, I < 6μA, MS8E  
OUT(MAX) Q SD  
SW  
IN  
LTC3400/  
LTC3400B  
600mA I , 1.2MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 5V, I = 19μA/300μA, I < 1μA, ThinSOT  
OUT(MAX) Q SD  
SW  
IN  
LTC3401  
LTC3402  
LTC3425  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 6V, I = 38μA, I < 1μA, MS10  
Q SD  
SW  
IN  
OUT(MAX)  
= 6V, I = 38μA, I < 1μA, MS10  
OUT(MAX) Q SD  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
IN  
SW  
5A I , 8MHz, 4-Phase Synchronous Step-Up DC/DC  
V : 0.5V to 4.5V, V  
IN  
= 5.25V, I = 12μA, I < 1μA,  
OUT(MAX) Q SD  
SW  
Converter, QFN32  
LTC3429  
600mA, 500kHz, Synchronous Step-Up DC/DC Converter with  
Output Disconnect and Soft-Start  
V : 0.5V to 5V, V  
= 5V, I = 20μA/300μA, I < 1μA, ThinSOT  
Q SD  
IN  
OUT(MAX)  
LT3460  
LT3464  
320mA I , 1.3MHz, High Efficiency Step-Up DC/DC Converter V : 0.5V to 5V, V  
= 5V, I = 20μA/300μA, I < 1μA, ThinSOT  
Q SD  
SW  
IN  
OUT(MAX)  
85mA I , Constant Off-Time, High Efficiency Step-Up DC/DC  
V : 2.3V to 10V, V  
IN  
= 34V, I = 25μA, I < 1μA, ThinSOT  
OUT(MAX) Q SD  
SW  
Converter with Integrated Schottky/Output Disconnect  
3459fc  
LT 1208 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3459EDCPBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6

10V Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3459ES6#PBF

IC 0.09 A SWITCHING REGULATOR, PDSO6, LEAD FREE, PLASTIC, MO-193, TSOT-23, 6 PIN, Switching Regulator or Controller
Linear

LTC3459ES6#TR

LTC3459 - 10V Micropower Synchronous Boost Converter in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3459ES6#TRM

暂无描述
Linear

LTC3459ES6#TRMPBF

LTC3459 - 10V Micropower Synchronous Boost Converter in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3459ES6#TRPBF

LTC3459 - 10V Micropower Synchronous Boost Converter in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3459ES6-PBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6-TRPBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6PBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6TRMPBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459_07

10V Micropower Synchronous Boost Converter
Linear