LTC6417CUDC#TRPBF [Linear]

LTC6417 - 1.6GHz Low Noise High Linearity Differential Buffer/16-Bit ADC Driver with Fast Clamp; Package: QFN; Pins: 20; Temperature Range: 0°C to 70°C;
LTC6417CUDC#TRPBF
型号: LTC6417CUDC#TRPBF
厂家: Linear    Linear
描述:

LTC6417 - 1.6GHz Low Noise High Linearity Differential Buffer/16-Bit ADC Driver with Fast Clamp; Package: QFN; Pins: 20; Temperature Range: 0°C to 70°C

放大器
文件: 总32页 (文件大小:1308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6417  
1.6GHz Low Noise High Linearity  
Differential Buffer/16-Bit ADC  
Driver with Fast Clamp  
DescripTion  
FeaTures  
The LTC®6417 is a differential unity gain buffer that can  
drive a 50Ω load with extremely low noise and excellent  
linearity. It is well suited for driving high speed 14- and  
16-bit pipeline ADCs with input signals from DC to beyond  
600MHz. Differentialinputimpedanceis18.5kΩ, allowing  
1:4 and 1:8 transformers to be used at the input providing  
additional system gain in 50Ω systems.  
n
1.6GHz –3dB Small Signal Bandwidth  
n
Low Distortion Driving 50Ω Load, 2.4V Out  
P-P  
–100dBc/–69dBc HD2/HD3 at 140MHz  
–80dBc IM3 and 46dBm OIP3 at 140MHz  
–100dBc/–66dBc HD2/HD3 at 380MHz  
–68dBc IM3 and 39dBm OIP3 at 380MHz  
1.5nV/√Hz Output Noise  
n
n
n
4.3pA/√Hz Input Current Noise  
With no external biasing or gain setting components and  
a flow-through pinout, the LTC6417 is very easy to use. It  
can be DC-coupled and has a common mode output offset  
of –60mV. The LTC6417 input pins are internally biased to  
provide an output common mode voltage that is set by  
Programmable High Speed, Fast Recovery  
Output Clamping  
n
4.28V Maximum Output Swing on a 50Ω  
P-P  
Differential Load  
DC-Coupled Signal Path  
n
n
n
the voltage on the V pin for AC-coupled applications.  
CM  
Operates on Single 4.75V to 5.25V Supply  
Power: 615mW on 5V, Can Be Reduced to 370mW,  
Shutdown Mode 120mW  
Supplycurrentistypically123mAandtheLTC6417operates  
on supply voltages ranging from 4.75V to 5.25V. Power  
consumption can be reduced to 74mA via the PWRADJ  
pin. The LTC6417 also has a hardware shutdown feature  
which reduces current consumption to 24mA.  
n
3mm × 4mm 20-Lead QFN Package  
TheLTC6417featuresfast,adjustableoutputvoltageclamp-  
ing to help protect subsequent circuitry. The CLHI pin sets  
the maximum swing, while a symmetric minimum swing  
applicaTions  
n
Differential ADC Driver  
n
CCD Buffer  
is set up internally. LTC6417 V pin will signal overrange  
OR  
n
Cable Driver  
when the clamps limit output voltage.  
n
50Ω Buffer  
The LTC6417 is packaged in a 20-lead 3mm × 4mm QFN  
package.Pinoutisoptimizedforplacementdirectlyadjacent  
to Linear Technology’s high speed 14- and 16-bit ADCs.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
LTC6417 Driving LTC2209  
16-Bit ADC 32K Point FFT,  
Typical applicaTion  
LTC6417 Driving an LTC2209 16-Bit ADC at 140MHz IF  
fIN = 140MHz, –1dBFS, PGA = 0  
3.3V  
5V  
0
HD2 = –88dBc  
HD3 = –94dBc  
SFDR = 88dBc  
SNR = 75.4dB  
SEE FIGURE 1/TABLE 1  
1:4 BALUN  
C43  
E1  
C45  
–10  
–20  
E3  
2.2µF  
27pF  
18pF  
680pF  
0.1µF  
1,6,  
11,16  
51nH  
75nH  
–30  
R36  
60.4Ω  
R42  
300Ω  
–40  
T1  
+
5
10Ω  
10Ω  
V
f
= 153.6Msps  
–50  
S
WBC4-14LB  
2
PWRADJ  
DEMO BOARD DC1685A  
–60  
8
9
4
3
C40  
+
CLHI  
+
19  
R53  
120Ω  
C41  
12pF  
IN  
100Ω  
100Ω  
A
A
IN  
IN  
12pF  
–70  
+
E5  
51nH  
16  
OUT  
OUT  
2
50Ω  
LTC2209  
PGA = 0  
LTC6417  
–80  
R12  
60.4Ω  
C10  
12pF  
R43  
300Ω  
V
–90  
IN  
OR  
18  
+
V
CM  
6
1
V
CM  
14  
1k  
SHDN  
–100  
–110  
–120  
15  
GND  
0.01µF  
C44  
27pF  
C46  
18pF  
12  
E2  
51nH  
E3  
75nH  
0.01µF  
CLOCK  
(153.6MHz)  
3,7,10,  
17, 20,21  
0
10 20 30 40 50 60 70 80  
FREQUENCY (MHz)  
6417 TA01b  
6417 TA01a  
2.2µF  
6417f  
1
LTC6417  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
+
Total Supply Voltage (V to GND).............................5.5V  
Input Current (CLHI, V ).................................... 10mA  
CM  
20 19 18 17  
+
+
Input Current (IN , IN )........................................ 30mA  
+
+
1
16  
15  
14  
V
V
V
V
Output Current (OUT , OUT )............................. 100mA  
CLHI  
GND  
2
3
4
5
6
CM  
Output Current (V ) ........................................... 10mA  
OR  
OR  
21  
GND  
Operating Temperature Range  
NC  
13 NC  
(T ) (Note 2) .......................................... –40°C to 105°C  
C
PWRADJ  
12 SHDN  
+
+
Specified Temperature Range  
V
11 V  
(T ) (Note 3) .......................................... –40°C to 105°C  
C
7
8
9 10  
Storage Temperature Range .................. –65°C to 150°C  
Junction Temperature (T  
).............................. 150°C  
JMAX  
UDC PACKAGE  
20-LEAD (3mm × 4mm) PLASTIC QFN  
= 150°C, θ = 52°C/W, θ = 6.8°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC6417CUDC#PBF  
LTC6417IUDC#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC6417CUDC#TRPBF  
LTC6417IUDC#TRPBF  
LFVN  
LFVN  
0°C to 70°C  
20-Lead (3mm × 4mm) Plastic QFN  
20-Lead (3mm × 4mm) Plastic QFN  
–40°C to 105°C (T )  
C
*Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
Dc elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, No RLOAD, CLOAD = 6pF. VCM = 1.25V, CLHI = V+,  
PWRADJ = V+, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as (OUT+ + OUT)/2. VINDIFF is  
defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristics  
G
Differential Gain  
V
= 1.2V Differential  
INDIFF  
–0.15  
–0.2  
–0.1  
0.0002  
4.28  
0
0
dB  
dB  
DIFF  
l
l
TCG  
Differential Gain Temperature  
Coefficient  
dB/°C  
DIFF  
V
V
V
Differential Output Voltage Swing  
Output Voltage Swing Low  
Output Voltage Swing High  
V
, V  
= 2.3V  
4
3.3  
V
V
SWINGDIFF  
SWINGMIN  
SWINGMAX  
OUTDIFF INDIFF  
P-P  
P-P  
l
l
l
+
Single-Ended Measurement of OUT , OUT  
= 2.3V  
0.19  
0.28  
0.4  
V
V
V
INDIFF  
+
Single-Ended Measurement of OUT , OUT  
= 2.3V  
2.25  
2.05  
2.33  
V
V
V
INDIFF  
6417f  
2
LTC6417  
Dc elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, No RLOAD, CLOAD = 6pF. VCM = 1.25V, CLHI = V+,  
PWRADJ = V+, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as (OUT+ + OUT)/2. VINDIFF is  
defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
Single-Ended Measurement of OUT , OUT  
MIN  
TYP  
MAX  
UNITS  
+
l
I
Output Current Drive (Notes 1, 4)  
Differential Input Offset Voltage  
100  
mA  
OUT  
+
V
OS  
IN = IN = 1.25V, V = V /G  
OUTDIFF DIFF  
–3.2  
–4  
–0.1  
3.2  
4
mV  
mV  
OS  
l
l
TCV  
Differential Input Offset Voltage Drift  
1
µV/°C  
OS  
V
Common Mode Offset Voltage, Input  
to Output  
V
– V  
INCM  
–120  
–140  
–60  
–10  
0
mV  
mV  
IOCM  
OUTCM  
l
l
+
IVR  
Input Voltage Range, IN , IN  
Defined by Output Voltage Swing Test  
Defined by Output Voltage Swing Test  
0.1  
V
MIN  
(Minimum) (Single-Ended)  
+
l
IVR  
Input Voltage Range IN , IN  
2.4  
V
MAX  
(Maximum) (Single-Ended)  
+
+
I
Input Bias Current, IN , IN  
IN = IN = 1.25V  
–13  
–18  
2
13  
18  
µA  
µA  
B
l
l
R
Differential Input Resistance  
V
= 1.2V  
12  
11  
18.5  
25  
27.5  
kΩ  
kΩ  
INDIFF  
INDIFF  
C
INDIFF  
Differential Input Capacitance  
1
pF  
+
R
Input Common Mode Resistance  
IN = IN = 0.65V to 1.85V  
5.8  
5
9.25  
13  
15  
kΩ  
kΩ  
INCM  
l
l
+
CMRR  
Common Mode Rejection Ratio  
IN = IN = 0.65V to 1.85V,  
63  
60  
91  
dB  
dB  
CMRR = (V  
/G /1.2V)  
OUTDIFF DIFF  
R
Differential Output Resistance  
Input Noise Voltage Density  
Input Noise Current Density  
3
Ω
nV/√Hz  
pA/√Hz  
OUTDIFF  
e
N
f = 100kHz  
f = 100kHz  
1.5  
4.3  
i
N
Output Common Mode Voltage Control  
G
V
Pin Common Mode Gain  
V
V
V
= 0.65V to 1.85V  
0.82  
0.8  
0.92  
1.25  
15  
V/V  
V/V  
CM  
CM  
CM  
l
l
l
l
l
l
l
l
l
+
V
V
V
V
V
V
V
Default Input Common Mode Voltage  
Offset Voltage, V to V  
. IN , IN , V Pin Floating  
1.15  
1.1  
1.35  
1.4  
V
V
INCMDEFAULT  
INCM  
CM  
(V – V  
)
– V , V = 1.25V  
INCM CM  
–85  
–90  
115  
135  
mV  
mV  
OS CM  
INCM  
CM  
INCM  
CM  
Default Output Common Mode Voltage Inputs Floating, V Pin Floating  
1.1  
1
1.2  
1.3  
1.35  
V
V
OUTCMDEFAULT  
CM  
(V – V  
)
Offset Voltage, V to V  
V
CM  
V
CM  
V
CM  
– V , V = 1.25V  
OUTCM CM  
–50  
–45  
75  
200  
230  
mV  
mV  
OS CM  
OUTCM  
CM  
OUTCM  
Output Common Mode Voltage Range  
(Minimum)  
= 0.1V  
= 2.4V  
0.29  
2.25  
1.25  
2.7  
0.63  
0.65  
V
V
OUTCMMIN  
OUTCMMAX  
CMDEFAULT  
Output Common Mode Voltage Range  
(Maximum)  
2
1.85  
V
V
V
Pin Default Voltage  
1.15  
1.1  
1.35  
1.4  
V
V
CM  
R
VCM  
V
Pin Input Resistance  
V
V
= 0.65V to 1.85V  
= 1.25V  
2
1.9  
3.4  
3.7  
kΩ  
kΩ  
CM  
CM  
CM  
C
VCM  
V
V
Pin Input Capacitance  
Pin Bias Current  
1
1
pF  
CM  
CM  
I
–15  
–27.5  
15  
27.5  
µA  
µA  
BVCM  
l
6417f  
3
LTC6417  
Dc elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, No RLOAD, CLOAD = 6pF. VCM = 1.25V, CLHI = V+,  
PWRADJ = V+, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as (OUT+ + OUT)/2. VINDIFF is  
defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC Clamping Characteristics  
V
V
V
Default Output Clamp Voltage, High  
) Offset Voltage, CLHI to V  
2.4  
2.48  
20  
2.55  
2.6  
V
V
CLHIDEFAULT  
l
l
l
l
l
l
l
2.35  
(CLHI – V  
–60  
–85  
80  
85  
mV  
mV  
OS  
OS  
OUTCM  
OUTCM  
+
(CLLO – V  
)
Offset Voltage, CLLO to V  
V
= 2.0V, V = 1.25V, IN = 2.4V,  
–100  
–110  
10  
100  
110  
mV  
mV  
OUT  
OUT  
CLHI  
CM  
IN = 0.1V  
+
G
G
R
Low Side Clamp Gain with Respect to  
CLHI Pin  
V
= 2.0V, V = 1.25V, IN = 2.4V,  
–1.2  
–1.25  
–1  
–0.8  
–0.75  
V/V  
V/V  
LOHI  
CLHI  
CM  
IN = 0.1V  
+
Low Side Clamp Gain with Respect to  
CM Pin  
V
= 2.0V, V = 1.25V, IN = 2.4V,  
1.65  
1.5  
1.9  
4.8  
3
2.2  
2.25  
V/V  
V/V  
LOCM  
CLHI  
CLHI  
CM  
IN = 0.1V  
CLHI Pin Input Resistance  
V
V
= 1.5V to 2.5V  
= 2.5V  
3.4  
3.1  
5.7  
6
kΩ  
kΩ  
CLHI  
IB  
CLHI Pin Bias Current  
–12  
–12.5  
18  
18.5  
µA  
µA  
CLHI  
CLHI  
Power Supply  
l
l
l
V
Supply Voltage Range  
Supply Current  
4.75  
5.25  
V
S
I
S
100  
95  
123  
72  
140  
145  
mA  
mA  
PSRR  
Power Supply Rejection Ratio  
V = 4.75V to 5.25V  
S
65  
63  
dB  
dB  
SHDN Pin  
IS  
Shutdown Current  
V
= 5V  
SHDN  
17  
15  
24  
29  
35  
mA  
mA  
SHDN  
l
l
l
l
V
V
V
Default Shutdown Voltage  
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Low Current  
0.1  
2
V
V
V
SHDNDEFAULT  
IL,SHDN  
3.5  
IH,SHDN  
I
SHDN = 0V  
SHDN = 5V  
–1.6  
–2  
0
1.6  
2
µA  
µA  
IL,SHDN  
l
l
I
SHDN Input High Current  
275  
250  
380  
450  
475  
µA  
µA  
IH,SHDN  
C
SHDN Pin Input Capacitance  
SHDN Pin Input Resistance  
1
pF  
SHDN  
R
SHDN = 2.5V to 5V  
6
5
10.5  
14  
15  
kΩ  
kΩ  
SHDN  
l
PWRADJ Pin  
V
Default PWRADJ Voltage  
Supply Low Current  
PWRADJ Floating  
PWRADJ = 0V  
PWRADJ = 0V  
PWRADJ = 5V  
1.5  
1.65  
74  
1.8  
V
V
PWRADJDEFAULT  
1.45  
1.85  
IS  
45  
40  
105  
110  
mA  
mA  
L
l
l
l
I
I
PWRADJ Input Low Current  
PWRADJ Input High Current  
PWRADJ Pin Input Capacitance  
–145  
–165  
–120  
240  
1
–80  
–75  
µA  
µA  
IL,PWRADJ  
210  
200  
290  
300  
µA  
µA  
IH,PWRADJ  
C
pF  
PWRADJ  
6417f  
4
LTC6417  
Dc elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, No RLOAD, CLOAD = 6pF. VCM = 1.25V, CLHI = V+,  
PWRADJ = V+, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as (OUT+ + OUT)/2. VINDIFF is  
defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
PWRADJ Pin Input Resistance  
PWRADJ = 2.5V to 5.0V  
10.5  
10  
14.5  
19  
20  
kΩ  
kΩ  
PWRADJ  
l
V
OR  
Pin  
V
Maximum Voltage on V Pin  
V
V
V
= 5.0V, V = 1.25V  
3.25  
3.2  
3.35  
–770  
1
3.55  
3.6  
V
V
OR(HI)  
OR  
CL  
CM  
l
l
l
I
Default Pull-Down Current on V Pin  
= 50V, V = 1.25V  
–900  
–1150  
–650  
–500  
µA  
µA  
OR(DEFAULT)  
OR(MAX)  
OR  
CL  
CM  
+
I
Maximum Pull-Down Current Both  
Clamps are Active  
= 2.0V, V = 1.25V, IN = 2.4V,  
1.5  
2
µA  
µA  
CL  
CM  
IN = 0.1V  
ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V unless otherwise noted, GND = 0V, RLOAD = 500Ω,CLOAD = 6pF.  
VCM = 1.25V, CLHI = V+, PWRADJ = VCC, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as  
(OUT+ + OUT)/2. VINDIFF is defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential AC Characteristics  
–3dBBW  
0.1dBBW  
0.5dBBW  
1/f  
–3dB Bandwidth  
0.1dB Bandwidth  
0.5dB Bandwidth  
1/f Noise Corner  
Slew Rate  
200mV  
200mV  
200mV  
Differential  
Differential  
Differential  
1.6  
0.18  
0.45  
25  
GHz  
GHz  
GHz  
kHz  
V/ns  
ns  
P-P,OUT  
P-P,OUT  
P-P,OUT  
SR  
Differential  
2V  
10  
t
t
t
t
t
t
1% Settling Time  
Shutdown Time  
Enable Time  
0.8  
40  
S1%  
P-P,OUT  
SHDN = 0V to 5V  
SHDN = 5V to 0V  
PWRADJ = 5V to 0V  
PWRADJ = 0V to 5V  
ns  
OFF  
15  
ns  
ON  
PWRADJ Off Time  
PWRADJ On Time  
10  
ns  
PWRADJ,OFF  
PWRADJ,ON  
5
ns  
+
10% Clamp Release Time  
CLHI = 1.5V, V = 1.25V, IN = 1.625V to 1.25V,  
1
ns  
CL,OFF  
CM  
IN = 1.25V to 0.875V  
+
t
10%  
Clamp Engage Time  
CLHI = 1.5V, V = 1.25V, IN = 1.25V to 1.625V,  
5
ns  
CL,ON  
CM  
IN = 1.25V to 0.875V  
Common Mode AC Characteristics (V Pin)  
CM  
–3dBBW  
SR  
V
Pin Small Signal –3dB BW  
V
= 0.1V , Measured Single-Ended at Output  
10  
2
MHz  
V/µs  
CM  
CM  
P-P  
Common Mode Slew Rate  
Overrange AC Characteristics (V Pin)  
Measured Single-Ended at Output  
CM  
OR  
+
–3dBBW  
V
Pin Small Signal –3dB BW  
V
= 0.1V , CLHI = 2V, IN = 2.4V, IN = 0.1V,  
VOR  
200  
40  
MHz  
V/µs  
OR  
OR  
P-P  
R
= 1k, Measured Single-Ended at Output  
SR  
VOR  
Overrange Slew Rate  
AC Clamping Characteristics  
Overdrive Recovery Time  
Measured Single-Ended at Output  
t
1.9V  
2
ns  
OVDR  
P-P,OUT  
6417f  
5
LTC6417  
ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V unless otherwise noted, GND = 0V, RLOAD = 500Ω,CLOAD = 6pF.  
VCM = 1.25V, CLHI = V+, PWRADJ = VCC, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as  
(OUT+ + OUT)/2. VINDIFF is defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Linearity  
10MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–89  
–93  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–100  
–110  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
56  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
16.1  
70MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–74  
–77  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–86  
–96  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
48  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
15.8  
140MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–69  
–73  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–80  
–91  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
46  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
15.8  
200MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–68  
–71  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–78  
–87  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
44  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
15.8  
240MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–67  
–70  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–76  
–85  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
43  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
15.7  
300MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–66  
–69  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
6417f  
6
LTC6417  
ac elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V unless otherwise noted, GND = 0V, RLOAD = 500Ω,CLOAD = 6pF.  
VCM = 1.25V, CLHI = V+, PWRADJ = VCC, SHDN = 0V unless otherwise noted. VINCM is defined as (IN+ + IN)/2. VOUTCM is defined as  
(OUT+ + OUT)/2. VINDIFF is defined as (IN+ – IN). VOUTDIFF is defined as (OUT+ – OUT). See DC test circuit schematic.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–73  
–79  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
41  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
15.6  
380MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–66  
–68  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
V
V
= 2.4V , R = 50Ω  
–68  
–77  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
OIP3  
Output Third Order Intercept  
Output 1dB Compression Point  
V
= 2.4V , R = 50Ω  
36  
39  
dBm  
dBm  
OUTDIFF  
P-P  
L
P1dB  
15.3  
400MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–65  
–68  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
Output Third Order Intercept  
V
V
= 2.4V , R = 50Ω  
–68  
39  
dBc  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
P-P  
L
OIP3  
= 2.4V , R = 50Ω  
P-P L  
P1dB  
Output 1dB Compression Point  
15.3  
500MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
= 2.4V , R = 50Ω  
–65  
–67  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
P-P  
P-P  
L
= 2.4V  
IM3  
Third Order Intermodulation Distortion  
Output Third Order Intercept  
V
V
= 2.4V , R = 50Ω  
–64  
37  
dBc  
dBm  
dBm  
OUTDIFF  
OUTDIFF  
P-P  
L
OIP3  
= 2.4V , R = 50Ω  
P-P L  
P1dB  
Output 1dB Compression Point  
15.0  
600MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
V
= 2.4V , R = 50Ω  
–60  
–58  
34  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
OUTDIFF  
P-P  
L
IM3  
Third Order Intermodulation Distortion  
Output Third Order Intercept  
Output 1dB Compression Point  
= 2.4V , R = 50Ω  
P-P L  
OIP3  
= 2.4V , R = 50Ω  
dBm  
dBm  
P-P  
L
P1dB  
14.7  
700MHz Signal  
HD3  
Third Harmonic Distortion  
V
V
V
= 2.4V , R = 50Ω  
–55  
–52  
31  
dBc  
dBc  
OUTDIFF  
OUTDIFF  
OUTDIFF  
P-P  
L
IM3  
Third Order Intermodulation Distortion  
Output Third Order Intercept  
Output 1dB Compression Point  
= 2.4V , R = 50Ω  
P-P L  
OIP3  
= 2.4V , R = 50Ω  
dBm  
dBm  
P-P  
L
P1dB  
14.2  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LTC6417C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C and 105°C case temperature range but is not  
tested or QA sampled at these temperatures. The LT6417I is guaranteed to  
meet specified performance from –40°C to 105°C case temperature range.  
Note 2: The LTC6417C/LTC6417I is guaranteed functional over the case  
temperature operating range of –40°C to 105°C. θ = 6.8°C/W.  
Note 4: This parameter is pulse tested.  
JC  
6417f  
7
LTC6417  
Typical perForMance characTerisTics  
HD3 at 30MHz  
HD3 at 30MHz  
vs VCM Over Temperature  
HD3 at 30MHz vs VCM Over V+  
vs PWRADJ Over Temperature  
–50  
–60  
–50  
–60  
–50  
–60  
+
P
= 11dBm  
P
= 11dBm  
P
= 11dBm  
OUT  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
+
+
= 5.25V  
85°C  
105°C  
–70  
–70  
–70  
85°C  
105°C  
25°C  
–80  
–80  
–80  
–40°C  
25°C  
–40°C  
0.5  
–90  
–90  
–90  
–100  
–100  
–100  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
V
PWRADJ (V)  
V
(V)  
CM  
CM  
6417 G01  
6417 G03  
6417 G02  
HD3 at 70MHz  
vs PWRADJ Over Temperature  
HD3 at 70MHz  
vs VCM Over Temperature  
HD3 at 70MHz vs VCM Over V+  
–50  
–60  
–45  
–55  
–65  
–75  
–85  
–95  
–50  
–60  
+
+
+
P
= 11dBm  
P
= 11dBm  
P
= 11dBm  
OUT  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
85°C  
85°C  
–70  
–70  
105°C  
–80  
–80  
25°C  
25°C  
0.5  
105°C  
–40°C  
–90  
–90  
–40°C  
–100  
–100  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G05  
6417 G04  
6417 G06  
HD3 at 140MHz  
vs VCM Over Temperature  
HD3 at 140MHz  
vs PWRADJ Over Temperature  
HD3 at 140MHz vs VCM Over V+  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
+
+
+
P
= 11dBm  
P
= 11dBm  
OUT  
OUT  
P
= 11dBm  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
105°C  
85°C  
105°C  
85°C  
25°C  
25°C  
–40°C  
–40°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
V
PWRADJ (V)  
V
CM  
CM  
6417 G07  
6417 G09  
6417 G08  
6417f  
8
LTC6417  
Typical perForMance characTerisTics  
HD3 at 240MHz  
vs VCM Over Temperature  
HD3 at 240MHz  
vs PWRADJ Over Temperature  
HD3 at 240MHz vs VCM Over V+  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–35  
–45  
–55  
–65  
–75  
–85  
+
+
+
P
= 11dBm  
P
= 11dBm  
P
= 11dBm  
OUT  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
105°C  
85°C  
105°C  
85°C  
25°C  
25°C  
–40°C  
–40°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
V
PWRADJ (V)  
V
CM  
CM  
6417 G11  
6417 G12  
6417 G10  
HD3 at 380MHz  
vs VCM Over Temperature  
HD3 at 380MHz  
vs PWRADJ Over Temperature  
HD3 at 380MHz vs VCM Over V+  
–25  
–35  
–45  
–55  
–65  
–75  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
+
+
+
P
= 11dBm  
P
= 11dBm  
OUT  
P
= 11dBm  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
105°C  
105°C  
85°C  
25°C  
85°C  
25°C  
–40°C  
–40°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G13  
6417 G14  
6417 G15  
HD3 at 500MHz  
vs VCM Over Temperature  
HD3 at 500MHz  
vs PWRADJ Over Temperature  
HD3 at 500MHz vs VCM Over V+  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
+
+
+
P
= 11dBm  
P
= 11dBm  
P
= 11dBm  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
OUT  
–30  
–40  
–50  
–60  
–70  
–80  
85°C  
105°C  
85°C  
105°C  
25°C  
25°C  
–40°C  
–40°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G16  
6417 G17  
6417 G18  
6417f  
9
LTC6417  
Typical perForMance characTerisTics  
HD3 at 600MHz  
vs VCM Over Temperature  
HD3 at 600MHz  
vs PWRADJ Over Temperature  
HD3 at 600MHz vs VCM Over V+  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
+
+
+
P
= 11dBm  
P
= 11dBm  
P
= 11dBm  
OUT  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
105°C  
85°C  
25°C  
–40°C  
105°C  
85°C  
25°C  
–40°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
V
(V)  
PWRADJ (V)  
V
CM  
CM  
6417 G19  
6417 G21  
6417 G20  
HD3 at 700MHz  
vs PWRADJ Over Temperature  
HD3 at 700MHz  
HD3 at 700MHz vs VCM Over V+  
vs VCM Over Temperature  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
+
+
+
P
= 11dBm  
P
= 11dBm  
OUT  
P
= 11dBm  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
85°C  
105°C  
105°C  
85°C  
25°C  
–40°C  
25°C  
–40°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G23  
6417 G22  
6417 G24  
OIP3 at 30MHz  
vs VCM Over Temperature  
OIP3 at 30MHz  
vs PWRADJ Over Temperature  
OIP3 at 30MHz vs VCM Over V+  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
25°C  
25°C  
85°C  
–40°C  
85°C  
–40°C  
105°C  
105°C  
P
= 5dBm/TONE  
OUT  
∆FREQ = 1MHz  
+
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
+
+
P
= 5dBm/TONE  
∆FREQ = 1MHz  
P
= 5dBm/TONE  
OUT  
OUT  
∆FREQ = 1MHz  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5 1.5  
1
2
2.5  
3
3.5  
4
4.5  
5
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
V
PWRADJ (V)  
V
CM  
CM  
6417 G25  
6417 G27  
6417 G26  
6417f  
10  
LTC6417  
Typical perForMance characTerisTics  
OIP3 at 70MHz  
vs VCM Over Temperature  
OIP3 at 70MHz  
vs PWRADJ Over Temperature  
OIP3 at 70MHz vs VCM Over V+  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
P
= 5dBm/TONE  
OUT  
–40°C  
∆FREQ = 1MHz  
–40°C  
25°C  
25°C  
85°C  
105°C  
85°C  
105°C  
+
+
+
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
∆FREQ = 1MHz  
OUT  
∆FREQ = 1MHz  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5 1.5  
1
2
2.5  
3
3.5  
4
4.5  
5
V
V
CM  
PWRADJ (V)  
CM  
6417 G28  
6417 G29  
6417 G30  
OIP3 at 100MHz  
vs VCM Over Temperature  
OIP3 at 100MHz  
vs PWRADJ Over Temperature  
OIP3 at 100MHz vs VCM Over V+  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
P
= 5dBm/TONE  
OUT  
–40°C  
∆FREQ = 1MHz  
–40°C  
25°C  
25°C  
85°C  
105°C  
105°C  
85°C  
+
+
+
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
P
= 5dBm/TONE  
∆FREQ = 1MHz  
P
= 5dBm/TONE  
OUT  
OUT  
∆FREQ = 1MHz  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5 1.5  
1
2
2.5  
3
3.5  
4
4.5  
5
V
PWRADJ (V)  
V
CM  
CM  
6417 G32  
6417 G33  
6417 G31  
OIP3 at 140MHz  
vs VCM Over Temperature  
OIP3 at 140MHz  
OIP3 at 140MHz vs VCM Over V+  
vs PWRADJ Over Temperature  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
OUT  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
105°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
105°C  
+
+
+
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
P
= 5dBm/TONE  
OUT  
∆FREQ = 1MHz  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G34  
6417 G35  
6417 G36  
6417f  
11  
LTC6417  
Typical perForMance characTerisTics  
OIP3 at 240MHz  
vs VCM Over Temperature  
OIP3 at 240MHz  
vs PWRADJ Over Temperature  
OIP3 at 240MHz vs VCM Over V+  
55  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
55  
50  
45  
40  
35  
30  
25  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
OUT  
25°C  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
–40°C  
–40°C  
25°C  
85°C  
85°C  
105°C  
105°C  
+
+
+
V
V
V
= 4.75V  
= 5.0V  
P
= 5dBm/TONE  
OUT  
= 5.25V  
∆FREQ = 1MHz  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G38  
6417 G37  
6417 G39  
OIP3 at 380MHz  
vs VCM Over Temperature  
OIP3 at 380MHz  
vs PWRADJ Over Temperature  
OIP3 at 380MHz vs VCM Over V+  
50  
45  
40  
35  
30  
25  
20  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
+
+
+
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
P
= 5dBm/TONE  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
–40°C  
25°C  
–40°C  
25°C  
85°C  
105°C  
85°C  
105°C  
0.5  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
CM  
PWRADJ (V)  
CM  
6417 G40  
6417 G41  
6417 G42  
OIP3 at 500MHz  
vs VCM Over Temperature  
OIP3 at 500MHz  
vs PWRADJ Over Temperature  
OIP3 at 500MHz vs VCM Over V+  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
OUT  
OUT  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
25°C  
–40°C  
–40°C  
25°C  
105°C  
85°C  
85°C  
+
+
+
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
105°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
CM  
PWRADJ (V)  
CM  
6417 G43  
6417 G44  
6417 G45  
6417f  
12  
LTC6417  
Typical perForMance characTerisTics  
OIP3 at 600MHz  
vs VCM Over Temperature  
OIP3 at 600MHz  
vs PWRADJ Over Temperature  
OIP3 at 600MHz vs VCM Over V+  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
OUT  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
25°C  
25°C  
–40°C  
–40°C  
105°C  
85°C  
85°C  
105°C  
+
+
+
V
V
V
= 4.75V  
= 5.0V  
P
= 5dBm/TONE  
OUT  
= 5.25V  
∆FREQ = 1MHz  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
PWRADJ (V)  
CM  
CM  
6417 G46  
6417 G47  
6417 G48  
OIP3 at 700MHz  
vs VCM Over Temperature  
OIP3 at 700MHz  
vs PWRADJ Over Temperature  
OIP3 at 700MHz vs VCM Over V+  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
+
+
+
P
= 5dBm/TONE  
P
= 5dBm/TONE  
P
= 5dBm/TONE  
OUT  
OUT  
OUT  
V
V
V
= 4.75V  
= 5.0V  
= 5.25V  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
∆FREQ = 1MHz  
25°C  
25°C  
–40°C  
–40°C  
85°C  
85°C  
105°C  
105°C  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65  
(V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
V
CM  
PWRADJ (V)  
CM  
6417 G49  
6417 G50  
6417 G51  
Output 1dB Compression  
vs Frequency and Supply Voltage  
Supply Current vs Supply Voltage  
Supply Current vs PWRADJ  
140  
120  
100  
80  
130  
120  
110  
100  
90  
20  
18  
16  
14  
12  
10  
+
+
+
V
V
V
= 5.25V  
= 5.0V  
= 4.75V  
60  
40  
80  
20  
0
70  
0
1
2
3
4
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
100  
200  
300  
400  
500  
600  
700  
SUPPLY VOLTAGE (V)  
PWRADJ (V)  
FREQUENCY (MHz)  
6417 G53  
6417 G54  
6417 G52  
6417f  
13  
LTC6417  
Typical perForMance characTerisTics  
Small Signal Transient Response,  
Falling Edge  
Small Signal Transient Response,  
Falling Edge with Input  
Small Signal Transient Response,  
Rising Edge  
62.5mV/  
DIV  
62.5mV/  
DIV  
20mV/  
DIV  
62.5mV/  
DIV  
6417 G57  
6417 G55  
6417 G56  
1.25ns/DIV  
1.25ns/DIV  
1.25ns/DIV  
Overdrive Recovery and  
Overrange Response  
Differential Input Return Loss  
(S11) vs Frequency  
Differential Reverse Isolation  
(S12) vs Frequency  
–60  
–80  
0
–10  
–20  
–30  
–40  
DEMO BOARD DC1660B  
DEMO BOARD DC1660B  
R = 0Ω  
R = 23.7Ω  
600mV/  
DIV  
R = 0Ω  
R = 23.7Ω  
–100  
–120  
10mV/  
DIV  
6417 G58  
10ns/DIV  
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6417 G60  
6417 G59  
LTC6417 Driving LTC2209  
16-Bit ADC, 32K Point FFT,  
Differential Forward Gain (S21)  
vs Frequency  
Differential Output Return Loss  
(S22) vs Frequency  
fIN = 69.5MHz, –1dBFS, PGA = 0  
10  
5
0
–10  
0
–10  
–20  
–30  
–40  
1
DEMO BOARD DC1660B  
HDR = –92dBc  
R = 0Ω  
HD3 = –86dBc  
SFDR = 86dBc  
SNR = 76.2dB  
SEE FIGURE 1/TABLE 1  
1:4 BALUN  
–20  
–30  
R = 0Ω  
–40  
R = 23.7Ω  
f
= 153.6Msps  
–50  
S
DEMO BOARD DC1685A  
0
–60  
–70  
3
R = 23.7Ω  
–80  
–5  
–10  
–90  
2
–100  
–110  
–120  
DEMO BOARD DC1660B  
10  
100  
1000  
0
10 20 30 40 50 60 70 80  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6417 G61  
6417 G63  
6417 G62  
6417f  
14  
LTC6417  
Typical perForMance characTerisTics  
LTC6417 Driving LTC2209  
16-Bit ADC, 64K Point FFT,  
fIN = 140MHz, –1dBFS, PGA = 0  
LTC6417 Driving LTC2209  
16-Bit ADC, 64K Point FFT,  
fIN = 270MHz, –1dBFS, PGA = 0  
LTC6417 Driving LTC2209  
16-Bit ADC, 64K Point FFT,  
fIN = 380MHz, –1dBFS, PGA = 0  
0
–10  
0
–10  
0
–10  
1
HD2 = –81dBc  
HD3 = –80dBc  
SFDR = 80dBc  
SNR = 73.3dB  
SEE FIGURE 1/  
TABLE 1  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
–50  
–50  
1:4 BALUN  
–50  
f
= 153.6Msps  
S
–60  
–60  
–60  
DEMO BOARD  
DC1685A  
–70  
–70  
–70  
–80  
–80  
–80  
3
2
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6417 G66  
6417 G64  
6417 G65  
LTC6417 Driving LTC2209 16-Bit ADC,  
32K Point FFT, fIN = 69.5MHz and  
70.5MHz, –7dBFS/Tone, PGA = 0  
LTC6417 Driving LTC2209 16-Bit ADC,  
64K Point FFT, fIN = 139.5MHz and  
140MHz, –7dBFS/Tone, PGA = 0  
LTC6417 Driving LTC2209 16-Bit ADC,  
64K Point FFT, fIN = 269.5MHz and  
270.5MHz, –7dBFS/Tone, PGA = 0  
0
–10  
0
–10  
0
–10  
IM3 = –85dBc  
SEE FIGURE 1/TABLE 1  
1:4 BALUN  
IM3 = –75dBc  
SEE FIGURE 1/  
TABLE 1  
IM3 = –80dBc  
SEE FIGURE 1/TABLE 1  
1:4 BALUN  
–20  
–20  
–20  
f
= 153.6Msps  
1:4 BALUN  
S
f = 153.6Msps  
–30  
S
–30  
–30  
DEMO BOARD DC1685A  
f
= 153.6Msps  
DEMO BOARD DC1685A  
S
–40  
–40  
–40  
DEMO BOARD  
DC1685A  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70 80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6417 G67  
6417 G69  
6417 G68  
LTC6417 Driving LTC2209 16-Bit ADC,  
64K Point FFT, fIN = 379.5MHz and  
380.5MHz, –7dBFS/Tone, PGA = 0  
Input Referred Noise Voltage  
Input Referred Noise Voltage  
vs Frequency and Noise Figure for  
the DC1660B with 1:1 Input Balun  
vs Frequency and Noise Figure for  
the DC1660B with 1:4 Input Balun  
24  
20  
16  
12  
8
24  
0
–10  
28  
24  
20  
16  
12  
8
28  
24  
20  
16  
12  
8
NOISE FIGURE PWRADJ = 5V  
NOISE FIGURE PWRADJ = 0V  
NOISE DENSITY PWRADJ = 5V 20  
NOISE DENSITY PWRADJ = 0V  
NOISE FIGURE PWRADJ = 5V  
NOISE FIGURE PWRADJ = 0V  
NOISE DENSITY PWRADJ = 5V  
NOISE DENSITY PWRADJ = 0V  
IM3 = –72dBc  
SEE FIGURE 1/TABLE 1  
1:4 BALUN  
–20  
f
= 153.6Msps  
S
–30  
DEMO BOARD DC1685A  
16  
12  
8
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
4
4
4
4
0
0
0
0
0
10 20 30 40 50 60 70 80  
0.001 0.01  
0.1  
1
10  
100  
1k  
0.001 0.01  
0.1  
1
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6417 G70  
6417 G72  
6417 G71  
6417f  
15  
LTC6417  
pin FuncTions  
+
V (Pins1, 6, 11, 16):PositivePowerSupply. Typically5V.  
PWRADJ (Pin 5): Power Adjust Voltage. The voltage  
applied to this pin scales the bias current internal to the  
LTC6417. The PWRADJ pin will float to a 1.6V default  
voltage. PWRADJ has a Thevenin equivalent resistance of  
approximately 14.5k and can be overdriven by an external  
voltage. The PWRADJ pin should be bypassed with a high  
quality ceramic bypass capacitor of at least 0.01µF.  
Split supplies are possible as long as the voltage between  
+
V and GND is 4.75V to 5.25V. Bypass capacitors of 680pF  
and 0.1µF as close to the part as possible should be used  
between the supplies.  
CLHI (Pin 2): High Side Clamp Voltage. The voltage ap-  
plied to the CLHI pin defines the upper voltage limit of  
+
+
the OUT and OUT pins. This voltage should be set at  
least 300mV above the upper voltage range of the ADC.  
On a 5V supply, the CLHI pin will float to a 2.5V default  
voltage. CLHI has a Thevenin equivalent of approximately  
4.8kΩ and can be overdriven by an external voltage. The  
CLHI pin should be bypassed with a high quality ceramic  
bypass capacitor of at least 0.01µF.  
IN , IN (Pin 8, Pin 9): Non-inverting and inverting input  
pins of the buffer, respectively. These pins are high imped-  
ance, approximately 9.5k. If AC-coupled, these pins will  
self bias to the voltage applied to the V pin.  
CM  
SHDN (Pin 12): This pin puts the LTC6417 in sleep mode  
when pulled high. If no voltage is applied to the SHDN pin,  
it floats down to the same potential as GND.  
GND (Pins 3, 7, 10, 17, 20, Exposed Pad Pin 21): Nega-  
tive Power Supply. Normally tied to ground. All pins and  
the exposed pad must be tied to the same voltage. GND  
may be tied to a voltage other than ground as long as the  
V
(Pin 14): Overrange Output. This pin, by default at  
OR  
3.4V, will be pulled down to GND, when one or both input  
signals go beyond the minimum or maximum swing set  
by the CLHI and V pins.  
CM  
+
voltage between V and GND is 4.75V to 5.25V. If the GND  
V
(Pin15):Thispinsetstheoutputcommonmodevolt-  
pins are not tied to ground, bypass each with 680pF and  
0.1µF capacitors as close to the package as possible. The  
exposed pad must be soldered to the printed circuit board  
ground plane for good heat transfer.  
CM  
+
+
age seen at OUT and OUT by driving IN and IN through  
a buffer with a high output resistance of 9.5k. The V  
CM  
pin has a Thevenin equivalent resistance of approximately  
2.7k and can be overdriven by an external voltage. If no  
NC (Pins 4, 13): No Connection. These pins are not con-  
nected internally.  
voltage is applied to V , it will float to a default voltage of  
CM  
approximately 1.25V on a 5V supply. The V pin should  
CM  
be bypassed with a high quality ceramic bypass capacitor  
of at least 0.01µF.  
+
OUT , OUT (Pin 18, Pin 19): Outputs.  
6417f  
16  
LTC6417  
Dc TesT circuiT scheMaTic  
+
V
1, 6, 11, 16  
+
V
15  
2
V
V
CM  
CM  
19  
18  
CLHI  
CLHI  
+
+
+
OUT  
+
V
V
= IN – IN  
V
V
= OUT – OUT  
8
INDIFF  
OUTDIFF  
OUT  
+
+
IN  
IN  
IN  
+
+
LTC6417  
V
C
LOAD  
R
LOAD  
IN + IN  
OUT + OUT  
9
=
=
OUTCM  
INCM  
IN  
OUT  
2
2
OUT  
5
6417 TC  
PWRADJ  
OR  
PWRADJ  
SHDN  
14  
V
OR  
12  
3, 7, 10, 17, 20, 21  
block DiagraM  
LTC6417 Simplified Schematic  
+
V
I1  
I2  
V
OVER  
OR  
RANGE  
DETECT  
QN1  
QP3  
+
IN  
QN3  
QP1  
+
OUT  
×1  
CLHI  
CLLO  
+
×2  
V
CM  
×1  
QN2  
QP4  
IN  
QN4  
QP2  
OUT  
PWRADJ  
SHDN  
REFERENCE AND  
BIAS CONTROL  
I3  
I4  
GND  
6417 BD  
6417f  
17  
LTC6417  
applicaTions inForMaTion  
Circuit Operation  
Input Impedance and Matching  
The LTC6417 is a low noise and low distortion fully dif-  
ferential unity gain ADC driver with a –3dB bandwidth  
spanning DC to 1.6GHz, a differential input impedance of  
18.5kΩ, and a differential output impedance of 3Ω. The  
LTC6417 is composed of a fully differential buffer with  
output common mode voltage control circuitry and high  
speed voltage-limiting clamps at the output. Lowpass or  
bandpass filters are easily implemented with just a few  
external components. The LTC6417 is very flexible in  
terms of I/O coupling. It can be AC- or DC-coupled at the  
inputs, the outputs or both. When using the LTC6417 with  
DC-coupled inputs, best performance is obtained with an  
input common mode voltage between 1V and 1.5V. For  
AC-coupled operation, the LTC6417 will take the voltage  
The LTC6417 has a high differential input impedance of  
18.5kΩ. The differential inputs may need to be terminated  
to a lower value impedance, e.g. 50Ω, in order to provide  
an impedance match for the source. Figure 1 shows input  
matchingandsingle-endedtodifferentialconversionusing  
a 1:1 balun, while Figure 2 shows a similar circuit using  
a 1:4 balun to achieve an additional 6dB of voltage gain.  
These circuits provide a wideband impedance match.  
The balun and matching resistors must be placed close  
to the input pins in order to minimize the rejection due to  
input mismatch. In Figures 1 and 2, the capacitor center-  
tapping the two input termination resistors improves high  
frequency common mode rejection. As an alternative to  
this wideband approach, a narrowband impedance match  
can be used at the inputs of the LTC6417 for frequency  
selection and/or noise reduction.  
applied to the V pin and use it to bias the inputs so  
CM  
that the output common mode voltage equals V , thus  
CM  
no external circuitry is needed. The V pin has been  
CM  
designed to directly interface with the V pin found on  
CM  
Linear Technology’s high speed ADC families.  
T1  
0.1µF  
MABA-007159-000000  
8
9
19  
18  
+
+
IN  
OUT  
24.9Ω  
24.9Ω  
1:1  
0.1µF  
5
4
1
3
50Ω  
LTC6417  
+
0.1µF  
0.1µF  
V
IN  
IN  
OUT  
6417 F01  
Figure 1. Input Termination for Differential 50Ω Input Impedance Using a 1:1 Balun  
T1  
0.1µF  
0.1µF  
TCM4-19+  
8
9
19  
18  
4
6
3
2
+
+
IN  
OUT  
0.1µF  
100Ω  
100Ω  
50Ω  
LTC6417  
0.1µF  
V
IN  
+
IN  
OUT  
1
6417 F02  
Figure 2. Input Termination for Differential 50Ω Input Impedance Using a 1:4 Balun  
6417f  
18  
LTC6417  
applicaTions inForMaTion  
The noise figure of the LTC6417 application circuit also  
depends upon the input termination. For example, the  
input 1:4 balun in Figure 2 improves noise figure by add-  
ing 6dB of voltage gain at the inputs. A trade-off between  
gainandnoiseisobviouswhenconstantnoisefigurecircle  
and constant gain circle are plotted within the same input  
Smith Chart. This technique can be used to determine  
the optimal source impedance for a given gain and noise  
requirement.  
matching for the 1:1 balun is desired, resistors of 23.7Ω  
should be inserted in series with each LTC6417 output.  
This is shown in Figure 4 where the LTC6417 is driving a  
differential 100Ω load impedance.  
As mentioned above, the LTC6417 can drive an ADC with-  
out external output impedance matching, but improved  
performance can usually be obtained with the addition of  
a few components. Figure 5 shows a 6th order bandpass  
filter with a 148MHz center frequency, –3dB points of  
85MHz and 210MHz used for driving the LTC2209 16-bit  
ADC. In the passband the filter has less than 1 dB ripple.  
This higher order filter has a sharp roll-off outside its  
passband, therefore it rejects noise and suppresses dis-  
tortion components in its stopband. To double the filter  
center frequency, halve the capacitor and inductor values,  
and maintain resistor values; this also doubles the filter  
bandwidth.  
Output Match and Filter  
The LTC6417 provides an output resistance of 1.5Ω at  
each output. In most cases, the LTC6417 can be used  
to drive an ADC without back termination but for testing  
purposes, Figure 3 shows the LTC6417 driving a differ-  
ential 50Ω load impedance using a 1:1 balun. If output  
T2  
0.1µF  
0Ω  
MABA-007159-000000  
8
9
18  
19  
+
+
IN  
OUT  
50Ω  
LTC6417  
0.1µF  
0Ω  
6417 F03  
IN  
OUT  
Figure 3. LTC6417 with No Back Termination Driving a  
50Ω Load Using a 1:1 Balun  
T2  
0.1µF  
0.1µF  
23.7Ω  
23.7Ω  
MABA-007159-000000  
8
9
19  
18  
+
+
IN  
OUT  
3
1
4
5
50Ω  
LTC6417  
6417 F04  
IN  
OUT  
Figure 4. Output Termination for Differential 50Ω Load  
Using a 1:1 Balun  
6417f  
19  
LTC6417  
applicaTions inForMaTion  
5V  
3.3V  
C43  
27pF  
C45  
18pF  
680pF  
0.1µF  
2.2µF  
E1  
51nH  
E3  
75nH  
1,6,  
11,16  
R36  
R42  
T1  
+
5
10Ω  
60.4Ω  
300Ω  
V
WBC4-14LB  
2
PWRADJ  
4
3
8
9
C40  
0Ω  
0Ω  
+
CLHI  
+
100Ω  
100Ω  
19  
IN  
A
A
IN  
IN  
12pF  
+
R53  
C41  
12pF  
E5  
51nH  
16  
2
OUT  
OUT  
50Ω  
120Ω  
LTC2209  
LTC6417  
R12  
60.4Ω  
C10  
12pF  
R43  
300Ω  
V
IN  
OR  
18  
+
V
CM  
6
1
10Ω  
V
PGA = 0  
14  
1k  
CM  
SHDN  
15  
GND  
0.01µF  
C44  
27pF  
C46  
18pF  
12  
0.01µF  
E2  
51nH  
E3  
75nH  
CLOCK  
(153.6MHz)  
3,7,10,  
17, 20,21  
6417 F05  
2.2µF  
Figure 5. DC1685A Simplified Schematic with Suggested Bandpass Filter for Driving an LTC2209 16-Bit ADC at 140MHz  
Table 1. Bandpass Filter Component Values for Different Input Frequencies  
INPUT FREQUENCIES  
COMPONENTS  
R12 = R36  
C43 = C44  
E1 = E2  
70MHz  
60.4Ω  
56pF  
140MHz  
60.4Ω  
27pF  
270MHz  
60.4Ω  
15pF  
380MHz  
60.4Ω  
12pF  
100nH  
47pF  
51nH  
12pF  
27nH  
12pF  
18nH  
10pF  
C41  
C10 = C40  
E5  
13pF  
12pF  
3.3pF  
27nH  
300Ω  
120Ω  
10pF  
2.7pF  
18nH  
300Ω  
120Ω  
8.2pF  
27nH  
100nH  
300Ω  
120Ω  
39pF  
51nH  
300Ω  
120Ω  
18pF  
R42 = R43  
R53  
C45 = C46  
E3 = E4  
150nH  
75nH  
39nH  
6417f  
20  
LTC6417  
applicaTions inForMaTion  
Output Common Mode Adjustment  
LTC6417  
+
For AC-coupled applications, the output common mode  
V
voltage is set by the V pin. An internal buffer, as shown  
1.5Ω  
CM  
IN+  
OUT+  
OUT–  
in Figure 6, couples the voltage on the V pin to the  
CM  
x1  
x1  
10.8k  
3.6k  
inputs via high impedance resistors. Because the input  
common mode voltage is approximately the same as the  
output common mode voltage, both are approximately  
9.25k  
9.25k  
V
CM  
x1  
1.5Ω  
IN–  
equaltothevoltageappliedtotheV pin.ForDC-coupled  
CM  
applications, the internal V is overdriven by the input  
CM  
GND  
signal. The V pin has a Thevenin equivalent resistance  
CM  
of 2.7k and can be overdriven by an external voltage. The  
6417 F06  
V
pin floats to a default voltage of 1.25V on a 5V supply.  
CM  
The output common mode voltage is capable of tracking  
Figure 6. LTC6417 Internal Topology Showing  
the Common Mode Buffer Biasing the Inputs  
V
V
in a range from 0.29V to 2.25V on a 5.0V supply. The  
pin can be floated, but it should always be bypassed  
CM  
CM  
close to the LTC6417 with a 0.1µF bypass capacitor to  
GND. When interfacing with A/D converters such as the  
LTC6417  
LTC22xx families, the V pin can be connected to the  
CM  
+
V
V
output pin of the ADC, as shown in Figure 5.  
CM  
9.6k  
Clamping, the CLHI Pin and the V Pin  
CLHI  
CM  
CLHI (INT)  
x1  
The CLHI pin is used to set the high side clamp voltage  
of the high speed internal circuitry.  
9.6k  
CLLO (INT)  
+
V
CM  
This limits the single-ended maximum and minimum  
voltage excursion at each of the outputs. This feature is  
extremely important in applications with input signals  
having very large peak-to-average ratios such as cellular  
base station receivers.  
x2  
GND  
6417 F07  
Figure 7. Internal Circuitry Generating Symmetric  
Clamp Voltages with Respect to VCM  
Internal circuitry generates a symmetric low side clamp  
voltage with respect to the common mode voltage V  
CM  
(Figures 7 and 8). The LTC6417 clamp control circuitry  
features two additional mechanisms. First, internally im-  
posedmaximumswingof2.5Vandminimumswingof0.2V  
ensure that the transistors do not go into deep saturation.  
Thisensuresaquickrecoveryaftertheclampsarereleased.  
CLHI  
V
CM  
CLLO  
Second, if CLHI voltage is less than V , internal CLLO  
CM  
6417 F08  
starts to track CLHI. This limits output swing and protects  
output transistors. Since the clamp response is on the  
order of 5ns to clamp and 1ns to release, clamp circuit  
becomes less effective at frequencies beyond 160MHz.  
Figure 8. Symmetric High- and Low-Side Clamp  
Voltages with Respect to VCM  
6417f  
21  
LTC6417  
applicaTions inForMaTion  
If a very large signal arrives at the LTC6417, the voltages  
The V pin, as shown in Figure 9, is internally connected  
OR  
applied to the CLHI and V pins will determine the maxi-  
to a current source sourcing 2mA, plus an internal 20k  
resistor pull-down to GND. An internal clamp limits the  
maximum output to 3.4V. As soon as one of the inputs  
goes beyond the limits, and therefore engages one of the  
CM  
mum and minimum output swing. Once the input signal  
returnstothenormaloperatingrange,theLTC6417returns  
to linear operation within 2ns. For DC-coupled operation,  
the common mode of the input signals might be different  
clamps, the output current, hence, the V voltage goes  
OR  
than the voltage on the V pin. The minimum swing will  
to zero. The dynamic response of the V pin can be ad-  
CM  
OR  
stillbesetbythevoltagesappliedtotheV andCLHIpins.  
justed with an external resistor and an optional external  
CM  
capacitor. For a high speed operation, add a 50Ω resistor  
CLHI is a high impedance input. It has an input impedance  
of 4.8k. On a 5V supply, CLHI self-biases to 2.5V. To limit  
the signal swing to a subsequent stage’s power supply,  
e.g. an ADC such as the LTC2165, simply connect CLHI  
to the positive supply pin of the LTC2165. The CLHI pin  
should be bypassed with a 0.1µF capacitor as close to the  
LTC6417 as possible.  
from V to GND, resulting in a high speed signal with  
OR  
100mV swing.  
The PWRADJ Pin  
The voltage applied to the PWRADJ pin scales the supply  
current and performance of the LTC6417. This is useful  
for reducing power consumption in applications where  
linearity of the LTC6417 exceeds the linearity of the other  
components in the system; hence LTC6417’s linearity can  
bederatedwithouteffectingsystemperformance.PWRADJ  
is a high impedance input. It has an input impedance of  
14.5k.Ona5Vsupply,PWRADJself-biasesto1.6V.Forfull  
The V Pin  
OR  
The V , overrange pin signals an overrange condition  
OR  
whenoneorbothinputsexceedtheminimumormaximum  
signal swing limits set by the CLHI and V pins.  
CM  
+
The LTC6417 V pin can be used by a control system to  
power, simply connect PWRADJ to the positive supply V .  
OR  
limit the input power dynamically. This is very useful in  
applications where the overload response of the complete  
system would be too slow.  
For minimum power, short the PWRADJ pin to GND. The  
PWRADJpinshouldbebypassedwitha0.1µFcapacitoras  
close to the LTC6417 as possible. LTC6417 performance  
vs PWRADJ can be found in the graphs.  
LTC6417  
+
V
The SHDN Pin  
2mA  
Whenpulledhigh, theSHDNpinputstheLTC6417insleep  
mode,significantlyreducingsupplycurrent.SHDNisahigh  
impedance input. It has an input impedance of 10.5kΩ. If  
theSHDNpinisnotdrivenwithanexternalvoltage,itfloats  
down to the same potential as GND, keeping the LTC6417  
enabled. The SHDN pin should be bypassed with a 0.1µF  
capacitor as close to the LTC6417 as possible.  
V
OR  
20k  
I
CL  
GND  
6417 F09  
In sleep mode, the input and output stages are turned off,  
but the input and output clamps are kept alive to protect  
the part against overvoltage.  
Figure 9. LTC6417 Internal Topology Showing  
VOR Pin with Pull-Down Resistor and Clamp  
The supply current in sleep mode is only 24mA, instead  
of the typical 125mA. But should the clamps turn on, the  
current drawn from the supply can be as high as 180mA.  
6417f  
22  
LTC6417  
applicaTions inForMaTion  
This can be avoided by following a few precautions when  
putting the LTC6417 in sleep mode:  
Noise figure (NF) is calculated from the ratio of these  
noise powers:  
e2no  
•ꢀ Doꢀnotꢀforceꢀtheꢀoutputsꢀbelowꢀtheꢀinputs,ꢀthisꢀwillꢀturnꢀ  
the output stages on.  
NF = 10log 1+  
e2  
no(mR )   
S
•ꢀ EitherꢀfloatꢀCLHIꢀorꢀtieꢀitꢀtoꢀV . This will allow a wider  
CC  
signalrangeattheinputsbeforetheclampsareactivated.  
•ꢀ MaintainꢀtheꢀinputsꢀbelowꢀCLHIꢀorꢀ2.5Vꢀwhicheverꢀisꢀ  
lower, otherwise the input clamps will be activated.  
•ꢀ DoꢀnotꢀshortꢀV or the outputs to GND, in either case  
CM  
1:m  
the output clamps will turn on. Current drawn from the  
supply can be as high as 180mA.  
LTC6417  
R
S
R
T
TRANSFORMER  
6417 F10  
•ꢀ Floatꢀtheꢀoutputsꢀifꢀpossible.ꢀTheꢀoutputsꢀwillꢀbeꢀpulledꢀ  
down by internal resistors to V  
.
CM  
Heeding these precautions will protect the LTC6417 as  
well any part it is driving, while maintaining a low current  
consumption in sleep mode.  
Figure 10. LTC6417 with a Transformer  
Noise and Noise Figure  
TheLTC6417’sdifferentialinputreferredvoltageandcurrent  
noisedensitiesare 1.5nV/√Hzand4.3pA/√Hz,respectively.  
LTC6417  
mR  
S
R
T
6417 F11  
Before presenting a noise model, the circuit with the  
transformer in Figure 10 will be simplified. In Figure 11,  
the circuit is redrawn with the source impedance reflected  
to the secondary side of the transformer. The source  
impedance is multiplied by the impedance ratio m of the  
transformer. In Figure 12, noise sources associated with  
the amplifier and resistors have been added. Based on  
this noise model of the LTC6417, the total output noise  
power excluding the noise contribution of the source is:  
Figure 11. Source Resistance Referred to the Secondary  
2
e
ni  
2
e
no  
2
2
2
LTC6417  
mR  
S
i
R
T
i
i
ni  
mRS  
RT  
2
e no2 = e2 + i R  
+ i2 R2  
R
EQ  
T
(
)
)
ni  
ni  
EQ  
6417 F12  
2
4kT  
RT  
= e2 + i R  
+
R2  
EQ  
(
ni  
ni  
EQ  
Figure 12. LTC6417 Simplified Noise Model  
where R = mR ||R is the equivalent impedance seen  
EQ  
S
T
at the input of the LTC6417. The output noise power due  
to the noise of source resistance is given by:  
2
e no(mR ) = i2  
R2  
mR  
EQ  
S
S
4kT  
mRS  
=
R2  
EQ  
6417f  
23  
LTC6417  
applicaTions inForMaTion  
Interfacing the LTC6417 to A/D Converters  
In most cases the termination resistor will be matched to  
thesourceresistance,e.g.R =mR .FortheLTC6417with  
T
S
The LTC6417 has been specially designed to interface  
directly with high speed A/D converters. It is possible  
to drive the ADC directly from the LTC6417. In practice,  
however, better performance may be obtained by adding  
a few external components at the output of the LTC6417.  
Figure 5 shows the LTC6417 driving an LTC2209 16-bit  
ADC.ThedifferentialoutputsoftheLTC6417arebandpass  
filtered, then drive the differential inputs of the LTC2209.  
In many applications, a filter like this is desirable to limit  
the wideband noise of the amplifier. This is especially  
true in high performance 16-bit designs. The minimum  
recommendednetworkbetweentheLTC6417andtheADC  
is simply two 10Ω series resistors, which are used to help  
eliminateresonancesassociatedwiththestraycapacitance  
ofPCBtracesandthestrayinductanceoftheinternalbond  
wires at the ADC input pins and the driver output pins.  
a wide-band terminated transformer, a plot of output and  
input noise density and NF versus termination resistor is  
shown in Figure 13. To get the best noise performance in  
thesystem,usetheLTC6417matchedtoatransformerwith  
high impedance ratio. Although the output noise density  
will be higher, noise figure will improve because of the  
additional gain realized in the transformer. An impedance  
ratio greater than 8 is not recommended, as the increased  
terminationresistancewiththeLTC6417inputcapacitance  
will limit signal bandwidth. Consult Table 2 for a quick  
estimate of the LTC6417’s output noise density and NF  
for different transformer impedance ratios. Measured NF  
numbers will be higher as the simple noise model does  
not take the insertion loss in the transformer into account.  
Table 2. Output Noise Density and NF of the LTC4617 with a  
Wide-Band Terminated Transformer, RS = 50Ω  
Single-Ended Signals  
TRANSFORMER TERMINATION  
OUTPUT NOISE  
IMPEDANCE  
RATIO m  
RESISTOR R  
(Ω)  
GAIN  
(V/V)  
DENSITY e  
NF  
T
no  
The LTC6417 has not been designed to convert single-  
ended signals to differential signals. A single-ended input  
signal can be converted to a differential signal via a balun  
connected to the inputs of the LTC6417. Figure 5 shows  
the LTC6417 driven by a 1:4 transformer which provides  
6dB of voltage gain while also performing a single-ended  
to differential conversion.  
(nV/√Hz)  
(dB)  
1
2
4
8
50  
1.0  
1.4  
2.0  
2.8  
1.57  
1.64  
1.80  
2.14  
11.2  
8.9  
7.0  
5.9  
100  
200  
400  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
12  
11  
10  
9
NF  
Power Supply Considerations  
e
no  
e
ni  
For best linearity, the LTC6417 should have a positive  
+
supply of V = 5V. For ESD protection, the LTC6417 has  
an internal edge-triggered supply voltage clamp. The  
timing mechanism of the clamp enables the LTC6417’s  
protection circuit during ESD events. This internal clamp  
can also be activated by voltage overshoot and rapid slew  
8
7
6
+
rateonthepositivesupplyV pin. TheLTC6417shouldnot  
5
be hot-plugged into a powered socket because there is a  
risk of activating this internal ESD clamp circuit. Bypass  
capacitors of 680pF and 0.1µF should be connected to the  
4
50 100 150 200 250 300 350 400  
TERMINATION RESISTANCE (Ω)  
6417 F13  
+
V pin, as close as possible to the LTC6417.  
Figure 13. LTC4617 Output and Input Noise  
Density and NF vs Termination Resistance  
Interfacing the LTC6417 with Active Mixers for  
Ultrawide IF Bandwidth  
TheLTC6417isanexcellentinterfaceamplifierforusewith  
active downconverting mixers like the LTC5567. By using  
6417f  
24  
LTC6417  
applicaTions inForMaTion  
the LTC6417 as a post-amplifier for the LTC5567, it is pos-  
sible to achieve IF bandwidths in excess of 500MHz, while  
addingbandpassfiltering.Akeytoachievingthisextremely  
wide IF bandwidth is the use of pre-emphasis inductors  
in series with the LTC6417 inputs to compensate for the  
inherent rolloff caused by the LTC6417 input capacitance  
interacting with the interface impedance. In the example  
seen in Figure 14, a value of 33nH for each pre-emphasis  
inductorgivesexcellentwidebandperformance. Figure15  
shows performance for various values of L. For L = 33nH,  
overall conversion gain remains within 1dB from 90MHz  
to 590MHz, resulting in 500MHz of IF bandwidth.  
demonstration circuit for the LTC6417. The board layout  
and the schematic are shown in Figures 16 and 17. These  
circuits include a 1:4 input balun and a 1:1 output balun  
forsingle-ended-to-differentialconversion,allowingdirect  
analysisusinga2-portnetworkanalyzer.Includingtheinput  
and output baluns, the –3dB bandwidth is approximately  
600MHz. A 1:4 input balun before the LTC6417 inputs  
provides 6dB of voltage gain, but results in better noise  
figure performance compared to a 1:1 input balun. Noise  
figure measurements for both input baluns can be found  
in the graphs.  
TestcircuitBisDC1685A.ItconsistsofanLTC6417driving  
an LTC2209 16-bit 153.6Msps ADC. It is intended for use  
in conjunction with DC890B (computer interface board)  
and proprietary Linear Technology evaluation software  
to evaluate the performance of both parts together. Both  
the DC1685A board layout and the schematic can be seen  
Figures 18 and 19.  
Test Circuits  
Due to the fully differential design of the LTC6417 and its  
usefulnessinapplicationsbothwithandwithoutADCs,two  
test circuits have been used to generate the information  
in this data sheet. Test circuit A is DC1660B, a two-port  
LO  
1.65GHz  
1nF  
L
IF+  
1nF  
LTC5567  
23.2Ω  
1:1  
249Ω  
390n  
390n  
127Ω  
127Ω  
RF  
1.69GHz  
TO  
IF  
OUT  
V
LTC6417  
CC  
50Ω  
10nF  
1nF  
2.39GHz  
L
249Ω  
23.2Ω  
1nF  
IF–  
6417 F14  
Figure 14  
2
1
L = 33nH  
L = 18nH  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
LPF  
L = 0nH  
40 140 240 340 440 540 640 740  
IF FREQUENCY (MHz)  
6417 F15  
Figure 15  
6417f  
25  
LTC6417  
applicaTions inForMaTion  
Figure 16. Demo Board DC1660B Layout  
6417f  
26  
LTC6417  
applicaTions inForMaTion  
V +  
1
V +  
1 6  
1 5  
1 4  
1 3  
H I C L  
2
C V M  
N D G  
3
O R  
N C  
N C  
4
R A W D P J  
N W  
H S U T D O  
1 2  
5
6
V +  
V +  
1 1  
6417f  
27  
LTC6417  
applicaTions inForMaTion  
Figure 18. Demo Board DC1685A Layout  
6417f  
28  
LTC6417  
applicaTions inForMaTion  
    
    
    
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
    
         
         
         
          
          
          
          
          
        
        
        
        
        
        
        
        
        
        
     
        
        
    
    
     
    
   
   
    
   
   
   
   
   
   
      
   
   
   
   
   
   
   
   
   
   
   
     
   
6417f  
29  
LTC6417  
applicaTions inForMaTion  
    
    
    
    
    
   
   
   
   
   
    
    
    
    
    
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
6417f  
30  
LTC6417  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UDC Package  
20-Lead Plastic QFN (3mm × 4mm)  
(Reference LTC DWG # 05-08-1742 Rev Ø)  
0.70 ±0.05  
3.50 ± 0.05  
2.10 ± 0.05  
1.50 REF  
2.65 ± 0.05  
1.65 ± 0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
2.50 REF  
3.10 ± 0.05  
4.50 ± 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.25  
0.75 ± 0.05  
× 45° CHAMFER  
1.50 REF  
19 20  
R = 0.05 TYP  
3.00 ± 0.10  
0.40 ± 0.10  
1
2
PIN 1  
TOP MARK  
(NOTE 6)  
2.65 ± 0.10  
1.65 ± 0.10  
4.00 ± 0.10  
2.50 REF  
(UDC20) QFN 1106 REV Ø  
0.200 REF  
0.00 – 0.05  
0.25 ± 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
TYP  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6417f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTC6417  
Typical applicaTion  
DC1685A Simplified Schematic with Suggested Output Termination for Driving an LTC2209 16-Bit ADC at 140MHz  
5V  
3.3V  
C43  
27pF  
C45  
18pF  
680pF  
0.1µF  
2.2µF  
E1  
51nH  
E3  
75nH  
1,6,  
11,16  
R36  
R42  
T1  
+
5
10Ω  
60.4Ω  
300Ω  
V
WBC4-14LB  
2
PWRADJ  
4
3
8
9
C40  
+
CLHI  
+
100Ω  
100Ω  
19  
IN  
A
A
IN  
12pF  
+
R53  
C41  
12pF  
E5  
51nH  
16  
2
OUT  
OUT  
50Ω  
120Ω  
LTC2209  
LTC6417  
R12  
60.4Ω  
C10  
12pF  
R43  
300Ω  
V
IN  
IN  
OR  
18  
+
V
CM  
6
1
10Ω  
V
PGA = 0  
14  
1k  
CM  
SHDN  
15  
GND  
0.01µF  
C44  
27pF  
C46  
18pF  
12  
0.01µF  
E2  
51nH  
E3  
75nH  
CLOCK  
(153.6MHz)  
3,7,10,  
17, 20,21  
6417 TA02  
2.2µF  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
–71dBc IM3 at 240MHz 2V Composite, I = 90mA, A = 8dB, 14dB,  
Fixed Gain IF Amplifiers/ADC Drivers  
LTC6400-8/LTC6400-14/ 1.8GHz Low Noise, Low Distortion Differential  
LTC6400-20/LTC6400-26 ADC Drivers  
P-P  
S
V
20dB, 26dB  
LTC6420-20  
Dual 1.8GHz Low Noise, Low Distortion Differential Dual Version of the LTC6400-20, A = 8dB, 14dB, 20dB, 26dB  
V
ADC Drivers  
LTC6401-8/LTC6401-14/ 1.3GHz Low Noise, Low Distortion Differential  
LTC6401-20/LTC6401-26 ADC Drivers  
–74dBc IM3 at 140MHz 2V Composite, I = 50mA, A = 8dB, 14dB,  
P-P S V  
20dB, 26dB  
LTC6421-20  
Dual 1.3GHz Low Noise, Low Distortion Differential Dual Version of the LTC6401-20, A = 8dB, 14dB, 20dB, 26dB  
V
ADC Drivers  
IF Amplifiers/ADC Drivers with Variable Gain  
LTC6412  
LT5554  
LT5514  
LT5524  
800MHz, 31dB Range Analog-Controlled VGA  
Continuously Adjustable Gain Control, –14dB to 17dB Linear-in-dB  
Gain Range  
High Dynamic Range 7-Bit Digitally Controlled IF  
VGA/ADC Driver  
OIP3 = 46dBm at 200MHz, Gain Range 1.725 to 17.6dB 0.125dB Steps  
Ultra-Low Distortion IF Amplifier/ADC Driver with OIP3 = 47dBm at 100MHz, Gain Range 10.5dB to 33dB 1.5dB Steps  
Digitally Controlled Gain  
Low Distortion IF Amplifier/ADC Driver with  
Digitally Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Range 4.5dB to 37dB 1.5dB Steps  
Baseband Differential Amplifiers  
LT6416  
2GHz Low Noise Differential 16-Bit ADC Buffer  
–84dBc IM3 at 160MHz 2V Composite, A = 1, e = 1.8nV/√Hz, 42mA  
P-P V n  
LTC6409  
LTC6406  
10GHz 1.1nV√Hz ADC Driver  
AC- or DC-Coupled 0MHz to 100MHz  
3GHz Rail-to-Rail Input Differential Amplifier/  
ADC Driver  
–65dBc IM3 at 50MHz 2V Composite, Rail-to-Rail Inputs,  
P-P  
e = 1.6nV/√Hz, 18mA  
n
LTC6404-1/LTC6404-2/  
LTC6404-4  
Low Noise Rail-to-Rail Output Differential  
Amplifier/ADC Driver  
16-Bit SNR and SFDR at 10MHz, Rail-to-Rail Outputs, e = 1.5nV/√Hz,  
n
LTC6404-1 is Unity-Gain Stable, LTC6404-2 is Gain-of-2 Stable  
LTC6403-1  
Low Noise Rail-to-Rail Output Differential  
Amplifier/ADC Driver  
16-Bit SNR and SFDR at 3MHz, Rail-to-Rail Outputs, e = 2.8nV/√Hz  
n
ADCs  
LTC2209  
LTC2208  
16-Bit 160Msps ADC  
16-Bit 130Msps ADC  
77.3dBFS Noise Floor, 100dB SFDR  
78dBFS Noise Floor, 100dB SFDR  
6417f  
LT 0712 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY