LTC3459ES6#TRPBF [Linear]

LTC3459 - 10V Micropower Synchronous Boost Converter in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC3459ES6#TRPBF
型号: LTC3459ES6#TRPBF
厂家: Linear    Linear
描述:

LTC3459 - 10V Micropower Synchronous Boost Converter in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 升压转换器
文件: 总12页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3459  
10V Micropower  
Synchronous Boost Converter  
in ThinSOT  
U
FEATURES  
DESCRIPTIO  
TheLTC®3459isalowcurrent,highefficiencysynchronous  
boost converter intended for low power, size constrained  
portable applications. The LTC3459 can be powered from  
a single lithium ion battery, a 2- to 3-cell stack of Alkaline  
or Nickel batteries, or any low impedance voltage source  
between 1.5V and 5.5V. The output is programmable via  
anexternaldividerbetween2.5Vand10V.Althoughthepart  
is primarily intended for boost applications, VOUT will  
maintain regulation below VIN (at reduced efficiency).  
Small Solution Size  
>85% Efficiency over Wide Load Range  
Internal Synchronous Rectifier  
VIN Range: 1.5V to 5.5V  
5V at 30mA from 3.3V Input  
3.3V at 20mA from 2 AA Cell Input  
Programmable Output Voltages Up to 10V  
Burst Mode® Operation  
Inrush Current Limiting  
Output Disconnect in Shutdown  
Ultralow Quiescent (10µA) and Shutdown  
(<1µA) Currents  
Low Profile (1mm) SOT-23 Package  
The LTC3459 offers Burst Mode operation with a fixed  
peak current, providing high conversion efficiency over a  
wide range of load currents. During start-up, inductor  
current is controlled preventing the inrush surge current  
found in many boost converters. In shutdown the output  
is disconnected from the input and quiescent current is  
reduced to <1µA.  
U
APPLICATIO S  
General Purpose Micropower Boost  
The LTC3459 is offered in a low profile (1mm) 6-pin  
SOT-23 (ThinSOTTM) package allowing a tiny footprint for  
the total solution.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
ThinSOT is trademark of Linear Technology Corporation.  
Digital Cameras  
PDAs  
LCD Bias  
Small OLED Displays  
Supercap Charging  
U
TYPICAL APPLICATIO  
Efficiency  
5V to 8V Converter  
100  
V
V
= 5V  
IN  
OUT  
22µH  
= 8V  
90  
80  
70  
60  
50  
SW  
V
OUT  
8V  
5V  
V
IN  
V
OUT  
30mA  
2M  
47pF  
LTC3459  
OFF ON  
SHDN  
GND  
FB  
1µF  
4.7µF  
365k  
3459 TA01a  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA01b  
3459f  
1
LTC3459  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
Referred to GND (Note 1)  
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
VIN, FB Voltage ........................................... 0.3V to 7V  
VOUT, SHDN Voltage ................................. 0.3V to 10V  
SW Voltage ............................................... 0.3V to 12V  
Operating Temperature Range  
TOP VIEW  
SW 1  
GND 2  
FB 3  
6 V  
5 V  
IN  
OUT  
LTC3459ES6  
4 SHDN  
(Notes 2, 3) ........................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
S6 PACKAGE  
S6 PART MARKING  
LTAHA  
6-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 165°C/W, θJC = 102°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
IN  
Input Voltage Range  
1.5  
5.5  
20  
1
V
µA  
µA  
V
V
V
Quiescent Current  
Shutdown Current  
SHDN = V  
10  
IN  
IN  
CC  
SHDN = GND  
0.1  
OUT  
Programmable Voltage Range  
2.5  
10  
4
V
µA  
µA  
V
V
Quiescent Supply Current  
Shutdown Current  
SHDN = V  
2
OUT  
OUT  
CC  
SHDN = GND  
0.1  
1
Reference  
Feedback Voltage  
V
= 3.3V, V  
= 7.5V  
OUT  
1.19  
1.22  
10  
1.25  
50  
V
IN  
FB Input Leakage Current  
Converter Performance  
Measured on FB  
nA  
Peak Switch Current (V = 3.3V)  
L = 22µH  
60  
75  
400  
0
90  
mA  
ns  
IN  
t
Timer (V = 3.3V, V  
= 5V)  
Varies by 1/(V  
– V )  
225  
550  
OFF  
IN  
OUT  
OUT  
IN  
Zero Current Comparator Threshold  
Main NMOS Switch  
On Resistance  
L = 22µH  
mA  
V
V
= 5V  
2.8  
OUT  
Leakage Current  
= 10V, V  
= 10V  
OUT  
0.01  
1
µA  
SWITCH  
Main PMOS Switch  
On Resistance  
V
V
= 5V  
4.2  
OUT  
IN  
Leakage Current  
= 5V, V  
= 5V, V  
= 0V  
OUT  
0.02  
2
1
µA  
SWITCH  
Logic Inputs  
SHDN Threshold (Rising Edge)  
SHDN Hysteresis  
0.3  
V
mV  
nA  
80  
0
SHDN Input Leakage Current  
50  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LTC3459E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
3459f  
2
LTC3459  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (T = 25°C unless otherwise noted.)  
A
VIN and VOUT Quiescent Current  
vs Temperature  
Minimum ROUT vs VIN  
Minimum POUT vs VIN  
4000  
400  
350  
300  
250  
200  
150  
100  
50  
16  
V
V
V
V
= 10V  
= 7.5V  
= 5V  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 10V  
= 7.5V  
= 5V  
V
V
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
IN  
OUT  
3500  
3000  
14  
12  
= 3.3V  
= 3.3V  
L = 22µH  
L = 22µH  
I
IN  
2500  
2000  
1500  
1000  
500  
10  
8
6
4
I
OUT  
2
0
0
0
2
2.5  
3.5  
(V)  
4
4.5  
5
5.5  
1.5  
3
3.5  
(V)  
4.5  
5
5.5  
1.5  
2
2.5  
3
4
20  
0
40  
60  
80  
–40  
20  
V
V
TEMPERATURE (°C)  
IN  
IN  
3459 G01  
3459 G02  
3459 G03  
Switching Frequency  
vs VIN at Various VOUTS  
N-Channel and P-Channel  
MOSFET RDS(ON) vs Temperature  
VOUT Regulation vs VIN and COUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
6
5
4
3
V
V
V
V
= 10V  
= 7.5V  
= 5V  
4.7µF  
10µF  
22µF  
47µF  
V
OUT  
= 5V  
OUT  
OUT  
OUT  
OUT  
= 3.3V  
1.0  
PCH  
L = 22µH  
V
= 5V  
OUT  
L = 22µH  
0.5  
NCH  
0
–0.5  
–1.0  
–1.5  
–2.0  
2
1
0
3.5  
(V)  
4
1.5  
2
2.5  
3
4.5  
5
5.5  
3.5  
(V)  
1.5  
2
2.5  
3
4
4.5  
5
5.5  
40  
TEMPERATURE (°C)  
80  
–40 –20  
0
20  
60  
V
V
IN  
IN  
3459 G05  
3459 G04  
3459 G06  
Shutdown Threshold Voltage  
vs Temperature  
Burst Cycle  
Switch Pin Waveform  
1.2  
1.0  
0.8  
0.6  
SW  
CURRENT  
50mA/DIV  
SHDN RISING  
SHDN FALLING  
SW  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
0.4  
0.2  
0
3459 G09  
3459 G08  
V
V
= 3.3V  
= 5V  
100ns/DIV  
V
V
= 3.3V  
= 5V  
1µs/DIV  
IN  
OUT  
L = 22µH  
IN  
OUT  
L = 22µH  
40  
TEMPERATURE (°C)  
80  
–40 –20  
0
20  
60  
3459 G07  
3459f  
3
LTC3459  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (T = 25°C unless otherwise noted.)  
A
VOUT AC Ripple  
Burst Cycle  
Burst Cycle  
V
OUT  
50mV/DIV  
SW  
CURRENT  
50mA/DIV  
SW  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
3459 G11  
3459 G12  
3459 G10  
V
V
= 5V  
1µs/DIV  
V
V
= 2V  
1µs/DIV  
V
= 3.3V  
= 5V  
5µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
= 10V  
= 10V  
V
OUT  
L = 22µH  
L = 22µH  
L = 22µH  
C
C
= 4.7µF  
= 47pF  
OUT  
FF  
VOUT Regulated Below VIN Burst  
Cycle  
Shorted Output  
Start-Up  
V
OUT  
VOLTAGE  
50mA/DIV  
SW  
CURRENT  
50mA/DIV  
SW  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INDUCTOR  
CURRENT  
50mA/DIV  
INPUT  
CURRENT  
50mA/DIV  
3459 G15  
3459 G14  
3459 G13  
V
V
= 3.6V  
250µs/DIV  
V
V
= 5V  
500ns/DIV  
V
V
= 5V  
1µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 0V TO 8V  
= 0V  
= 3.5V  
L = 22µH  
= 2.2µF  
L = 22µH  
L = 22µH  
C
IN  
Load Steps  
Load Steps  
V
V
OUT  
OUT  
AC RIPPLE  
50mV/DIV  
WITH 50kΩ  
(TRACE 2  
AC RIPPLE  
50mV/DIV  
WITH 5kΩ  
(TRACE 2  
GROUNDED)  
TO 500Ω  
(TRACE 2 = 5V)  
GROUNDED)  
TO 500Ω  
(TRACE 2 = 5V)  
3459 G16  
3459 G17  
V
V
= 3.6V  
OUT  
L = 22µH  
100µs/DIV  
V
V
= 3.6V  
OUT  
L = 22µH  
100µs/DIV  
IN  
IN  
= 8V  
= 8V  
C
C
= 4.7µF  
C
C
= 4.7µF  
OUT  
OUT  
= 47pF  
= 47pF  
FF  
FF  
3459f  
4
LTC3459  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect a 15µH to 33µH inductor  
between SW and VIN. Keep PCB trace lengths as short and  
wide as possible to reduce EMI and voltage overshoot. If  
the inductor current falls to zero, the internal P-channel  
MOSFET synchronous rectifier is turned off to prevent  
reverse charging of the inductor.  
SHDN (Pin 4): Master Shutdown Input. Driving SHDN low  
disables all IC functions and reduces quiescent current  
from the battery to less than 2µA. This pin must be pulled  
above 1V to enable the IC.  
VOUT (Pin 5): Regulated Output Voltage of the Boost  
Regulator. Bypass VOUT with a low ESR, ESL ceramic  
capacitor between 2.2µF and 10µF. VOUT ripple increases  
with smaller capacitors.  
GND (Pin 2): Signal and Power Ground. Provide a short,  
direct PCB path between GND and the (–) side of the filter  
capacitors on VIN and VOUT  
.
VIN (Pin 6): Input Supply Pin. Bypass VIN with a low ESR,  
ESL ceramic capacitor of at least 1µF.  
FB (Pin 3): Input to the Burst Mode Comparator. An  
external resistor divider connected between VOUT, GND  
and this pin sets the output voltage to:  
VOUT = 1.22(1 + R1/R2)  
3459f  
5
LTC3459  
W
BLOCK DIAGRA  
1
SW  
V
CC  
V
+
IN  
6
V
SELECT  
t
OFF  
t
OFF  
TIMER  
V
OUT  
I
PEAK  
Q
SD  
R
SW1  
I
ZO  
V
BEST  
QB  
I
ZERO  
DETECT  
Q
S
P/~N  
V
OUT  
QB RD  
5
THERMAL  
SD  
SLEEP  
DELAY  
V
SELECT  
P-DRIVE  
I
S
Q
ZO  
R1  
R2  
RD QB  
V
CC  
FB  
+
V
BEST  
3
I
PEAK  
DETECT  
HYSTCOMP  
V
N-DRIVE  
CC  
N-DRIVE  
SDB  
REFOK  
REFERENCE  
P-DRIVE  
SD  
SD  
SDB  
GND  
SHDN  
2
4
3459 BD  
OFF ON  
3459f  
6
LTC3459  
U
OPERATIO  
Operation  
boost converter disconnects VOUT from VIN during shut-  
down to avoid loading the input power source.  
TheLTC3459synchronousboostconverterutilizesaBurst  
Mode control technique to achieve high efficiency over a  
wide dynamic range. A 2.5% accurate comparator is used  
to monitor the output voltage (VOUT), if VOUT is above the  
comparator threshold no switching occurs and only qui-  
escent current (10µA) is drawn from the power source.  
WhenVOUTdropsbelowthecomparatorthreshold,switch-  
ing commences and the output capacitor is charged. Dur-  
ing the on time of the switching period, inductor current is  
ramped through an internal N-channel MOSFET to GND  
until a peak current (75mA) is detected. A P-channel  
MOSFET connects the inductor to VOUT during the off time  
delivering energy to the load. The off time is controlled by  
an internal timer which is proportional to 1/(VOUT – VIN).  
Anticross conduction circuitry ensures the N- and  
P-channel switches are never on simultaneously.  
Peak Current Overshoot  
The LTC3459’s peak current comparator has a delay of  
approximately 100ns from the time inductor current  
reaches current limit until the internal N-channel MOSFET  
turns off. This delay causes the peak current to overshoot  
based on the inductor value and VIN as follows (Figure 2 is  
based on a 65mA initial ILIMIT).  
V
L
IN  
I
PEAK =ILIMIT + 100ns  
(
)
tOFF Timer  
The LTC3459’s tOFF timer is designed to keep the inductor  
currentcontinuousduringaBurstModeswitchingpacket,  
thereby increasing current capability at the output. A  
larger inductor value will have lower peak to peak current  
ripple, increasing the available current to the load. This  
improvement is offset somewhat by the reduced IPEAK  
Only three power components and two feedback resistors  
arerequiredtocompletethedesignoftheboostconverter,  
an external Schottky diode is not required. The high  
operating frequency allows the use of low value, low  
profileinductorsandtinyexternalceramiccapacitors. The  
~50mV  
P-P  
V
OUT  
AC  
RIPPLE  
I
PEAK  
~100mA  
t
t
t
t
OFF  
P
OFF  
P
OFF  
P
OFF  
N
N
N
N
P
N
P
N
BURST ON  
I
WAIT  
SLEEP  
BURST ON  
ZERO  
3459 F01  
Figure 1. Inductor Current and VOUT Ripple Waveforms  
110  
100  
90  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
15µH  
22µH  
80  
33µH  
70  
60  
50  
1.5  
4
4.5  
2
2.5  
3
3.5  
(V)  
5
5.5  
0.5  
4.5  
6.5 7.5  
1.5 2.5 3.5  
5.5  
8.5  
3459 F02  
V
IN  
3459 F03  
V
OUT  
– V (V)  
IN  
Figure 2. Typical IPEAK Values  
Figure 3. tOFF Times  
3459f  
7
LTC3459  
U
OPERATIO  
overshoot. The tOFF timer is designed to maintain a rela-  
tively constant peak-to-peak current in the inductor de-  
spiteVIN changes.ThisisaccomplishedbyvaryingthetOFF  
period by approximately 1/(VOUT – VIN). Due to propaga-  
tion delays and a 0.6µA bias current in the timer, the tOFF  
time can be more accurately predicted as follows:  
0.8pF 1.25V  
VOUT – V  
tOFF 100ns +  
IN  
0.6µA +  
500k  
If VOUT is less than VIN, the tOFF delay is fixed at approxi-  
mately 750ns.  
W U U  
U
APPLICATIO S I FOR ATIO  
Inductor Selection  
capacitor should also be an X5R type between 2.2µF and  
10µF. A larger capacitor should be used if lower peak-to-  
peak output ripple and better line regulation is desired.  
An inductor with a minimum value of 15µH is recom-  
mended for use with the LTC3459. Values larger than  
15µH will result in lower ripple current and switching  
frequency. High frequency Ferrite core materials are  
strongly recommended. Some inductors meeting these  
requirements are listed in Table 2.  
Table 2. Capacitor Vendor Information  
SUPPLIER  
PHONE  
WEBSITE  
AVX  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
(847) 803-6100  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.component.tdk.com  
Murata  
Taiyo Yuden  
TDK  
Table 2. Example Inductors  
L
DCR ()/ DIMENSIONS  
MAX  
CONTACT  
VENDOR/PART  
Chip Inductors  
(µH) I  
(mA)  
(mm)  
INFORMATION  
PCB Layout Guidlines  
Murata  
LQH31C  
www.murata.com  
ThehighspeedoperationoftheLTC3459demandscareful  
attention to board layout. You will not get advertised  
performance with careless layout. Figure 4 shows the  
recommended component placement. A large ground pin  
copper area will help to lower the chip temperature.  
22  
3/160  
3.2 × 1.6 × 1.8  
LQH32C-Low Profile 22 0.7/250 3.2 × 2.5 × 1.6  
Taiyo Yuden  
LB2016  
www.t-yuden.com  
15 0.7/130 2.0 × 1.6 × 1.6 (408) 573-4150  
22  
33  
1/105  
1.7/85  
Toko  
LLB2520  
www.tokoam.com  
15 1.7/180 2.5 × 2.0 × 1.6 (847) 297-0070  
22 2.5/160  
33 3.8/130  
Coilcraft  
DO3314  
www.coilcraft.com  
15 0.86/650 3.3 × 3.3 × 1.4 (847) 639-6400  
22 1.2/500  
1
2
3
SW  
V
6
5
4
IN  
V
IN  
DO1606T  
15 0.4/700 6.5 × 5.3 × 2.0  
22 0.5/500  
GND V  
OUT  
33 0.74/450  
FB SHDN  
SHDN  
Sumida  
www.sumida.com  
15 0.5/400 6.6 × 5.8 × 0.8 (847) 956-0666  
22 0.8/300  
CMD4D06  
33 1.3/240  
V
OUT  
CDRJ2D18LD  
15 0.175/350 3.2 × 3.2 × 2.0  
22 0.255/300  
33 0.37/240  
3459 F04  
RECOMMENDED COMPONENT PLACEMENT. TRACES  
CARRYING CURRENT ARE DIRECT. TRACE AREA AT FB  
PIN IS SMALL. LEAD LENGTH TO BATTERY IS SHORT  
Capacitor Selection  
Figure 4. Recommended Component  
Placement for Single Layer Board  
The boost converter requires two capacitors. The input  
capacitorshouldbeanX5Rtypeofatleast1.0µF.TheVOUT  
3459f  
8
LTC3459  
U
TYPICAL APPLICATIO S  
Very low operating quiescent current and synchronous  
operation allow for greater than 85% conversion effi-  
ciency in many applications. Lower output voltages will  
result in lower efficiencies since the N- and P-channel  
R
DS(ON)’s will increase. The switching frequency and  
output power capability of the LTC3459 are also depen-  
dant on input and output voltages.  
5V from Li-Ion Input  
100  
90  
80  
70  
60  
50  
V
= 5V  
OUT  
15µH*  
V
= 4.2V  
= 2.5V  
IN  
SW  
V
V
OUT  
IN  
V
IN  
V
OUT  
V
IN  
5V  
2.5V TO 4.2V  
47pF  
1M  
LTC3459  
+
Li-Ion  
BATTERY  
1µF  
4.7µF  
OFF ON  
SHDN  
GND  
FB  
332k  
3459 TA04a  
*COILCRAFT DO3314  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA04b  
10V from 3.3V or 5V Input  
100  
V
OUT  
= 10V  
33µH*  
90  
80  
70  
60  
50  
V
= 5V  
IN  
SW  
V
V
OUT  
IN  
V
V
OUT  
IN  
3.3V TO 5V  
10V  
47pF  
2M  
V
IN  
= 3.3V  
LTC3459  
4.7µF  
1µF  
OFF ON  
SHDN  
GND  
FB  
280k  
3459 TA05a  
*COILCRAFT DO3314  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA05b  
3459f  
9
LTC3459  
U
TYPICAL APPLICATIO S  
Charging a SuperCap®  
When VOUT is less than ~3.5V, the body of the internal  
synchronous P-channel MOSFET rectifier is connected to  
VIN and the SW pin rises a diode above VIN when current  
is delivered to the load. While efficiency is compromised  
in this mode of operation, current to the SuperCap is  
controlled, preventing any damaging effects of inrush  
current. Proper heat sinking of the SOT package is re-  
quired in this application as the die may dissipate 100mW  
to 200mW during initial charging. When VOUT is greater  
than ~3.5V normal boost mode operation and efficiency  
begin, with the P-channel MOSFET acting as a synchro-  
nous switch. Average input current is a constant 50mA  
during charging, where the current delivered to the  
SuperCap varies somewhat with duty cycle. Once the  
supercapischargedto5V, theLTC3459beginstoregulate  
and the input current is reduced to the amount required to  
support the load and/or self discharge of the SuperCap.  
SuperCap is a registered trademark of Baknor Industries.  
SuperCaps have become a popular alternative to NiCd  
batteries as backup power sources in portable equipment.  
Capacitance values of one Farad and higher are achievable  
in small package sizes with leakage currents in the low  
microamps. SuperCaps are typically charged at low cur-  
rents for several minutes until they reach the required  
back-up voltage.  
The LTC3459 is designed to control peak inductor current  
when VIN is greater than or less than VOUT. This allows  
current to be controlled during start-up in a boost applica-  
tion, for example, or VOUT to be regulated below VIN when  
powered from a fresh battery. Peak current control makes  
the LTC3459 an ideal candidate for charging a back-up  
source such as a SuperCap. Figure 5 shows an application  
where the LTC3459 is used to charge a two Farad, 5V  
supercap from a 3.3V input. A NiCd battery could be  
charged by the LTC3459 as well, but that application may  
require additional circuitry for proper charge termination.  
L1  
SW  
V
OUT  
V
V
OUT  
IN  
LTC3459  
SHDN  
GND  
5V  
1µF  
1M  
1µF  
+
3.3V  
C
OUT  
2F  
OFF ON  
FB  
332k  
3459 F05  
C
: MAXWELL TECHNOLOGIES ULTRACAP PC5-5, 2F, 5V  
OUT  
L1: 33µH, 1.7TAIYO YUDEN LB2016  
Figure 5. Charging a SuperCap from a 3.3V Source  
3459f  
10  
LTC3459  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3459f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3459  
U
TYPICAL APPLICATIO  
3.3V from 2 AA Alkaline Input  
100  
L1  
15µH  
V
= 3.3V  
OUT  
90  
80  
70  
60  
50  
SW  
V
= 3V  
IN  
V
V
OUT  
3.3V  
IN  
V
V
OUT  
IN  
1.8V TO 3V  
C1  
C2  
R1  
V
= 1.8V  
+
+
IN  
2.2µF  
LTC3459  
SHDN  
GND  
47pF  
604k  
2 AA  
CELLS  
C3  
4.7µF  
OFF ON  
FB  
R2  
365k  
3459 TA06a  
C1: TDK C1608X5R1A225MT  
C2: TDK C0603COG1E470J  
C3: TDK C2012X5ROJ475K  
L1: COILCRAFT DO3314-153MXB  
R1: PANASONIC ERJ3EKF6043V  
R2: PANASONIC ERJ3EKF3653V  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
3459 TA06b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1310  
1.5A I , 4.5MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.75V to 18V, V  
MS10E  
= 35V, I = 12mA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT1613  
550mA I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1µA, ThinSOT  
OUT(MAX) Q SD  
= 34V, I = 20µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT1615/LT1615-1  
300mA/80mA I , Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
IN  
SW  
Step-Up DC/DC Converter  
ThinSOT  
LT1618  
1.5A I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V : 1.6V to 18V, V  
= 35V, I = 1.8mA, I < 1µA, MS10  
OUT(MAX) Q SD  
= 34V, I = 20µA, I < 1µA, MS10  
OUT(MAX) Q SD  
SW  
IN  
LT1944 (Dual)  
Dual Output 350mA I , Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
IN  
SW  
Step-Up DC/DC Converter  
LT1945 (Dual)  
LT1946/LT1946A  
LT1949/LT1949-1  
LT1961  
Dual Output Pos/Neg 350mA I , Constant Off-Time,  
High Efficiency Step-Up DC/DC Converter  
V : 1.2V to 15V, V  
= ±34V, I = 20µA, I < 1µA, MS10  
SW  
IN  
OUT(MAX) Q SD  
1.5A I , 1.2MHz/2.7MHZ, High Efficiency Step-Up  
V : 2.45V to 16V, V  
IN  
= 34V, I = 3.2mA, I < 1µA, MS8  
OUT(MAX) Q SD  
SW  
DC/DC Converter  
550mA I , 600kHz/1.1MHz, High Efficiency Step-Up  
V : 1.5V to 12V, V  
= 28V, I = 4.5mA, I < 25µA, SO-8,  
SW  
IN  
OUT(MAX) Q SD  
DC/DC Converter  
MS8  
1.5A I , 1.25MHz, High Efficiency Step-Up DC/DC Converter  
V : 3V to 25V, V  
= 35V, I = 0.9mA, I < 6µA, MS8E  
SW  
IN  
OUT(MAX) Q SD  
LTC3400/LTC3400B 600mA I , 1.2MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
ThinSOT  
= 5V, I = 19µA/300µA I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LTC3401  
LTC3402  
LTC3425  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 6V, I = 38µA I < 1µA, MS10  
Q SD  
SW  
IN  
OUT(MAX)  
= 6V, I = 38µA I < 1µA, MS10  
OUT(MAX) Q SD  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
IN  
SW  
5A I , 8MHz, 4-Phase Synchronous Step-Up DC/DC Converter V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
QFN32  
LTC3429  
LT3460  
LT3464  
600mA, 500kHz, Synchronous Step-Up DC/DC Converter  
with Output Disconnect and Soft-Start  
V : 0.5V to 5V, V  
ThinSOT  
= 5V, I = 20µA/300µA I < 1µA,  
OUT(MAX) Q SD  
IN  
320mA I , 1.3MHz, High Efficiency Step-Up DC/DC Converter  
V : 2.5V to 16V, V  
= 36V, I = 2mA, I < 1µA, SC70,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
ThinSOT  
85mA I , Constant Off-Time, High Efficiency Step-Up DC/DC  
V : 2.3V to 10V, V  
= 34V, I = 25µA, I < 1µA,  
Q SD  
SW  
IN  
Converter with Integrated Schottky/Output Disconnect  
ThinSOT  
3459f  
LT/TP 0304 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC3459ES6-PBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6-TRPBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6PBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459ES6TRMPBF

10V Micropower Synchronous Boost Converter
Linear

LTC3459_07

10V Micropower Synchronous Boost Converter
Linear

LTC3464

1.2MHz Step-Up DC/DC Converter in SOT-23
Linear

LTC3490

Single Cell 350mA LED Driver
Linear

LTC3490EDD

Single Cell 350mA LED Driver
Linear

LTC3490ES8

Single Cell 350mA LED Driver
Linear

LTC3490ES8#PBF

LTC3490 - Single Cell 350mA LED Driver; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3499

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear

LTC3499B

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear