SXT6051 [LevelOne]

Terminator, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208;
SXT6051
型号: SXT6051
厂家: LEVEL ONE    LEVEL ONE
描述:

Terminator, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208

ATM 异步传输模式 电信 电信集成电路
文件: 总144页 (文件大小:895K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MAY 1998  
Revision 1.1  
SXT6051  
STM-1/0 SDH Overhead Terminator  
General Description  
Features  
The SXT6051 Overhead Terminator implements the  
Regenerator Section Termination, Multiplexer Section  
Termination and Higher Order Path Termination in STM-0  
(51Mb/s) and STM-1 (155mB/s) multiplexers. It provides  
micro-controller access for performance monitoring, alarm  
detection and configuration for transmit and receive paths.  
When used with the SXT6251 (21E1 Mapper), a complete  
solution for a 21 E1 or a 63 E1 Multiplexer is created.  
• Performs Regenerator Section, Multiplexer Section,  
and Higher Order Path Overhead Processing for  
STM-1 and STM-0 signals.  
• Byte parallel interface for STM-1 or STM-0, with  
byte alignment performed internally. Serial NRZ or  
B3ZS interface option for STM-0.  
• Demultiplexes STM-0/STM-1 signals to Telecom Bus  
output with optional pointer processor re-timing.  
• Multiplexes Telecom Bus data into STM-0 or STM-1  
signals with pointer processing.  
The SXT6051 is compliant with the latest releases of ITU-  
T G.703 and G.707. It provides all the alarm and control  
features to easily implement the multiplexer described in  
ITU-T G.783.  
• Compatible with 1+1 protected ITU architecture.  
• Records all RSOH, MSOH, and HPOH alarms. One  
second counters for B1, B2, B3, M1 REI and G1 REI.  
• Full J0/J1 trace identifier processing  
Applications  
• Serial access to STM-1 user-defined, media-depen-  
dent and national bytes.  
• Dedicated pins for serial access or pass-through fea-  
ture for E1, E2, F1, F2, F3, D1-D3 & D4-D12 bytes.  
• SDH Terminal Mux/ADM for microwave radio  
• ADM fiber ring Mux  
• Low power CMOS technology with 3.3V core and 5V  
I/O in PQFP-208 package.  
• Digital Loop Carrier (NGDLC) Systems  
• Digital Cross-Connect System  
• IEEE 1149.1 Boundary Scan (JTAG) support.  
SXT6051  
System Block Diagram  
SETS  
POH  
Serial Accesses  
MMSP  
Bus  
SOH  
Serial Accesses  
SXT 6051  
Transm it  
Master  
Clock In  
OHT  
TX  
4
TBus Tim ing  
AU-3/4 &  
VC-3/4  
Transm it Processor  
STM -0 / STM -1  
Transm it Section  
Term ination &  
Protection Function  
(RST, M ST, M SP)  
Transm it  
Tx Clock out  
Telecom  
Bus Add  
Interface  
6.48M/19.44M Clock  
Telecom Bus Data  
Data  
(HPT, M SA(PP))  
1
8
or 8 (S TM -0)  
(STM -1)  
SXT 6251  
21 Channel  
Mapper  
STM -0/1  
Line  
Interface  
Microcontroller Interface (Intel/Motorola selectable)  
1
8
or  
8 (S TM -0)  
(STM -1)  
Data  
Clock  
LOS  
Receive  
Telecom  
Bus  
Drop  
Interface  
AU-3/4 &  
VC-3/4  
Receive Processor  
STM -0 / STM -1  
Receive Section  
Term ination &  
Telecom Bus Data  
6.48M/19.44M Clock  
Protection Function  
(RST, M ST, M SP)  
TBus Tim ing  
(M SA,HPT&Retim ing)  
4
RX  
optional retim ing  
Clock&tim ing  
POH  
Serial Accesses  
DMSP  
Bus  
SOH  
Serial Accesses  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table Of Contents  
Pin Assignments And Signal Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Transmit Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Receive Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reference Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Repeater Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Terminal Mode Configuration (No Protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Receive Side Telecom Bus Timing Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Transmit Side Telecom Bus Timing Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Add and Drop Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Receive Side Telecom Bus Timing Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Transmit Side Telecom Bus Timing Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Updating the Transmit AU Pointer Justification Event Counters. . . . . . . . . . . . . . 25  
Terminal Protection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Receive Side Telecom Bus Timing Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Transmit Side Telecom Bus Timing Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Receiver Default Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock Distribution and Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Framer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Regenerator Section Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Multiplexer Section Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Multiplexer Section Protection (MSP) Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pointer Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Higher Order Path Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Re-Timing Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Transmitter Default Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Higher Order Path Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Transmit Pointer Processing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Transmit Multiplex Section Protection (MSP Block) . . . . . . . . . . . . . . . . . . . . . . . 35  
Multiplexer Section Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Regenerator Section Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Clock Distribution and Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Transmit Frame Parallel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
SXT6051  
Transmit Frame Serial Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Receive Re-timing Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Telecom Bus Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Multiplexer Telecom Bus Terminal Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Multiplexer Telecom Bus ADM Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Demultiplexer Telecom Bus (Terminal or ADM) Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Protection Bus Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Transmitter “Master” in 1+1 Protection Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Transmitter “Slave” in 1+1 Protection Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Receive”Master” in 1+1 Protection Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Receive “Slave” Configuration (1+1 Protection). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
OverHead Byte Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
F2 and F3 Digital Channel Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Transmit side access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Receive side access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
E1, E2 and F1 Orderwire Channel Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Transmit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Receive timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
HPOH Bytes Serial Access Functional Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Transmit serial HPOH Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Receive Serial HPOH Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
SOH Overhead Access Functional Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Transmit Side SOH Serial Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Receive Side SOH Serial Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
D1 to D3 Data Communication Channel Functional Timing. . . . . . . . . . . . . . . . . . . . . . 61  
Transmit Side Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Receive Side Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
D4 to D12 Data Communication Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Transmit Side Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Receive Side Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
BIP Receive Functional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Microprocessor Interface & Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Intel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Motorola interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Interrupt Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Interrupt Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Interrupt Enables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Interrupt Clearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Status Registers Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
C2, K3, K2, K1 and S1 Receive Byte Registers Access . . . . . . . . . . . . . . . . . . . . 83  
Counter Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
3
SXT6051 STM-1/0 SDH Overhead Terminator  
Register Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Global Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
OCR1—Operational Configuration 1 (50H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
OCR2—Operational Configuration 2 (51H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
CHIP_ID—Chip ID Number (52H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
BUF_ACNTS—Buffer All Counters (54H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Receive Regenerator Section Termination Registers. . . . . . . . . . . . . . . . . . . . . . . . 92  
R_RSTC1—Receive RST Configuration 1 (40H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
R_RSTC2—Receive RST Configuration 2 (47H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LOF_LMN—Loss of Frame L, M, & N Configuration (41–42H) . . . . . . . . . . . . . . . . . . . 93  
OOF_ECNT—Out Of Frame Event Counter (44–43H) . . . . . . . . . . . . . . . . . . . . . . . . . 94  
B1_ERRCNT—B1 Error Counter (46–45H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Receive Regenerator and Multiplexer Section Termination Registers . . . . . . . . . . . 95  
J0_RSTR_C—J0 Expected String Control (0EH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
J0_RSTR_D—J0 Expected String Data (0FH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
WINSZ_SB2—Window Size for Setting ExcB2ErrSt (1C–1BH) . . . . . . . . . . . . . . . . . . 96  
CWIN_SB2—Consecutive Windows for Setting ExcB2ErrSt (1DH) . . . . . . . . . . . . . . . 96  
E#_EXCWIN—Number of Errs/Win for Excessively Errored Window (1EH). . . . . . . . . 96  
WINSZ_C2—Window Size for Clearing ExcB2ErrSt (16–15H) . . . . . . . . . . . . . . . . . . . 96  
CWIN_CB2—Consecutive Windows for Clearing ExcB2ErrSt (17H) . . . . . . . . . . . . . . 97  
E#_NEXCWIN—Number of Errs/Win for Non-Excessively Errored Window (18H). . . . 97  
B2_BLKCNT—B2 Block Error Counter (11–10H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
B2_BIPCNT—B2 BIP Error Counter (14–12H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
MR_BLKCNT—MST REI Block Error Counter (0A–09H) . . . . . . . . . . . . . . . . . . . . . . . 98  
MR_BIPCNT—MST REI BIP Error Counter (0D–0BH) . . . . . . . . . . . . . . . . . . . . . . . . . 98  
R_K1—Received K1 byte (00H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
R_K2—Received K2 Byte (01H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
R_S1—Received S1 byte (02H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
R_NU1_8—Received Nu1_8 byte (03H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
R_NU1_9—Received Nu1_9 byte (04H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
R_NU2_8—Received Nu2_8 byte (05H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
R_NU2__9—Received Nu2_9 byte (06H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
R_NU9_8—Received Nu9_8 byte (07H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
R_NU9_9—Received Nu9_9 byte (08H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Receive Multiplexer Section Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . 100  
R_MSP_C—Receive MSP Configuration (20H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
R_MSP_OP—Receive MSP Operational (21H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
R_PROTK1—Received K1 byte on Protection Bus from Slave (22H). . . . . . . . . . . . . 101  
R_PROTK2—Received K2 byte on Protection Bus from Slave (23H). . . . . . . . . . . . . 101  
Receive Multiplexer Section Adaptation Registers . . . . . . . . . . . . . . . . . . . . . . . . . 101  
R_MSA_C—Receive MSA Configuration (90H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
R_AU_NCNT—Receive Negative AU Pointer Justification Event Counter (92–91H) . 102  
R_AU_PCNT—Receive Positive AU Pointer Justification Event Counter (94–93H) . . 102  
Receive HighOrder Path Termination Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
4
SXT6051  
R_HPT_C1—Receive HPT Configuration 1 Register (80H) . . . . . . . . . . . . . . . . . . . . 103  
R_HPT_C2—Receive HPT Configuration 2 Register (81H) . . . . . . . . . . . . . . . . . . . . 104  
J1_RSTR_C—J1 Expected String Control Register (8AH) . . . . . . . . . . . . . . . . . . . . . 105  
J1_RSTR_D—J1 Expected String Data Register (8BH) . . . . . . . . . . . . . . . . . . . . . . . 105  
EXP_C2—Expected C2 byte Register (82H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
R_C2—Received C2 byte Register (83H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
R_K3—Received K3 byte Register (84H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
R_HPT_RDI—Received HPT RDI Bits Register (85H) . . . . . . . . . . . . . . . . . . . . . . . . 106  
B3_ECNT—B3 Error Event Counter (87–86H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
HPTREI_CNT—HPT REI Counter (89–88H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Transmit Regenerator and Multiplexer Section Termination Registers . . . . . . . . . . 107  
T_RMST_OP1—Transmit RMST Operational 1 Register (30H) . . . . . . . . . . . . . . . . . 107  
T_RMST_OP2—Transmit RMST Operational 2 Register (1AH) . . . . . . . . . . . . . . . . . 108  
T_SC1_SOH—Transmit Source Configuration 1 for SOH bytes Register (60H). . . . . 109  
T_SC2_SOH—Transmit Source Configuration 2 for SOH bytes Register (61H). . . . . 110  
T_SC3_SOH—Transmit Source Configuration 3 for SOH Bytes Register (62H). . . . . 111  
T_SC4_SOH—Transmit Source Configuration 4 for SOH Bytes Register (63H). . . . . 112  
J0_TSTR_C—J0 Transmit String Control Register (3AH) . . . . . . . . . . . . . . . . . . . . . . 113  
JO_TSTR_D—J0 Transmit String Data Register (3BH) . . . . . . . . . . . . . . . . . . . . . . . 114  
MP_TNU1_8—Microprocessor Provided Transmit Nu1_8 Byte (31H) . . . . . . . . . . . . 114  
MP_TNU1_9—Microprocessor Provided Transmit Nu1_9 Byte Register (32H) . . . . . 114  
MP_TNU2_8—Microprocessor Provided Transmit Nu2_8 Byte (33H) . . . . . . . . . . . . 114  
MP_TNU2_9—Microprocessor Provided Transmit Nu2_9 Byte Register (34H) . . . . . 114  
MP_TNU9_8—Microprocessor Provided Transmit Nu9_8 Byte (35H) . . . . . . . . . . . . 115  
MP_TNU9_9—Microprocessor Provided Transmit Nu9_9 Byte (36H) . . . . . . . . . . . . 115  
MP_TK1—Microprocessor Provided Transmit K1 Byte Register (37H). . . . . . . . . . . . 115  
MP_TK2—Microprocessor Provided Transmit K2 Byte Register (38H). . . . . . . . . . . . 115  
MP_TS1—Microprocessor Provided Transmit S1 Byte Register (39H). . . . . . . . . . . . 115  
Transmit Multiplexer Section Adaptation Registers. . . . . . . . . . . . . . . . . . . . . . . . . 116  
T_AU_NCNT—Transmit Negative AU Pointer Justification Event Counter (E3–E2H) 116  
T_AU_PCNT—Transmit Positive AU Pointer Justification Event Counter (E5–E4H) . 116  
Transmit HighOrder Path Termination Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
T_SC_HPOH—Transmit Source Configuration for HPOH bytes (70H). . . . . . . . . . . . 117  
T_HPT_C—Transmit HPT Configuration (71H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
MP_TC2—Microprocessor Provided Transmit C2 Byte (72H). . . . . . . . . . . . . . . . . . . 119  
MP_TK3—Microprocessor Provided Transmit K3 Byte (73H) . . . . . . . . . . . . . . . . . . . 119  
J1_TSTR_C—J1 Transmit String Control (75H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
J1_TSTR_D—J1 Transmit String Data (76H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Interrupt Source Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
IS_RG—Receive Regenerator Section Interrupt Source (A0H). . . . . . . . . . . . . . . . . . 121  
IS_RGMUX—Receive Regenerator and Multiplexor Section Interrupt Source (A1H) . 121  
IS_MUX—Receive Multiplexor Section Interrupt Source (A2H). . . . . . . . . . . . . . . . . . 122  
IS_PROT—Receive Protection Section Interrupt Source (A3H) . . . . . . . . . . . . . . . . . 122  
IS_A_HPT—Receive Adaptation and HPT Interrupt Source (A4H) . . . . . . . . . . . . . . . 123  
IS_HPT—Receive HPT Interrupt Source (A5H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
5
SXT6051 STM-1/0 SDH Overhead Terminator  
IS_RETIME—Receive Retiming Interrupt Source (A6H) . . . . . . . . . . . . . . . . . . . . . . . 124  
IS_XMT—Transmit Interrupt Source (E0H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
IS_GLOB—Global Interrupt Source (D1H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Interrupt Enable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
IE_RG—Receive Regenerator Section Interrupt Enable (B0H). . . . . . . . . . . . . . . . . . 126  
IE_RGMUX—Receive Regenerator and Multiplexer Section Interrupt Enable (B1H) . 126  
IE_MUX—Receive Multiplexor Section Interrupt Enable (B2H). . . . . . . . . . . . . . . . . . 126  
IE_PROT—Receive Protection Section Interrupt Enable (B3H) . . . . . . . . . . . . . . . . . 126  
IE_A_HPT—Receive Adaptation and HPT Interrupt Enable (B4H) . . . . . . . . . . . . . . . 126  
IE_HPT—Receive HPT Interrupt Enable (B5H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
IE_RETIME—Receive Retiming Interrupt Enable (B6H) . . . . . . . . . . . . . . . . . . . . . . . 126  
IE_XMT—Transmit Interrupt Enable (E1H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
S_RG—Receive Regenerator Section Status (C0H). . . . . . . . . . . . . . . . . . . . . . . . . . 127  
S_RGMUX—Receive Regenerator and Multiplexer Section Status (C1H) . . . . . . . . . 127  
S_PROT—Receive Protection Section Status (C3H) . . . . . . . . . . . . . . . . . . . . . . . . . 128  
S_A_HPT—Receive Adaptation and HPT Status (C4H) . . . . . . . . . . . . . . . . . . . . . . . 128  
S_HPT—Receive HPT Status (C5H). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
S_AIS_PROT—Receive AIS & Protection Switch Status (D0H) . . . . . . . . . . . . . . . . . 130  
Testability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
IEEE 1149.1 Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Instruction Register and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Summary Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Glossary of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
6
SXT6051 Pin Assignments And Signal Description  
PIN ASSIGNMENTS AND SIGNAL DESCRIPTION  
Figure 1: SXT6051 Pin Assignment  
C
C
C
NC  
GND_5  
MMSPPDATA0  
MMSPPDATA1  
MMSPPDATA2  
MMSPPDATA3  
MMSPPDATA4  
MMSPPDATA5  
MMSPPDATA6  
MMSPPDATA7  
MMSPPAUEN  
1
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
151  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
VCC_5  
2
OEN  
DMSPPDATA0  
DMSPPDATA1  
DMSPPDATA2  
DMSPPDATA3  
DMSPPDATA4  
DMSPPDATA5  
DMSPPDATA6  
DMSPPDATA7  
GND_5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
MMSPPCKI  
MMSPPCKO  
MMSPPJOEN  
VCC_5  
TSOH  
DMSPPCKO  
DMSPPCKI  
DMSPPJOEN  
DMSPPAUEN  
DMSPPSF  
DMSPPSD  
VCC_3  
TSOHEN  
TSOHFR  
TROW  
GND_3  
TOWC  
RSOH  
TMOW  
TDOW  
RSOHEN  
RSOHFR  
VCC_5  
TOWBYC  
TRD  
RROW  
TRDC  
ROWC  
TMD  
ROWBYC  
RMOW  
TMDC  
XXXX XXXX  
GND_5  
TPOH  
RDOW  
(Date C ode) (Trace Code)  
RRD  
TPOHCK  
TPOHFR  
TPOHEN  
TPOW1  
TPOW2  
TPOWC  
TPOWBYC  
VCC_3  
GND_3  
VCC_5  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
GND_5  
A7  
RRDC  
RMD  
RMDC  
B2OUT  
SXT6051Q E  
GND_5  
RPOH  
RPOHCK  
RPOHFR  
RPOHEN  
RPOW1  
XXXXXX  
RPOW2  
RPOWC  
(Lot #)  
RPOWBYC  
B3OUT  
DRETFRMI  
DRETCLK  
SCANEN  
JTCK  
JTMS  
JTRS  
A6  
JTDI  
A5  
JTD0  
A4  
VCC_5  
VCC_5  
7
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 1: Signal Description Nomenclature  
Type  
Description  
I
Standard input signal  
Standard output signal  
Input and output signal  
Supports TTL input levels  
O
I/O  
TTLin1  
HiZ1  
High Impedance  
1. Out and I/O signals indicate buffer strength. For example, HiZ-4ma indicates a  
high-impedance buffer capable of sourcing 4 ma.  
Table 2: Signal Description (Sheet 1 of 11)  
Pin #  
Name  
Type  
Description  
STM-0 Transmit/ Receive Serial Format  
159  
160  
161  
206  
205  
204  
DHPOSD  
I
Positive B3ZS or NRZ Data Receive. Input for STM-0 data at  
51.84 Mbit/s supplied by the STM-0 line interface unit.  
TTLin  
DHNEGD  
DHICLK  
MHPOSD  
MHNEGD  
MICLK  
I
Negative B3ZS Data Receive. Input for STM-0 data at 51.84  
Mbit/s when B3ZS coding is used.  
TTLin  
I
Serial Data Clock Input. Receive STM-0 clock at 51.84 MHz  
provided by the external STM-0 line interface unit.  
TTLin  
O
Positive B3ZS or NRZ Data Transmit. Output of STM-0 data  
at 51.84 Mbit/s; either NRZ or B3ZS  
HiZ-8ma  
O
Negative B3ZS Data Transmit. Output of STM-0 data at  
51.84 Mbit/s when B3ZS coding is used.  
HiZ-8ma  
O
Serial Data Clock Output. The serial output clock of the mul-  
tiplexer. This signal is to be used with the serial data MHPOSD  
and MHNEGD when needed.  
HiZ-8ma  
STM1/STM-0 Transmit Receive Parallel Format  
172, 171, DHBDATA<7:0>  
170, 169,  
I
Parallel NRZ Data Receive. Parallel input data in STM-1 or  
STM-0 mode.  
TTLin  
168, 167,  
166, 165  
173  
DHBCLK  
I
Parallel Data Clock Input. Parallel input data clock at either  
TTLin  
19.44 MHz for STM-1 or 6.48 MHz for STM-0  
203, 202, MHBDATA<7:0>  
201, 200,  
O
Parallel NRZ Data Transmit. Parallel output data in STM-1  
or STM-0 mode.  
HiZ-4ma  
198, 197,  
196, 195  
194  
MHBCLKO  
O
Parallel Data Clock Output. Parallel output data clock at  
HiZ-8ma  
either 19.44 MHz for STM-1 or 6.48 MHz for STM-0.  
8
SXT6051 Pin Assignments And Signal Description  
Table 2: Signal Description (Sheet 2 of 11)  
Pin #  
Name  
Type  
Description  
External References  
Internal TX Frame Alignment Output. This signal is syn-  
185  
186  
163  
187  
MFRMO  
O
HiZ-4ma  
chronous with the multiplexer frame and is used to synchronize  
other transmitters. See Figures 12 and 13.  
MFRMI  
LOS  
I
External TX Frame Alignment Input. An 8 KHz signal used  
to align the start of a transmit multiplexer frame. If not needed,  
this input is grounded.  
TTLin  
I
Loss of Signal Input. Input from the Line Interface circuit that  
can be used either with a parallel interface or with a serial inter-  
face. Active High.  
TTLin  
MHICLK  
I
Multiplexer System Serial Clock. An external STM-0 (51.84  
MHz) reference frequency input for the multiplexer and can be  
used by the demultiplexer section during Blue Signal /AIS Sig-  
nal generation.  
TTLin  
188  
86  
MHBCLKI  
MMFRMI  
I
Multiplexer System Parallel Clock. An external STM-0 (6.48  
MHz) or STM-1 (19.44 MHz) reference frequency input for the  
multiplexer and can be used by the demultiplexer section dur-  
ing Blue Signal /AIS Signal generation.  
TTLin  
I
External Multiframe Alignment. A 2 KHz input signal (25%  
duty cycle) that can be used, in terminal mode only, to reset the  
internal H4 byte counter.  
TTLin  
192  
191  
113  
MMSAJ1EN  
MMSAPAYEN  
DRETFRMI  
O
Test Point For J1 Position on TX framed signal. Provided for  
testing purposes.  
HiZ-2ma  
O
Test point for Payload Enable on TX framed signal. Provided  
for testing purposes.  
HiZ-2mA  
I
Demultiplexer Receive Re-timing Frame. An 8 KHz pulse  
synchronous with DRETCLK, used by the receive re-timing  
function to synchronize the position of the VC3 or VC4 pay-  
load. It is always needed.  
TTLin  
112  
DRETCLK  
I
Demultiplexer Receive Re-timing Clock Synchronization. A  
parallel clock input at either 6.48 MHz (STM-0) or 19.44 MHz  
(STM-1). It is used to generate the clocking for the VC-3 or  
VC-4 container on DTBDATA<7:0> when the retiming func-  
tion is enabled.  
TTLin  
Serial Overhead Byte Access  
15  
16  
TSOH  
I
Transmit RSOH and MSOH Serial Access. Input for serially  
sourced RSOH and MSOH transmit data. The data is clocked  
in synchronous to MMSPPCKO at 19.44 MHz for STM-1 and  
6.48 MHz for STM-0.  
TTLin  
TSOHEN  
O
Transmit RSOH and MSOH Serial Access Clock Enable.  
Used to enable clocking of RSOH and MSOH data at the  
TSOH input using MMSPPCKO.  
HiZ-4ma  
9
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 2: Signal Description (Sheet 3 of 11)  
Pin #  
Name  
TSOHFR  
Type  
Description  
17  
O
Transmit RSOH and MSOH Serial Access Frame Position.  
This is an 8 KHz synchronization pulse indicating the start  
(MSB of A1) of the 72 bytes of STM-1 RSOH/MSOH or 24  
bytes of STM-0 RSOH/MSOH input at TSOH. It is synchro-  
nous with MMSPPCKO.  
HiZ-4ma  
137  
RSOH  
O
Receive RSOH and MSOH Serial Access. Serial output of  
received RSOH and MSOH data. The data is clocked out syn-  
chronous to DMSPPCKO at 19.44 MHz for STM-1 and 6.48  
MHz for STM-0.  
HiZ-4ma  
136  
135  
RSOHEN  
RSOHFR  
O
Receive RSOH and MSOH Serial Access Clock Enable.  
Used to enable clocking of RSOH and MSOH data at the  
RSOH output using DMSPPCKO.  
HiZ-4ma  
O
Receive RSOH and MSOH Serial Access Frame Position.  
This is an 8 KHz synchronization pulse indicating the start  
(MSB of A1) of the 72 bytes of STM-1 RSOH/MSOH or 24  
bytes of STM-0 RSOH/MSOH output at RSOH. It is synchro-  
nous with DMSPPCKO.  
HiZ-4ma  
28  
29  
31  
30  
TPOH  
I
Transmit HPOH Serial Access. Input for serially sourced  
HPOH transmit data.  
TTLin  
TPOHCK  
TPOHEN  
TPOHFR  
O
Transmit HPOH Serial Access Clock. Used to clock in the  
TPOH data at 19.44 clock for STM-1 or 6.48 MHz for STM-0.  
HiZ-4ma  
O
Transmit HPOH Serial Access Clock Enable. Used to enable  
TPOHCK clocking of TPOH input data.  
HiZ-4ma  
O
Transmit HPOH Serial Access Frame Position. This is an 8  
KHz synchronization pulse indicating the start (MSB of J1) of  
the 9 bytes of HPOH input at TPOH. It is synchronous with  
TPOHCK.  
HiZ-4ma  
122  
121  
119  
120  
RPOH  
O
Receive HPOH Serial Access. Serial output of received  
HPOH data.  
HiZ-4ma  
RPOHCK  
RPOHEN  
RPOHFR  
O
Receive HPOH Serial Access Clock. Used to clock out the  
RPOH data at 19.44 clock for STM-1 or 6.48 MHz for STM-0.  
HiZ-4ma  
O
Receive HPOH Serial Access Clock Enable. Used to enable  
RPOHCK clocking of received RPOH data.  
HiZ-4ma  
O
Receive HPOH Serial Access Frame Position. This is an 8  
KHz synchronization pulse indicating the start (MSB of J1) of  
the 9 bytes of HPOH input at RPOH. It is synchronous with  
RPOHCK.  
HiZ-4ma  
177  
124  
B1OUT  
B2OUT  
O
B1 Error Output (BIP). This pin goes High when an error is  
detected by the regenerator section overhead. It is synchronous  
to DMSPPCK0.  
HiZ-2ma  
O
B2 Error Output (BIP) This pin goes High when an error is  
detected by the terminal section overhead. It is synchronous to  
DMSPPCK0  
HiZ-2ma  
10  
SXT6051 Pin Assignments And Signal Description  
Table 2: Signal Description (Sheet 4 of 11)  
Pin #  
Name  
B3OUT  
Type  
Description  
114  
O
B3 Error Output (BIP) This pin goes High when an error is  
detected by the higher order path overhead. It is synchronous to  
RPOHCK.  
HiZ-2ma  
11  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 2: Signal Description (Sheet 5 of 11)  
Pin #  
Name  
Type  
Description  
Configuration & Alarm Monitoring  
181  
OOF  
O
Out of Frame Indicator. Active High when framer enters in  
an out of frame state. Minimum pulse width is 125 us (1  
frame).  
HiZ-2ma  
180  
182  
183  
179  
184  
176  
LOF  
SD  
O
Loss of Frame Indicator. Active High when the framer enters  
a loss of frame state. Minimum pulse width is 125 us (1 frame).  
HiZ-2ma  
O
Signal Degrade. State of register 21H<bit 1> bit value.  
HiZ-2ma  
SF  
O
Signal Fail. State of register C1H<bit 5> bit value.  
HiZ-2ma  
AISRX  
O
Receive AIS Signal Indicator. Indicates that an AIS has been  
detected in the received VC3 or VC4. Active High.  
HiZ-2ma  
SCRAMSEL  
STMMODE  
I
Scrambler Disable. This pin should be tied to Low during nor-  
mal operation. Active High.  
TTLin  
I
Mode Select. Low selects STM-0, High selects an STM-1.  
TTLin  
Orderwire and Data Byte Access Transmit Side  
18  
19  
20  
21  
22  
32  
33  
34  
TROW  
I
Transmit RSOH E1 Orderwire. A 64 Kb/s data input for  
orderwire byte E1. Data is synchronized with TOWBYC and  
clocked by TOWC.  
TTLin  
TOWC  
O
Transmit RSOH and MSOH Orderwire Clock. A reference  
clock output at 64 KHz to be used for transmit E1, E2 and F1  
byte clocking.  
HiZ-2ma  
TMOW  
TDOW  
I
Transmit MSOH E2 Orderwire. A 64 Kb/s data input for  
orderwire byte E2. Data is synchronized with TOWBYC and  
clocked by TOWC.  
TTLin  
I
Transmit RSOH F1 Orderwire. A 64 Kb/s data input for  
orderwire byte F1. Data is synchronized with TOWBYC and  
clocked by TOWC.  
TTLin  
TOWBYC  
TPOW1  
TPOW2  
TPOWC  
O
Transmit RSOH and MSOH Orderwire Synchronization  
Signal. An 8 KHz signal used to byte synchronize the transmit-  
ted E1, F1 and E2 data streams.  
HiZ-2ma  
I
Transmit HPOH F2 Orderwire. A 64 Kb/s data input for  
orderwire byte F2. Data is synchronized with TPOWBYC and  
clocked by TPOWC.  
TTLin  
I
Transmit HPOH F3 Orderwire. A 64 Kb/s data input for  
orderwire byte F3 Data is synchronized with TPOWBYC and  
clocked by TPOWC.  
TTLin  
O
Transmit HPOH Orderwire Clock. A reference clock output  
HiZ-2ma  
at 64 KHz to be used for F2 and F3 transmit byte clocking.  
12  
SXT6051 Pin Assignments And Signal Description  
Table 2: Signal Description (Sheet 6 of 11)  
Pin #  
Name  
TPOWBYC  
Type  
Description  
35  
O
Transmit HPOH Orderwire Synchronization Signal. An 8  
KHz signal used to byte synchronize the F2 and F3 transmit  
data streams.  
HiZ-2ma  
23  
24  
25  
26  
TRD  
I
Transmit RSOH D1-D3 Data. A 192 Kb/s data input for  
RSOH D1-D3 data. Data is clocked in by TRDC.  
TTLin  
TRDC  
TMD  
TMDC  
O
Transmit RSOH D1-D3 Data Clock. A 192 KHz reference  
signal used to clock in TRD data.  
HiZ-2ma  
I
Transmit MSOH D4-D12 Data. A 576 Kb/s data input for  
MSOH D4-D12 data. Data is clocked in by TMDC.  
TTLin  
O
Transmit MSOH D4-D12 Data Clock. A 576 KHz reference  
HiZ-2ma  
signal used to clock in TMD data.  
Orderwire and Data Byte Access Receive Side  
133  
132  
131  
130  
129  
118  
117  
RROW  
O
Receive RSOH E1 Orderwire. A 64 Kb/s data output for  
received orderwire byte E1. Data is synchronized with  
ROWBYC and clocked by ROWC.  
HiZ-2ma  
ROWC  
O
Receive RSOH and MSOH Orderwire Clock. A reference  
clock output at 64 KHz to be used for receive E1, E2 and F1  
byte clocking.  
HiZ-2ma  
ROWBYC  
RMOW  
RDOW  
RPOW1  
RPOW2  
O
Receive RSOH and MSOH Orderwire Synchronization  
Signal. An 8 KHz signal used to byte synchronize the received  
E1, E2 and F1data streams.  
HiZ-2ma  
O
Receive MSOH E2 Orderwire. A 64 Kb/s data output for  
received orderwire byte E2. Data is synchronized with  
ROWYC and clocked by ROWC.  
HiZ-2ma  
O
Receive MSOH F1 Orderwire. A 64 Kb/s data output for  
received orderwire byte F1. Data is synchronized with ROW-  
BYC and clocked by ROWC.  
HiZ-2ma  
O
Receive HPOH F2 Orderwire. A 64 Kb/s data output for  
received orderwire byte F2. Data is synchronized with  
RPOWBYC and clocked by RPOWC  
HiZ-2ma  
O
Receive HPOH F3 Orderwire. A 64 Kb/s data output for  
received orderwire byte F3. Data is synchronized with  
RPOWBYC and clocked by RPOWC  
HiZ-2ma  
116  
115  
RPOWC  
O
Receive HPOH Orderwire Clock. A reference clock output at  
64 KHz to be used for F2 and F3 receive byte clocking.  
HiZ-2ma  
RPOWBYC  
O
Receive HPOH Orderwire Synchronization Signal. An 8  
KHz signal used to byte synchronize the F2 and F3 receive data  
streams.  
HiZ-2ma  
128  
127  
RRD  
O
Receive RSOH D1-D3 Data. A 192 Kb/s data output for  
RSOH D1-D3 data. Data is clocked out by RRDC.  
HiZ-2ma  
RRDC  
O
Receive RSOH D1-D3 Data Clock. A 192 KHz reference sig-  
HiZ-2ma  
nal used to clock out RRD data.  
13  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 2: Signal Description (Sheet 7 of 11)  
Pin #  
Name  
Type  
Description  
126  
RMD  
O
Receive MSOH D4-D12 Data. A 576 Kb/s data output for  
HiZ-2ma  
MSOH D4-D12 data. Data is clocked out by RMDC.  
125  
RMDC  
O
Receive MSOH D4-D12 Data Clock. A 576 KHz reference  
HiZ-2ma  
signal used to clock out RMD data.  
Telecom Bus Interface  
66, 67, 68, MTBDATA<7:0>  
69, 70, 71,  
72, 73  
I
Multiplexer Telecom Bus Data. A byte-wide data input at  
19.44 Mbit/s for STM-1 or 6.48 Mbit/s for STM-0. Non-pay-  
load byte timeslots (i.e., RSOH, AU pointer, MSOH and  
HPOH timeslots) can either have a 0 or 1 inserted.  
TTLin  
74  
75  
MTBPAR  
MTBCKI  
I
Multiplexer Telecom Bus Parity. This is a parity check calcu-  
lated on each MTBDATA<7:0> byte. It is an odd parity.  
TTLin  
I
Multiplexer Telecom Bus Clock Input. A 6.48MHz (STM-0)  
or 19.44 MHz (STM-1) input signal used to clock MTB-  
DATA<7:0>. It is used when the SXT6051 is configured as an  
ADM. In other configurations the pin should be tied to ground.  
TTLin  
76  
77  
MTBCKO  
O
Multiplexer Telecom Bus Clock Output. A 6.48MHz (STM-  
0) or 19.44 MHz (STM-1) output signal. It is used when the  
SXT6051 is used in a Terminal configuration.  
HiZ-8ma  
MTBJ0J1EN  
I/O  
TTLin-4ma  
Multiplexer Telecom Bus Frame Indicator. It indicates the  
presence of J0 and J1 bytes on the transmit bus. In an ADM  
configuration the pin is set up as an input while in the terminal  
mode it is set up as an output.  
78  
79  
80  
81  
MTBTUGEN1  
MTBTUGEN2  
MTBTUGEN3  
MTBPAYEN  
O
Multiplexer Telecom Bus Payload Enable 1. Indicates the  
presence of TUG3#1 in the case of STM-1. In the case of STM-  
0 this pin is internally pulled High. In ADM it is not used.  
HiZ-4ma  
O
Multiplexer Telecom Bus Payload Enable 2. Indicates the  
presence of TUG3#2 in the case of STM-1. In the case of STM-  
0 this pin is internally pulled High. In ADM it is not used.  
HiZ-4ma  
O
Multiplexer Telecom Bus Payload Enable 3. Indicates the  
presence of TUG3#3 in the case of STM-1. In the case of STM-  
0 this pin is internally pulled High. In ADM it is not used.  
HiZ-4ma  
I/O  
TTLin-4ma  
Multiplexer Telecom Bus Payload Enable Signal. Indicates  
the presence of VC-4 in the STM-1 mode or VC-3 in the STM-  
0 mode. This signal is used as an output when the SXT6051 is  
configured in a Terminal mode and an input in ADM mode.  
82  
MTBH4EN  
TTLin-4ma  
Multiplexer Telecom Bus H4 Multi-Frame Indicator. As an  
output, it is a 2 KHz signal that indicates the location of the 00  
value of H4. The signal goes High after H4 equals “00 “and  
Low after H4 equals” 01”. Used as an output when the  
SXT6051 is configured in a Terminal Mode. As an input (in  
ADM) it is sampled at the J1 byte location.  
14  
SXT6051 Pin Assignments And Signal Description  
Table 2: Signal Description (Sheet 8 of 11)  
Pin # Name Type  
Description  
103, 102, DTBDATA<7:0>  
O
Demultiplexer Telecom Bus Data. This is a byte wide data  
output at 19.44 Mb/s for STM-1 or 6.48 Mb/s for STM-0. The  
RSOH, MSOH and HPOH values are present on the bus when  
receive re-timing is disabled (see register 51H).  
101, 100,  
99, 98, 97,  
96  
HiZ-4ma  
94  
93  
92  
91  
DTBPAR  
O
Demultiplexer Telecom Bus Parity. A parity check calculated  
on each output byte on the Telecom Bus. It is an odd parity.  
HiZ-4ma  
DTBCK  
O
Demultiplexer Telecom Bus Clock Output. A 6.48MHz  
(STM-0) or 19.44 MHz (STM-1) output signal.  
HiZ-8ma  
DTBJ0J1EN  
DTBTUGEN1  
O
Demultiplexer Telecom Bus Frame Indicator. It indicates the  
presence of J0 and J1 bytes on the receive telecom bus.  
HiZ-4ma  
O
Demultiplexer Telecom Bus Payload Enable 1. Indicates the  
presence of TUG3#1 in the case of STM-1. In the case of  
STM-0 this pin is internally pulled High.  
HiZ-4ma  
90  
89  
DTBTUGEN2  
DTBTUGEN3  
O
Demultiplexer Telecom Bus Payload Enable 2. Indicates the  
presence of TUG3#2 in the case of STM-1. In the case of  
STM-0 this pin is internally pulled High.  
HiZ-4ma  
O
Demultiplexer Telecom Bus Payload Enable 3. Indicates the  
presence of TUG3#3 in the case of STM-1. In the case of STM-  
0 this pin is internally pulled High.  
HiZ-4ma  
88  
87  
DTBPAYEN  
DTBH4EN  
O
Demultiplexer Telecom Payload Enable. Indicates the pres-  
ence of VC-4 in the STM-1 mode or VC-3 in the STM-0 mode.  
HiZ-4ma  
O
Demultiplexer Multi-Frame Indicator. A 2 KHz signal that  
HiZ-4ma  
indicates a value of “00” for H4.  
Multiplexer/Demultiplexer Protection Interface  
9, 8, 7, 6, MMSPPDATA<7:0> I/O  
Multiplexer Protection Data Bus. This is byte wide data at  
19.44 Mb/s for STM-1 or 6.48 Mb/s for STM-0. It is an output  
when the SXT6051 is a Master in a 1-for-1 protection. It is an  
input when the SXT6051 is a Slave in a 1- for-1 protection.  
5, 4, 3, 2  
TTLin-4ma  
11  
MMSPPCKI  
MMSPPCKO  
I
Multiplexer Protection Clock. A 6.48MHz (STM-0) or 19.44  
MHz (STM-1) input signal used to clock MSPPDATA<7:0>.  
This input is only used when the SXT6051 is configured as  
Slave in a 1-for-1 protection.  
TTLin  
12  
13  
O
Multiplexer Protection Clock A 6.48MHz (STM-0) or 19.44  
MHz (STM-1) output signal used to clock MSPPDATA<7:0>.  
This output is used when the SXT6051 is configured as Master  
in a 1-for-1 protection. This clock is also used to clock the  
TSOH serial data stream.  
HiZ-8ma  
MMSPPJ0EN  
I/O  
TTLin-4ma  
Multiplexer Protection Frame Indicator An 8 KHz pulse  
that indicates the presence of the J0 byte on  
MMSPPDATA<7:0> bus. The pin is programmed as an input  
in a Slave configuration and an output in a Master configura-  
tion.  
15  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 2: Signal Description (Sheet 9 of 11)  
Pin #  
Name  
Type  
Description  
10  
MMSPPAUEN  
O
Multiplexer Protection Payload Enable. Indicates the pres-  
ence of the VC-4 (in STM-1 mode) or VC-3 (in STM-0 mode)  
on the MMSPPDATA<7:0> bus. This pin is only used in a  
Master configuration.  
HiZ-4ma  
147, 148, DMSPPDATA<7:0>  
I/O  
TTLin-4ma  
Demultiplexer Protection Data Bus. This is byte wide data at  
19.44 MHz (STM-1) or 6.48 MHz (STM-0). It is an input in a  
Master configuration and an output in a Slave configuration.  
149, 150,  
151, 152,  
153, 154  
144  
DMSPPCKI  
DMSPPCKO  
I
Demultiplexer Protection clock. A 6.48 MHz (STM-0) or  
19.44 MHz (STM-1) signal used to clock DMSPPDATA<7:0>.  
This input is only used in a Master configuration.  
TTLin  
145  
O
Demultiplexer Protection clock. A 6.48 MHz (STM-0) or  
19.44 MHz (STM-1) signal used to clock DMSPPATA<7:0> in  
a Slave configuration or to clock the RSOH serial output data  
in a master configuration.  
HiZ-8ma  
143  
142  
141  
DMSPPJ0EN  
DMSPPAUEN  
DMSPPSF  
I/O  
TTLin-4ma  
Demultiplexer Protection Frame Indicator. An 8 KHz pulse  
that indicates the presence of the J0 byte on the  
DMSPPDATA<7:0> bus. The pin is programmed as an output  
in a Slave configuration and an input in a Master configuration.  
I/O  
TTLin-4ma  
Demultiplexer Protection Payload Enable. Indicates the  
presence of VC-4 (STM-1) or VC-3 (STM-0) data on the  
DMSPPDATA<7:0> bus. This pin is programmed as an output  
in a Slave configuration and an input in a Master configuration.  
I/O  
TTLin-2ma  
Signal Fail Indicator. This pin is programmed as an input in a  
Master configuration and as an output in a Slave configuration.  
In the Master configuration the value of this pin is reflected in  
register C3H<bit 3>. In the Slave configuration the value of  
this pin is the same as C1H<bit 5>.  
140  
DMSPPSD  
I/O  
TTLin-2ma  
Signal Degrade Indicator. The pin is programmed as an input  
in a Master configuration and an output in a Slave configura-  
tion. In the Master configuration the value of this pin is  
reflected in register C3H<bit 2>. In the Slave configuration the  
value of this pin is the same as 21H<bit 1>.  
16  
SXT6051 Pin Assignments And Signal Description  
Table 2: Signal Description (Sheet 10 of 11)  
Pin # Name Type  
Description  
Microprocessor Bus  
48, 49, 50, A<7:0>  
51, 54, 55,  
I
Address Bus. Eight bit address port for register selection dur-  
ing read/write accesses.  
TTLin  
56, 57  
39, 40, 41, DATA<7:0>  
42, 43, 44,  
I/O  
TTLin-6ma  
Data Bus. Eight bit I/O to read and write data, commands, and  
status to and from the device.  
45, 46  
60  
WR  
RW  
I
Intel Write Strobe. Signal is Low during write accesses.  
DATA<7:0> is clocked into the addressed register on the rising  
WR edge when CS is Low.  
TTLin  
Motorola Read/Write Strobe. The SXT6051 drives  
DATA<7:0> with the contents of the addressed register when  
CS is Low and both RW and E are High. The contents of  
DATA<7:0> are clocked into the addressed register on the fall-  
ing E edge when both CS and RW are Low.  
61  
RD  
I
Intel Read Strobe. Signal is Low during read accesses. The  
SXT6051 drives DATA<7:0> with the contents of the  
addressed register when both RD and CS are Low.  
TTLin  
Motorola Bus Enable Strobe. Signal is High during SXT6051  
register accesses.  
E
63  
58  
59  
INT  
O
Interrupt Request. Signal is Low when there is an unmasked  
active interrupt.  
Hiz-4ma  
CS  
AS  
I
Chip Select. Active Low chip select that must be asserted dur-  
ing all register accesses.  
TTLin  
I
Address Strobe Enable. Used by chip for systems where the  
address and data are multiplexed. Latches A<7:0> on the fall-  
ing edge. If address and data are not multiplexed, this pin  
should be tied High.  
TTLin  
64  
62  
MCUTYPE  
RST  
I
Motorola/Intel Interface Select. A High indicates a Motorola  
and a Low an Intel Microprocessor.  
TTLin  
I
Chip Master Reset. A Low resets all registers to default con-  
TTLin  
ditions.  
(48 K pull up)  
155  
OEN  
I
Master Chip Output Enable. A Low on this pin causes all  
TTLin  
I/O and outputs to be High impedance.  
(48K pull up)  
17  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 2: Signal Description (Sheet 11 of 11)  
Pin #  
Name  
Type  
Description  
JTAG test ports  
110  
109  
JTCK  
JTMS  
I
JTAG Clock. Clock for all boundary scan circuitry.  
Test Mode Select. Determine state of TAP controller.  
TTLin  
I
TTLin  
(48K pull up)  
108  
JTRS  
I
Reset. Active Low.  
TTLin  
(35K pull  
down)  
107  
106  
JTDI  
I
Data Input. Input signal used to shift in instructions and data.  
TTLin (48K  
pull up)  
JTDO  
O
Data Output. Output signal used to shift out instructions and  
2mA  
data.  
Scan input pins  
158  
SCANTEST  
I
Scan test mode. Active Low.  
Scan Enable. Active Low.  
TTLin (48 K  
pull up)  
111  
SCANEN  
I
TTLin (48K  
pull up)  
Table 3: Power, Ground, and No Connects  
Pin # Name  
14, 38, 52, 65, 95, 105, 134, 156, 178, 208 VCC_5  
Type  
Power Supply  
5V Supply.  
1, 27, 47, 53, 83, 104, 123, 146, 157, 199  
36, 84, 139, 175, 193  
GND_5  
VCC_3  
GND_3  
NC  
GND 5 Volts. Ground pins for 5 Volt supply.  
3 V supply.  
37, 85, 138, 174, 190  
GND 3 Volts. Ground pins for 3 Volt supply.  
Not Connected. Unused. Leave unconnected.  
162, 164, 189, 207  
18  
Functional Description  
FUNCTIONAL DESCRIPTION  
Thus both transmitters are synchronous in a 1-for-1 hot  
stand-by configuration.  
Transmit Data Flow  
Figure 2 shows the functional blocks of the SXT6051. For  
the transmitter (lower half of the diagram), the input inter-  
face is the Multiplexer Telecom Bus with byte wide data  
MTBDATA <7:0> and timing signals for the parallel clock  
MTBCK, the frame indicator MTBJ0J1EN, and the pay-  
load active signal MTBPAYEN. The MTBPAR signal pro-  
vides parity checking on the MTBDATA <7:0> byte data.  
Next, the MST function adds the Multiplexer Section  
OverHead (MSOH):  
• The K1 and K2 bytes are sourced from the micropro-  
cessor programmable register or TSOH input. In the  
particular case of K2, an internal process inserts the  
MS-RDI bits (K2<2:0>) based on the receive infor-  
mation if automatic MS-RDI insertion is enabled by  
the microprocessor.  
The data flow starts with the Higher Order Path Termina-  
tion section which adds the VC-3 or VC-4 path overhead:  
• The D4-D12 bytes are sourced from the TMD input or  
received D4-D12 bytes in ADM mode. A 576 KHz  
reference clock is supplied at TMDC.  
• The 16 or 64 byte J1 string is sourced from the micro-  
processor programmable registers or TPOH input.  
The microprocessor must calculate the CRC7 byte of  
the 16 byte J1 transmit string and store it in the first  
byte of the registers storing the string.  
• S1 is sourced from the microprocessor programmable  
register or TSOH input.  
• M1 is sourced from the TSOH input or an internal  
process that sets M1 based on the receive B2 byte(s)  
errors from the receive portion of the SXT6051 if  
automatic MS-REI insertion is enabled by the micro-  
processor.  
• The B3 byte is calculated internally and inserted. The  
microprocessor can invert the values of B3 for system  
testing purposes.  
• The C2 byte is sourced from the microprocessor pro-  
grammable register or TPOH input.  
• E2 is sourced from the TMOW input or, in ADM  
mode, received E2 byte. A 64 KHz reference clock is  
supplied at TROWC and an 8 KHz sync pulse at  
TROWBYC.  
• The G1 byte is sourced from the microprocessor pro-  
grammable register, TPOH input, or from the receive  
portion of the chip if automatic RDI and REI insertion  
is enabled by the microprocessor  
• The B2 byte is calculated internally and inserted. The  
microprocessor can invert the values of B2 for system  
testing purposes.  
• The F2 and F3 bytes are two 64 Kbit/s channels  
sourced from TPOW1 and TPOW2 or the received F2  
and F3 bytes. TPOWC (at 64 KHz) and TPOWBYC  
(at 8 KHz) provide the timing references for these  
channels.  
Finally, the Regenerator Section OverHead (RSOH) is  
added by the Regenerator Section Termination (RST).  
• The K3 byte is sourced from the microprocessor pro-  
grammable register or TPOH input.  
• J0 byte is sourced from the microprocessor, TSOH  
input or received J0 byte. The microprocessor must  
calculate the CRC7 byte of the J0 transmit string and  
store it in the first byte of the registers storing the  
string.  
After the HPOH data has been added, the Higher Order  
Connection Supervision block can insert an “unequipped”  
payload if configured by the microprocessor to do so (see  
registers 70H and 71H).  
• The B1 byte is calculated internally and inserted. The  
microprocessor can invert the values of B1 for system  
testing purposes.  
Pointer processing re-timing is performed by the Multi-  
plexer Section Adaptation (MSA) section. Positive and  
negative pointer movement events are stored in counters  
that can be accessed via the microprocessor interface. The  
resulting parallel data stream is supplied to the Multiplexer  
Section Termination (MST) and to the Multiplexer Section  
Protection (MSP) port if it is configured as a protection  
master. The data MMSPPDATA <7:0>, along with timing  
information, is sent to the redundant (slave) SXT6051.  
• E1 is sourced from the TROW input or, in ADM  
mode, received E1 byte. A 64 KHz reference clock is  
supplied at TROWC and an 8 KHz sync pulse at  
TROWBYC.  
19  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
• F1 is sourced from the TMOW input or, in ADM  
mode, received F1 byte. A 64 KHz reference clock is  
supplied at TROWC and an 8 KHz sync pulse at  
TROWBYC.  
MHPOSD, or output as B3ZS encoded data on MHPOSD  
and MHNEGD. The output selection is configurable via  
the microprocessor.  
Receive Data Flow  
• D1-D3 are sourced from the TRD input or, in ADM  
mode, received D1-D3 bytes. A 192 KHz reference  
clock is supplied at TRDC.  
STM-1 data is input on the parallel DHBDATA<7:0> bus  
(see Figure 2). The parallel clock input is DHBCLK.  
STM-0 data and clock signals can be entered as parallel  
data like STM-1, or as serial NRZ data on DHPOSD, or as  
B3ZS encoded data on DHPOSD and DHNEGD. The  
B3ZS inputs are decoded and the resulting NRZ data con-  
verted to parallel format. The serial clock input is  
DHICLK.  
Finally, the data is scrambled with a configured scrambler  
type and framing bytes A1/A2 are added. The scrambler  
has a selectable length of seven to comply with ITU speci-  
fications, or 11 or 13 for radio applications. The polyno-  
mial functions are 1+X6+X7 for the seven-bit scrambler, 1  
+X9+X11  
for  
the  
11-bit  
scrambler  
and  
1+X8+X9+X12+X13 for the 13-bit scrambler. The 13-bit  
scrambler is recommended for STM-1 radio applications.  
The scrambler selection that can be programmed via the  
microprocessor interface.  
The parallel data is then fed to the framing and de-scram-  
bling block. The framing block synchronizes the timing  
generator to the incoming data and provides Out Of Frame  
and Loss Of Frame alarm signals. These alarms are based  
on frame counts that can be programmed via the micropro-  
cessor interface, as the ITU specifications are unclear at  
this time.  
For STM-1, and optionally STM-0, the data is output on the  
byte parallel bus MHBDATA<7:0> synchronous with the  
MHBCLKO clock. In STM-0, the output can also be con-  
verted from parallel to serial and emitted as NRZ data on  
Figure 2:SXT6051 Block Diagram  
HPOH  
SERIAL  
ACCESS SERIAL ACCESS  
D4 D12  
ACCESS ACCESS  
D1 D3  
F2 F3  
ACCESS  
E1 E2 F1  
ACCESS  
RSOH & M SOH  
M SP interface  
Com m unication O verhead  
MSP Interface  
DHPOSD/DHNRZ  
DHNEGD  
B3ZS  
Decoder  
RST  
MST/MSP  
Demultiplexer  
Pointer  
Interpretation  
HOA Higher  
order Path  
Termination  
Regenerator  
M ultiplexer  
Section  
term ination  
Retiming  
Function  
DHICLK  
section  
DHBDATA<7:0>  
DHBCLK  
A<7:0>  
DATA<7:0>  
M icrocontroller Interface  
DE M U X Tim ing G enerator  
M UX Tim ing G enerator  
W R/RW  
RD/E  
CS  
Intel/Motorola Selectable  
RST  
O verhead R AM  
AS  
M CUTYPE  
M HBDATA<7:0>  
M HBCLKO  
MSA/MSP  
MST  
M ultiplexer  
section  
HCS Higher  
order  
Connection  
Supervision  
RST  
Regenerator  
Section  
term ination  
HOA Higher  
order Path  
Termination  
M HPOSD/MHNRZ  
M HNEGD  
M ICLK  
B3ZS  
Encoder  
M HBCLK  
M HICLK  
Com m unication O verhead  
MSP Interface  
D4 D12  
ACCESS ACCESS  
D1 D3  
F2 F3  
ACCESS  
E1 E2 F1  
ACCESS  
HPOH  
SERIAL  
ACCESS  
RSOH & M SOH  
SERIAL ACCESS  
M SP  
Interface  
20  
Functional Description  
After frame synchronization and de-scrambling, the  
Regenerator Section Termination (RST) extracts the  
RSOH:  
“Master MST output data” or “Slave MSP output data” (see  
figure 6 or section on page 31). The choice is completely  
under the control of the microprocessor. The microproces-  
sor has access to all the Master and Slave data (K1/K2  
bytes, error statistics derived from counters and alarm sta-  
tus from both chips) necessary for making this decision.  
• The expected value of the J0 string is stored via the  
microprocessor interface. The received J0 string is  
compared with the stored version, and also used to  
calculate a CRC-7 byte. Two alarms can be generated:  
a J0 (Trace ID) Mismatch alarm and J0 CRC-7 mis-  
match alarm.  
The MSA block interprets the H1-H3 payload points bytes  
to determine the location of the VC-3 or VC-4 payload  
structure. Positive and negative pointer movement events  
are stored in counters that can be accessed via the micro-  
processor interface. The data from the MSA section is then  
output to the HPT section in a byte parallel format.  
• B1 byte is calculated internally and compared to the  
incoming B1 value. The errors are stored into a set of  
counters that can be read by the microprocessor inter-  
face.  
The HPT section extracts the HPOH:  
• E1 is provided serially at the RROW output.  
• The expected value of the 16 on 64 byte J1 string is  
stored internally via the microprocessor interface. The  
receive value of J1 is compared with the stored ver-  
sion, and is also used to calculate a CRC-7 byte (in 16  
byte string configuration). Two alarms are generated:  
a J1 Mismatch alarm and J1 CRC-7 mismatch alarm.  
• B3 byte is calculated internally and compared to the  
incoming B3 value. The errors are stored into a set of  
counters that can be read by the microprocessor inter-  
face. These errors are also inserted in the transmitted  
G1 REI bits (G1<7:4>) if enabled (see registers 70H  
and 71H).  
• F2 and F3 are provided serially at the ROW1 and  
ROW2 outputs. The 64 KHz clock reference for this  
output is provided at RPOWC and the 8 KHz sync  
pulse at RPOWBYC.  
• C2 is provided via both a microprocessor register and  
serially at the RPOH output. The C2 value provided  
via a microprocessor register is filtered over 3 or 5  
frames. The number of filtering frames can be pro-  
grammed by the microprocessor.  
• G1 is provided serially at the RPOH and is used to  
update HPTREI-CNT registers accessible by the  
microprocessor.  
• K3 is provided via both a microprocessor register and  
serially at the RPOH output.  
The last block is the re-timing block. This block allows the  
alignment of the receive payload with the external signal  
DRETFRMI, which supplies the J0 position and an exter-  
nal clock DRETCLK. A new value of the pointer based on  
the new alignment position is assigned to the payload. This  
block typically is bypassed for a multiplexer application. It  
is typically only required for external re-timing and align-  
ment of multiple TUG-3 payload signals.  
• F1 is provided serially at the RMOW output. E1 and  
F1 are synchronous and can be accessed using the 64  
KHz clock provided at RROWC and the 8 KHz syn-  
chronization pulse provided at RROWBYC.  
• D1-D3 are provided serially at the RRD output. The  
192 KHz clock reference for this output is provided at  
RRDC.  
Next the Multiplexer Section Termination (MST) extracts  
the MSOH:  
• K1 and K2 bytes are provided via both a microproces-  
sor register and serially at the RSOH output. A filter  
based on 3 consecutive identical values of K1 and K2  
gates the update of the microprocessor registers.  
• D4-D12 bytes are provided serially at the RMD out-  
put. The 576 KHz clock reference for this output is  
provided at RMDC.  
• S1 is provided via both a microprocessor register and  
serially at the RSOH output. A filter based on 3 con-  
secutive identical values of S1 gates the update of the  
microprocessor register.  
• M1 is provided serially at the RSOH output and  
updates MST REI counters accessible by the micro-  
processor.  
• E2 is provided serially at the RMOW output. The  
64 KHz clock reference for this output is provided at  
RROWC and the 8 KHz sync pulse at RROWBYC.  
• B2 byte is calculated internally and compared to the  
incoming B2 value. The errors are stored into a set of  
counters that can be read by the microprocessor inter-  
face. These errors are also inserted in the transmitted  
M1 byte if enabled (see register 60H).  
The Multiplexer Section Protection (MSP) block allows  
the selection of data presented to the Master Multiplexer  
Section Adaptation (MSA) block to come from either the  
21  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
The output of this block is then sent to the Receive Telecom  
Bus DTBDATA<7:0> with the DTBCLK clock and refer-  
ence timing DTBJ0J1EN and DTBPAYEN.  
• Terminal Mode Protection Slave  
• Add And Drop Mode No Protection  
• Add And Drop Mode Protection Main  
• Add And Drop Mode Protection Slave  
Reference Clocks  
Note that the following are examples of configurations. For  
more details, please refer to AN9801: SXT6051 &  
SXT6251 SDH Chipset.  
The transmit and the receive side of the SXT6051 operate  
independently. In the STM-0 case, the input and output can  
either be serial or parallel. In the STM-1 case, the input and  
output are parallel only. The following table shows the  
clock connections required for STM-1 and STM-0:  
Repeater Mode Configuration  
All MSOH, HPOH and VC data is passed through inter-  
nally and no off chip connection is required between the  
transmit and the receive sides. The transmit source of the  
RSOH bytes is configurable (see register 60H).  
Modes of Operation  
Chip Configuration  
The SXT6051 can be programmed in seven different con-  
figurations in STM-0 or STM-1 mode (see register 50H.)  
Figure 3 is an example of an STM-0 repeater using the  
serial interface. The timing is recovered by the high-speed  
line interface unit and passed to the transmit side via the  
SXT6051. In the event of a receiver failure (i.e., a LOS of  
Signal Alarm), the SXT6051 will switch to a Blue signal  
reference if so configured (see register 40H).  
• Repeater mode  
• Terminal Mode No Protection  
• Terminal Mode Protection Main  
Figure 3: STM-0 Repeater Application  
D1  
B1  
B2  
E1  
F1  
to  
D3  
Error Error  
J0  
STM-0  
B3Zs  
Encoded  
Serial clock  
Serial Data  
Los Alarm  
STM-0  
B3Zs  
encoded  
Serial clock  
Serial Data  
SSI 7200  
Line  
Interface  
SSI 7200  
Line  
Interface  
SXT 6051  
Regenerator Configuration  
51.84 Mbit/s  
51.84Mbit/s  
Pass Through Programmable  
Microprocessor  
for Configuration and  
Network Management  
Interface  
51.84 MHz ±20 ppm  
Local Reference for Blue  
Signal Generation  
22  
Functional Description  
Receive Side Telecom Bus Timing  
Source  
Table 4: Repeater Clocks  
STM-0  
MHICLK  
In the Terminal mode, when receive re-timing is dis-  
abled (see register 51H), the receive side telecom bus  
timing is derived from the “recovered” clock.  
STM-1  
Multiplexer serial  
clock input  
Not used  
Assuming an inactive LOS, the “recovered” clock is  
derived from DHICLK in serial mode and DHBCLK  
in parallel mode. During an active LOS condition, if  
configured (see register 40H), the “recovered” clock is  
derived from MHICLK in serial mode and MHBCLKI  
in parallel mode (used as “blue” clocks).  
(51.84 MHz)  
Multiplexer paral-  
lel clock input  
MHBCLK  
(6.48 MHz)  
MHBCLK  
(19.44 MHz)  
Demultiplexer  
DHICLK  
Not used  
serial clock input  
(51.84 MHz)  
When receive re-timing is enabled, the receive side  
telecom bus timing is derived from the re-timing clock  
(DRETCLK).  
Demultiplexer par- DHBCLK  
allel clock input (6.48 MHz)  
DHBCLK  
(19.44 MHz)  
This arrangement of the SXT6051 providing both tim-  
ing and data (at the receive telecom bus) is referred to  
as co-directional timing.  
1. DRETFRMI and DRETCLK are used when a re-timing func-  
tion is implemented on the receive side.  
Terminal Mode Configuration (No  
Protection)  
Transmit Side Telecom Bus Timing  
Source  
The transmit side telecom bus timing is provided by  
the SXT6051. It is derived from the local clock refer-  
ence (MHICLK in serial mode and MHBCLKI in par-  
allel mode). This arrangement of the SXT6051  
providing the timing and receiving the data (at the  
transmit telecom bus) is referred to as  
In Figure 4 the SXT6051 is used with the SXT6251 for the  
implementation of an STM-1 terminal multiplexer. The  
SXT6251 is a 21 E1 mapper designed to accommodate 21  
E1 tributaries in a single chip. The SXT6051 and the  
SXT6251 communicate via the Telecom Bus. In an STM-  
0 configuration a single 21 E1 multiplexer is required. In an  
STM-1 terminal multiplexer, three 21 E1 mappers are  
required, sharing the telecom bus to implement a full  
63xE1 MUX Telecom bus.  
contra-directional timing.  
23  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 4: STM-1 Terminal Multiplexer  
SETS Local Reference 19.44 MHz  
Transmit  
Reference  
21 E1 card TUG#3  
SXT 6251  
SXT 6051  
OHT  
TX  
Data  
Clock  
Telecom Bus Timing  
Mapper  
TX  
Transmit Data and Clock E1 <1:21>  
Telecom Bus Data  
MSOH:  
E1 Line  
Interface  
units  
STM-1  
LIU  
RAP  
M1 REI,  
K2 RDI  
HPOH:  
G1 REI,  
G1 RDI  
TX/RX STM-0  
SXT 6251  
Mapper  
RX  
REI, RDI  
Alarm Status  
Telecom Bus Data  
Telecom Bus Timing  
SXT 6051  
OHT  
Data  
SAP  
Clock  
LOS  
RX  
Receive data and Clock E1 <1:21>  
Transmit Data and Clock E1 <1:21>  
SXT 6251  
Mapper  
TX  
RAP  
E1 Line  
Interface  
units  
STANDARD Terminal  
STM-1 configuration  
without Receive retiming  
SXT 6251  
Mapper  
RX  
REI, RDI  
Alarm Status  
SAP  
Receive data and Clock E1 <1:21>  
21 E1 Card Tug#2  
SXT 6251  
Mapper  
TX  
Transmit Data and Clock E1 <1:21>  
RAP  
E1 Line  
Interface  
units  
SXT 6251  
Mapper  
RX  
REI, RDI  
Alarm Status  
SAP  
Receive data and Clock E1 <1:21>  
21 E1 Card Tug#1  
24  
Functional Description  
Transmit Side Telecom Bus Timing  
Source  
Add and Drop Configuration  
In Figure the SXT6051 is used with the SXT6251 for the  
implementation of an STM-1 Add/Drop multiplexer with  
42 E1 access (63 is possible with the addition of another  
SXT6251).  
In an ADM configuration, the transmit side telecom  
bus timing is provided to the SXT6051. Therefore the  
timing at the transmit telecom bus is co-directional,  
since both timing and data are provided to the  
SXT6051.STM-1 ADM Configuration With 42 E1  
Access  
Receive Side Telecom Bus Timing  
Source  
Receive side telecom bus timing in the ADM case is  
identical to the terminal case.  
Figure 5: STM-1 ADM Configuration With 42 E1 Access  
Telecom Bus Clock  
EAST  
WEST  
Telecom  
Bus Timing  
Process TUG3 #1 TU-12's  
Passthrough TUG3 #3 Timing  
&
Clock  
TB Timing  
Telecom Bus Data  
SXT 6251  
SXT 6251  
21E1 RX  
Telecom Bus Data  
21E1 TX  
DTBTUG1  
DTBTUG3  
DTbTugEn  
PTTUGA  
PTTUGB  
PTSOH  
GND  
VCC  
SAP  
RAP  
SXT 6051  
OHT  
SXT 6051  
OHT  
RX  
TX  
TX  
RX  
SXT 6251 21 E1 card  
Process TUG3 #2 TU-12's  
SXT 6251  
21E1 RX  
SXT 6251  
21E1 TX  
DTBTUG2  
DTbTugEn  
PTTUGA  
PTTUGB  
GND  
SAP  
RAP  
RAP  
SAP  
PTSOH  
Process TUG3 #2 TU-12's  
Telecom Bus Data  
SXT 6251  
21E1 TX  
SXT 6251  
21E1 RX  
Telecom Bus Data  
DTbTugEn  
DTBTUG2  
PTTUGA  
GND  
SXT 6051  
OHT  
PTTUGB  
SXT 6051  
OHT  
PTSOH  
TX  
RX  
TX  
RX  
RAP  
SAP  
Process TUG3 #1 TU-12's  
Passthrough TUG3 #3 Timing  
TB Timing  
&
Clock  
SXT 6251  
SXT 6251  
21E1 TX  
21E1 RX  
DTbTugEn  
PTTUGA  
PTTUGB  
PTSOH  
DTBTUG1  
DTBTUG3  
GND  
VCC  
STM1-ADMCONFIG.VSD- PAGE-1 - 2/4/98  
TB Clock  
25  
l
Functional Description  
Updating the Transmit AU Pointer  
Transmit Side Telecom Bus Timing  
Justification Event Counters  
Source  
If the re-timing function on the receive side is disabled,  
re-clocking by the local clock will occur on the trans-  
mit side of the SXT6051. If the receive and local  
(which generates the transmit clock) clocks are  
slightly different, pointer movements on the transmit  
side of the SXT6051 will be generated. These pointer  
movements will be reflected in the transmit AU  
pointer justification event counters.  
On the transmit side, the master SXT6051 feeds the  
data received from its transmit telecom bus to both its  
MST block and MSP block (which feeds the slave)  
using a contra-directional timing arrangement at the  
transmit telecom bus interface.  
Co-directional timing arrangement is used in both the  
receive and transmit directions at the MSP interface.  
Receiver Default Operation  
If the re-timing function is enabled, re-clocking will  
take place on the receive side. Similarly, if the receive  
and the local (which generates DRETCLK and trans-  
mit clock) clocks are slightly different, pointer move-  
ments are again generated on the transmit side of the  
SXT6051 and reflected in transmit AU pointer justifi-  
cation event counters.  
Figure 7 is a block diagram of the receive section of the  
SXT6051. The detailed description follows the data flow  
from left to right and describes the functionality and con-  
figuration of each block. Note that all status change alarms,  
counter overflow alarms and receive byte change alarms  
mentioned, can cause the INT output pin to be activated if  
they are unmasked. Please refer to the register definition  
for location of alarms, masks & interrupts.  
Terminal Protection Mode  
Figure describes the dataflow for a 1-for-1 terminal protec-  
tion configuration. The protection mode is an implementa-  
tion of the ITU specifications in 1-for-1 configuration.  
Serial Interface  
The serial interface block accepts an STM-0 input as a  
B3ZS encoded or NRZ signal. The B3ZS signal is  
input at DHPOSD and DHNEGD and the NRZ signal  
is input at DHPOSD. The 51.84 MHz clock is input at  
DHICLK.  
The SXT6051 can be used either in the main (master) or the  
redundant (slave) signal path. The master & slave signal  
paths are connected via the MSP bus.  
In the master configuration the SXT6051 is connected to  
the SXT6251 via the telecom bus in both the transmit and  
the receive directions.  
A bipolar violation detector has been implemented in  
the B3ZS decoder. Detection of a BPV is indicated in  
register A0H. Note that the selection (see register 50H)  
of the serial interface and B3ZS encoder and decoder  
is common to both the transmit and receive sides of the  
chip.  
In the slave configuration the SXT6051 is indirectly con-  
nected to the SXT6251 via the MSP bus in both the trans-  
mit and the receive directions.  
A filter for the LOS input is provided by the line inter-  
face circuit (register 40H). The filtering on the LOS  
can be integrated over 128 or 4096 clock cycles. A  
LOS status change is indicated in register A0H.  
Receive Side Telecom Bus Timing  
Source  
On the receive side, the master SXT6051 selects the  
data from either its receive MST block or its receive  
MSP bus (fed by the slave) and presents this selection  
using a co-directional timing arrangement at the  
receive telecom bus interface. If the MSP (slave) data  
is selected (i.e., the protection switch is active, see reg-  
ister 21H) the clock provided at the receive telecom  
bus will be derived from either DMSPPCKI (demulti-  
plexer protection clock) or, if retiming is enabled,  
DRETCLK (demultiplexer retiming clock, see register  
51H).  
Parallel Interface  
The parallel interface block accepts a byte format input  
at DHBDATA<7:0> in STM-0 or STM-1 mode. No  
specific order on the byte is required for the SXT6051  
to operate. The parallel clock is input at DHBCLK. As  
in the serial case, the selection (see register 50H) of a  
parallel interface is common between transmit and  
receive sides.  
A filter for the LOS input is provided by the line inter-  
face circuit. The filtering on the LOS can be integrated  
over 16 or 512 clock cycles. An LOS status change is  
indicated in register A0H.  
26  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 6:Terminal Protection Mode Data Flow  
SXT 6051 Receive Section Slave channel  
Receive  
STM -0  
Slave  
MST/MSP  
Multiplexer  
section  
RST  
Regenerator  
Section  
B3ZS  
Decoder  
MSP Interface  
MSP Interface  
Receive  
STM -0  
Main  
SXT 6251  
21 E1 Mapper  
RST  
Regenerator  
Section  
MST  
Multiplexer  
section  
MSP  
Protection  
switch  
MSA  
Pointer  
Recovery  
HPT  
High Order  
Path Section  
B3ZS  
Decoder  
Re-  
Tim ing  
SXT 6051 Receive Section Main Channel  
SXT 6051Transm it Section Slave Channel  
RST  
R egenerator  
Section  
M ST  
M ultiplexer  
Section  
B3ZS  
Encoder  
Transmit STM-0 Slave  
MSP Interface  
MSP Interface  
SXT 6251  
21 E1 M apper  
HPT  
H igh O rder  
M ST  
M ultiplexer  
Section  
M SA  
RST  
R egenerator  
Section  
Transmit STM-0 Main  
B3ZS  
Encoder  
Pointer  
Path Section  
Processing  
SXT 6051 Transmit Section M ain Channel  
27  
Functional Description  
Figure 7:SXT6051 Receiver Blocks  
SERIAL  
RSOH  
&MSOH  
RSOH  
Interface  
MSOH Interface  
MSP INTERFACE  
DHICLK  
DHPOSD  
Serial Interface  
DHNEGD  
LOS  
MSP block  
Multiplexer section  
receiver  
Regenerator  
Section  
receiver  
Framer  
DHBDATA[7..0]  
DHBCLK  
Parallel  
Interface  
Pointer  
processing  
MHICLK  
Clock  
AISRX  
RPOW1  
RPOW2  
RPOWC  
RPOWBYC  
B3OUT  
distribution and  
references  
MHBCLKI  
Higher order  
path Receiver  
ROPHFR  
RPOHEN  
RPOHCK  
RPOH  
DTBH4EN  
DTBPAYEN  
DTBTUGEN  
DTBJ0J1EN  
DTBCK  
1
TO 3  
Retiming  
Function  
DTBPAR  
DHBDATA[7..0]  
DRETCLK  
DRETFRMI  
Receive side SXT 6051  
_ . - - 2/12/98  
REC DETAILS VSD PAGE-1  
Figure 8:STM-0 Robust Frame State Machine  
Clock Distribution and Reference  
Two separate inputs are supplied for Blue clock refer-  
ences.  
Locked In  
Frame  
• MHICLK is used for a serial reference clock in  
the case of an STM-0 system. The frequency of a  
serial reference clock is 51.84 MHz ±20ppm  
check  
fram es with Valid NDF  
3 m ore consecutive  
8
consecutive fram es  
with Invalid NDF  
4
consecutive fram es  
with Errored FAS  
• MHBCLKI is used for a parallel reference clock  
in the case of either an STM-0 or an STM-1 sys-  
tem. The frequency of the parallel reference  
clock for STM 0 is 6.48 MHz ±20ppm and for  
STM-1 19.44MHz ±20ppm  
In Frame  
Received  
Fram e with  
Invalid NDF  
2
consecutive fram es  
with Correct FAS and Valid NDF  
Out Of  
Frame  
An active LOS can have two consequent actions that  
can be enabled or disabled (see register 40H):  
ROBUST ALG ORITHM FOR STM -0 FRAM ING  
• Clock switches from receive clock to reference  
clock  
• Insert AIS towards the PDH network from the  
RST section  
Desynchronisation:Transition from Locked In Frame to Out Of Frame  
Acquisition  
Transition  
:Transition from Out Of frame to In Frame State.  
:Transition from In Frame State to Locked In Frame.  
Framer  
OOF Alarm is disabled and receive demultiplexer is re-synchronized, according to the new  
frame boundary, when entering in the In Frame State.  
The framer operates on either a parallel byte or a serial  
bit stream. Two settings are available for the frame  
acquisition state machine. One follows ITU-T G.783;  
the other is shown in Figure 8.  
OOF Alarm is activated and receive demultiplexer keeps its former synchronization when  
entering in the Out Of Frame State.  
Correct FAS  
Errored FAS  
Valid NDF  
:
:
STM -0 Fram e detected  
Errored Fram e (errors on A1A2 bytes)  
Valid New Data Flag can be either: descram bled HEX "6" "9" or "F" for NDF or AIS  
Invalid receive New Data Flag State other than the valid ones)  
: A1A2 bytes = Hex "F628"  
:
Invalid NDF  
=
(
3
28  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Frame Acquisition Algorithm  
Loss of Frame (LOF) Detection  
The frame acquisition algorithm is done on byte-wide  
key word identification. The framer eliminates the  
eight phases (bits) of ambiguity and memorizes the  
position of the frame word. The framer also identifies  
the position of the new data flag (NDF).  
Upon detection of an Out Of Frame condition, no con-  
secutive action is required by the ITU specifications.  
The number of Out of Frame events are counted and  
stored in a 13-bit counter accessible via registers 43H  
and 44H.  
Two consecutive frames with correct frame words and  
identical NDF are required to change from an Out Of  
Frame State (OOF) to an In Frame State (INF). To  
declare an OOF condition, four consecutive frames  
with incorrect frame words are required.  
The Loss Of Frame state machine can be configured  
via the registers 41H and 42H. Three parameters are  
programmable (from 1 to 32 frames) in the state  
machine:  
M is the number of consecutive frames with no Out Of  
Frame conditions required to re-enter a normal state. N  
is the number of consecutive frames with no Out Of  
Frame conditions required to re-enter a normal state  
from a Loss Of Frame state. L is the number of non-  
consecutive frames with Out Of Frame conditions  
required to enter a Loss Of Frame state.  
For certain values of the HPOH pointer, “R” bits in the  
VC12 container in STM-0 will look like a framing  
word after scrambling. This results in false frame syn-  
chronization. To eliminate this problem, the acquisi-  
tion machine is configurable (see register 40H).  
The robust configuration requires five consecutive  
frames with identical NDF and two consecutive  
frames with the correct frame word for frame acquisi-  
tion. This will minimize the probability of incorrect  
synchronization. To ensure that an OOF condition is  
activated when an incorrect synchronization occurs,  
the state machine will desynchronize when eight con-  
secutive frames not having identical NDF bits.  
Status changes in the OOF & LOF detectors generate  
OOF & LOF alarms. Also, output from these detectors  
is provided at the OOF & LOF output pins.  
Regenerator Section Receiver  
This section provides access to all Regenerator Section  
Overhead Bytes. All the overhead bytes (27 in STM-1  
and 9 in STM-0) are accessible at the RSOH serial out-  
put.  
Upon frame acquisition, the framer de-scrambles the  
signal. The standard scrambler defined by the ITU is  
(27–1). Two additional scramblers (211-1) and (213-1)  
can be programmed for STM-0 and STM-1 (see regis-  
ter 50H). This flexibility allows the optimum choice of  
scrambler for a radio application where an equal distri-  
bution of 1s and 0s is required.  
Figure 10:Overhead Bytes for the STM-1  
A1  
B1  
D1  
A1  
A1  
A2  
E1  
D2  
A2  
A2  
J0  
F1  
D3  
RSOH  
Figure 9:LOF State Machine  
AU Pointers  
K1  
OofSt  
= 0  
B2  
D4  
B2  
B2  
K2  
D6  
D5  
D8  
N O R M  
D7  
D9  
MSOH  
N
OofSt  
=
1
consecutive  
frames with  
OofSt = 0  
D10  
S1  
D11  
D12  
E2  
M
M1  
consecutive  
frames with  
OofSt = 0  
Reserved for National Use  
L
Media dependant Byte  
Undefined Bytes  
non-consecutive  
frames with  
OofSt = 1  
LOF  
S T W  
OofSt  
= 1  
29  
Functional Description  
The Regenerator Section Trace J0  
Receive Regenerator Section AIS (RstAIS)  
The AIS generated after the Regenerator Section is  
labeled RstAis. It can be inserted on the following con-  
ditions:  
This byte is used to repetitively transmit a Section  
Access Identifier so that a section receiver can verify  
its continued connection to the intended transmitter.  
This byte has been defined in the latest specification of  
ITU. To avoid compatibility problems with in-service  
equipment, the chip can ignore J0 processing via reg-  
ister 51H.  
• Loss Of Signal (LOS)  
• Loss Of Frame (LOF)  
• Trace Identification Mismatch (J0MsMtch)  
These conditions can be individually enabled or dis-  
abled (see register 40H). A test register that can force  
an RstAis for test purposes is also available. RstAis  
insertion is indicated in register D0H.  
The expected J0 string is configurable (see registers  
0EH and 0FH). This J0 string value needs to have the  
correct CRC7 bits per G707 specifications. The  
receiver calculates the CRC7 of the received J0 string.  
In the case of a mismatch between the expected &  
received J0 string, a J0 mismatch (J0MsMtch) is indi-  
cated in register A1H. In the case of a transmission  
error in the J0 string, a J0 string CRC7 error  
(J0Crc7Err) is indicated in register A1H and will mask  
the J0MsMtch alarm.  
National Used Bytes  
The four RSOH “National Use” bytes are only acces-  
sible in the STM-1 case. These bytes can be read via  
registers 03H, 04H, 05H, and 06H or serially at the  
RSOH output.  
Media Dependent and Undefined Bytes  
Bip-8 B1 Byte  
The six “Media Dependent” and four “Undefined”  
bytes are only accessible in the STM-1 case. These  
bytes can only be read via the serial RSOH output.  
This byte is used for Regenerator Section error moni-  
toring. The error events are counted in a 16 bit counter  
accessible via registers 45H and 46H.  
Multiplexer Section Receiver  
The Multiplexer Section receiver handles the MSOH  
overhead bytes. All the overhead bytes (45 in STM-1  
and 15 bytes in STM-0) are accessible at the RSOH  
serial output.  
The B1 counter can be configured as either a bit or a  
block counter (see register 47H). Also, the B1OUT  
output provides pulse for each calculated B1 bit that is  
different from the one received.  
E1 Orderwire Byte  
This 64 Kbit/s channel is used to provide orderwire  
channel for voice communication. The data is serially  
accessible via RROW. The 64 KHz clock and the 8  
KHz byte synchronization signals are used to receive  
both the E2 and F1 bytes and are provided at pins  
ROWC and ROWBYC.  
B2 Error Byte  
This byte is used for Multiplexer Section error moni-  
toring. The B2 errors are counted either as block error  
in register 10H and 11H (13 bit) or as bit errors in reg-  
ister 12H, 13H and 14H (18-bit counter).  
An Excessive Error Defect (EED) indication (see reg-  
ister A1H) is generated by integrating the B2 errors in  
a sliding window. Integration is also used when clear-  
ing the EED indication. Six registers allow the config-  
uration of EED indication thresholds. They are 18H,  
15H, 16H, 17H, 1EH, 1BH, 1CH and 1DH.  
F1 Byte  
This 64 Kbit/s channel is reserved for the user’s pur-  
pose. It can be used as an extra maintenance orderwire  
access. The data is serially accessible via RDOW. The  
64 KHz clock and the 8 KHz byte synchronization sig-  
nals are used to receive both the E1 and E2 bytes and  
are provided at pins ROWC and ROWBYC.  
These six registers allow configuring the EED thresh-  
old from a bit error rate of 10-3 to a bit error rate of 10-  
9, even in the case of a non-Gaussian statistical distri-  
bution of errors. An active EED indication can be con-  
figured to insert an AIS signal (see register 20H).  
D1 to D3 Data Channels  
This 192 Kbit/s channel is used by the network man-  
agement as a data channel. The data is accessible via  
pin RRD and the clock is provided by RRDC. Note  
that ROWBYC can be used as an 8KHz synchroniza-  
tion if required.  
30  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
K1 and K2 Bytes: Automatic Protection  
Channel  
both the E1 and F1 bytes and are provided at pins  
ROWC and ROWBYC.  
These bits are assigned for the APS signaling. A  
change in K1 byte for three consecutive frames is indi-  
cated in register A1H and allows the updating of reg-  
ister 00H. A change in K2 byte for three consecutive  
frames is indicated in register A1H and allows the  
updating of register 01H.  
D4 to D12 Bytes: Data Channel  
This 576 Kbit/s channel is used as a data channel by  
the network management. The data is accessible via  
pin RMD and the clock is provided by RMDC.  
Receive Multiplexer Section AIS (MS-AIS)  
The AIS generated after the multiplexer section is  
labeled MstAis. It can be inserted on the following  
conditions:  
MS-RDI via K2 Byte  
The Multiplex Section Remote Defect Indication (MS-  
RDI) is used to tell the transmit end that the received  
end has detected an incoming section defect or is  
receiving MS-AIS. An MS-RDI is detected when the  
three received K2<2:0> bits have a value of “110” for  
three consecutive frames. MS-RDI detector status  
changes are indicated in register A1H.  
• MS-AIS detection in K2  
• EED detection  
The AIS insertion can disabled or forced via register  
20H. The EED dependency can be disabled via regis-  
ter 20H (ITU specification). MstAis insertion is indi-  
cated in register D0H.  
MS-AIS via K2 Byte  
The Multiplex Section AIS is detected when the three  
received K2<2:0> bits have a value of “111” for three  
consecutive frames. MS-AIS detector status changes  
are indicated in register A1H.  
Multiplexer Section Protection (MSP)  
Block  
Master 1-for-1 Protection Configuration  
The MSP block receives the data coming from the  
MST block and from the slave receiver via the DMSP-  
PDATA<7:0> inputs (MSP bus). K1 and K2 from the  
MSP bus are de-multiplexed and accessible in regis-  
ters 22H and 23H. The Signal Degrade (SD) and the  
Signal Fail (SF) indications from the slave are input to  
the Master at DMSPPSD & DMSPPSF respectively  
and are accessible in register C3H.  
MS-REI via M1 Byte  
This byte is allocated for the Remote Error Indication.  
Remote BIP errors are accumulated in a 13-bit  
counter, accessible via registers 0AH and 09H.  
Remote block errors are accumulated in an 18-bit  
counter, accessible via registers 0DH, 0CH and 0BH.  
S1 Byte: Synchronization Status  
S1<3:0> bits are allocated for Synchronization Status  
Messages. A change in S1 byte for three consecutive  
frames is indicated in register A2H and allows the  
updating of register 02H.  
Changes in register 22H, 23H, DMSPPSD or  
DMSPPSF are indicated in register A3H.  
Having access to the K1 and K2, SD and SF informa-  
tion for both the master and the slave SXT6051, the  
microprocessor can select the appropriate working  
channel. The selection is done by setting the protection  
switch via register 21H. The effective switch position  
is accessible on register D0H.  
National Used Bytes  
The “National Use” bytes are only accessible in the  
STM-1 case. There are two MSOH “National Use”  
bytes. These bytes can be read via registers 07H and  
08H.  
Undefined Bytes  
K1/K2 filtering and SF detection are done on chip. The  
SD detection is done by the microprocessor using a  
user defined criteria.  
The “Undefined Bytes” are only accessible in the  
STM-1 case. There are 26 bytes only accessible via the  
RSOH serial output.  
Slave 1-for-1 Protection Configuration  
This block is just an interface between the data  
received from the MST block and the MSP interface  
with the Master. All switching is done in the master-  
configured SXT6051.  
E2 Byte: Orderwire Channel  
This 64 Kbit/s channel is used to provide orderwire  
channel for voice communication. The data is accessi-  
ble serially via RMOW. The 64 KHz clock and the 8  
KHz byte synchronization signals are used to receive  
31  
SXT6051 STM-1/0 SDH Overhead Terminator  
In the case of a mismatch between the expected and  
received J1 string, a J1MsMtch is indicated in register  
A5H. In the case of a transmission error in the J1  
string, a J1Crc7Err is indicated (16 byte case only) in  
register A5H and will mask the J1MsMtch indication.  
Pointer Recovery  
Pointer Recovery Block  
The pointer recovery block interprets the value of the  
incoming pointer associated with either a VC-3 (STM-  
0) or a VC-4 (STM-1) payload. The AU pointers  
include two SS undefined bits. These bits can be either  
ignored or recovered in the receive pointer processor  
(see register 90H). The monitoring function of the  
receive pointer processor includes the following  
counters:  
B3 Byte  
This byte is used for Higher Order Path error monitor-  
ing. The error events are counted in a 16 bit counter  
accessible via registers 86H and 87H.  
The B3 counter can be used either as a bit or a block  
counter configurable via register 80H. Also, the  
B3OUT output provides a pulse for each calculated B3  
bit that is different from the received one.  
• An 11-bit Positive Justification Counter accessi-  
ble via register 91H and 92H  
• An 11-bit Negative Justification Counter accessi-  
ble via register 93H and 94H  
C2 Byte  
This block indicates the following conditions via reg-  
ister A4H: an AU-AIS (all ones in the pointer), Loss of  
Pointer (LOP) or New Data Flag (NDF).  
This byte indicates the composition of the VC-3 or the  
VC-4 payload. A change in the C2 byte for three or  
five (configurable via register 80H) consecutive  
frames is indicated in register A4H and allows the  
updating of register 83H.  
The LOP detection follows the ITU G 783 recommen-  
dation using eight consecutive frames.  
An “expected” value of C2 can be programmed in reg-  
ister 82H. If the received C2 value is not equal to the  
expected value and is not zero or one, this is indicated  
in register A5H via the HptSlm (HPT Signal Label  
Mismatch).  
Receive Adaptation Section AIS (DmsaAIS)  
The AIS generated after the Pointer recovery section is  
labeled DmsaAis. It can be inserted on the following  
conditions:  
• AU-AIS detection (all ones pointer for three con-  
secutive frames)  
VC-AIS is defined as all ones in C2 (new G783 spec-  
ifications). Five consecutive frames are required for  
the VC-AIS detection which is indicated in register  
A4H.  
• LOP detection  
The AIS can be disabled or forced via register 90H.  
DmsaAis insertion is indicated in register D0H.  
Unequipped Detection  
To generate an “unequipped” indication, a set of four  
simultaneous events need to be detected (see register  
81H):  
Higher Order Path Receiver  
The Higher Order Path Receiver processes the over-  
head bytes associated with the Higher Order Path  
Overhead. All the Path Overhead bytes are accessible  
at the RPOH output.  
• C2 equal to all zero  
• J1 equal to zero  
• N1 equal to all zero  
• No B3 errors  
J1 Byte Path Trace  
This byte is used to repetitively transmit a Path Access  
Identifier so that a path receiver can verify its contin-  
ued connection to the intended transmitter. The length  
of the “expected” J1 string can be programmed to  
either 64 bytes (non-specified) or 16 bytes with CRC7  
(see register 80H). The 16 byte “expected” J1 string  
value needs to have the correct CRC7 bits per G707  
specifications. The receiver calculates the CRC7 of the  
received J0 string.  
The unequipped detector requires 5 frames before it is  
indicated in register A5H.  
G1 Byte  
This byte conveys the path status and performance  
back to a VC-3 or VC-4 trail termination source as  
detected by a trail termination sink.  
G1<7:4> bits act as a Remote Error Indication (REI).  
They report the number of B3 errors detected at the  
32  
SXT6051 STM-1/0 SDH Overhead Terminator  
remote end. These REI errors are accumulated in the  
REI counter registers 88H and 89H. The REI counter  
can be selected as a bit counter or as a block counter  
via register 80H.  
Receive Higher Order path AIS (HptAIS)  
The AIS generated after the HPOH receiver is labeled  
HptAis. It can be inserted on the following conditions:  
• SLM (C2 byte mismatches)  
• TIM (J1 string mismatches)  
G1<3:1> bits act as a Remote Detection Indication  
(RDI). They, along with G1<0> (“spare” bit), are  
accessible via register 85H. The contents of this regis-  
ter is filtered over 3 or 5 frames configurable via reg-  
ister 80H. An update to register 80H is indicated in  
register A5H.  
• Unequipped detection  
The AIS can be disabled or forced via register 80H.  
Re-Timing Function  
The re-timing function block is used when the system  
needs to synchronize the DTBDATA<7:0> output  
with a local clock input. Re-timing can be disabled via  
register 51H.  
An RDI is reported to the far-end upon detection of an  
SLM (C2 Mismatch) or an “unequipped” alarm. The  
dependency of RDI on either of these conditions is  
configurable via 81H. This will ensure compatibility  
of the new equipment with an installed equipment  
base. (See Table 5).  
Two external signals are required to align the payload:  
• DRETFRI, an 8 KHz input signal indicating the  
position of the J0 byte. This input is always  
needed.  
K3 Byte  
This byte is allocated for the VC-3 and VC-4 Auto-  
matic Protection Switching (APS). A change in K3  
byte for three consecutive frames is indicated in regis-  
ter A4H and allows the updating of register 84H.  
• DRETCLK, a 19.44 MHz input signal for a  
STM-1 or a 6.48 MHz input signal for STM-0.  
This is the “local” clock.  
The DRETFRMI is generated externally by DRET-  
CLK. The re-timing function recalculates the new  
pointer and inserts the new value to the payload VC-3  
and VC-4.  
N1 Byte  
There is no internal processing for the tandem connec-  
tion byte. This is because in an ADM, the virtual con-  
tainer VC-3 or VC-4 is de-multiplexed to VC12 to  
extract and insert the VC-12 traffic. A new B3 needs  
to be generated and the tandem connection is broken.  
After the re-timing block, the signal is sent to the Tele-  
com Bus. The Telecom Bus is described in the Timing  
Specification part of this document.  
N1 is accessible at the RPOH output and can be used  
in the detection of an “unequipped” VC (see register  
81H).  
Note that when the receive re-timing function is  
enabled, the AU pointer and the A1/A2 frame word are  
still present on the Telecom Bus.  
F2 and F3 Bytes  
These two 64 Kbit/s channels are reserved for the user.  
They can be used as an extra maintenance orderwire  
access. The data is serially accessible via the RPOW1  
pin for F2 and RPOW2 for F3. The 64 KHz clock and  
8KHz synchronization are provided on pins RPOWC  
and RPOWBYC. In an ADM configuration with no  
receive timing, these bytes can be passed through to  
the transmit side.  
Transmitter Default Operation  
Higher Order Path Transmitter  
The HPT transmitter receives its input signal from the  
MTBDATA<7:0> Telecom Bus Interface input. It  
inserts the Higher Order Path Overhead and synchro-  
nizes the VC-3 or the VC-4. The Telecom Bus inter-  
face is configured via registers 50H and 71H.  
H4 Processing and Multi-Frame Recovery  
The multi-frame recovery state machine requires two  
consecutive frames with the correct H4 adjacent pat-  
tern to synchronize. The Loss of Multiframe (LOM),  
indicated in register A5H, is declared after two multi-  
frames. The LOM indication forces the DTBH4EN  
output on the Telecom Bus Low.  
All HPOH bytes can be sourced from the serial TPOH  
input, received bytes (ADM mode only), microproces-  
sor registers or internal processing. An AIS signal can  
be forced on the incoming payload data via register  
71H. The parity on the Telecom bus is checked (three  
parity errors per frame) and indicated in register E0H.  
33  
Functional Description  
J1 byte: Path Trace Identifier  
• The incoming byte from the Telecom bus input  
(ADM mode only)  
This byte is used to transmit a repetitive Path Trace  
Identifier so that a path receiver can verify its contin-  
ued connection to the intended transmitter. The length  
of the “transmit” J1 string can be programmed to either  
64 bytes (non-specified) or 16 bytes with CRC7 via  
register 71H. The 16 byte “expected” J1 string value  
needs to have the correct CRC7 bits per G707 specifi-  
cations. If the higher order VC is configured  
unequipped (see register 71H), then J1 byte can be  
automatically set to all 0s (see register 70H). If the VC  
is not configured as unequipped, J1 can be provided by  
one of three sources configured in register 70H:  
• The serial TPOH interface (TPOH input pin)  
• An internal RAM (up to 64 bytes)  
The RAM is accessed via registers 75H and 76H. Dur-  
ing a RAM access the default J1 value transmitted  
“01H.” Note that a complete 16-byte string with CRC7  
is required by the ITU for proper operation.  
Figure 11:Transmit Detail Block Diagram  
MSP  
Interface  
MSOH  
Interface  
SERIAL  
TPOH  
TPOH  
Interface  
SERIAL  
RSOH  
&MSOH  
RSOH  
Interface  
M HNEGD  
M HPOSD  
M ICLK  
Serial  
Interface  
M TBH4EN  
M TBPAYEN  
M TBJ0J1EN  
M TBTUGEN  
1 TO 3  
Telecom  
Bus  
Interface  
Higher order  
Path  
Transmitter  
Pointer  
Processing  
Multiplexer  
section  
Transmitter  
Regenerator  
Section  
Transmitter  
M TBCKI  
M TBCKO  
M TBPAR  
M FRMO  
M FRMI  
MSP Block  
M TBDATA<7:0>  
Parallel  
M HBDATA<7:0>  
M HBCLKO  
Interface  
M HBCLKI  
M HICLK  
Clock  
Distribution and  
References  
B3 Byte  
• Transmit Telecom bus (In ADM mode)  
• The serial POH interface (TPOH input pin)  
The B3 byte source is specified by register 70H and  
can come from:  
• An internal register (register 72H) programmed  
by the microprocessor  
• Transmit Telecom bus (In ADM mode)  
• By calculation on the previous frame  
G1 byte: Remote defects HP-REI & HP-RDI  
For testing purposes, it is possible to invert the B3  
value (see register 71H). The B3 value can be inverted  
for a single frame (8 errors) or for an indefinite dura-  
tion.  
The G1 source is specified by the register 70H:  
• Transmit Telecom bus (In ADM mode)  
• The serial POH interface (TPOH input pin)  
• Internal Processing (see register 71H)  
C2 Byte: Path Label  
If the higher order VC is configured unequipped (see  
register 71H), then the C2 byte is automatically set to  
0.  
In the case of Internal Processing the REI bits can be  
either provided by the B3 error value on the receiver or  
be disabled (set to “0000”).  
Also, the RDI bits can be supplied either by the  
receiver (See Table 5), or the contents of register 74H  
If not, the C2 source is specified by the register 70H  
and can come from:  
34  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
(in which case the G1 spare bit is also sourced from  
74H).  
K3 Byte: APS  
The K3 source is specified by the register 70H:  
• The incoming byte from the Telecom bus input  
(only in ADM mode).  
Table 5: G1x RDI Bit Coding  
• The serial POH interface (TPOH input pin)  
• An internal register (address 73H)  
G1<3:1>  
RDI bits  
coding  
Triggered  
Meaning  
Priority  
by  
N1 Byte: for Tandem Connection Support  
The N1 source is specified by the register 70H and can  
come from:  
000  
101  
100  
110  
No Remote  
Defect  
No Remote  
Defect  
0
1
2
3
• The incoming byte from the Telecom bus input  
(only in ADM mode).  
Remote  
Defect  
AU-AIS,  
LOP  
• The serial POH interface (TPOH input pin)  
Remote  
Defect  
PLM  
There is no internal processing for N1 and tandem con-  
nection monitoring. But the monitoring can be done by  
configuring the SXT6051 in ADM mode (the POH  
bytes are present on the Telecom bus input and can be  
passed-through), and by using an external FPGA to  
read and write N1 and B3 bytes on the transmit Tele-  
com bus.  
Remote  
Defect  
TIM, UNEQ  
F2 Byte: Order Wire Channel  
The F2 source is specified by the register 70H and can  
come from:  
Transmit Pointer Processing Function  
• The incoming byte from the Telecom bus input  
(only in ADM mode).  
Terminal Mode  
• The 64 kbit/s serial TPOW1 input.  
In this configuration, the reference frequency is sup-  
plied by the SXT6051 to the Telecom bus. The  
inserted pointer value is fixed 6800H.  
F3 Byte: Order Wire Channel  
The F3 source is specified by the register 70H and can  
come from:  
ADM Mode  
The transmit frequency of the SXT6051 and the Tele-  
com bus frequency can be different. This configura-  
tion allows the pointer processing block to calculate  
the value of the pointer while the data is fed through a  
FIFO. An overflow of this FIFO is indicated in register  
E0H.  
• The incoming byte from the Telecom bus input  
(only in ADM mode).  
• The 64 kbit/s serial TPOW2 input.  
H4 Byte: Multiframe Indicator  
The H4 source is specified by the register 70H and can  
come from:  
The pointer processor is able to handle up to 150 ppm  
of total offset between the transmit clock and the Tele-  
com Bus clock exceeding the ITU specifications. No  
NDF is generated on the transmit side.  
• The incoming byte from the Telecom bus input  
(only in ADM mode).  
• Internal hardware processing. In this case, an  
internal counter that can be either free running or  
synchronized by the MMFRMI input in terminal  
mode, is used to update H4<1:0> with values 0  
through 3. In the ADM mode, MTBH4EN and  
MTBJ0J1EN on the Telecom Bus synchronizes  
H4. In either case, H4<7:2> are set to 1.  
Pointer justification events are recorded by two 11-bit  
counters (one for positive, the other one for negative)  
in registers E2H, E3H, E4H and E5H. Overflows are  
indicated in register E0H.  
Note: The transmit frame can still be aligned by an  
8KHz reference on MFRMI.  
35  
Functional Description  
AU-AIS Insertion  
Note that in case of a regenerator, all the received  
MSOH bytes are passed through unchanged.  
For both Terminal and ADM modes, it is possible to  
force AU-AIS (“all one” into AU-3 or AU-4) via reg-  
ister 30H.  
B2 Error Byte(s):  
The B2 (BIP-8 in STM-0 mode, BIP-24 in STM-1)  
byte source is specified by register 70H and can come  
from:  
Test Points  
Two output pins test points are available:  
• MMSAJ1EN: This pulse (active High: pulse  
duration is 51 ns (STM-1) or 154 ns (STM-0)  
indicates J1 byte presence on the TB.  
• Transmit Telecom bus (In ADM mode)  
• By calculation on the previous frame  
For testing purposes, it is possible to invert B2 value  
(via register 71H). The B2 value can be inverted for a  
single frame (8 errors) or for an indefinite duration.  
• MMSAPAYEN: A High indicates the position of  
VC-3 (STM-0) or VC-4 (STM-1) bytes. A Low  
indicates the SOH + AU Pointer bytes presence  
on the TB.  
K1 and K2 Automatic Protection Channel  
Bytes & MS-RDI:  
These bytes are assigned for APS signaling and the  
transmission of a Multiplex Section Remote Defect  
Indication.  
Transmit Multiplex Section Protection  
(MSP Block)  
This block is used in a 1-for-1 configuration (ADM or  
Terminal). Two SXT6051 chips in parallel can trans-  
mit the same AU data. In a non-protected configura-  
tion, the data is simply passed to the transmit MST.  
The K1 source is specified by the register 61H and can  
come from:  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
In a 1-for-1 protection, one SXT6051 will be config-  
ured as Master (Main) and the other one as Slave  
(Redundant).  
• An internal register (address 37H) programmed  
by the microprocessor  
The Master transmitter data flow follows the unpro-  
tected mode flow and the SOH overhead will be added  
in the Multiplexer Section Block.  
The K2 source is specified by the register 61H:  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
In the Slave transmitter, the Higher Order Path Trans-  
mitter and Pointer Processing block are not used. The  
data and timing reference are input from the Master  
transmitter to the Slave via the MSP bus. The Slave  
Multiplexer and Regenerator Section Transmitter  
blocks process these incoming AU data, clock and tim-  
ing references.  
• Internal hardware process. In this case the RDI  
bits can be provided by RDI output from the  
receiver (see Table 6) or an internal register  
(address 38H) programmed by the microproces-  
sor (in which case the other K2 bits are also  
updated from register 38H). This choice is con-  
figurable via register 30H  
Note  
The transmitted data at the Slave Regenerator  
Section output (MHBDATA<7:0> or MHPOSD/  
MHNEGD) is synchronized by the MSP bus  
signal MMSPPJ0EN received from the Master.  
This results in the A1 framing bytes of both  
Master and Slave transmit frames being aligned.  
Multiplexer Section Transmitter  
The multiplexer section inserts the MSOH overhead  
bytes into the transmit frame.  
36  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
.
• The serial RSOH & MSOH interface (TSOH  
input pin)  
Table 6: K2 RDI Bit Coding  
K2<2:0> RDI  
• The Internal Processing configured by 30H. The  
M1<4:0> REI bits can be either provided by the  
detected B2 errors from the receiver or disabled  
(set to “00000”). The three MSB (M1<7:5>)  
undefined bits are always set to “000” value.  
Meaning  
Triggered by  
bits coding  
000  
NoRemote No Remote Defect  
Defect  
E2 Byte: Orderwire  
MS-AIS, EED1  
Remote  
110  
This byte is used to provide orderwire channel for  
voice communication. The E2 byte source is specified  
by the register 60H and can come from:  
Defect  
Microprocessor2  
1. The Excessive Error Defect trigger can be disabled  
via register 1AH  
• Transmit Telecom bus (In ADM mode)  
2. It is possible to force insertion of RDI by configuring  
register 1AH  
• A dedicated 64 kbit/s serial interface (TMOW  
input pin)  
See note above  
D4 to D12 Bytes: Data Communication  
Channel:  
NU Bytes: Bytes Reserved for a National Use  
In the STM-1 mode, two bytes are reserved for a  
National Used. They are located in row number 9, col-  
umn number 8 (NU9-8) and column number 9 (NU9-  
9) of the MSOH (see Figure 10).  
The D4-D12 byte source is specified by the register  
60H and can come from:  
• Transmit Telecom bus (In ADM mode)  
• A dedicated 576 kbit/s serial interface (TMD  
input pin)  
The NU9-8 byte source is specified by the register 61H  
and can come from:  
Note  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
The D4-D12 bytes can be passed-through  
unchanged from an SXT6051 receiver (when  
receive re-timing is disabled) to a SXT6051  
transmitter by using the Telecom bus support. If  
the two clock frequencies (receive and transmit)  
are different, some data will be periodically lost or  
added depending on the frequency variation. For  
example, for a difference of 5ppm between the  
clocks, one frame will be lost or added every 25s.  
• An internal register (address 35H) programmed  
by the microprocessor  
The NU9-9 byte source is specified by the register 61H  
and can come from:  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
• An internal register (address 36H) programmed  
by the microprocessor  
S1 Byte: Synchronization Status  
The S1<3:0> bits are allocated for Synchronization  
Status Messages. The S1 byte source is specified by  
the register 61H and can come from:  
Undefined Bytes  
The 25 undefined bytes of the STM-1 frame’s MSOH  
(see Figure 10) can be provided to the transmit frame  
by the serial RSOH and MSOH interface (TSOH input  
pin)  
• The serial RSOH & MSOH interface (TSOH  
input pin)  
• An internal register (address 39H) programmed  
by the microprocessor  
Regenerator Section Transmitter  
The Regenerator section inserts the RSOH overhead  
bytes. In a repeater configuration, each received  
RSOH byte (except A1, A2 and B1) can be individu-  
ally passed through unchanged.  
M1 Byte: MS-REI  
This byte is allocated for the Multiplex Section  
Remote Error Indication. The M1 byte source is spec-  
ified by the register 60H and can come from:  
37  
Functional Description  
A1 & A2 Framing Bytes  
F1 byte: Orderwire Channel  
The frame keyword bytes are always regenerated in  
the SXT6051 Transmitter regardless of the configura-  
tion.  
This byte is reserved for user purposes and can be used  
as extra maintenance orderwire channel. Register 60H  
specifies the F1 source to be either:  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver. The received byte  
from the transmit telecom bus (ADM mode)  
The Regenerator Section Trace J0  
This byte is inserted to repetitively transmit a Section  
Access Identifier so that a section receiver can verify  
its continued connection to the intended transmitter.  
The 16 byte “expected” J0 string value needs to have  
the correct CRC7 bits per G707 specifications. Regis-  
ter 60H specifies the J0 source to be either:  
• The dedicated 64 kbit/s serial interface (TDOW  
input pin)  
• Transmit Telecom bus (In ADM mode)  
See note above.  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver. The received byte  
from the transmit telecom bus (ADM mode)  
D1 to D3 Bytes: Data Communication Channel  
This channel is used as a data channel by the network  
management. Register 60H specifies the D1-D3  
source to be either:  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
• The internal RAM (16 byte) programmed by the  
microprocessor  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver. The received byte  
from the transmit telecom bus (ADM mode)  
The RAM is accessed via registers 75H and 76H. Dur-  
ing J0 RAM configuration the transmitted J0 byte  
value is “01H.” Note that a complete 16-byte string  
with CRC7 is required by the ITU for proper opera-  
tion.  
• A dedicated 192 kbit/s serial interface (TRD  
input pin)  
See note above  
NU Bytes: Bytes Reserved for a National Use  
In the STM-1 mode, four bytes are reserved for  
National Use. They are located in row number 1, col-  
umn numbers 8 (NU1-8) and 9 (NU1-9) and in row  
number 2, column numbers 8 (NU2-8) and 9 (NU2-9)  
of the MSOH (see Figure 10). Registers 61H and 30H  
specify the source of these bytes. The possibilities are:  
Compatibility of J0 with in-service equipment can be  
provided by either writing a value into the transmit J0  
RAM, or by setting register 3AH, to value ‘1’ (see reg-  
ister 3AH).  
B1 Bip-8 Byte  
B1 byte is always regenerated in the SXT6051 trans-  
mitter. This byte is used for the Regenerator Section  
error monitoring function. It is the result of a BIP-8  
calculation done on the previous scrambled frame, and  
it is inserted into transmit RSOH before scrambling.  
For testing purpose, it is possible to invert the B1  
value, (register 30H). The B1 value can either be  
inverted for a single frame (8 errors), or forever.  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver.  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
• Internal registers (address 31H, 32H, 33H, 34H)  
• Default value AAH (only for NU1-8 and NU1-9)  
E1 Byte: Orderwire Channel  
MD bytes: Media Dependent Bytes  
This byte is used to provide an orderwire channel for  
voice communication. Register 60H specifies the E1  
source to be either:  
In the STM-1 mode, the six media-dependent bytes are  
located in raw number 2, column numbers 2 (MD2-2),  
3 (MD2-3), and 5 (MD2-5) and in raw number 3, col-  
umn numbers 2 (MD3-2), 3 (MD3-3), and 5 (MD3-5)  
of the MSOH. Register 63H specifies the source of  
these bytes. The possibilities are:  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver. The received byte  
from the transmit telecom bus (ADM mode)  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver  
• The dedicated 64 kbit/s serial interface (TROW  
input pin)  
See note above.  
38  
l
Functional Description  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
MFRMO of chip #2 connected to input pin MFRMI of  
chip #3, etc.).  
If the MFRMI is not used it must be tied to GND.  
UN Bytes: Undefined Bytes  
In the STM-1 mode, four “Undefined” bytes are  
located in row number 2, column number 6 (UN2-6),  
and in row number 3, column numbers 6 (UN3-6), 8  
(UN3-8), and 9 (UN3-9) of the MSOH (see Figure 10).  
Register 63H specifies the source of these bytes. The  
possibilities are:  
Parallel Interface  
The parallel interface output is a byte wide bus MHB-  
DATA. The parallel clock is output synchronous with  
MHBCLKO (6.48 MHz/STM-0 or  
19.44 MHz/STM-1).  
• The received byte (Regenerator mode) from the  
Regenerator Section receiver  
The parallel interface is selected via register 50H. The  
selection of a parallel interface is common between the  
transmit and receive sides.  
• The serial RSOH and MSOH interface (TSOH  
input pin)  
In case of a repeater application, the order on the par-  
allel byte will be the same between the input and the  
output and the delay is constant. The repeater delay is  
approximately 700ns in STM-0 mode and 233ns in  
STM-1 mode.  
Scrambler  
After inserting the RSOH bytes, the data is scrambled.  
The ITU Standard scrambler is 27 -1. Two additional  
scramblers 211 - 1 and 213 -1 can be programmed for  
STM-0 and STM-1 via register 50H. This flexibility  
allows the optimum choice of scrambler for a radio  
application.  
Serial Interface  
The serial interface output at STM-0 is a B3ZS signal  
output on MHPOSD and MHNEGD. The output clock  
is MICLK (51.84 MHz).  
The data scrambling can be disabled via register 50H  
or via the external input pin SCRAMSEL.  
Note that the selection of serial interface and B3ZS  
decoder (see register 50H) is common to the transmit-  
ter and the receive side of the chip.  
External Frame Synchronization  
The SXT6051 provides an external frame pulse refer-  
ence (output pin MFRMO). It is an 8 KHz reference  
signal with a pulse duration of 154ns (STM-0) or 51ns  
(STM-1). This pulse is used to identify the position of  
the frame start. This signal is synchronous with the  
output transmit frame clock.  
If the B3ZS decoder is not used, MHPOSD is used as  
a NRZ output pin.  
Transmit Frame Alignment  
The transmit frame can be synchronized (in Terminal  
or ADM mode, no protection or protection Master) by  
using an external 8 KHz reference connected to the  
MFRMI input pin. This input signal is active High and  
can be either a square wave or a pulse.  
If the SXT6051 is configured in parallel mode the  
MFRMI input must be synchronous with the MHB-  
CLKI parallel Transmit Frame clock reference input;  
if the SXT6051 is configured in serial mode, the  
MFRMI input must be synchronous with MHICLK  
serial Transmit Frame clock reference input (51.84  
MHz).  
This feature can be used by an Upper Level Multi-  
plexer to align several SXT6051s. The alignment can  
done by cascading the reference signals (output pin  
39  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Clock Distribution and Reference  
Depending on the chip configuration, the source of the Transmit Clock references  
Table 7: Operating Mode Vs. Input Clock Source Reference  
Transmit  
Frame  
Parallel Clock  
Reference  
output  
Transmit  
Frame  
Serial Clock  
Reference  
output  
MSP & TSOH  
Bus  
Parallel Clock  
Reference  
output  
Telecom Bus  
Parallel Clock  
Reference  
output  
VC3/4 &  
TPOH Bus  
Clock  
Reference  
output  
MHBCLKO  
MICLK  
MMSPPCKO  
MTBCKO  
TPOHCK  
OPERATING  
MODE  
CLOCK SOURCE (INPUT PIN)  
Repeater  
Not used  
(tri-state)  
DHICLK (1)  
DHICLK / 8 (1)  
Not used  
(tri-state)  
Not used  
(tri-state)  
Serial interface  
(51.84 MHz  
±20ppm)  
(6.48 MHz  
±20ppm)  
Repeater  
DHBCLK (2)  
Not used  
(tri-state)  
DHBCLK (2)  
Not used  
(tri-state)  
Not used  
(tri-state)  
Parallel interface (6.48/19.44 MHz  
± 20ppm)  
(6.48/19.44 MHz  
±20ppm)  
Terminal  
Not used  
(tri-state)  
MHICLK  
MHICLK / 8  
MHICLK / 8  
MHICLK / 8  
No Protection  
Serial interface  
Terminal  
(51.84 MHz  
±20ppm)  
(6.48 MHz  
±20ppm)  
(6.48 MHz  
±20ppm)  
(6.48 MHz  
±20 ppm)  
MHBCLKI  
Not used  
(tri-state)  
MHBCLKI  
MHBCLKI  
MHBCLKI  
(6.48/  
19.44MHz  
± 20ppm)  
No Protection  
Parallel interface  
(6.48/19.44 MHz  
± 20ppm)  
(6.48/19.44 MHz  
±20ppm)  
(6.48/19.44 MHz  
±20ppm)  
ADM  
Not used  
(tri-state)  
MHICLK  
MHICLK / 8  
Not used  
(tri-state)  
MTBCLKI  
No Protection  
Serial interface  
(51.84 MHz  
±20ppm)  
(6.48 MHz  
±20 ppm)  
(6.48 MHz  
±20 ppm)  
40  
SXT6051 Functional Description  
Table 8: Operating Mode Vs Output Clock Source Reference  
Transmit  
Frame  
Parallel  
Clock  
Reference  
output  
Transmit  
Frame  
Serial  
Clock  
Reference  
output  
MSP & TSOH  
Bus  
Parallel  
Clock  
Reference  
output  
Telecom  
Bus  
Parallel  
Clock  
Reference  
output  
VC3/4 &  
TPOH Bus  
Clock  
Reference  
output  
MHBCLKO  
MICLK  
MMSPPCKO  
MTBCKO  
TPOHCK  
ADM  
MHBCLKI  
Not used  
(tri-state)  
MHBCLKI  
Not used  
(tri-state)  
MTBCLKI  
No Protection Parallel  
interface  
(6.48/  
19.44 MHz  
± 20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
(6.48 MHz  
±20 ppm)  
Terminal Protection Main Not used  
MHICLK  
MHICLK / 8  
MHICLK / 8  
MHICLK / 8  
(tri-state)  
Serial interface  
(51.84 MHz  
±20ppm)  
(6.48 MHz  
±20 ppm)  
(6.48 MHz  
±20 ppm)  
(6.48 MHz  
±20 ppm)  
Terminal  
MHBCLKI  
Not used  
(tri-state)  
MHBCLKI  
MHBCLKI  
MHBCLKI  
Protection Main  
Parallel interface  
(6.48/  
19.44 MHz  
± 20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
(6.48/  
19.44 MHz  
± 20ppm)  
(6.48 /  
19.44 MHz  
±20ppm)  
Terminal Protection Slave Not used  
MHICLK  
MMSPPCKI  
Not used  
(tri-state)  
Not used  
(tri-state)  
(tri-state)  
Serial interface  
(51.84 MHz  
±20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
Terminal  
MMSPPCKI  
Not used  
(tri-state)  
MMSPPCKI  
Not used  
(tri-state)  
Not used  
(tri-state)  
Protection Slave  
Parallel interface  
(6.48/  
19.44 MHz  
± 20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
ADM Protection Main  
Not used  
(tri-state)  
MHICLK  
MHICLK / 8  
Not used  
(tri-state)  
MTBCLKI  
Serial interface  
(51.84 MHz  
±20ppm)  
(6.48 MHz  
±20 ppm)  
(6.48 MHz  
±20 ppm)  
1. In case of LOS, MHICLK can be used as a Blue Clock (see register 40H)  
2. In case of LOS, MHBCLKI can be used as a Blue Clock (see register 40H)  
41  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 8: Operating Mode Vs Output Clock Source Reference  
Transmit  
Frame  
Parallel  
Clock  
Reference  
output  
Transmit  
Frame  
Serial  
Clock  
Reference  
output  
MSP & TSOH  
Bus  
Parallel  
Clock  
Reference  
output  
Telecom  
Bus  
Parallel  
Clock  
Reference  
output  
VC3/4 &  
TPOH Bus  
Clock  
Reference  
output  
MHBCLKO  
MICLK  
MMSPPCKO  
MTBCKO  
TPOHCK  
ADM  
MHBCLKI  
Not used  
(tri-state)  
MHBCLKI  
Not used  
(tri-state)  
MTBCLKI  
Protection Main  
Parallel interface  
(6.48/  
19.44 MHz  
± 20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
(6.48 MHz  
±20 ppm)  
ADM Protection Slave  
Not used  
(tri-state)  
MHICLK  
MMSPPCKI  
Not used  
(tri-state)  
Not used  
(tri-state)  
Serial interface  
(51.84 MHz  
±20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
ADM  
MHBCLKI  
Not used  
(tri-state)  
MMSPPCKI  
Not used  
(tri-state)  
Not used  
(tri-state)  
Protection Slave  
Parallel interface  
(6.48/  
19.44 MHz  
± 20ppm)  
(6.48/  
19.44 MHz  
±20ppm)  
1. In case of LOS, MHICLK can be used as a Blue Clock (see register 40H)  
2. In case of LOS, MHBCLKI can be used as a Blue Clock (see register 40H)  
42  
SXT6051 Functional Timing  
FUNCTIONAL TIMING  
Transmit Frame Parallel Timing  
Figure 12:Transmit Frame Reference Timing Parallel Interface  
MHBC LKI  
Input parallel clock  
for transmit frame  
(6.48 MHz  
19.44 M Hz  
/
STM-0 or  
STM-1  
Every fram e  
/
)
MFRM I  
External input frame reference  
for transmit frame (8 KHz)  
MHBC LKO  
Output Parallel Clock  
(Transmit Frame)  
MHBD ATA (STM -0)  
Output parallel data  
(Transmit Frame)  
A1  
A2  
J0  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
MFRM O (STM -0)  
Output Frame Reference  
(Transmit Frame)  
Every fram e  
MHBD ATA (STM -1)  
A1  
A2  
A2  
A2  
J0  
NU1_8 NU1-9  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Output data  
(
Transmit Frame)  
MFRM O (STM -1)  
Every fram e  
Output Frame Reference  
(
Transmit Frame)  
Note :  
a. MFRM I input cannot be used in repeater m ode or in 1+1 protection "slave" configuration.  
(has to be tied to ground or VCC)  
b. MFRM I input can be tied to ground if there is no need to synchronize the transm it fram e with an  
external reference. The transm it fram e reference is then dependent to the chip reset.  
43  
SXT6051 Functional Timing  
Transmit Frame Serial Timing  
Figure 13:Transmit Frame Reference Timing Serial Interface (STM-0)  
MHICLK  
Input serial clock  
for transmit frame  
(
51.84 MHz / STM -0 )  
Every fram e  
MFRMI  
External input frame reference  
for transmit frame (8 KHz)  
MICLK  
Output Serial Clock  
(
Transmit Frame)  
MHPOSD (B3ZS)  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A1  
A2  
A2  
A2  
A2  
A2  
A2  
A2  
bit1  
MHNEGD (B3ZS)  
D ata  
D ata D ata D ata  
D ata D ata D ata D ata D ata D ata D ata D ata  
MS B bit6 bit5 bit4 bit3 bit2 bit1 LSB MS B bit6 bit5 bit4 bit3 bit2  
Output Serial data (Transmit Frame)  
MFRMO (STM-0)  
Output Frame Reference  
Every fram e  
(
Transmit Frame)  
MM SPPCKO  
Output Byte Clock Reference  
(
Transmit Frame : 6.48 M Hz)  
MHPOSD (NRZ)  
A1  
MS B bit6  
A1  
A1  
bit2  
A2  
bit2  
A1  
A1  
A1  
A1  
A1  
A2  
A2  
A2  
A2  
bit4 bit3  
A2  
A2  
bit1 LSB  
A2  
D ata D ata D ata D ata D ata D ata D ata D ata D ata D ata D ata  
Output Serial data( Transmit Frame)  
(M HNEG D output is tied to high)  
bit5 bit4 bit3  
bit1 LSB MS B bit6 bit5  
Notes :  
a. M FRM I input cannot be used in repeater m ode or in 1+1 protection "slave" configuration.  
(has to be tied to ground or VCC)  
b. M FRM I input can be tied to ground if there is no need to synchronize the transm it fram e with an  
external reference. The transm it fram e reference is then dependent to the chip reset.  
c. MFRMO output tim ing is different from the one above in repeater m ode. This output is not usable in  
case of a repeater (pulse position relatively to A1 MSB depends on the receiver sync. )  
44  
SXT6051 STM-1/0 SDH Overhead Terminator  
Receive Re-timing Functional Timing  
Figure 14:Receive Re-Timing Function Timing  
DRETCLK  
Input clock  
for retim ing  
(
6.48 M H z  
/
/
STM -0 or  
Every  
fram e  
19.44 M H z  
STM -1  
)
DRETFRMI  
Input fram e clock  
for retim ing  
( 8 KH z  
)
DTBCK  
O utput C lock  
(
D em ultiplexer telecom bus)  
DTBDATA (STM -0)  
J0  
position  
O utput data  
Data  
A1  
A2  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
(
D em ultiplexer telecom bus)  
DTBPAYEN (STM -0)  
O utput Payload EN able  
(
D em ultiplexer telecom bus)  
DTBDATA (STM -1)  
J0  
NU1_8  
NU1-9  
O utput data  
A1  
A2  
A2  
A2  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
position position position  
(
D em ultiplexer telecom bus)  
DTBPAYEN (STM -1)  
O utput Payload EN able  
(
D em ultiplexer telecom bus)  
45  
Functional Timing  
byte locations can be filled by a 0 or  
1 but not tri-stated.  
Telecom Bus Interface  
The SXT6051 follows the industry standard Telecom Bus  
to interface with other SDH products, including the  
SXT6251. The standard is based on the original work of the  
IEEE P1396 project, which never made it to final approval.  
SFT has enhanced the bus to be compatible with other stan-  
dard SDH products on the market.  
MTBPAR  
MTBCKO  
MTBDATA<7:0> parity check. An odd  
parity calculation accompanies each data  
byte input (including the bytes filling the  
SOH, AUP and HPOH locations).  
Telecom Bus byte clock output (6.48  
MHz in STM-0 and 19.44 MHz in STM-  
1 mode). This clock is the same as the  
Multiplexer transmit frame clock output  
(MHBCLKO).  
Multiplexer Telecom Bus Terminal  
Mode  
In this mode, the Telecom Bus is a contra-directional inter-  
face. This means the SXT6051 generates the timing refer-  
ences (clock and signals) and receives the synchronized  
data.  
MTBCKI  
Not used in terminal mode (should be  
tied to ground).  
MTBPAYEN A High on this output indicates the loca-  
tion of the VC-4 (STM-1 mode) or the  
VC-3 with two stuffed columns (STM-0  
mode) on the Multiplexer Telecom Bus.  
A Low indicates the location of the SOH  
bytes and the AU Pointers bytes.  
Note on Telecom Bus  
Timing Reference  
All transitions of the Telecom bus Timing  
references (MTBH4EN, MTBPAYEN,  
MTBJ0EN and MTBTUGEN) are in phase with  
the rising edge of MTBCKO, and the incoming  
data (MTBPAR & MTBDATA<7:0>) are  
clocked by the falling edge of this clock.  
MTBH4EN  
An output that indicates the multi-frame  
start position. This signal is High during  
one complete frame every four frames  
and Low for the remaining three frames  
The Low to High or High to Low transi-  
tion occurs at the H4 location, and the  
MTBH4EN output is High on the J1 byte  
position following the “00” value of H4.  
Note on Multi-Frame  
Synchronization  
The transmit multi-frame can be synchronized by  
using an external 2 KHz reference signal  
connected to the MMFRMI input pin. This  
synchronization input signal can only be active  
High for a single frame and must be synchronous  
with MTBCLKO or MHBCKO outputs.  
MTBJ0J1EN  
An output that indicates J0 and J1 bytes  
locations relative to the SXT6051 Trans-  
mit Frame synchronization as there is no  
AU pointer movements and no re-timing  
functions in Terminal mode (AU pointer  
equal to value 0). MTBJ0J1EN can be  
configured via register 71H in two ways:  
It is possible to synchronize several transmitters  
by cascading the synchronization: Connect the  
output MTBH4EN of one chip (chip #1) to the  
input MMFRMI of a second chip (chip #2), etc. If  
no synchronization is required, MMFRMI must  
be grounded.  
•A single pulse at J0 position and a sin-  
gle pulse at J1 position.  
•A single pulse at J0 position, a single  
pulse at J1 position and a double pulse  
on J1 every four frames to indicate the  
V1 position.  
This Telecom Bus is comprised of the following signals:  
MTBDATA<7:0> Byte wide input data with either  
STM-1 or STM-0 frame structure  
MTBTUGEN1 A High indicates the location of TUG3  
#1, plus the position of the VC-4 POH  
depending on STMMODE selec-  
tion. Only the C-4 (in STM-1) or C-  
bytes. In STM-0 this output is tied High.  
MTBTUGEN2 A High indicates the location of TUG3  
3 (in STM-0) bytes are relevant. The  
#2, plus the position of the VC-4 POH  
SOH Byte, AU Pointers and HPOH  
46  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
bytes (But not the stuffed column). In  
STM-0 this output is tied High  
long and cover the J1 time slot. (See  
timing for further details)  
MTBTUGEN3 A High indicates the location of TUG3  
#3, plus the position of the VC-4 POH  
bytes (But not the stuffed column). In  
STM-0 this output is tied High.  
Note that MMFRMI input pin is not  
used and is tied to ground.  
MTBJ0J1EN  
This input indicates J0 and J1 bytes’  
locations  
on  
MTBDATA<7:0>.  
MTBJ0J1EN can be configured via  
register 71H in two ways:  
Multiplexer Telecom Bus ADM  
Mode  
In this mode, the Telecom Bus is a co-directional interface.  
This means the SXT6051 receives the timing references  
(clock and signals) and the associated data.  
•A single pulse at J0 position and a  
single pulse at J1 position indi-  
cates when the frame and the  
payload starts.  
The signals for this mode are:  
•A single pulse at J0 position, a sin-  
gle pulse at J1 position and a dou-  
ble pulse on J1 every four frames  
indicating a multiframe.  
MTBDATA<7:0> Identical to the Terminal mode.  
MTBPAR  
MTBCKO  
MTBCKI  
Identical to the Terminal mode.  
Output is tri-stated (not used).  
MTBTUGEN1  
MTBTUGEN2  
MTBTUGEN3  
Outputs are tri-stated (not used).  
Outputs are tri-stated (not used).  
Outputs are tri-stated (not used).  
This input is the Telecom Bus byte  
clock (6.48 MHz in STM0 and 19.44  
MHz in STM1 mode). It can be asyn-  
chronous to the transmit reference  
clock input.  
Demultiplexer Telecom Bus  
(Terminal or ADM) Mode  
Note that the incoming data (MTB-  
PAR and MTBDATA<7:0>) and  
Telecom bus Timing references  
(MTBH4EN, MTBPAYEN, and  
MTBJ0J1EN) are internally clocked  
by the falling edge of MTBCKI (see  
Telecom bus timings).  
Note on Telecom Bus  
Timing Reference  
All transitions of the Telecom bus Timing  
references (DTBH4EN, DTBPAYEN, DTBJ0EN  
and DTBTUGEN) and the outgoing data  
(DTBPAR and DTBDATA<7:0>) are clocked by  
the rising edge of DTBCK (see Telecom bus  
timings).  
MTBPAYEN  
MTBH4EN  
A High on this input indicates the  
location of the VC-4 (STM-1 mode) or  
the VC-3 with two stuffed columns  
(STM-0 mode). A Low indicates the  
location of the SOH bytes and the AU  
Pointers bytes.  
The signals for this mode are:  
DTBDATA<7:0>Byte wide data output with either STM-  
1 or STM-0 frame structure depending  
on STMMODE selection.  
This input indicates the multiframe  
start position. This input is not used if  
MTBJ0J1EN is configured to support  
the “framing-multiframing indication”  
(see register 71H<7>). When used,  
this signal must be High one frame  
every fourth frame. It is possible to use  
a pulse as an indicator. As a minimum,  
this pulse has to be one clock cycle  
DTBPAR  
DTBDATA<7:0> parity check. An odd  
parity bit calculation accompanies each  
data byte input (including the bytes fill-  
ing the SOH, AUP and HPOH loca-  
tions).  
47  
SXT6051 STM-1/0 SDH Overhead Terminator  
DTBCK  
Telecom Bus byte clock output 6.48  
MHz (STM-0) and 19.44 MHz (STM-1)  
mode.  
DTBPAYEN  
A High on this output indicates the pres-  
ence of the VC-4 (STM1 mode) or the  
VC-3 with two stuffed columns (STM0  
mode). A Low indicates the presence of  
the SOH bytes and the AU Pointers’  
bytes.  
DTBH4EN  
Output indicates the multi-frame start  
position. This signal is High during one  
complete frame every four frames and  
Low for the remaining three frames The  
Low to High or High to Low transition  
occurs at the H4 location, and the  
MTBH4EN output is High on the J1 byte  
position following the “00” value of H4.  
DTBJ0J1EN  
Output indicates J0 and J1 byte locations  
relative to the receive signal.  
MTBJ0J1EN can be configured via reg-  
ister 81H in two ways:  
•A single pulse at J0 position and a sin-  
gle pulse at J1 position indicates when  
the frame and the payload starts.  
•A single pulse at J0 position, a single  
pulse at J1 position and a double pulse  
on J1 every four frames indicating a  
multiframe.  
DTBTUGEN1 A High on this output indicates the loca-  
tion of TUG3 #1, plus the presence of the  
VC-4 POH bytes. In STM-0 this output  
is tied High.  
DTBTUGEN2 A High on this output indicates the loca-  
tion of TUG3 #2, plus the presence of the  
VC-4 POH bytes (but not the stuffed col-  
umn) In STM-0 this output is tied High.  
DTBTUGEN3 A High on this output indicates the loca-  
tion of TUG3 #3, plus the presence of the  
VC-4 POH bytes (but not the stuffed col-  
umn) In STM-0 this output is tied High.  
Figures 15 and 16 show the relation of timing reference and  
data signals on the Telecom bus.  
48  
SXT6051 Functional Timing  
Figure 15:STM-0 Telecom Bus Timing  
STM -0 R eceive Telecom Bus T im ing (Term inal & Add/Drop)  
D TBC K  
O utput  
Every 4th Fram e  
if enabled  
J0  
J1  
M F-IND  
D TBJ0J1EN  
O utput  
D TBPAYEN  
O utput  
J0  
Position  
D TBD ATA  
O utput  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
A2  
J1  
D TBH 4EN  
O utput  
G oes H I one clock cycle after H 4 = 00, Low one clock cycle after H 4 = 01  
STM -0 T ransm it Telecom Bus T im ing (Term inal)  
M TB CK O  
O utput  
Every 4th Fram e  
if enabled  
J0  
J1  
M F-IND  
M TB J0J1EN  
O utput  
M TB PAYEN  
O utput  
J1  
Position  
H1  
Position  
H2  
H3  
J0  
Position  
C -3  
C-3  
C -3  
C -3  
C -3  
C-3  
C-3  
C-3  
M TB DA TA  
Input  
Position Position  
M TB H4EN  
G oes H I one clock cycle after H 4 = 00, Low one clock cycle after H 4 = 01  
O utput  
STM -0 T ransm it Telecom Bus T im ing (Add/Drop)  
M TB CK I  
Input  
Every 4th Fram e  
if enabled  
J0  
J1  
M TB J0J1EN  
Input  
M F-IND  
M TB PAYEN  
Input  
A2  
J0  
J1  
Position  
M TB DA TA  
Input  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
C-3  
Position Position  
M TB H4EN  
Input  
G oes H I one clock cycle after H 4 = 00, Low one clock cycle after H 4 = 01  
49  
SXT6051 Functional Timing  
Figure 16:STM-1 Telecom Bus Timing  
STM-1 Receive Telecom Bus Timing (Terminal, Add/Drop)  
DTBCK  
Output  
Enabled  
Every 4 th Frame  
J0  
J1  
V1  
DTBJ0J1EN  
Output  
Every POH  
byte  
DTBPAYEN  
Output  
DTBTUGEN1  
Output  
DTBTUGEN2  
Output  
DTBTUGEN3  
Output  
Fixed  
Stuff  
Fixed  
Stuff  
NU1_8  
Positon  
NU1_9  
Position  
TUG3 #2  
TUG3 #3  
TUG3 #1  
TUG3 #2  
TUG3 #3  
TUG3 #1  
TUG3 #2  
J0 Position  
DTBDATA  
J1  
A2  
Output  
Goes HI one clock cycle after H4 = 00, Low one clock cycle after H4 = 01  
DTBH4  
Output  
STM -1 Transm it Telecom Bus Tim ing (Term inal)  
M TBCKO  
Output  
Every 4th Frame  
if enabled  
J0  
J1  
V1  
M TBJ0J1EN  
Output  
Every POH  
byte  
M TBPAYEN  
Output  
M TBTUGEN1  
Output  
M TBTUGEN2  
Output  
M TBTUGEN3  
Output  
M TBH4  
Goes HI one clock cycle after H4 = 00,  
Low one clock cycle after H4 = 01  
Output  
NU1_8  
A2 Position J0 Position  
Position  
H3 #1  
Position  
H3 #2  
Position  
H3 #3  
Position  
Fixed  
Stuff  
Fixed  
Stuff  
M TBDATA  
J1 Position  
TU G3 #1  
TU G3 #2  
TU G3 #3  
TU G3 #1  
TU G3 #2  
Input  
S TM -1 Transm it Telecom B us T im ing (A dd/D rop)  
M TBCKI  
Input  
Enabled  
Every 4th Frame  
J0  
J1  
V1  
M TBJ0J1EN  
Input  
M TBPAYEN  
Input  
A2  
Position  
J0  
Position  
NU1_8  
Position  
NU1_9  
Position  
Fixed  
Stuff  
Fixed  
Stuff  
TUG3 #1  
TUG3 #3  
J1 Position  
TUG3 #1  
TUG3 #2  
TUG3 #3  
TUG3 #1  
TUG3 #2  
M TBDATA  
Input  
TIME_STM1_XMT_ADM_TB.VSD - PAGE-1 - 2/11/98  
Goes HI one clock cycle after H4 = 00, Low one clock cycle after H4 = 01  
M TBH4  
Input  
50  
SXT6051 STM-1/0 SDH Overhead Terminator  
Transmitter “Slave” in 1+1  
Protection Configuration  
The signals for this configuration are:  
Protection Bus Interface  
Timing  
This is the interface between the SXT6051 “Master” and  
the SXT6051 “Slave” in a one for one protection mode.  
The signals for the configurations are listed in this section.  
MMSPPDATA<7:0> Data byte input with a STM-1 or  
STM-0 frame structure depending  
on STMMODE. Only the AU-4  
Transmitter “Master” in 1+1  
Protection Configuration  
The signals for this configuration are:  
(STM-1) or AU-3 (STM-0) data  
bytes are valid (pointers included).  
MMSPPCKI  
Transmit Protection Bus byte clock  
input (6.48 MHz in STM-0 and  
19.44 MHz in STM-1 mode). This  
clock has the same exact frequency  
as the transmit frame clock refer-  
ence. Data and timing reference are  
internally re-sampled by the falling  
edge of this clock.  
MMSPPDATA<7:0>:Data byte output with a STM-1 or  
STM-0 frame structure depending  
on STMMODE. Only the AU-4  
(STM-1) or AU-3 (STM-0) data  
bytes are valid (pointers included).  
MMSPPCKO  
Transmit Protection Bus byte clock  
output (6.48 MHz in STM-0 &  
19.44 MHz in STM-1 mode). This  
clock has the same exact frequency  
as the transmit clock reference.  
MMSPPCKO  
This output is not part of the Protec-  
tion bus, but can be used as the  
transmit RSOH and MSOH serial  
bus (TSOH bus) clock reference on  
the Slave SXT6051.  
Note that all transitions of the Trans-  
mit Protection Bus Data (MMSPP-  
MMSPPJ0JEN  
This input indicates J0 byte loca-  
tion. It is a single pulse (active High)  
when the J0 byte is present on the  
MMSPPDATA<7:0> data bus. It is  
used to synchronize the transmit  
frame, to ensure frame alignment of  
the Master and Slave SXT6051.  
DATA<7:0>)  
and  
Timing  
references (MMSPPJ0EN and  
MMSPPAUEN) are in phase with  
the rising edge of this clock. This  
clock is also used as the RSOH &  
MSOH serial bus (TSOH bus) clock  
reference.  
MMSPPAUEN  
Output is not used (tri-stated)  
MMSPPCKI  
Input is not used (can be tied to  
ground).  
MMSPPJ0JEN  
Output indicates J0 byte location. It  
is a single pulse (active High) when  
the J0 byte is present on the MMSP-  
PDATA<7:0> data bus.  
MMSPPAUEN  
A High output indicates the pres-  
ence of the VC-4 (STM-1) or the  
VC-3 + 2 stuffed columns (STM-0)  
bytes on the MMSPPDATA<7:0>  
data bus. A Low indicates the pres-  
ence of the SOH + AU Pointers  
bytes. This pin is used as a test point  
or in the Ring Protection for a Fiber  
ADM application (see Application  
Note SDH Chip Set on the fiber).  
51  
SXT6051 STM-1/0 SDH Overhead Terminator  
Receive”Master” in 1+1 Protection  
Receive “Slave” Configuration  
Configuration  
The signals for this configuration are:  
(1+1 Protection)  
The signals for this configuration are:  
DMSPPDATA Data byte input with an STM-1 or  
STM-0 frame structure depending on  
STMMODE. This bus includes also the  
SOH bytes to be processed for protection  
switching.  
DMSPPDATA Data byte output with a STM-1 or  
STM-0 frame structure depending on  
STMMODE. This bus also includes the  
SOH byte to be processed for protection  
switching.  
DMSPPCKI  
Receive Protection Bus byte clock input  
(6.48 MHz in STM-0 and 19.44 MHz in  
STM-1 mode).  
DMSPPCKI  
This input is not used.  
DMSPPCKO Receive Protection Bus byte clock out-  
put (6.48 MHz in STM-0 and 19.44 MHz  
in STM-1 mode).  
Note that all transitions of the Receive  
Protection  
Bus  
Data  
(DMSPP-  
Note that the transitions of the Receive  
Protection bus Data (DMSPPDATA)  
and Timing references (DMSPPJ0EN &  
DMSPPAUEN) are in phase with the ris-  
ing edge of this clock. This clock is also  
used as the receive RSOH and MSOH  
serial bus (RSOH bus) clock reference.  
DATA<7:0>) and Timing references  
(DMSPPJ0EN and DMSPPAUEN) are  
in phase with the rising edge of this  
clock.  
DMSPPCKO This output is not used for the MSP bus.  
It is used as the Serial RSOH and MSOH  
bus (RSOH bus) clock reference  
DMSPPJ0JEN This output indicates the J0 byte loca-  
tion. It is a single pulse (active High)  
indicating the presence of the J0 position  
on the DMSPPDATA<7:0> data bus.  
(Used for protection bus K1/K2 byte  
recovery by the Master).  
DMSPPJ0JEN This input indicates J0 byte location. It is  
a single pulse (active High) indicating  
the presence of the J0 byte on the DMSP-  
PDATA<7:0> transmit data bus. (Used  
for protection bus K1/K2 byte recovery).  
DMSPPAUEN A High on this input indicates the pres-  
ence of the VC-4 (STM-1) or the  
DMSPPAUEN A High on this output indicates the pres-  
ence of the VC-4 (STM-1) or the VC-3 +  
2 stuffed columns (STM-0) bytes on the  
DMSPPDATA<7:0> data bus. A Low  
indicates the position of the SOH + AU  
Pointers bytes.  
VC-3 + 2 stuffed columns (STM-0)  
bytes on DMSPPDATA<7:0>. A Low  
indicates SOH + AU Pointer bytes.  
DMSPPSF  
DMSPPSD  
Signal Fail input indicator from the  
SXT6051 slave. Active High.  
DMSPPSF  
Signal Fail output indicator. Active  
High.  
Signal Degrade input indicator from the  
SXT6051 slave. Active High.  
DMSPPSD  
Signal Degrade output indicator. Active  
High.  
52  
SXT6051 Functional Timing  
Figure 17: Master MSP Interface Timing  
Multiplexer Protection Interface  
M HBCLKI  
STM-0/6.48MHz  
STM-1/19.44MHz  
M M SPPCKO  
M M SPPJ0EN  
J0 Enable Output  
A1  
A2  
M M SPPDATA  
A2  
J0  
J0  
B1  
B1  
E1  
F1  
STM-0 Output Data  
RSOH  
1
RSOH  
2
M M SPPAUEN  
STM-0 Output Enable  
NU1_8  
NU1_9  
M D2_2  
M D2_3  
M D2_5  
M M SPPDATA  
A2  
E1  
STM-1 Output Data  
RSOH  
1
RSOH 2  
M M SPPAUEN  
STM-1 Output Enable  
Demultiplexer Protection Interface  
DM SPPC KI  
STM-0/6.48MHz  
STM-1/19.44MHz  
DM SPPJ0EN  
J0 Enable Input  
DM SPPD ATA  
A2  
J0  
B1  
E1  
F1  
STM-0 Input Data  
RSOH  
1
RSOH 2  
DM SPPAU EN  
STM-0 Input Enable  
DM SPPD ATA  
NU1_8  
NU1_9  
M D2_5  
M D2_2  
M D2_3  
A2  
A2  
J0  
B1  
E1  
STM-1 Input Data  
RSOH  
2
RSOH  
1
DM SPPAU EN  
STM-1 Input Enable  
53  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 18:Slave MSP Interface Timing  
M ultiplexer Protection Interface  
M M SPPC KI  
STM -0/6.48MHz  
STM -1/19.44MHz  
M M SPPC KO  
J0  
M M SPPJ0EN  
J0 Enable Input  
M M SPPD ATA  
A1  
A2  
J0  
B1  
B1  
E1  
F1  
STM -0 Input Data  
RSO H  
1
RSO H 2  
M M SPPAU EN  
NO T USED  
NU1_8  
NU1_9  
M D2_5  
M M SPPD ATA  
M D2_2  
RSO H  
M D2_3  
E1  
A2  
A2  
J0  
STM -1 Input Data  
RSO H  
1
2
Dem ultiplexer Protection Interface  
D M SPPCKO  
STM -0/6.48MHz  
STM -1/19.44MHz  
D M SPPJ0EN  
J0 Enable Output  
D M SPPDATA  
STM -0 Output Data  
A2  
J0  
B1  
E1  
F1  
RSO H  
1
RSO H 2  
D M SPPAU EN  
STM -0 Output Enable  
NU1_8  
NU1_9  
M D2_2  
RSO H  
M D2_3  
M D2_5  
A2  
A2  
J0  
B1  
E1  
D M SPPDATA  
STM -1 Output Data  
RSO H  
1
2
D M SPPAU EN  
STM -1 Input Enable  
54  
SXT6051 Functional Timing  
OverHead Byte Access Timing  
F2 and F3 Digital Channel Functional Timing  
Transmit side access  
• Data input are TPOW1 and TPOW2 input.  
• Clock reference is TPOWC. This 64 KHz signal is a square wave.  
• Byte reference is TPOWBYC.  
• Both the clock reference and the byte reference are synchronous with the transmit VC.  
Figure 19:Transmit F2 and F3 Orderwire Timing  
1 fram e : 125 us  
TPOW C  
Output clock  
(
64 KHz )  
TPOW BYC  
Output frame byte clock  
(
8 KHz )  
TPOW 1  
F2 LSB F2 MSB F2 bit 6 F2 bit 5 F2 bit 4 F2 bit 3 F2 bit 2 F2 bit 1 F2 LSB F2 MSB F2 bit 6 F2 bit 5 F2 bit 4  
Input F2 data channel  
TPOW 2  
F3 LSB F3 MSB F3 bit 6 F3 bit 5 F3 bit 4 F3 bit 3 F3 bit 2 F3 bit 1 F3 LSB F3 MSB F3 bit 6 F3 bit 5 F3 bit 4  
Input F3 data channel  
Receive side access  
• Data output are RPOW1 and RPOW2 input.  
• Clock reference is RPOWC. This 64 KHz signal is a square wave.  
• Byte reference is RPOWBYC.  
• Both the clock reference and the byte reference are synchronous with the receive VC.  
Figure 20:Receive F2 and F3 orderwire timing  
R eceive P ath O verH ead S erial O rderwire Tim ing (F2 F3)  
1 fram e : 125 us  
RPO W C  
Output clock  
(
64 KHz )  
RPO W BYC  
Output frame byte clock  
(
8 KHz )  
RPO W 1  
F2 LSB F2 MSB F2 bit 6 F2 bit 5 F2 bit 4 F2 bit 3 F2 bit 2  
F2 bit 1 F2 LSB F2 MSB F2 bit 6 F2 bit 5 F2 bit 4  
F3 bit 1 F3 LSB F3 MSB F3 bit 6 F3 bit 5 F3 bit 4  
F2 bit 5  
F3 bit 5  
Output F2 data channel  
RPO W 2  
F3 LSB F3 MSB F3 bit 6 F3 bit 5 F3 bit 4 F3 bit 3 F3 bit 2  
Output F3 data channel  
55  
SXT6051 STM-1/0 SDH Overhead Terminator  
E1, E2 and F1 Orderwire Channel Functional Timing  
Transmit Timing  
• Data input are TROW TMOW and TDOW  
• Clock reference is TOWC. This 64 KHz signal is a square wave.  
• Byte reference is TOWBYC.  
• Both the clock reference and the byte reference are synchronous with the transmit clock  
Figure 21:Transmit orderwire E1, E2 and F1 timing  
Transm it m ultiplex & regenenerator Section O verH ead Serial O rderwire Tim ing (E1 F1 E2)  
1 fram e : 125 us  
TOW C  
Output clock  
(
64 KHz )  
TOW BYC  
Output frame byte clock  
(
8 KHz )  
TROW  
E1 LSB  
E1 MSB  
E1 bit 6  
E1 bit 5  
E1 bit 4  
E1 bit 3  
E1 bit 2  
E1 bit 1  
E1 LSB  
E1 MSB  
E1 bit 6  
E1 bit 5  
E1 bit 4  
Input E1 data channel  
TDOW  
F1 LSB  
E2 LSB  
F1 MSB  
E2 MSB  
F1 bit  
6
F1 bit  
5
F1 bit  
4
F1 bit  
3
F1 bit  
2
F1 bit  
1
F1 LSB  
E2 LSB  
F1 MSB  
E2 MSB  
F1 bit  
6
F1 bit  
5
F1 bit 4  
Input F1 data channel  
TMOW  
E2 bit 6  
E2 bit 5  
E2 bit 4  
E2 bit 3  
E2 bit 2  
E2 bit 1  
E2 bit 6  
E2 bit 5  
E2 bit 4  
Input E2 data channel  
Receive timing  
• Data outputs are RROW, RMOW and RDOW.  
• Clock reference is ROWC. This 64 KHz signal is a square wave.  
• Byte reference is ROWBYC.  
• Both the clock reference and the byte reference are synchronous with the receive clock.  
Figure 22:Receive Orderwire E1, F1 and E2 Timing  
R eceive m ultiplex & regenenerator Section O verH ead Serial O rderwires Tim ing (E1 F1 E2)  
1 fram e : 125 us  
ROW C  
Output clock  
(
64 KHz )  
ROW BYC  
Output frame byte clock  
(
8 KHz )  
RROW  
Output E1 data channel  
E1 LSB E1 MSB E1 bit 6 E1 bit 5 E1 bit 4 E1 bit 3 E1 bit 2  
E1 bit 1 E1 LSB E1 MSB E1 bit 6 E1 bit 5 E1 bit 4  
RDOW  
Output F1 data channel  
F1 LSB F1 MSB F1 bit 6 F1 bit 5 F1 bit 4 F1 bit 3 F1 bit 2  
E2 LSB E2 MSB E2 bit 6 E2 bit 5 E2 bit 4 E2 bit 3 E2 bit 2  
F1 bit 1 F1 LSB F1 MSB F1 bit 6 F1 bit 5 F1 bit 4  
E2 bit 1 E2 LSB E2 MSB E2 bit 6 E2 bit 5 E2 bit 4  
RMOW  
Output E2 data channel  
56  
Functional Timing  
The clock reference output is TPOHCK at 19.44 MHz  
(STM-1) or 6.48 MHz (STM-0). This clock is synchro-  
nous with the VC-3 /VC-4 (STM-0/STM-1) or trans-  
mit frequency.  
HPOH Bytes Serial Access  
Functional Timing  
Transmit serial HPOH Timing  
The TPOH data bits positions are indicated by the  
clock enable (output pin TPOHEN). In the STM-0  
mode this enable signal is HIGH during 8 consecutive  
clock cycles (POH byte), then LOW during 90 - 8 = 82  
clock cycles in STM-0. In STM-1 mode the TPOHEN  
is HIGH for 8 clock cycles and LOW for 270 -8 = 262  
clock cycles.  
• Data Input TPOH  
• Reference clock TPOHCK synchronous with the  
transmit clock  
• Frame reference TPOHFR indicates the expected  
presence of J1 MSB at TPOH input  
• Output enable TPOHEN indicates the expected  
presence of HPOH data at TPOH input  
TPOHFR indicates the position of J1 MSB.  
The TPOH is used to insert all POH byte except the  
B3, F2, H4 and F3 bytes. This serial interface uses a  
contra-directional gapped bus.  
Figure 23:Transmit HPOH Serial Bus Timing  
Transm it P ath O verHead S erial B us Tim ing (Term inal & A dd/Drop)  
1 fram e: 125 us <=> 810 x TPOHCK clock cycles (STM-0) or 2430 x TPOHCKclock cycles (STM-1)  
82 clock cycles (STM-0)  
262 clock cycles (STM-1)  
8 clock cycles  
TPOHFR  
Output frame pulse  
TPOHEN  
Output data enable  
TPOH  
(1)  
(1)  
(1)  
(1)  
(1)  
Input data  
J1  
C2  
G1  
K3  
N1  
J1  
(1) Unused Time slots  
TPOHCK  
Output clock  
(6.48 MHz (STM-0)  
or 19.44 MHz (STM-1)  
Every Fram e  
TPOHFR  
Output frame pulse  
TPOHEN  
Output data enable  
TPOH  
J1 bit 1  
J1 LSB  
J1 MSB J1 bit 6  
J1 bit 5  
J1 bit 4  
J1 bit 3  
J1 bit 2  
Input data  
57  
SXT6051 STM-1/0 SDH Overhead Terminator  
Receive Serial HPOH Timing  
• Data Input RPOH  
• Reference clock RPOHCK synchronous with the receive clock  
• Frame reference RPOHFR indicates presence of J1 MSB at RPOH output  
• Output enable RPOHEN indicates presence of RPOH clock at RPOH output  
Figure 24:Receive HPOH Serial Bus Timing  
Receive Path OverHead Serial Bus Timing (Terminal & Add/Drop)  
1
frame: 125 us <=> 810 x RPOHCK clock cycles (STM-0) or 2430 x RPOHCKclock cycles (STM-1)  
82 clock cycles (STM-0)  
262 clock cycles (STM-1)  
8
clock cycles  
RPOHFR  
Output frame pulse  
RPOHEN  
Output data enable  
RPOH  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Output data  
J1  
B3  
C2  
G1  
F2  
H4  
F3  
K3  
N1  
J1  
(1) Unused Time slots  
RPOHCK  
Output clock  
(6.48 MHz (STM-0)  
or 19.44 MHz (STM-1)  
Every Frame  
RPOHFR  
Output frame pulse  
RPOHEN  
Output data enable  
RPOH  
J1 MSB J1 bit 6  
J1 bit 5  
J1 bit 4  
J1 bit 3  
J1 bit 2  
J1 bit 1  
J1 LSB  
Output data  
58  
Functional Timing  
• The reference clock is supplied by MMSPPCKO  
at 19.44MHz (STM-1) or at 6.48 MHz (STM-0).  
It is at the same frequency as the transmit clock.  
Frame pulse TSOHFR indicates the start of the  
frame (A1 MSB position).  
SOH Overhead Access Functional  
Timing  
Transmit Side SOH Serial Timing  
• The transmit side of SOH interface allows inser-  
tion of each SOH byte (except A1, A2, B1 and  
B2 bytes), into the MSOH and RSOH via a serial  
contra-directional gapped interface.  
• Enable signal TSOHEN is high (enabled) for all  
bytes of the SOH (see Figure 10). The TSOHEN  
signal is not enabled during AU pointer bytes.  
• The SXT6051 will latch the data on the TSOH  
pin, synchronized with the timing signals. All  
data input will be output from the SXT6051 one  
SDH row after it is latched.  
Figure 25:Transmit TSOH Serial Bus Timing  
Transmit multiplex & regenenerator Section OverHead Serial Bus Timing  
1 frame: 125 us <=> 810 x MMSPPCKO clock cycles (STM-0) or 2430 x MMSPPCKO clock cycles (STM-1)  
66 clock cycles (STM-0)  
198 clock cycles (STM-1)  
24 clock cycles (STM-0)  
72 clock cycles (STM-1)  
TSOHFR  
Output frame pulse  
TSOHEN  
Output data enable  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
TSOH  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Input data  
# 1  
# 2  
# 5  
# 6  
# 1  
# 3  
# 7  
# 8  
# 9  
(1) Unused Time slots  
MMSPPCKO  
Output clock  
(6.48 MHz (STM-0)  
or 19.44 MHz (STM-1)  
Every Frame  
TSOHFR  
Output frame pulse  
TSOHEN  
Output data enable  
A2 MSB(*) or  
A1 MSB  
J0 Bit 1 or  
NU1_9 bit 1 NU1_9 LSB  
J0 LSB or  
A1  
MSB(*)  
A1 bit  
6(*)  
A1 bit  
5(*)  
A1 bit  
4(*)  
A1 bit  
3(*)  
A1 bit  
2(*)  
A1 bit  
1(*)  
A1  
LSB(*)  
TSOH  
Input data  
( STM-0 or  
( STM-0 or ( STM-0 or  
(*) unused time slots (A1 & A2 bytes cannot be inserted via the  
TSOH bus into the Transmit frame )  
STM-1  
)
STM-1  
)
STM-1 )  
24 clock cycles (STM-0) or 72 clock cycles (STM-1)  
Note concerning the used and unused time slots :  
SOH Row #1 : only J0, and the National Use ( STM1) bytes are relevent  
SOH Row #2 : only Media dependent, National Use & Undefined (STM-1) bytes are relevent  
SOH Row #3 : only D1 to D3, Media dependant & Undefined (STM-1) bytes are relevent  
SOH Row #5 : only K1, K2 and Undefined bytes(STM1) are relevent  
SOH Row #6, #7 & #8 : only the Undefined bytes (STM-1) are relevent  
SOH Row #9 : only S1, M1, Undefined & National Use (STM-1) are relevent  
"Relevent" means these bytes can be inserted into the transmit frame via the TSOH serial bus  
TIME XMT SOH VSD PAGE-1  
_ _ . - - 2/9/98  
59  
SXT6051 STM-1/0 SDH Overhead Terminator  
Receive Side SOH Serial Timing  
The receive side SOH interface provides all the signals necessary to collect the RSOH and MSOH bytes via a serial  
co-directional gapped interface described below:  
• Frame pulse RSOHFR indicates the start of the frame (A1 MSB position)  
• The DMSPPCKO clock (MSP bus clock) is used for clocking the RSOH output.  
• Enable signal RSOHEN is high (active) for all bytes of the SOH (see Figure 10).  
• On the receive side, the data is immediately output on the RSOH pin when it is received; there is not a row delay  
as on the transmit side.  
Figure 26:Receive RSOH Timing  
Receive multiplex & regenenerator Section OverHead Serial Bus Timing  
1
frame: 125 us <=> 810  
x
DMSPPCKO clock cycles (STM-0) or 2430  
x
DMSPPCKO clock cycles (STM-1)  
66 clock cycles (STM-0)  
198 clock cycles (STM-1)  
24 clock cycles (STM-0)  
72 clock cycles (STM-1)  
R S O H F R  
Output frame pulse  
FGVVVVFDC  
R S O H E N  
Output data enable  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
Soh  
Row  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
R S O H  
Output data  
#
1
#
2
# 5  
#
6
# 1  
# 3  
#
7
#
8
# 9  
(1) Unused Time slots  
D M S P P C K O  
Output clock  
(6.48 MHz (STM-0)  
or 19.44 MHz (STM-1)  
Every Frame  
R S O H F R  
Output frame pulse  
R S O H E N  
Output data enable  
J0 Bit 1 or  
NU1_9 bit  
J0 LSB or  
NU1_9 LSB  
A2 MSB  
or A1 MSB  
1
R S O H  
Output data  
A1 MSB A1 bit 6 A1 bit 5 A1 bit 4 A1 bit 3 `A1 bit 2 `A1 bit 1 A1 LSB  
(
STM-0 or  
STM-1  
(
STM-0  
(
STM-0 or  
STM-1  
)
or STM-1  
)
)
24 clock cycles (STM-0) or 72 clock cycles (STM-1)  
60  
SXT6051 Functional Timing  
D1 to D3 Data Communication Channel Functional Timing  
Transmit Side Access  
• Data input is TRD  
• Clock reference is TRDC. This 192 KHz signal is a square wave, synchronous with the transmit clock  
• TOWBYC can be used to identify the byte position relative to the transmit frame  
Figure 27:Transmit D1 to D3 Timing  
Transm it Regenerator Section O verHead Serial D CC Tim ing  
TRDC  
Output clock  
(
192 KHz )  
TRD  
Input  
D1 to D3  
Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit  
Data Communication channel  
Receive Side Access  
• Data Output is RRD  
• Clock reference is RRDC. This 192 KHz signal is a square wave synchronous with the receive clock  
• ROWBYC can be used to identify the byte position relative to the receive frame  
Figure 28:Receive D1 to D3 Timing  
Receive Regenerator Section O verHead Serial D CC Tim ing  
RRDC  
Output clock  
(
192 KHz )  
RRD  
Input  
Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit  
Data bit  
D1 to D3  
Data Communication channel  
61  
SXT6051 STM-1/0 SDH Overhead Terminator  
D4 to D12 Data Communication Channel  
Transmit Side Access  
• Data Input is TMD  
• Clock Reference is TMDC. This 576 KHz signal is a square wave synchronous with the transmit clock  
• TOWBYC can be used to identify the byte position relative to the transmit frame  
Figure 29:Transmit D4 to D12 Timing  
Transm it m ultiplex Section O verHead Serial D CC Tim ing  
TMDC  
Output clock  
(
576 KHz )  
TMD  
Input  
D4 to D12  
Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit  
Data Communication channel  
Receive Side Access  
• Data Output is RMD  
• Clock reference is RMDC. This 576 KHz signal is a square wave synchronous with the receive clock  
• ROWBYC can be used to identify the byte position relative to the receive frame  
Figure 30:Receive D4 to D12 Timing  
R eceive M ultiplex S ection O verH ead S erial D CC Tim ing  
RMDC  
Output clock  
(
576 KHz )  
RMD  
Input  
Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit Data bit  
Data bit  
D1 to D3  
Data Communication channel  
62  
SXT6051 Functional Timing  
BIP Receive Functional Timing  
Figure 31:BIP Functional Timing  
Receive BIP E rrors Tim ing  
DM SPPCKO  
Output clock  
(
6.48 MHz  
19.44 MHz  
/
STM-0 or  
STM-1  
/
)
B1OUT  
1
3
1
Output  
B1 RS-BIP8 errors  
5 errors detected with B1 RS-BIP8  
B2OUT  
Output  
1
B2 MS-BIP  
errors  
8 or 24  
1 error detected  
with B2 MS-BIP  
RPOHCK  
Output clock  
(
6.48 MHz  
19.44 MHz  
/
STM-0 or  
STM-1  
/
)
B3OUT  
4
1
Output  
B3 HP-BIP8 errors  
5 errors detected with B3 HP-BIP8  
63  
SXT6051 STM-1/0 SDH Overhead Terminator  
TEST SPECIFICATIONS  
Notes  
Minimum and maximum values in tables 9 though 11 represent the performance specifications of the SXT6051 and are  
guaranteed by test, unless otherwise noted. Minimum and maximum values in tables 12 though 27 and figures 32 through  
45 represent the performance specifications of the SXT6051 and are guaranteed by design and are not subject to production  
testing.  
All timing parameters assume that the outputs have a 50 pF load unless otherwise noted.  
Table 9: Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
CC  
Supply Voltage  
V
6.0  
V
V
DC Voltage on any pin1  
IN  
V
-2.0  
+7.0  
OP  
Ambient operating temperature  
Storage temperature range  
T
-40  
-65  
+85  
C
C
ST  
T
+150  
1. Minimum voltage is -0.6V D.C. which may undershoot to -2.0 V for pulses of less than 20 ns  
CAUTION  
Exceeding these values may cause permanent damage.  
Functional operation under these conditions is not implied  
Exposure to maximum rating conditions for extended periods may affect device reliability  
.
1
Table 10: Operating Conditions  
Parameter  
Typ2  
Symbol  
Min  
Max  
Unit  
Recommended Operating Temperature  
Supply Voltage - I/O Ring  
TOP  
VCC5  
VCC3  
IDD5  
-40  
4.75  
3.15  
-
-
+85  
5.25  
3.45  
90  
C
V
5
Supply Voltage - Core  
3.3  
75  
V
Supply Current - I/O Ring 1  
Supply Current - Core 1  
mA  
IDD3  
-
100  
120  
mA  
1. The operating condition parameters are for a STM-1 master 1+1 terminal protection configuration with receive re-timing enabled and during  
microprocessor access (worst case configuration)  
2. Typical values are at 25C and nominal voltage and are provided for design aid only; not guaranteed nor subject to production testing  
3. Voltages with respect to ground unless otherwise specifie  
64  
SXT6051 Test Specifications  
Table 11: 5 V Digital I/O Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
TTL Input Low Voltage  
TTL Input High Voltage  
TTL Switching Threshold  
Input Leakage High  
VIL  
VIH  
VT  
0.8  
V
V
2.0  
1.4  
V
VCC-5.0V, 25C  
VIN-VCC=5.5V  
VCC=4.5V  
IIH  
10  
uA  
V
Output Low Voltage  
VOL  
VOH  
IOZ  
0.2  
4.2  
0.4  
Output High Voltage  
0.7xVCC  
-10  
VCC=4.5V  
Output Leakage (no pull up)  
10  
uA  
VIN=VDD=5.5V  
1. All values applicable over recommended Voltage and Temperature operating range unless otherwise noted  
65  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 32:Serial Interface Timing  
MHICLK  
MICLK  
t1pd  
DHICLK  
tS U  
t2pd  
tH  
DHPOSD  
MHPOSD  
MHNEGD  
DHNEGD  
Transmit Serial Timing  
Receive Serial Timing  
Table 12: Serial Interface Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ns  
ns  
15.5 ns  
DHPOSD & DHNEGD setup time to DHICLK falling edge.  
DHPOSD & DHNEGD hold time from DHICLK falling edge.  
MHICLK rising edge to MICLK rising edge  
tsu  
th  
1.5  
1.5  
5
t1pd  
t2pd  
MICLK rising edge to MHPOSD and MHNEGD  
0.5  
3
ns  
Figure 33:Parallel Interface Timing  
DHBCLK  
MHBCLKI  
t1pd  
tSU  
tH  
DHBNRZ<7:0>  
MHBCLKO  
t2pd  
MHBDATA<7:0>  
Receive Parallel Timing  
Transmit Parallel timing  
Table 13: Parallel Interface Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DHBDATA<7:0> setup time to DHBCLK rising edge.  
DHBDATA<7:0> hold time from DHBCLK rising edge.  
MHBCLKI rising edge to MHBCLKO rising edge  
MHBCLKO rising edge to MHBDATA<7:0>  
tsu  
th  
3
2
7
2
ns  
ns  
ns  
ns  
t1pd  
t2pd  
18  
7
66  
SXT6051 Test Specifications  
Figure 34:Receive Re-Timing Function Timing  
DRETCLK  
tR ET1pd  
tR ET2pd  
tR ETh  
DTBCK  
DTBDATA  
DTBPAYEN  
DTBJ0J1EN  
tR ETsu  
DRETFRM I  
Table 14: Receive Re-Timing Function Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DRETFRMI setup time to DRETCLK falling edge.  
DRETFRMI hold time from DRETCLK falling edge.  
DRETCLK falling edge to DTBCK rising edge  
tRETsu  
tRETh  
tRET1pd  
tRET2pd  
0.5  
4
ns  
ns  
ns  
ns  
5
14  
20  
Delay from DRETCLK falling edge any telecom bus output.  
7
67  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 35:Transmit Frame Parallel Timing  
M HBCLKI  
tTPF1pd  
M HBCLKO  
tTPF2pd  
M HBDATA<7:0>  
tTPF3pd  
M FRM O  
tTPFsu  
tTPFh  
M FRM I  
Table 15: Transmit Frame Parallel Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MFRMI setup time to MHBCLKI rising edge.  
MFRMI hold time from MHBCLKI rising edge.  
MHBCLKI rising edge to MHBCLKO rising edge  
MHBCLKI rising edge to MHBDATA<7:0>  
MHBCLKI falling edge to MFRMO rising edge  
tTPFsu  
tTPFh  
0
ns  
ns  
ns  
6.5  
7
tTPF1pd  
tTPF2pd  
tTPF3pd  
18  
25  
23  
9
8.5  
ns  
68  
SXT6051 Test Specifications  
Figure 36:Transmit Frame Serial Timing  
M HICLK  
tTSF1pd  
tTSF2pd  
tTSF3pd  
tTSF4pd  
tTSFh  
M ICLK  
M M SPPCKO  
M FRM O  
M HPOSD  
M HNEGD  
tTSFsu  
M FRM I  
Table 16: Transmit Frame Serial Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MFRMI setup time to MHICLK rising edge.  
MFRMI hold time from MHICLK rising edge.  
MHICLK rising edge to MICLK rising edge  
MHICLK rising edge to MHPOSD and MHNEGD  
MHICLK rising edge to MFRMO rising edge  
tTSFsu  
tTSFh  
2
ns  
ns  
ns  
ns  
ns  
1.5  
5
tTSF1pd  
tTSF4pd  
tTSF3pd  
15.5  
18.5  
5.5  
7 1  
6 2  
18 1  
15 2  
MHICLK rising edge to MMSPPCKO rising edge  
tTSF2d  
9
22.5  
ns  
1. 50 pF load on output  
2. 20 pF load on output  
69  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 37:Receive Telecom Bus Timing  
DHBCLK  
tDCK1pd  
DTBCLK  
tDTBpd  
DTBDATA<7:0>  
DTBJ0J1EN  
DTBPAYEN  
DTBH4EN  
DTBTUGEN  
Table 17: Receive Telecom Bus Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DHBCLK falling edge to DTBCLK rising edge  
tDCK1pd  
tDTBdp  
8
2
22  
6
ns  
ns  
Delay from DTBCLK rising edge to any Telecom  
bus output  
Figure 38:ADM Mode Transmit Telecom Bus Timing  
MTBCKI  
MTBDATA<7:0>  
tMTB2su  
tMTB2h  
MTBJ0J1EN  
MTBPAYEN  
MTBH4EN  
MTBPAR  
Table 18: ADM Mode Transmit Telecom Bus Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Setup time for any telecom bus input to MTBCKI  
falling edge  
tMTB2su  
0.5  
ns  
Hold time for any telecom bus input from MTBCKI  
falling edge  
tMTB2h  
5
ns  
70  
SXT6051 Test Specifications  
Figure 39:Terminal Mode Transmit Telecom Bus Timing  
M HBCLKI  
tM C K1pd  
M TBCKO  
tM TBpd  
M TBJ0J1EN  
M TBPAYEN  
M TBH4EN  
M TBTUGEN  
tM TB1h  
tM TB1su  
M TBDATA<7:0>  
M TBPAR  
tM TBh  
tM TB2su  
M M FRM I  
Table 19: Terminal Mode Transmit Telecom Bus Timing Parameters:  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MHBCLKI rising edge to MTBCKO rising edge.  
tMCK1pd  
tMTBpd  
3
8.5  
15  
ns  
ns  
Delay from MTBCKO rising edge to any telecom  
bus output.  
5.5  
Setup time for any telecom bus input to MTBCKO  
falling edge.  
tMTB1su  
tMTB1h  
tMTB2su  
tMTB2h  
5
ns  
ns  
ns  
ns  
Hold time for any telecom bus input from MTB-  
CKO falling edge.  
-1  
Setup time for MMFRMI to MTBCKO falling  
edge.  
5.5  
-1.5  
Hold time for MMFRMI from MTBCKO falling  
edge.  
71  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 40:Master Mode MSP Bus Timing  
M HBCLKI  
tC Kpd  
M M SPPCKO  
tM M SPpd  
M M SPPJ0J1  
M M SPPAUEN  
M M SPPDATA<7:0>  
DM SPPCKI  
tD M SPsu  
tD M SPh  
DM SPPDATA<7:0>  
DM SPPJ0J1  
DM SPPAUEN  
DM SPPSF  
DM SPPSD  
Table 20: Master Mode MSP Bus Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ns  
MHBCLKI edge to MMSPPCKO edge delay  
tCKpd  
5
3
15  
7
MMSPPCKO rising edge to MMSPPDATA<7:0>,  
MMSPPAYEN and MMSPPJ0EN  
tMMSPpd  
ns  
ns  
ns  
DMSPPDATA<7:0>, DMSPPJ0EN and DMSPPAYEN setup  
time to DMSPPCKI falling edge  
tDMSPsu  
tDMSPh  
1.5  
7
DMSPPDATA<7:0>, DMSPPJ0EN and DMSPPAYEN hold  
time from DMSPPCKI falling edge  
72  
SXT6051 Test Specifications  
Figure 41:Slave Mode MSP Bus Timing  
DHBCLK  
tD C Kpd  
DM SPPCKO  
tD M SPpd  
DM SPPDATA<7:0>  
DM SPPJ0J1  
DM SPPAUEN  
DM SPPSD  
DM SPPDF  
M M SPPCKI  
M M SPPCKO  
tM C Kpd  
tM M SPsu  
tM M SPh  
M M SPPDATA<7:0>  
M M SPPJ0J1  
Table 21: Slave Mode MSP Bus Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DHBCLK falling to DMSPPCKO rising  
tDCKpd  
DMSPPCKO rising edge to DMSPPDATA<7:0>, DMSP-  
PAUEN, DMSPPJ0EN, DMSPPSD, DMSPPSF  
tDMSPpd  
3.5  
9
ns  
MMSPPCKI falling to MMSPPCKO falling  
tMCKpd  
6
16  
ns  
ns  
MMSPPDATA<7:0> and MMSPPJ0EN setup time to  
MMSPPCKI falling edge  
tMMSPsu  
0.5  
MMSPPDATA<7:0> and MMSPPJ0EN hold time from  
MMSPPCKI falling edge  
tMMSPh  
5.5  
ns  
73  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 42:Microprocessor Read Timing  
MicroProcessor Read Timing (Intel Mode)  
MicroProcessor Read Timing (Motorola Mode)  
tSAR  
tSAR  
A<7:0>  
A<7:0>  
tHAR  
tHAR  
tSALR  
tSALR  
tHALR  
tHALR  
tVL  
tVL  
AS  
AS  
tSCR  
tHCR  
tSLR  
CS  
RW  
tSRW B  
tHRW B  
tSLR  
tVRD  
RD  
CS  
tINTH  
tSCR  
tHCR  
INT  
E
tDDR  
tZDR  
tVRD  
tINTH  
INT  
D<7:0>  
tDDR  
tZDR  
tADR  
tAAC  
tAAC  
tHDR  
D<7:0>  
tADR  
tHDR  
tAAC  
tAAC  
74  
SXT6051 Test Specifications  
Table 22: Microprocessor Data Read Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
A<7:0> setup time to active read  
tSAR  
12  
1
-
-
-
-
ns  
ns  
1
A<7:0> hold time from inactive read  
tHAR  
2
A<7:0> setup time to latch  
A<7:0> hold time from latch  
Valid latch pulse width  
1
2
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
tSALR  
2
tHALR  
2
1.5  
13  
tVL  
2
AS rising edge to active read setup  
tSLR  
RWB setup to active read  
RWB hold from inactive read  
CS setup to active read  
tSRWB  
tHRWB  
tSCR  
-1  
2
2
2
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
-
CS hold from inactive read  
tHCR  
-
D<7:0> access time from valid address  
(or AS whichever comes last for muxed AD bus)  
D<7:0> bus driven from active read  
tAAC  
40  
tDDR  
tADR  
tHDR  
tZDR  
6.5  
-
-
-
-
-
-
19  
-
ns  
ns  
ns  
ns  
ns  
D<7:0> access time from active read  
D<7:0> hold from inactive read  
D<7:0> HIgh impedance from inactive read  
Valid read pulse width  
-
7
-
17.5  
-
3
T+2  
tVRD  
3
Inactive read to inactive INT (due to reset on read  
feature)  
3*T + 12  
-
4*T + 36  
ns  
tINTH  
1. For non multiplexed Address and Data bus (AS tied high)  
2. For multiplexed Address and Data bus (AS used as address latch enable)  
3. T is the minimum cycle time of either MTBYCK or DTBYCK (typically 51.44 ns for STM1, 154.32 ns for STM0)  
4. Consecutive reads from the on-chip RAM (“expected and “transmitted” J0 & J1 strings) must be separated by more than 4*T  
75  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 43:Microprocessor Write Timing  
M icroProcessor Write Timing (Intel M ode)  
M icroProcessor Write Timing (M otorola Mode)  
tSAW  
tSAW  
A<7:0>  
A<7:0>  
tHAW  
tHAW  
tSALW  
tSALW  
tHALW  
tHALW  
tVL  
tVL  
AS  
AS  
tSCW  
tHCW  
tSLW  
tHRW B  
C S  
R W  
tSLW  
tSRW B  
tHCW  
tSCW  
W R  
IN T  
C S  
E
tINTH  
tVW R  
tVW R  
tSDW  
tINTH  
tHDW  
IN T  
D <7:0>  
tSDW  
tHDW  
D <7:0>  
76  
SXT6051 Test Specifications  
Table 23: Microprocessor Data Write Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
A<8:0> setup time to active write  
tSAW  
6
4
-
-
-
-
ns  
ns  
1
A<8:0> hold time from inactive write  
tHAW  
2
A<8:0> setup time to latch  
A<8:0> hold time from latch  
Valid latch pulse width  
1
2
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
tSALW  
2
tHALW  
2
1.5  
7
tVL  
2
AS rising edge to active write setup  
tSLW  
RWB setup to active write  
RWB hold from inactive write  
CS setup to active write  
tSRWB  
tHRWB  
tSCW  
2
0.2  
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS hold from inactive write  
D<7:0> setup to inactive write  
D<7:0> hold from inactive write  
Valid write pulse width  
tHCW  
tSDW  
2
2.5  
7
tHDW  
3
T+2  
tVWR  
Inactive write to inactive INT (due to interrupt  
masking)  
tVWR  
12  
-
37  
ns  
1. For non multiplexed Address and Data bus (AS tied high)  
2. For multiplexed Address and Data bus (AS used as address latch enable)  
3. T is the minimum cycle time of either MTBYCK or DTBYCK (typically 51.44 ns for STM1, 154.32 ns for STM0)  
4. There must be more than 4*T between the rising edge of a write to a BIP or REI error counter and the falling edge of the read to a BIP or REI  
error counter  
5. Consecutive writes to the on-chip RAM (“expected and “transmitted” J0 & J1 strings) must be separated by more than 4*T  
77  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 44:Orderwire E1, F1 & E2, F2 & F3 Timing  
xOW C  
tO W pd  
xOW BYC  
RxOW  
TPOW C  
TOW C  
tO W su  
tO W h  
TxOW  
Table 24: Orderwire E1, F1 & E2, F2 & F3 Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
TOWC falling edge to TOWBYC  
tOWpd  
tOWsu  
0.0  
0.5  
0.0  
ns  
ns  
TROW, TDOW or TMOW setup time to falling  
edge of TOWC  
-124 (STM0)  
-22 (STM1)  
145 (STM0)  
42 (STM1)  
-0.5  
TROW, TDOW or TMOW hold time from falling  
edge of TOWC  
tOWh  
ns  
ROWC falling edge to ROWBYC  
tOWpd  
tOWpd  
ns  
ns  
ROWC falling edge to RROW, RDOW or RMOW  
153 (STM0)  
50 (STM1)  
-0.5  
155 (STM0)  
52 (STM1)  
0.5  
TPOWC falling edge to TPOWBYC  
tOWpd  
tOWsu  
ns  
ns  
TPOW1 or TPOW2 setup time to falling edge of  
TPOWC  
-126 (STM0)  
-23 (STM1)  
145 (STM0)  
42 (STM1)  
-0.2  
TPOW1 or TPOW2 hold time from falling edge of  
TPOWC  
tOWh  
ns  
RPOWC falling edge to RPOWBYC  
tOWpd  
tOWpd  
0.2  
ns  
ns  
RPOWC falling edge to RPOW1 or RPOW2  
153 (STM0)  
51 (STM1)  
154 (STM0)  
52 (STM1)  
78  
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 45:Data Communication Channel Timing  
RRDC  
RM DC  
tD C C pd  
RRD  
RM D  
TRDC  
TM DC  
tD C C su  
tD C C h  
TRD  
TM D  
Table 25: Data Communication Channel Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
TRD setup time to falling edge of TRDC  
tDCCSU  
-127 (STM0)  
-24 (STM1)  
ns  
TRD hold time from falling edge of TRDC  
TMD setup time to falling edge of TMDC  
TMD hold time from falling edge of TMDC  
RRDC falling edge to RRD  
tDCCH  
tDCCSU  
tDCCh  
145 (STM0)  
42 (STM1)  
ns  
ns  
ns  
-125 (STM0)  
-23 (STM1)  
145 (STM0)  
42 (STM1)  
tDCCPD  
tDCCPD  
154 (STM0)  
51 (STM1)  
155 (STM0) ns  
52 (STM1)  
RMDC falling edge to RMD  
154 (STM0)  
51 (STM1)  
155 (STM0) ns  
52 (STM1)  
79  
Test Specifications  
Figure 46:Serial Overhead Interface Timing  
Receive PO H & SO H Serial Interface  
Transm it PO H Serial Interface  
xOHCK  
txO H pd  
xOHEN  
xOHFR  
RxOH  
tTPO H su  
tTPO H h  
TPOH  
Transm it SO H Serial Interface  
M M SPPCKO  
tTSO H pd  
TSOHEN  
TSOHFR  
tTSO H su  
tTSO H h  
TSOH  
Table 26: Serial Overhead Interface Timing Parameters  
Parameter  
Symbol  
Min  
0.7  
Typ  
Max  
Unit  
TPOHCK rising edge to TPOHEN and TPOHFR  
RSOHCK rising edge to RSOHEN, RSOHFR and RSOH  
RPOHCK rising edge to RPOHEN, RPOHFR and RPOH  
TPOH setup time to TPOHCK rising edge  
txOHpd  
txOHpd  
txOHpd  
tTPOHsu  
tTPOHh  
tTSOHpd  
tTSOHsu  
tTSOHh  
4
9
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
0.5  
17  
TPOH hold time from TPOHCK rising edge  
-6  
MMSPPCKO falling edge to TSOHEN and TSOHFR  
TSOH setup time to MMSPPCKO falling edge  
TSOH setup time from MMSPPCKO falling edge  
2.5  
11.5  
-4  
8.5  
80  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 47:BIP Alarm output Timing  
DM SPPCKO  
tB12pd  
B1OUT  
B2OUT  
RPOHCK  
tB3pd  
B3OUT  
Table 27: BIP Alarm output Timing Parameters  
Parameter  
Symbol  
tB12pd  
tB3pd  
Min  
Typ  
Max  
Unit  
DMSPPCKO rising edge to B1OUT and B2OUT  
RPOHCK rising edge to B3OUT  
5.5  
3
15  
11  
ns  
ns  
81  
Microprocessor Interface & Register Description  
MICROPROCESSOR INTERFACE & REGISTER DESCRIPTION  
A Low on the E input initiates both cycles. The E input is  
Microcontroller Interface  
connected to the E output from the Motorola microproces-  
This section contains a description of the asynchronous  
sor and is typically a 50% duty cycle waveform with a fre-  
microprocessor interface. A microprocessor should be con-  
quency derived from the microprocessor clock.  
nected to the SXT6051 for reading and writing data via the  
microprocessor interface pins.  
Both cycles require the CS pin to be Low and the micropro-  
cessor to drive the A<7:0> address pins. In the case of the  
write cycle, the microprocessor is also required to drive the  
DATA <7:0> data pins. In the case of the read cycle, the  
SXT6051 drives the DATA<7:0> data pins.  
The microprocessor interface is a generic asynchronous  
interface, including an address bus (A<7:0>), data bus  
(DATA<7:0>) and handshaking pins (WR/RW, RD/E, CS,  
and AS). The MCUTYPE input pin indicates the type of  
microprocessor interface used – Intel or Motorola. There is  
also an INT output pin that indicates unmasked active inter-  
rupts microprocessor to the microprocessor.  
When a multiplexed data/address bus is used, the falling  
edge of the AS input latches the address provided on the  
muxed bus (the muxed bus will be connected to both the  
A<7:0> and DATA<7:0>). If the address and data are not  
multiplexed the AS pin should be tied High.  
Intel interface  
The Intel interface is indicated by driving the MCUTYPE  
input pin High. It uses the WR/RW input pin as WR and the  
RD/E input pin as RD.  
Interrupt Handling  
A read cycle is indicated to the SXT6051 by the micropro-  
cessor forcing a Low on the RD pin with the WR pin held  
High.  
Interrupt Sources  
There are three types of interrupt sources:  
A write cycle is indicated to the SXT6051 by the micropro-  
cessor forcing a Low on the WR pin with the RD pin held  
High.  
1. Status change of a monitoring process: For example,  
the SXT6051 monitors the incoming STM frame for  
the correct framing pattern and updates the OofSt and  
LofSt status bits to indicate presence or absence of Out  
Of Frame and Loss Of Frame conditions. When the  
value of these status bits change an interrupt can be  
generated.  
Both cycles require the CS pin to be Low and the micropro-  
cessor to drive the A<7:0> address pins. In the case of the  
write cycle, the microprocessor is also required to drive the  
DATA<7:0> data pins. In the case of the read cycle, the  
SXT6051 drives the DATA<7:0> data pins.  
2. Change in the contents of an overhead byte register:  
For example, the SXT6051 stores the incoming K1 (as  
well as others) Section Overhead byte in register 00H.  
When the value of the contents in this register changes  
an interrupt can be generated.  
When a multiplexed data/address bus is used, the falling  
edge of the AS input latches the address provided on the  
muxed bus (the muxed bus will be connected to both the  
A<7:0> and DATA<7:0>). If the address and data are not  
multiplexed the AS pin should be tied High.  
3. Counter overflows: For example, the SXT6051  
monitors the B1 overhead byte for bit interleaved  
parity calculation errors. These errors are recorded in  
the B1 error counter (registers 46H and 45H). If this  
register pair overflows, an interrupt can be generated.  
Motorola interface  
The Motorola interface is indicated by driving the MCU-  
TYPE input pin Low. It uses the WR/RW input pin as RW  
and the RD/E input pin as E.  
Interrupt Enables  
In order for an interrupt source to affect the state of the  
INT output pin its associated interrupt enable bit must  
be SET. The setting (whether 0 or 1) of the interrupt  
enables does not affect the updating of the status reg-  
isters, the overhead byte registers, interrupt registers or  
the counters.  
A read cycle is indicated to the SXT6051 by the micropro-  
cessor forcing a High on the RW pin. A write cycle is indi-  
cated to the SXT6051 by the microprocessor forcing a Low  
on the RWR pin.  
82  
l
Microprocessor Interface & Register Description  
Assuming the interrupt enable for a particular interrupt  
source is SET and the interrupt source is active, the  
input pin will be active.  
For this reason we encourage programmers to SET the  
AlmUpdDsbl bit before accessing the status registers  
during alarm processing. This effectively locks out  
internal processes that wish to access the status and  
interrupt bits during the time that the microprocessor is  
accessing these bits. After the microprocessor is done  
accessing the status registers it should CLEAR the  
AlmUpdDsbl bit so that internal processes may again  
update the status and interrupt bits.  
Interrupt Clearing  
The primary difference between each of interrupt  
types is the way its interrupt bits are cleared. In the dis-  
cussion below it is assumed that the example interrupt  
sources have their interrupt enable bits SET.  
1. Status change interrupt sources have their interrupt  
bits cleared when their status is read. For example, say  
the OofSt bit changes from zero to one (in frame to out  
of frame). Its interrupt bit (Oof, A0H<bit 0>) is SET  
by this event. When the microprocessor reads the  
register (C0H) containing the OofSt bit its interrupt bit  
will be CLEARED. If the OofSt bit subsequently  
changes from one to zero (out of frame to in frame)  
again its interrupt bit is SET by this event and then  
CLEARED when the status is read.  
C2, K3, K2, K1 and S1 Receive Byte  
Registers Access  
The BytChgUpdDsbl is SET to disable updates to  
overhead byte registers when a particular overhead  
byte register’s interrupt is active. For example, if both  
RcvK1Chg interrupt (see register A1H) and BytCh-  
gUpdDsbl (see register 50H) are SET, updates to  
RcvK1 (see register 00H) will be disabled until RcvK1  
is read by the microprocessor. This allows a rapidly  
fluctuating incoming K1 byte value to be captured dur-  
ing system debug.  
It should be noted that updates to status bits are not  
affected by the interrupt bit state. For example, the  
OofSt bit could change from a one to zero (generating  
an interrupt) and then before the microprocessor reads  
OofSt it could change back to one (this would have no  
affect on its interrupt bit since it would already be  
SET). When the microprocessor reads the OofSt bit it  
would read a one.  
Note that this is also true for the K1 and K2 bytes  
received in the protection bus in a 1+1 Master config-  
uration.  
Counter Reading  
Counters are read by first buffering their contents and then  
reading the buffer. They can be individually buffered or  
globally buffered. They are globally buffered by writing to  
register BfrAllCntrs (54H). They are individually buffered  
by writing to the most significant byte of a particular  
buffer. After buffering the counter the contents of the  
buffer is read at the address specified in the register defini-  
tion.  
2. Interrupt sources associated with the contents of  
overhead byte registers, have their interrupt bits  
cleared when the particular overhead byte register is  
read. For example, the incoming K1 overhead byte is  
stored (after filtering) in the RcvK1 register (register  
00H). If the value of this register changes the  
RcvK1Chg bit is SET. It will clear when the RcvK1  
register is read.  
See the following section for discussion concerning  
updates to an overhead byte register when its associ-  
ated interrupt is active.  
For example, to read the contents of the B1 counter a write  
to register 46H (or 54H) is required (this write will clear the  
B1 overflow interrupt bit B1OvrFlw, A0H<bit 7> if it is  
SET). The contents of the buffer can now be read by read-  
ing registers 45H & 46H (in no particular order).  
3. Interrupt sources associated with counter overflows,  
have their interrupt bits cleared when the particular  
overflowing counter is buffered. See the following  
section for description of counter reading.  
Status Registers Access  
Due to the asynchronous nature of the microprocessor  
interface and timing differences during interrupt bit  
updates, it is possible that a status bit change can fail  
to SET its associated interrupt bit if the AlmUpdDsbl  
bit is not SET during a read of the status registers by  
the microprocessor. This situation is very difficult to  
achieve however, it can happen.  
83  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Register Address Map  
The following notations and definitions are used in the register descriptions.  
RO  
Read Only. Unless otherwise stated in the register description, writes have no affect. Note that  
for some counter registers, a write to the MSByte resets the counter.  
WO  
Write Only. Reads return undefined values.  
R/W  
Read/Write. A register (or bit) with this attribute can be read and written.  
Reserved Bits  
Some of the registers contain reserved bits. Software must deal correctly with reserved fields.  
For reads, software must use appropriate masks to extract the defined bits and not rely on  
reserved bits being any particular value. In some cases, software must program reserved bit  
positions to a particular value. This value is defined in the individual bit descriptions.  
Default  
When the SXT6051 is reset, it sets its registers to predetermined default states. The default  
state represents the minimum functionality feature set required to successfully bring up the  
system. Hence, it does not represent the optimal system configuration. It is the responsibility  
of software to properly determine the operating parameters, and optional system features that  
are applicable, and to program the SXT6051 registers accordingly.  
Default = X  
AIS  
Undefined  
Alarm Signal Indication  
High Order Path OverHead  
Multiplexer Section OverHead  
OverHead Terminator  
HPOH  
MSOH  
OHT  
RSOH  
RST  
Regenerator Section OverHead  
Regenerator Section Termination  
84  
SXT6051 Microprocessor Interface & Register Description  
Table 28: Register Address Map (Sheet 1 of 4)  
Address Mnemonic Register Name  
Global Registers  
Type  
Page #  
50H  
OCR1  
Operational Configuration 1  
Operational Configuration 2  
Chip ID Number  
R/W  
R/W  
RO  
89  
90  
91  
91  
51H  
52H  
54H  
OCR2  
CHIP_ID  
BUF_ACNTS  
Buffer All Counters  
WO  
Receive Regenerator Section Termination Registers  
40H  
R_RSTC1  
R_RSTC2  
LOF_LMN  
OOF_ECNT  
Receive RST Configuration 1  
Receive RST Configuration 2  
Loss of Frame L, M, and N Configuration  
Out Of Frame Event Counter  
R/W  
R/W  
R/W  
RO  
92  
93  
93  
94  
94  
47H  
41–42H  
44–43H  
46–45H  
B1_ERRCNT  
B1 Error Counter  
RO  
Receive Regenerator and Multiplexer Section Termination Registers  
0EH  
J0_RSTR_C  
J0 Expected String Control  
R/W  
95  
95  
96  
96  
96  
96  
97  
97  
0FH  
J0_RSTR_D  
WINSZ_SB2  
CWIN_SB2  
E#_EXCWIN  
WINSZ_C2  
CWIN_CB2  
E#_NEXCWIN  
J0 Expected String Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1C–1BH  
1DH  
Window Size for Setting ExcB2ErrSt  
Consecutive Windows for Setting ExcB2ErrSt  
Number of Errs/Win for Excessively Errored Window  
Window Size for Clearing ExcB2ErrSt  
Consecutive Windows for Clearing ExcB2ErrSt  
1EH  
16–15H  
17H  
18H  
Number of Errs/Win for Non-Excessively Errored Win-  
dow  
11–10H  
14–12H  
0A–09H  
0D–0BH  
00H  
B2_BLKCNT  
B2_BIPCNT  
MR_BLKCNT  
MR_BIPCNT  
R_K1  
B2 Block Error Counter  
B2 BIP Error Counter  
MST REI Block Error Counter  
MST REI BIP Error Counter  
Received K1 byte  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
97  
97  
98  
98  
98  
98  
98  
99  
99  
99  
01H  
R_K2  
Received K2 Byte  
02H  
R_S1  
Received S1 byte  
03H  
R_NU1_8  
R_NU1_9  
R_NU2_8  
Received Nu1_8 byte  
Received Nu1_9 byte  
Received Nu2_8 byte  
04H  
05H  
85  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 28: Register Address Map (Sheet 2 of 4)  
Address  
06H  
Mnemonic  
Register Name  
Received Nu2_9 byte  
Type  
Page #  
R_NU2_9  
R_NU9_8  
R_NU9_9  
RO  
RO  
RO  
99  
99  
99  
07H  
08H  
Received Nu9_8 byte  
Received Nu9_9 byte  
Receive Multiplexer Section Protection Registers  
20H  
21H  
22H  
23H  
R_MSP_C  
Receive MSP Configuration  
R/W  
R/W  
RO  
100  
100  
101  
101  
R_MSP_OP  
R_PROTK1  
R_PROTK2  
Receive MSP Operational  
Received K1 byte on Protection Bus from Slave  
Received K2 byte on Protection Bus from Slave  
RO  
Receive Multiplexer Section Adaptation Registers  
90H  
R_MSA_C  
Receive MSA Configuration  
R/W  
RO  
101  
102  
102  
92–91H  
94–93H  
R_AU_NCNT  
R_AU_PCNT  
Receive Negative AU Pointer Justification Event Counter  
Receive Positive AU Pointer Justification Event Counter  
RO  
Receive HighOrder Path Termination Registers  
80H  
R_HPT_C1  
R_HPT_C2  
J1_RSTR_C  
J1_RSTR_D  
EXP_C2  
Receive HPT Configuration 1  
Receive HPT Configuration 2  
J1 Expected String Control  
J1 Expected String Data  
Expected C2 byte  
R/W  
R/W  
WO  
R/W  
R/W  
RO  
103  
104  
105  
105  
105  
105  
105  
106  
106  
106  
81H  
8AH  
8BH  
82H  
83H  
R_C2  
Received C2 byte  
84H  
R_K3  
Received K3 byte  
RO  
85H  
R_HPT_RDI  
B3_ECNT  
Received HPT RDI Bits  
B3 Error Event Counter  
RO  
87–86H  
89–88H  
RO  
HPTREI_CNT  
HPT REI Counter  
RO  
Transmit Regenerator and Multiplexer Section Termination Registers  
30H  
1AH  
60H  
61H  
62H  
63H  
3AH  
3BH  
T_RMST_OP1  
T_RMST_OP2  
T_SC1_SOH  
T_SC2_SOH  
T_SC3_SOH  
T_SC4_SOH  
J0_TSTR_C  
JO_TSTR_D  
Transmit RMST Operational 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
107  
108  
109  
110  
111  
112  
113  
114  
Transmit RMST Operational 2  
Transmit Source Configuration 1 for SOH bytes  
Transmit Source Configuration 2 for SOH bytes  
Transmit Source Configuration 3 for SOH bytes  
Transmit Source Configuration 4 for SOH bytes  
J0 Transmit String Control  
J0 Transmit String Data  
86  
SXT6051 Microprocessor Interface & Register Description  
Table 28: Register Address Map (Sheet 3 of 4)  
Address  
31H  
Mnemonic  
Register Name  
Type  
Page #  
MP_TNU1_8  
MP_TNU1_9  
MP_TNU2_8  
MP_TNU2_9  
MP_TNU9_8  
MP_TNU9_9  
MP_TK1  
Microprocessor Provided Transmit Nu1_8 Byte  
Microprocessor Provided Transmit Nu1_9 Byte  
Microprocessor Provided Transmit Nu2_8 Byte  
Microprocessor Provided Transmit Nu2_9 Byte  
Microprocessor Provided Transmit Nu9_8 Byte  
Microprocessor Provided Transmit Nu9_9 Byte  
Microprocessor Provided Transmit K1 Byte  
Microprocessor Provided Transmit K2 Byte  
Microprocessor Provided Transmit S1 Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
114  
114  
114  
114  
115  
115  
115  
115  
115  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
MP_TK2  
MP_TS1  
Transmit Multiplexer Section Adaptation Registers  
E3–E2H  
E5–E4H  
T_AU_NCNT  
Transmit Negative AU Pointer Justification Event  
Counter  
RO  
RO  
116  
116  
T_AU_PCNT  
Transmit Positive AU Pointer Justification Event Counter  
Transmit High Order Path Termination Registers  
70H  
71H  
72H  
73H  
75H  
76H  
T_SC_HPOH  
T_HPT_C  
Transmit Source Configuration for HPOH bytes  
Transmit HPT Configuration  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
117  
118  
119  
119  
120  
120  
MP_TC2  
Microprocessor Provided Transmit C2 Byte  
Microprocessor Provided Transmit K3 Byte  
J1 Transmit String Control  
MP_TK3  
J1_TSTR_C  
J1_TSTR_D  
J1 Transmit String Data  
Interrupt Source Registers  
A0H  
A1H  
IS_RG  
Receive Regenerator Section Interrupt Source  
RO  
RO  
121  
121  
IS_RGMUX  
Receive Regenerator and Multiplexer Section Interrupt  
Source  
A2H  
A3H  
A4H  
A5H  
A6H  
E0H  
D1H  
IS_MUX  
IS_PROT  
IS_A_HPT  
IS_HPT  
Receive Multiplexer Section Interrupt Source  
Receive Protection Section Interrupt Source  
Receive Adaptation and HPT Interrupt Source  
Receive HPT Interrupt Source  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
122  
122  
123  
123  
124  
124  
125  
IS_RETIME  
IS_XMT  
Receive Retiming Interrupt Source  
Transmit Interrupt Source  
IS_GLOB  
Global Interrupt Source  
87  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 28: Register Address Map (Sheet 4 of 4)  
Address  
Mnemonic  
Register Name  
Type  
Page #  
Interrupt Enable Registers  
B0H  
IE_RG  
Receive Regenerator Section Interrupt Enable  
R/W  
R/W  
126  
126  
B1H  
IE_RGMUX  
Receive Regenerator and Multiplexer Section Interrupt  
Enable  
B2H  
B3H  
B4H  
B5H  
B6H  
E1H  
IE_MUX  
IE_PROT  
IE_A_HPT  
IE_HPT  
Receive Multiplexer Section Interrupt Enable  
Receive Protection Section Interrupt Enable  
Receive Adaptation and HPT Interrupt Enable  
Receive HPT Interrupt Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
126  
126  
126  
126  
126  
126  
IE_RETIME  
IE_XMT  
Receive Retiming Interrupt Enable  
Transmit Interrupt Enable  
Status Registers  
C0H  
C1H  
C3H  
C4H  
C5H  
D0H  
S_RG  
Receive Regenerator Section Status  
Receive Regenerator and Multiplexer Section Status  
Receive Protection Section Status  
Receive Adaptation and HPT Status  
Receive HPT Status  
RO  
RO  
RO  
RO  
RO  
RO  
127  
127  
128  
128  
129  
130  
S_RGMUX  
S_PROT  
S_A_HPT  
S_HPT  
S_AIS_PROT  
Receive AIS and Protection Switch Status  
88  
SXT6051 Microprocessor Interface & Register Description  
Global Registers  
OCR1—Operational Configuration 1 (50H)  
Configures global configuration parameters for chip operation.  
Bit  
Name  
Formless  
Description  
Type  
Default  
7
Select I/O frame data stream interface. Must be set to 0 in  
R/W  
0
STM-1 mode.  
0 = Serial  
1 = Parallel  
6
5
LnCodeSel  
StmMode  
Line interface coding (serial interface only).  
R/W  
RO  
0
X
0 = B3ZS  
1 = NRZ  
STMMODE pin input setting.  
0 = STM-0  
1 = STM-1  
4:2  
OpCnfg<2:0>  
The OHT chip can be configured to have the following  
operational modes:  
R/W  
100  
000 = Repeater  
001 = Add/Drop Multiplexor (ADM) - No Protection  
010 = 1+1 ADM Protection Main/Master  
011 = 1+1 ADM Protection Slave  
100 = Terminal - No Protection  
101 = 1+1 Terminal Protection Main/Master  
110 = 1+1 Terminal Protection Slave  
1:0  
ScrmblCnfg<1:0>  
If input pin SCRAMSEL is 0 these indicate the scrambler  
length. When SCRAMSEL is 1 the scrambler is disabled.  
R/W  
10  
00 = Disable scrambler  
01 = 2e13  
10 = 2e7  
11 = 2e11  
89  
SXT6051 STM-1/0 SDH Overhead Terminator  
OCR2—Operational Configuration 2 (51H)  
Bit  
Name  
MasIntEn  
Description  
Type  
Default  
7
This bit enables/disables the chip interrupt pin  
0 = Disable interrupt pin  
R/W  
0
1 = Activate interrupt pin when there are unmasked active  
interrupts  
6
AlmUpdDsbl  
This bit enables/disables updates to status registers when a  
status alarm in the same register has an active interrupt. This  
pin is used during interrupt servicing. In the interrupt service  
routine the software should 1) set this bit, 2) access status bits  
and 3) clear this bit. This guarantees that interrupts due to sta-  
tus changes will not be missed.  
R/W  
0
0 = Enable status updates when alarm interrupt is active  
1 = Disable status updates when alarm interrupt is active  
5
BytChgUpdDsbl This bit enables/disables received byte register updates when a  
register’s byte change interrupt is active. This bit is generally  
used for diagnostics. For example, if the received K2 byte  
were rapidly toggling the values that it is toggling between  
could be captured by setting this bit.  
R/W  
0
0 = Enable received byte register updates when byte change  
interrupt is active  
1 = Disable received byte register updates when byte change  
interrupt is active  
4
CntrTest  
This bit should always be set to 0 during normal operation. It  
allows faster testing of the overflow interrupt functionality  
during simulation.  
R/W  
0
0 = Normal operation  
1 = Set overflow count: B1 counter 7; B2 bit counter 31; B2  
block counter 3; M1 REI bit counter 31; M1 REI block  
counter 3; B3 bit/ block counters 7; G1 REI bit/block  
counters 7  
3
RcvRetimDsbl  
Allows re-timing to be done on the receive side (re-timing is  
always done on the transmit side). If re-timing is done on the  
receive side (i.e., RcvRetimDsbl = 0) the MSOH & RSOH  
bytes will not be passed through. They are regenerated on the  
transmit side. This is used when system requirements dictate  
that the receive side telecom bus timing be synchronous with a  
local clock.  
R/W  
1
0 = Enable receive side re-timing.  
1 = Disable receive side re-timing.  
90  
SXT6051 Microprocessor Interface & Register Description  
Bit  
Name  
IgnoreJ0  
Description  
Type  
Default  
2
Ignore J0 bytes. The receive J0 string cannot result in TIM  
(Trace Identifier Mismatches) or J1 CRC alarms.  
R/W  
0
0 = Ignore J0 byte  
1 = Monitor J0 bytes.  
Reserved  
1
0
Reserved  
IOBusEn  
This bit allows the enabling/disabling of the all chip I/O bus-  
ses except the microprocessor interface. This is useful when  
changing the configuration bits OpCnfg<2:0> in register 50H.  
If the I/O busses are not disabled during configuration  
changes, the chip could be damaged.  
R/W  
0
0 = Disable I/O busses  
1 = Enable I/O busses  
CHIP_ID—Chip ID Number (52H)  
This register can only be read. It is used to identify the version of the chip.  
Bit  
Name  
Description  
Type  
Default  
7:0  
ChipID<7:0>  
Chip Identification: This field contains the Chip Identifica-  
RO  
01H  
tion value.  
BUF_ACNTS—Buffer All Counters (54H)  
A write to this location causes all of the counters to be loaded into buffers and then cleared. The contents of an individual  
counter buffer can then be read at the addresses specified for the counters in this document. Counters can be individually  
buffered by writing to the specified MSByte of the counter of interest.  
Bit  
Name  
Description  
Type  
Default  
7:0  
BfrAllCntrs<7:0>  
WO  
XXH  
91  
SXT6051 STM-1/0 SDH Overhead Terminator  
Receive Regenerator Section Termination Registers  
R_RSTC1—Receive RST Configuration 1 (40H)  
Configures Regenerator Section Termination parameters of the chip  
Bit  
Name  
Description  
Type  
Default  
7
RstClkLosEn  
Enable/Disable automatic switching to blue clock during Loss of  
Signal condition.  
R/W  
1
0 = Disable automatic clock switch because of LOS  
1 = Enable automatic clock switch because of LOS  
6
5
RstAisLofEn  
RstAisLosEn  
RstAisFrc  
Enable/Disable automatic AIS generation from the RST section  
to the MST section because of a Loss of Frame condition.  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0 = Disable AIS generation during LOF  
1 = Enable AIS generation during LOF  
Enable/Disable automatic AIS generation from the RST section  
to the MST section because of a Loss of Signal condition.  
0 = Disable AIS generation during LOS  
1 = Enable AIS generation during LOS  
4
Force AIS generation from the RST section to the MST section  
via software.  
0 = Disable  
1 = Enable  
3
RstAisTimEn  
LosItg<1:0>  
Enable/Disable automatic AIS generation from the RST section  
to the MST section because of an active J0MsMtchSt.  
0 = Disable AIS generation during active J0MsMtchSt  
1 = Enable AIS generation during active J0MsMtchSt  
This field configures LOS alarm filtering.  
0X =No filtering  
2:1  
10 = Weak LOS filtering. When IOFrmSel selects Serial, the  
LOS condition must be maintained for a total of 128 clocks;  
when set to Parallel LOS must be present for 16 clocks.  
11 = Strong LOS filtering. When IOFrmSel selects Serial the  
LOS condition must be maintained for a total of 4096  
clocks; when set to Parallel LOS must be present for 512  
clocks.  
92  
SXT6051 Microprocessor Interface & Register Description  
Bit  
Name  
Description  
Type  
Default  
0
CnfgFrmAcq  
Modifies the frame acquisition algorithm as it relates to the NDF  
bits. Only relevant in STM-0. STM-1 mode always uses Normal  
Acquisition.  
R/W  
0
0 = Normal Acquisition: During acquisition check 2 consecu-  
tive frames for identical NDF and correct frame word. De-  
synchronization caused by 4 consecutive incorrect frame  
words.  
1 = Robust Acquisition: During acquisition check 5 consecu-  
tive frames for identical NDF while also checking for 2 con-  
secutive correct frame words. De-synchronization caused  
by 4 consecutive incorrect frame words OR 8 consecutive  
frames not having identical NDF bits.  
R_RSTC2—Receive RST Configuration 2 (47H)  
Configures Regenerator Section Termination parameters of the chip  
Bit  
Name  
Description  
Type  
Default  
7:1  
0
Reserved  
X
0
CnfgB1Cntr  
Configure B1 error counter to be updated using bit errors or  
block errors  
R/W  
0 = Bit error  
1 = Block errors  
LOF_LMN—Loss of Frame L, M, & N Configuration (41–42H)  
41H=Bits<15:8>, 42H=Bits<7:0> (Byte access only)  
This register sets the Loss Of Frame detection parameters. Address 41H is the upper byte and 42H the lower byte.  
Bit  
Name  
Description  
Type  
Default  
15  
Reserved  
L<4:0>  
14:10  
After an OOF event is observed (indicated by OofSt = C0H<0> = 1),  
this represents the L parameter. L+1 is the number of frames having  
OofSt = 1 status that result in entering the LOF state (indicated by an  
LofSt = C0H<1> = 1).  
R/W  
00000  
9:5  
4:0  
M<4:0>  
N<4:0>  
After an OOF event is observed (indicated by OofSt = C0H<0> = 1),  
this represents the M parameter. M+1 is the number of frames having  
OofSt = 0 that result in re-entering the NORM state before entering  
the LOF state.  
R/W  
R/W  
00000  
00000  
After an LOF event is observed (indicated by an LofSt = C0H<1> =  
1), this represents the N parameter. N+1 is the number of frames hav-  
ing OofSt = 0 that result in re-entering the NORM state from the LOF  
state (indicated by an LofSt = C0H<1> = 0).  
93  
SXT6051 STM-1/0 SDH Overhead Terminator  
OOF_ECNT—Out Of Frame Event Counter (44–43H)  
44H=Bits<15:8>, 43H=Bits<7:0> (Byte access only)  
This counter increments each time an OOF error event is detected. A write to the MSB of the counter (44H) causes the  
entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Reserved  
OofCnt<12:0>  
Description  
Type  
Default  
15:13  
12:0  
RO  
RO  
This field indicates the OOF error count value.  
00H  
B1_ERRCNT—B1 Error Counter (46–45H)  
46H=Bits<15:8>, 45H=Bits<7:0> (Byte access only)  
This counter increments each time a B1 error event is detected. A write to the MSB of the counter (46H) causes the entire  
counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Description  
Type  
Default  
15:0  
B1Cnt<15:0>  
This field indicates the B1 error count value.  
RO  
00H  
94  
Microprocessor Interface & Register Description  
1. Set ExpcJ0Acc bit to 1. This allows the microprocessor  
Receive Regenerator and  
Multiplexer Section  
Termination Registers  
to be in control of incrementing the J0 string pointer.  
2. Reset the string pointer. A 0 to 1 transition in the  
RstExpcJ0StrgPntr bit does this. This pointer  
identifies which byte in the J0 string will be accessed.  
Resetting it means that the first byte of the string will  
be accessed. It is automatically incremented when a  
read or write accesses the string data register.  
J0_RSTR_C—J0 Expected String  
Control (0EH)  
These registers allow the configuring of the expected J0  
string received in the incoming SOH. This is outlined  
below:  
3. Configure (write) the J0 string that is to be transmitted  
into the J0 expected string data register 0FH.  
4. Reset the string pointer and read back the configured  
string value and verify.  
5. Reset the string pointer and set ExpcJ0Acc to 0.  
Bit  
Name  
Reserved  
ExpcJ0Acc  
Description  
Type  
Default  
7:2  
1
This bit allows microprocessor read/write operations to  
be in control of incrementing the string pointer. This  
functionality is normally used only during initializa-  
tion, to program/verify the string value configured by  
the microprocessor.  
WO  
0
0 = Normal operation. Internal hardware process that  
is comparing the configured J1 string with the  
incoming J1 string increments the string pointer.  
1 = The microprocessor read/write operations incre-  
ment the string pointer.  
Bit  
Name  
RstExpcJ0StrgPntr  
Description  
Type  
Default  
0
A transition from 0 to 1 in this bit resets the J1 expected  
string pointer.  
WO  
0
J0_RSTR_D—J0 Expected String Data (0FH)  
Bit  
Name  
Description  
Type  
Default  
7:0  
ExpcJ0StrgData<7:0>  
Bits <7:0> represents the data value.  
R/W  
00H  
95  
SXT6051 STM-1/0 SDH Overhead Terminator  
WINSZ_SB2—Window Size for Setting ExcB2ErrSt (1C–1BH)  
1CH=Bits<15:8>, 1BH=Bits<7:0> (Byte access only)  
Bit  
Name  
Description  
Type  
Default  
15:11  
10:0  
Reserved  
ExcB2SetWinSz<10:0>  
R/W  
R/W  
Number of frames per window =  
8*(ExcB2OnWinSz<10:0>+1)  
00H  
CWIN_SB2—Consecutive Windows for Setting ExcB2ErrSt (1DH)  
Bit  
Name  
Description  
Type  
Default  
7
Reserved  
ExcB2SetWinNum<6:0>  
6:0  
Number of consecutive windows that must be  
excessively errored in order to set the ExcB2ErrSt  
bit (register C1H). Note: If ExcB2ErrSt is clear and  
this register is set to zero, ExcB2ErrSt will never  
be set.  
R/W  
00 0011  
E#_EXCWIN—Number of Errs/Win for Excessively Errored Window (1EH)  
This register configures the minimum number of errors that a window must contain to be considered an excessively errored  
window. Note: Setting this register to zero will cause every window to be considered an excessively errored window.  
Bit  
Name  
Description  
Type  
Default  
7:0  
ExcB2Min<7:0>  
R/W  
2BH  
WINSZ_C2—Window Size for Clearing ExcB2ErrSt (16–15H)  
16H=Bits<15:8>, 15H=Bits<7:0> (Byte access only)  
Bit  
Name  
Description  
Type  
Default  
15:11  
10:0  
Reserved  
ExcB2ClrWinSz<10:0>  
R/W  
R/W  
Number of frames per window =  
8*(ExcB2OnWinSz<10:0>+1).  
00H  
96  
SXT6051 Microprocessor Interface & Register Description  
CWIN_CB2—Consecutive Windows for Clearing ExcB2ErrSt (17H)  
Bit  
Name  
Label  
Type  
Default  
7
Reserved  
ExcB2ClrWinNum<6:0>  
6:0  
Number of consecutive non-excessively errored  
windows needed for the excessive error condi-  
tion to be cleared. Note: If the ExcB2ErrSt bit  
(register C1H) is set and this register is set to  
zero, bit ExcB2ErrSt will never be cleared.  
R/W  
07H  
E#_NEXCWIN—Number of Errs/Win for Non-Excessively Errored Window  
(18H)  
This register configures the maximum number of errors that a window can contain and be considered a NonExcessively  
Errored window. Note: Setting this register to zero will cause every window to be considered a non-excessively errored  
window.  
Bit  
Name  
Description  
Type  
R/W  
Default  
7:0  
ExcB2Max<7:0>  
08H  
B2_BLKCNT—B2 Block Error Counter (11–10H)  
11H=Bits<15:8>, 10H=Bits<7:0> (Byte access only)  
This counter increments each time a B2 block error event is detected. A write to the MSByte of the counter (register 11H)  
causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Reserved  
B2BlkCnt<12:0>  
Description  
Type  
Default  
15:13  
12:0  
B2 Block Error Count Value.  
RO  
00H  
B2_BIPCNT—B2 BIP Error Counter (14–12H)  
14H=Bits<23:16>, 13H=Bits<15:8>, 12H=Bits<7:0> (Byte access only)  
This counter increments each time a B2 BIP error event is detected. A write to the MSByte of the counter (register 14H)  
causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Reserved  
B2BipCnt<17:0>  
Description  
Type  
Default  
23:18  
17:0  
B2 BIP Error Count Value.  
RO  
00H  
97  
SXT6051 STM-1/0 SDH Overhead Terminator  
MR_BLKCNT—MST REI Block Error Counter (0A–09H)  
0AH=Bits<15:8>, 09H=Bits<7:0> (Byte reads only)  
Every frame for which the value of MST REI bits (M1<7:0>) is non-zero, this counter is incremented. A write to the  
MSByte of the counter (register 0AH) causes the entire counter to be loaded into a buffer and then cleared. The contents  
of the buffer can then be read.  
Bit  
Name  
Reserved  
MstReiBlkCnt<12:0>  
Description  
Type  
Default  
15:13  
12:0  
RO  
00H  
MR_BIPCNT—MST REI BIP Error Counter (0D–0BH)  
0DH=Bits<23:16>, 0CH=Bits<15:8>, 0BH=Bits<7:0> (Byte access only)  
Every frame that is the value of MST REI bits (M1<7:0>) is added to this counter. A write to the MSByte of the counter  
(register 0DH) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be  
read.  
Bit  
Name  
Reserved  
MstReiBipCnt<17:0>  
Description  
Type  
Default  
23:18  
12:0  
RO  
00H  
R_K1—Received K1 byte (00H)  
Value of the last 3 consecutively received K1 bytes having the same setting.  
Bit  
Name  
Description  
Type  
Default  
7:0  
RcvK1<7:0>  
RO  
00H  
R_K2—Received K2 Byte (01H)  
Value of the last 3 consecutively received K2 bytes having the same setting.  
Bit  
Name  
Description  
Type  
Default  
7:0  
RcvK2<7:0>  
RO  
00H  
R_S1—Received S1 byte (02H)  
Value of the last 3 consecutively received S1 bytes having the same setting.  
Bit  
Name  
Description  
Type  
Default  
7:0  
RcvS1<7:0>  
RO  
00H  
98  
SXT6051 Microprocessor Interface & Register Description  
R_NU1_8—Received Nu1_8 byte (03H)  
National Use byte (see Figure 10) located in row 1 column 8 in the RSOH (STM-1 only).  
Bit  
Name  
Description  
Type  
Default  
7:0  
Nu1_8<7:0>  
RO  
XXH  
R_NU1_9—Received Nu1_9 byte (04H)  
National Use byte (see Figure 10) located in row 1 column 9 in the RSOH (STM-1 only).  
Bit  
Name  
Description  
Type  
Default  
7:0  
Nu1_9<7:0>  
RO  
XXH  
R_NU2_8—Received Nu2_8 byte (05H)  
National Use byte (see Figure 10) located in row 2 column 8 in the RSOH (STM-1 only).  
Bit  
Name  
Description  
Type  
Default  
7:0  
Nu2_8<7:0>  
RO  
XXH  
R_NU2__9—Received Nu2_9 byte (06H)  
National Use byte (see Figure 10) located in row 2 column 9 in the RSOH (STM-1 only).  
Bit  
Name  
Description  
Type  
Default  
7:0  
Nu2_9<7:0>  
RO  
XXH  
R_NU9_8—Received Nu9_8 byte (07H)  
National Use byte (see Figure 10) located in row 9 column 8 in the MSOH (STM-1 only).  
Bit  
Name  
Description  
Type  
Default  
7:0  
Nu9_8<7:0>  
RO  
XXH  
R_NU9_9—Received Nu9_9 byte (08H)  
National Use byte (see Figure 10) located in row 9 column 9 in the MSOH (STM-1 only).  
Bit  
Name  
Description  
Type  
Default  
7:0  
Nu9_9<7:0>  
RO  
XXH  
99  
SXT6051 STM-1/0 SDH Overhead Terminator  
Receive Multiplexer Section Protection Registers  
R_MSP_C—Receive MSP Configuration (20H)  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:3  
2
AisOnExcB2En  
Enable the insertion of AIS from MST section towards MSA  
section and generation of SF when ExcB2ErrSt bit (C1H<3>)  
is set.  
R/W  
1
0 = Active ExcB2ErrSt will not cause AIS to be transmitted.  
1 = Active ExcB2ErrSt will cause AIS to be transmitted.  
1
0
MstAisEn  
Enable/Disable automatic AIS generation from the MST sec-  
tion to the MSA section (see GenMstAisSt bit (D0H register  
<bit 6>) for AIS generation logic).  
R/W  
R/W  
1
0
0 = Disable  
1 = Enable  
MstAisFrc  
Force AIS generation from the MST section to the MSA sec-  
tion via software.  
0 = Disable  
1 = Enable  
R_MSP_OP—Receive MSP Operational (21H)  
Bit  
Name  
Description  
Type  
Default  
7:2  
1
Reserved  
SigDegrade  
For both MASTER and SLAVE configurations this value is  
reflected at the SD output pin. When configured as a SLAVE the  
value is also reflected at the DMSPPSD output pin. It is updated  
by the microprocessor.  
R/W  
0
0 = No defect  
1 = Defect  
0
ProtSw  
Protection switch setting. When configured as a MASTER the  
value of this bit is reflected in ProtSwSt (see D0H<0>). When  
configured as a SLAVE this bit has no action.  
R/W  
1
0 = Protect  
1 = No Protect  
100  
SXT6051 Microprocessor Interface & Register Description  
R_PROTK1—Received K1 byte on Protection Bus from Slave (22H)  
.
Bit  
Description  
Type  
Default  
7:0  
ProtK1<7:0>  
Bits <7:0> represents the K1 byte received on the protection bus.  
RO  
00H  
R_PROTK2—Received K2 byte on Protection Bus from Slave (23H)  
.
Bit  
Description  
Type  
Default  
7:0  
ProtK2<7:0>  
Bits <7:0> represents the K2 byte received on the protection bus.  
RO  
00H  
Receive Multiplexer Section Adaptation Registers  
R_MSA_C—Receive MSA Configuration (90H)  
Bit  
Description  
Type  
Default  
7:3  
2
Reserved  
RcvMsaAisEn  
Enable/Disable automatic AIS generation from the MSA sec-  
tion to the HPT section. (see GenMsaAisSt bit (D0H<bit 5>)  
for AIS generation logic).  
R/W  
0
0 = Disable  
1 =Enable  
1
0
RcvMsaAisFrc  
AuPntrSSEn  
Force AIS generation from the MSA section to the HPT sec-  
tion via software.  
R/W  
R/W  
0
0
0 = Normal operation  
1 = Force  
Enable consideration of AU pointer SS bits during pointer  
processing. If enabled the SS bits must be set to “10” (binary)  
or a LOP (C4H<7>) alarm will be generated.  
0 = Disable  
1 = Enable  
101  
SXT6051 STM-1/0 SDH Overhead Terminator  
R_AU_NCNT—Receive Negative AU Pointer Justification Event Counter  
(92–91H)  
This counter increments each time a negative pointer justification on the receive side is detected in the H1: H2 bytes of the  
administrative unit payload. A write to the MSByte of the counter (register 92H) causes the entire counter to be loaded into  
a buffer and then cleared. The contents of the buffer can then be read.  
Note  
If receive re-timing is enabled (RcvRetimDsbl = 51<3> = 0) and a pointer decrement is generated by the re-timing  
function, this counter will not be incremented.  
.
Bit  
Name  
Description  
Type  
Default  
15:11  
10:0  
Reserved  
RcvAUNegCnt<10:0>  
Bits <10:0> represent the count value.  
RO  
00H  
R_AU_PCNTReceive Positive AU Pointer Justification Event Counter  
(94–93H)  
This counter increments each time a negative pointer justification on the receive side is detected in the H1:H2 bytes of the  
administrative unit payload. A write to the MSByte of the counter (register 94H) causes the entire counter to be loaded into  
a buffer and then cleared. The contents of the buffer can then be read.  
Note  
If re-timing is enabled (RcvRetimDsbl = 51H<3> = 0) and a pointer increment is generated by the re-timing  
function, this counter will not be incremented.  
.
Bit  
Name  
Reserved  
RcvAUPosCnt<10:0>  
Description  
Type  
Default  
15:11  
10:0  
Bits <10:0> represent the count value.  
RO  
00H  
102  
SXT6051 Microprocessor Interface & Register Description  
Receive HighOrder Path Termination Registers  
R_HPT_C1—Receive HPT Configuration 1 Register (80H)  
.
Bit  
Name  
Description  
Type  
Default  
7
HptRdiDetCnt  
This bit configures the number of received G1 bytes that  
must have the same value in the RDI bits for the HptRdiSt  
bit (C5H<bit 3>) to be updated. The received G1 RDI bits  
can be retrieved via register 85H.  
R/W  
0
0 = 3  
1 = 5  
6
C2MsMtchCnt  
Configures the number of mismatches, between the RcvC2  
byte (83H) and the ExpcC2 byte (82H), needed for the  
HptSlmSt bit (C5H<bit 4>) to be updated.  
R/W  
0
0 = 3 mismatches  
1 = 5 mismatches  
Set the J1 string length  
0 = 16 bytes  
5
4
RcvJ1StrgLen  
RcvHptAisFrc  
R/W  
R/W  
0
0
1 = 64 bytes  
Force AIS generation from the HPT section to the HPA sec-  
tion via software  
0 = Normal Operation  
1 = Force  
3
RcvHptAisEnbl  
Enable/Disable automatic AIS generation from the HPT  
section to the HPA section. (See GenHptAisSt bit (D0H<bit  
4>) for AIS generation logic).  
R/W  
0
0 = Disable  
1 = Enable  
2
1
0
B3CntrCnfg  
HptReiCntrCnfg  
Reserved  
Configure B3 error counter to be updated using bit errors or  
block errors.  
R/W  
R/W  
0
0
0 = Bit error  
1 = Block errors  
Configure HPT REI error counter (88H and 89H) to be  
updated using bit errors or block errors.  
0 = Bit error  
1 = Block errors  
103  
SXT6051 STM-1/0 SDH Overhead Terminator  
R_HPT_C2—Receive HPT Configuration 2 Register (81H)  
.
Bit  
Name  
Reserved  
Description  
Type  
Default  
7
6
HptRdiOnSlmEn  
Enable the insertion of HPT RDI on active HptSlmSt  
R/W  
0
(C5H<bit 4>) alarm.  
0 = Active HptSlmSt alarm will not cause insertion of  
RDI bits in the transmitted G1 byte.  
1 = Active HptSlmSt alarm will cause insertion of RDI  
bits in the transmitted G1 byte.  
5
4
RcvTbJ0J1Cnfg  
Configures DTBJ0J1EN output.  
R/W  
R/W  
0
0
0 = Single pulse on J1 every frame.  
1 = Double pulse on J1 every 4 frames, indicating mul-  
tiframe beginning (H4<1:0> = “00”). Other 3  
frames only a single pulse.  
HptRdiOnUnEqpEn  
Enable the insertion of HPT RDI on active HptUnEqpSt  
(C5H<bit 5>) alarm.  
0 = Active HptUnEqpSt alarm will not cause update of  
transmitted G1 RDI bits  
1 = Active HptUnEqpSt alarm will cause update of  
transmitted G1 RDI bits.  
3
2
B3UnEqpCnfg  
Configures behavior of HptUnEqpSt alarm  
(C5H<bit 5>) generation based on the B3 byte.  
R/W  
R/W  
R/W  
0
0
0 = Ignore B3 when generating HptUnEqpSt alarm  
1= No error detected in received B3 for 5 consecutive  
frames is necessary for HptUnEqpSt alarm gener-  
ation.  
N1UnEqpCnfg  
Configures behavior of HptUnEqpSt alarm  
(C5H<bit 5>) alarm generation based on the N1 byte.  
0 = Ignore N1 when generating HptUnEqpSt alarm.  
1 = Received N1 with value zero for 5 consecutive  
frames is necessary for HptUnEqpSt alarm gener-  
ation.  
1:0  
J1UnEqpCnfg<1:0>  
These bits configure the behavior of HptUnEqpSt  
00  
(C5H<bit 5>) alarm generation based on the J1 byte.  
00 = Ignore J1 when generating HptUnEqpSt alarm.  
10 = Receive J1 with value zero for 5 consecutive  
frames is necessary for HptUnEqpSt alarm gener-  
ation.  
104  
SXT6051 Microprocessor Interface & Register Description  
J1_RSTR_C—J1 Expected String Control Register (8AH)  
These registers allow the configuring of the expected J1string (trace identifier) received in incoming HPOH. See the  
J0_RSTR_C (0EH) Register description for the configuration procedure.  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:2  
1
ExpcJ1Acc  
This bit allows microprocessor read/write operations to  
be in control of incrementing the string pointer. This func-  
tionality is normally used only during initialization, to  
verify the string value configured by the microprocessor.  
WO  
1
0 = Normal operation. Internal hardware process that  
compares the configured J1 string with the incoming  
J1 string and increments the string pointer.  
1 = The microprocessor read/write operations increment  
the string pointer.  
0
RstExpcJ1StrgPntr  
A transition from 0 to 1 in this bit resets the J1 expected  
string pointer.  
WO  
0
J1_RSTR_D—J1 Expected String Data Register (8BH)  
.
Bit  
Name  
Description  
Type  
Default  
7:0  
ExpcJ1StrgData<7:0>  
Bits <7:0> correspond to Data<7:0>, respectively.  
R/W  
00H  
EXP_C2—Expected C2 byte Register (82H)  
The contents of this register are the expected value of the received signal label (C2) byte.  
Bit  
Name  
Description  
Type  
Default  
7:0  
ExpcC2<7:0>  
Bits <7:0> correspond to ExpcC2<7:0>, respectively.  
R/W  
00H  
R_C2—Received C2 byte Register (83H)  
The contents of this register are the received signal label (C2) byte.  
Bit  
Name  
Description  
Type  
Default  
7:0  
RcvC2<7:0>  
Bits <7:0> correspond to RcvC2<7:0>, respectively.  
RO  
XXH  
R_K3—Received K3 byte Register (84H)  
Setting of the last 3 consecutively received K3 bytes having the same value.  
Bit  
Name  
Description  
Type  
Default  
7:0  
RcvK2<7:0>  
Bits <7:0> correspond to RcvK2<7:0>, respectively.  
RO  
XXH  
105  
SXT6051 STM-1/0 SDH Overhead Terminator  
R_HPT_RDI—Received HPT RDI Bits Register (85H)  
The contents of this register are the received RDI (G1<3:1>) and spare bits (G1<bit 0>) from the received G1 byte.  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:4  
3:1  
0
HptRcvRdi<2:0>  
HptRcvSpBit  
Bits <3:1> correspond to G1<3:1>, respectively.  
G1 <bit 0>  
RO  
RO  
X
X
B3_ECNT—B3 Error Event Counter (87–86H)  
87H=Bits<15:8>, 86H=Bits<7:0> (Byte access only)  
This counter is configured via B3CntrCnfg (registers 0x80) to count B3 error events. A write to the MSByte of the counter  
(register 87H) causes the entire counter to be loaded into a buffer and then cleared. The contents of the buffer can then be  
read.  
Bit  
Name  
Description  
Type  
Default  
15:0  
B3Cnt<15:0>  
Bits <15:0> correspond to B3CNT<15:0>, respectively.  
RO  
0000H  
HPTREI_CNT—HPT REI Counter (89–88H)  
89H=Bits<15:8>, 88H=Bits<7:0> (Byte access only)  
If counting HPT REI bit errors (HptReiCntrCnfg = 80H<bit 1> = 0), each frame’s HPT REI bits (G1<7:4>) are added to  
this counter. If counting HPT REI block errors (HptReiCntrCnfg = 80H<bit 1> = 1), for each frame in which the value of  
the REI bits is non-zero, this counter is incremented. A write to the MSByte of the counter (register 89H) causes the entire  
counter to be loaded into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Description  
Type  
Default  
15:0  
HptReiCnt<15:0>  
Bits <15:0> correspond to HptReiCnt<15:0>, respectively.  
RO  
0000H  
106  
SXT6051 Microprocessor Interface & Register Description  
Transmit Regenerator and Multiplexer Section Termination  
Registers  
T_RMST_OP1—Transmit RMST Operational 1 Register (30H)  
.
Bit  
Name  
Description  
Type  
Default  
7
XmtMsaAisFrc  
Force AIS at the pointer processing block level (MSA)  
towards the SDH network  
R/W  
0
0 = No force  
1 = Force AIS  
6
5
4
MstReiSrc  
Nu1DefEn  
MstRdiSrc  
When XmtM1Src = 60H<0> = 0 the source of the M1 REI bits  
is defined by this bit.  
R/W  
R/W  
R/W  
0
0
0
0 = Hardware supplied REI (Feedback of received B2 errors)  
1 = REI bits set to zero  
Value for NU1_8 & NU1_9 when transmit source is not serial  
bus (see XmtNu1_9Src & XmtNu1_8Src in register 62H)  
0 = Default value (AAH)  
1 = Microprocessor supplied value  
When XmtK2Src = 61H<bit 1> = 0 the source of the MST RDI  
bits (K2<2:0>) are defined by this bit.  
0 = Hardware supplied MST RDI bits (other K2 bits set to reg-  
ister 38H value)  
1 = Microprocessor supplied RDI (all K2 bits set to register  
38H value)  
3:2  
1:0  
InvB2<1:0>  
InvB1<1:0>  
Invert B2 byte (used for testing).  
0X = No inversion  
R/W  
R/W  
00  
00  
10 = Invert forever  
11 = Invert for a frame  
Invert B1 byte (used for testing).  
0X = No inversion  
10 = Invert forever  
11 = Invert for a frame  
107  
SXT6051 STM-1/0 SDH Overhead Terminator  
T_RMST_OP2—Transmit RMST Operational 2 Register (1AH)  
To activate the configuration bits specified in this register the K2 byte must come from hardware  
(XmtK2Src = 61H<bit 1>= 0) and K2 RDI bits must be hardware supplied (MstRdiSrc = 30H<bit 4> = 0).  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:3  
2
MstRdiOnExcB2En  
Enable the insertion of MST RDI (K2<2:0> = “110”) dur-  
R/W  
0
ing active ExcB2ErrSt (C1H<bit 3>).  
0 = Active ExcB2ErrSt will not cause insertion  
1 = Active ExcB2ErrSt will cause insertion  
Force insertion of MST RDI (K2<2:0> = “110”).  
0 = Disable force  
1
0
MstRdiFrc  
Reserved  
R/W  
0
1 = Enable force  
108  
SXT6051 Microprocessor Interface & Register Description  
T_SC1_SOH—Transmit Source Configuration 1 for SOH bytes Register  
(60H)  
Bit  
Name  
XmtJ0Src  
Description  
Type  
Default  
7:6  
These bits specify the source of the transmitted J0 byte.  
XmtJ0Src<1> should be set to 0 in terminal and ADM con-  
figurations.  
R/W  
0
00 = Microprocessor  
01 = TSOH input  
1X = Source is received byte  
5
4
3
2
XmtE1Src  
This bit specifies the source of the transmitted E1 byte. Should  
be set to 0 in terminal configuration.  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0 = TROW input  
1 = Source is received byte  
XmtF1Src  
This bit specifies the source of the transmitted F1 byte. Should  
be set to 0 in terminal configuration.  
0 = TDOW input  
1 = Source is received byte  
XmtD1D3Src  
XmtD4D12Src  
This bit specifies the source of the transmitted D1-D3 bytes.  
Should be set to 0 in terminal configuration.  
0 = TRD input  
1 = Source is received byte  
This bit specifies the source of the transmitted D4-D12 bytes.  
Should be set to 0 in terminal configuration. Should be set to  
1 in regenerator configuration.  
0 = TMD input  
1 = Source is received byte  
1
0
XmtE2Src  
XmtM1Src  
This bit specifies the source of the transmitted E2 byte. Should  
be set to 0 in terminal configuration. Should be set to 1 in  
regenerator configuration.  
R/W  
R/W  
0
0
0 = TMOW input  
1 = Source is received byte  
This bit specifies the source of the transmitted M1 byte. It is  
ignored in regenerator configuration - the received M1 byte  
is passed through.  
0 = Internal hardware process (see MstReiSrc, 30H<bit 6>)  
1 = TSOH input  
109  
SXT6051 STM-1/0 SDH Overhead Terminator  
T_SC2_SOH—Transmit Source Configuration 2 for SOH bytes Register  
(61H)  
Bit  
Name  
Description  
Type  
Default  
7
XmtNu9_9Src  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the National Use byte in row 9 column 9 of the  
SOH. It is ignored in regenerator configuration - the  
received byte is passed through.  
R/W  
0
0 = Microprocessor  
1 = TSOH input  
6
5
4
3
2
XmtNu9_8Src  
XmtUn3_9Src  
XmtUn3_8Src  
XmtUn3_6Src  
XmtS1Src  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the National Use byte in row 9 column 8 of the  
SOH. It is ignored in regenerator configuration - the  
received byte is passed through.  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0 = Microprocessor  
1 = TSOH input  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the “Unused” byte in row 3 column 9 of the  
SOH. Should be set to 0 in terminal and ADM configura-  
tions.  
0 = TSOH input  
1 = Source is received byte  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the “Unused” byte in row 3 column 8 of the  
SOH. Should be set to 0 in terminal and ADM configura-  
tions.  
0 = TSOH input  
1 = Source is received byte  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the “Unused” byte in row 3 column 6 of the  
SOH. Should be set to 0 in terminal and ADM configura-  
tions.  
0 = TSOH input  
1 = Source is received byte  
This bit specifies the source of the transmitted S1 byte. It is  
ignored in regenerator configuration - the received S1 byte  
is passed through.  
0 = Microprocessor  
1 = TSOH input  
110  
SXT6051 Microprocessor Interface & Register Description  
Bit  
Name  
Description  
Type  
Default  
1
XmtK2Src  
This bit specifies the source of the transmitted K2 byte. It is  
ignored in regenerator configuration - the received K2 byte  
is passed through.  
R/W  
0
0 = Internal hardware process (see MstRdiSrc, 30H<4>)  
1 = TSOH input  
0
XmtK1Src  
This bit specifies the source of the transmitted K1 byte. It is  
ignored in regenerator configuration - the received K1 byte  
is passed through.  
R/W  
0
0 = Microprocessor  
1 = TSOH input  
T_SC3_SOH—Transmit Source Configuration 3 for SOH Bytes Register  
(62H)  
Bit  
Name  
Description  
Type  
Default  
7:6  
XmtNu2_9Src<1:0>  
These bits are only valid in STM-1 mode. They specify  
transmit source for the National Use byte in row 2 column  
9 of the SOH. XmtNu2_9Src<1> should be set to Ø in  
terminal and ADM configurations.  
R/W  
00  
00 = Microprocessor provided value  
01 = TSOH input  
1X = Received byte  
5:4  
XmtNu2_8Src<1:0>  
These bits are only valid in STM-1 mode. They specify  
the transmit source for the National Use byte in row 2 col-  
umn 8 of the SOH. XmtNu2_8Src<1> should be set to Ø  
in terminal and ADM configurations.  
R/W  
00  
00 = Microprocessor provided value  
01 = TSOH input  
1X = Received byte  
3:2  
XmtNu1_9Src<1:0>  
These bits are only valid in STM-1 mode. They specify  
the transmit source for the National Use byte in row 1 col-  
umn 9 of the SOH. XmtNu1_9Src<1> should be set to Ø  
in terminal and ADM configurations.  
R/W  
00  
00 = Nu1DefEn (30H<5>)  
01 = TSOH input  
1X = Received byte  
111  
SXT6051 STM-1/0 SDH Overhead Terminator  
Bit  
Name  
Description  
Type  
Default  
1:0  
XmtNu1_8Src<1:0>  
These bits are only valid in STM-1 mode. They specify  
the transmit source for the National Use byte in row 1 col-  
umn 8 of the SOH. XmtNu1_8Src<1> should be set to Ø  
in terminal and ADM configurations.  
R/W  
00  
00 = Nu1DefEn (30H<5>)  
01 = TSOH input  
1X = Received byte  
T_SC4_SOH—Transmit Source Configuration 4 for SOH Bytes Register  
(63H)  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7
6
XmtMd3_5Src  
XmtMd3_3Src  
XmtMd3_2Src  
XmtUn2_6Src  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the Media-Dependent byte in row 3 column 5  
of the SOH. Should be set to 0 in terminal and ADM config-  
urations.  
R/W  
0
0 = TSOH input  
1 = Source is received byte  
5
4
3
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the Media-Dependent byte in row 3 column 3  
of the SOH. Should be set to 0 in terminal and ADM config-  
urations.  
R/W  
R/W  
R/W  
0
0
0
0 = TSOH input  
1 = Source is received byte  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the Media-Dependent byte in row 3 column 2  
of the SOH. Should be set to 0 in terminal and ADM config-  
urations.  
0 = TSOH input  
1 = Source is received byte  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the “Unused” byte in row 2 column 6 of the  
SOH. Should be set to 0 in terminal and ADM configura-  
tions.  
0 = TSOH input  
1 = Source is received byte  
112  
SXT6051 Microprocessor Interface & Register Description  
Bit  
Name  
Description  
Type  
Default  
2
XmtMd2_5Src  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the Media-Dependent byte in row 2 column 5  
of the SOH. Should be set to 0 in terminal and ADM config-  
urations.  
R/W  
0
0 = TSOH input  
1 = Source is received byte.  
1
0
XmtMd2_3Src  
XmtMd2_2Src  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the Media-Dependent byte in row 2 column 3  
of the SOH. Should be set to 0 in terminal and ADM config-  
urations.  
R/W  
R/W  
0
0
0 = TSOH input  
1 = Source is received byte  
This bit is only valid in STM-1 mode. It specifies the trans-  
mit source for the Media-Dependent byte in row 2 column 2  
of the SOH. Should be set to 0 in terminal and ADM config-  
urations.  
0 = TSOH input  
1 = Source is received byte  
J0_TSTR_C—J0 Transmit String Control Register (3AH)  
These registers allow the configuration of the J0 string to be transmitted in the outgoing SOH. See the J0_RSTR_C (0EH)  
Register description for the configuration procedure.  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:2  
1
XmtJ0Acc  
This bit allows microprocessor read/write operations to be  
in control of incrementing the string pointer. This function-  
ality is normally used only during initialization, to verify the  
string value configured by the microprocessor.  
R/W  
0
0 = Normal operation. Internal hardware process that  
inserts this string into the outgoing STM frame incre-  
ments the string pointer.  
1 = The microprocessor read/write operations increment  
the string pointer. During this operation a value of 01H  
is transmitted in the outgoing J0 byte.  
0
RstXmtJ0StrgPntr  
A transition from 0 to 1 in this bit resets the J0 transmit  
string pointer.  
R/W  
0
113  
SXT6051 STM-1/0 SDH Overhead Terminator  
JO_TSTR_D—J0 Transmit String Data Register (3BH)  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtJ0StrgData<7:0> Bits <7:0> correspond to Data bits <7:0>, respectively.  
R/W  
00H  
MP_TNU1_8—Microprocessor Provided Transmit Nu1_8 Byte (31H)  
When XmtNu1_8Src<1:0> = 62H<1:0> = 00 and Nu1DefEn = 30H<5> = 0 this value will be transmitted in National Use  
byte located in row 1 column 8 of an STM-1 frame.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtNu1_8<7:0>  
Bits <7:0> correspond to XmtNu1_8<7:0>, respectively.  
R/W  
00H  
MP_TNU1_9—Microprocessor Provided Transmit Nu1_9 Byte Register  
(32H)  
When XmtNu1_9Src<1:0> = 62H<3:2> = 00 and Nu1DefEn = 30H<5> = 0 this value will be transmitted in National Use  
byte located in row 1 column 9 of an STM-1 frame.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtNu1_9<7:0>  
Bits <7:0> correspond to XmtNu1_9<7:0>, respectively.  
R/W  
00H  
MP_TNU2_8—Microprocessor Provided Transmit Nu2_8 Byte (33H)  
When XmtNu2_8Src<1:0> = 62H<5:4> = 00 this value will be transmitted in National Use byte located in row 2 column 8  
of an STM-1 frame.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtNu2_8<7:0>  
Bits <7:0> correspond to XmtNu2_8<7:0>, respectively.  
R/W  
00H  
MP_TNU2_9—Microprocessor Provided Transmit Nu2_9 Byte Register  
(34H)  
When XmtNu2_9Src<1:0> = 62H<7:6> = 00 this value will be transmitted in National Use byte located in row 2 column 9  
of an STM-1 frame.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtNu2_9<7:0>  
Bits <7:0> correspond to XmtNu2_9<7:0>, respectively.  
R/W  
00H  
114  
SXT6051 Microprocessor Interface & Register Description  
MP_TNU9_8—Microprocessor Provided Transmit Nu9_8 Byte (35H)  
When XmtNu9_8Src = 61H<bit 6> = 0 this value will be transmitted in National Use byte located in row 9 column 8 of an  
STM-1 frame.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtNu9_8<7:0>  
Bits <7:0> correspond to XmtNu9_8<7:0>, respectively.  
R/W  
00H  
MP_TNU9_9—Microprocessor Provided Transmit Nu9_9 Byte (36H)  
When XmtNu9_9Src = 61H<bit 7> = 0 this value will be transmitted in National Use byte located in row 9 column 9 of an  
STM-1 frame.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtNu9_9<7:0>  
Bits <7:0> correspond to XmtNu9_9<7:0>, respectively.  
R/W  
00H  
MP_TK1—Microprocessor Provided Transmit K1 Byte Register (37H)  
When XmtK1Src = 61H<bit 0> = 0 this byte is transmitted in the K1 byte.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtK1<7:0>  
Bits <7:0> correspond to XmtK1<7:0>, respectively.  
R/W  
00H  
MP_TK2—Microprocessor Provided Transmit K2 Byte Register (38H)  
When XmtK2Src = 61H<bit 1> = 0 and K2RdiSrc = 30H<bit 4> = 1 this byte is transmitted in the K2 byte.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtK2<7:0>  
Bits <7:0> correspond to XmtK2<7:0>, respectively.  
R/W  
00H  
MP_TS1—Microprocessor Provided Transmit S1 Byte Register (39H)  
When XmtS1Src = 61H<bit 2> = 0 this byte is transmitted in the S1 byte.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtS1<7:0>  
Bits <7:0> correspond to XmtS1<7:0>, respectively.  
R/W  
00H  
115  
SXT6051 STM-1/0 SDH Overhead Terminator  
Transmit Multiplexer Section Adaptation Registers  
The AU pointer justification event counters discussed below are only updated in ADM mode.  
T_AU_NCNT—Transmit Negative AU Pointer Justification Event Counter  
(E3–E2H)  
This counter increments each time a negative pointer justification is generated by the transmit re-timing function (this re-  
timing function cannot be disabled). A write to the MSByte of the counter (register 92H) causes the entire counter to be  
loaded into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Reserved  
XmtAUNegCnt<10:0>  
Description  
Type  
Default  
15:11  
10:0  
Bits <10:0> correspond to counter bits <10:0>, respec-  
tively.  
RO  
00H  
T_AU_PCNT—Transmit Positive AU Pointer Justification Event Counter  
(E5–E4H)  
This counter increments each time a positive pointer justification is generated by the transmit retiming function (this retim-  
ing function cannot be disabled). A write to the MSByte of the counter (register 94H) causes the entire counter to be loaded  
into a buffer and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Reserved  
XmtAUPosCnt<10:0>  
Description  
Type  
Default  
15:11  
10:0  
Bits <10:0> correspond to counter bits <10:0>, respec-  
tively.  
RO  
00H  
116  
SXT6051 Microprocessor Interface & Register Description  
Transmit HighOrder Path Termination Registers  
T_SC_HPOH—Transmit Source Configuration for HPOH bytes (70H)  
Note that the H4 POH byte is generated internally. The source of N1 POH byte is serially sourced if XmtPOHSrc = 0 and  
passed through if XmtPOHSrc = 1.  
Bit  
Name  
Description  
Type  
Default  
7
XmtUnEqpJ1Cnfg  
Enable insertion of all zeros in the J1 bytes during active  
R/W  
1
HptUnEqpSt (C5H<5>) alarm.  
0 = During active HptUnEqpSt send J1 value defined by  
XmtJ1Src bit  
1 = During active HptUnEqpSt send all zeros in the J1 byte  
6
5
XmtK3Src  
XmtG1Src  
This bit specifies the source of the transmitted K3 byte. It  
is ignored in regenerator configuration - the received  
K3 byte is passed through.  
R/W  
R/W  
0
0
0 = Microprocessor (73H)  
1 = TPOH input  
This bit specifies the source of the transmitted G1 byte.  
When set to 0, updates to the RDI and REI bits are  
defined by G1ReiSrc and G1RdiSrc (see register 71H). It  
is ignored in regenerator configuration - the received  
G1 byte is passed through.  
0 = Internal hardware  
1 = TPOH input  
4
3
2
XmtC2Src  
XmtJ1Src  
This bit specifies the source of the transmitted C2 byte. It  
is ignored in regenerator configuration - the received  
C2 byte is passed through.  
R/W  
R/W  
R/W  
0
0
0
0 = Microprocessor (72H)  
1 = TPOH input  
This bit specifies the source of the transmitted J1 byte. It  
is ignored in regenerator configuration - the received J1  
byte is passed through.  
0 = Microprocessor  
1 = TPOH input  
XmtPOHSrc  
This bit forces all POH bytes to be passed through. Must  
be set to 0 in terminal configuration.  
0 = Source of all POH bytes independently specified by  
other bits in this register  
1 = All POH bytes passed through  
117  
SXT6051 STM-1/0 SDH Overhead Terminator  
Bit  
Name  
XmtF3Src  
Description  
Type  
Default  
1
This bit specifies the source of the transmitted F3 byte.  
Must be set to 0 in terminal configuration. It is ignored  
in regenerator configuration - the received F3 byte is  
passed through.  
R/W  
0
0 = TPOW2 input  
1 = Source is received byte  
0
XmtF2Src  
This bit specifies the source of the transmitted F2 byte.  
Must be set to 0 in terminal configuration. It is ignored  
in regenerator configuration - the received F2 byte is  
passed through.  
R/W  
0
0 = TPOW1 input  
1 = Source is received byte  
T_HPT_C—Transmit HPT Configuration (71H)  
Bit  
Name  
Description  
Configures MTBJ0J1EN output.  
Type  
Default  
7
XmtTbJ0J1Cnfg  
R/W  
1
0 = Single pulse on J1 every frame  
1 = Double pulse on J1 every 4 frames, indicating multi-  
frame beginning (H4<1:0> = “00”). Other 3 frames  
only a single pulse  
6
XmtUnEqp  
Transmit unequipped VC-3 (STM-0) or VC-4 (STM-1) sig-  
nal.  
R/W  
0
0 = Normal  
1 = Unequipped – C2, N1 = 00H, Valid B3, J1 see  
XmtUnEqpJ1Cnfg bit (70H<7>)  
5
4
XmtJ1StrgLen  
XmtHptAisFrc  
Set the transmitted J1 string length  
0 = 16 bytes  
R/W  
R/W  
0
0
1 = 64 bytes  
Force AIS at the HPT level towards the SDH network when  
XmtPOHSrc = 70H<2> = 1.  
0 = Normal operation  
1 = Force AIS  
3
HptReiSrc  
When the XmtG1Src = 70H<5> = 0, the source of the G1  
R/W  
0
REI bits (G1<7:4>) is defined by this bit setting.  
0 = Hardware supplied REI – (feedback B3 errors)  
1 = REI bits to zero  
118  
SXT6051 Microprocessor Interface & Register Description  
Bit  
Name  
HptRdiSrc  
Description  
Type  
Default  
2
When the XmtG1Src = 70H<5> = 0, the source of the G1  
R/W  
0
RDI bits (G1<3:1>) are defined by this bit setting.  
0 = Hardware supplied RDI = >  
If (AuAisSt OR LopSt)  
G1<3:1> = 101  
elsif (RdiOnSlmEn AND HptSlmSt)  
G1<3:1> = 100  
elsif ((RdiOnUnEqpEn AND HptUnEqpSt) OR  
J1MsMtchSt)  
G1<3:1> = 110  
else  
G1<3:1> = 000  
1 = Microprocessor supplied RDI (74H)  
Invert B3 byte (used for testing).  
0X = No inversion  
1:0  
InvB3<1:0>  
R/W  
00  
10 = Invert forever  
11 = Invert for a frame  
MP_TC2—Microprocessor Provided Transmit C2 Byte (72H)  
When XmtC2Src = 70H<4> = 0 and XmtPOHSrc = 70H<2> = 0 this byte is transmitted in the C2 timeslot.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtC2<7:0>  
Bits <7:0> correspond to XmtC2<7:0>, respectively.  
R/W  
01H  
MP_TK3—Microprocessor Provided Transmit K3 Byte (73H)  
When XmtK3Src = 70H<6> = 0 and XmtPOHSrc = 70H<2> = 0 this byte is transmitted in the K3 timeslot.  
Bit  
Name  
Description  
Type  
Default  
7:0  
XmtK3<7:0>  
Bits <7:0> correspond to XmtK3<7:0>, respectively.  
R/W  
00H  
MP_THPTRDI—Microprocessor Provided Transmit HPT RDI bits (74H)  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:4  
3:1  
XmtHptRdi<2:0>  
Microprocessor provided HPT RDI value. This value is  
transmitted in G1<3:0> when XmtG1Src = 70H<5> = 0 and  
HptRdiSrc = 71H<2> = 1.  
R/W  
0
0
XmtG1SpBit  
Microprocessor provided HPT RDI value. This value is  
transmitted in G1<3:0> when XmtG1Src = 70H<5> = 0 and  
HptRdiSrc = 71H<2> = 1.  
R/W  
0
119  
SXT6051 STM-1/0 SDH Overhead Terminator  
J1_TSTR_C—J1 Transmit String Control (75H)  
These registers allow the configuration of the J1 string to be transmitted in outgoing HPOH. See the J0_RSTR_C (0EH)  
Register description for the configuration procedure.  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:2  
1
XmtJ1Acc  
This bit allows microprocessor read/write operations to be  
in control of incrementing the string pointer. This function-  
ality is normally used only during initialization, to verify the  
string value configured by the microprocessor.  
W
1
0 = Normal operation. The internal hardware process that  
is inserting this string into the outgoing STM frame has  
exclusive access to it.  
1 = The microprocessor read/write operations increment  
the string pointer. During this operation a value of 01H  
is transmitted in the outgoing J1 byte.  
0
ResetXmtJ1StrgPntr  
A transition from 0 to 1 in this bit resets the J1 transmit  
string pointer.  
W
0
J1_TSTR_D—J1 Transmit String Data (76H)  
Bit  
Name  
Description  
Type  
R/W  
Default  
00H  
7:0  
XmtJ1StrgData<7:0>  
Bits <7:0> correspond to data bits 7:0, respectively.  
120  
SXT6051 Microprocessor Interface & Register Description  
Interrupt Source Registers  
IS_RG—Receive Regenerator Section Interrupt Source (A0H)  
Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable  
Register 1.  
Bit  
Name  
Description  
Type  
Default  
7
OofOvrFlw  
This bit is set when the OOF_ECNT error counter rollover occurs.  
RO  
0
It is cleared when the counter is read.  
6
B1OvrFlw  
This bit is set when the B1_ERRCNT error counter rollover occurs.  
It is cleared when the counter is read.  
RO  
RO  
0
0
5:4  
3
Reserved  
Bpv  
Only updated for STM-0 serial interface B3ZS encoding. This  
bit is set when a bipolar violation occurs on either the DHPOSD or  
DHNEGD pins. It is cleared when this register is read.  
2
1
0
Los  
Lof  
Oof  
This bit is set when there is a change in the LosSt bit (C0H<2>). It  
is cleared when status register (C0H) is read.  
RO  
RO  
RO  
0
0
0
This bit is set when there is a change in the LofSt bit (C0H<1>). It  
is cleared when status register (C0H) is read.  
This bit is set when there is a change in the OofSt bit (C0H<0>). It  
is cleared when status register (C0H) is read.  
IS_RGMUX—Receive Regenerator and Multiplexor Section Interrupt  
Source (A1H)  
Each of this bit can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable  
Register 2.  
Bit  
Name  
Description  
Type  
Default  
7
RcvK1Chg  
This bit is set when there is a change in the R_K1 register (00H)  
RO  
0
register. It is cleared when that register is read.  
6
5
4
3
2
1
0
RcvK2Chg  
MspSF  
This bit is set when there is a change in the R_K2 (01H) register.  
It is cleared when that register is read.  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
This bit is set when there is a change in the MspSFSt bit  
(C1H<5>). It is cleared when status register (C1H) is read.  
MstRdi  
This bit is set when there is a change in the MstRdiSt bit  
(C1H<4>). It is cleared when status register (C1H) is read.  
ExcB2Err  
MstAis  
This bit is set when there is a change in the ExcB2ErrSt bit  
(C1H<3>). It is cleared when status register (C1H) is read.  
This bit is set when there is a change in the MstAisSt bit  
(C1H<2>). It is cleared when status register (C1H) is read.  
J0MsMtch  
J0Crc7Err  
This bit is set when there is a change in the J0MsMtchSt bit  
(C1H<1>). It is cleared when status register (C1H) is read.  
This bit is set when there is a change in the J0Crc7ErrSt bit  
(C1H<0>). It is cleared when status register (C1H) is read.  
121  
SXT6051 STM-1/0 SDH Overhead Terminator  
IS_MUX—Receive Multiplexor Section Interrupt Source (A2H)  
Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable  
Register 3.  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:5  
4
RcvS1Chg  
This bit is set when there is a change in the R_S1 register  
(02H). It is cleared when that register is read.  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
3
2
1
0
B2BitOvrFlw  
This bit is set when a B2_BIPCNT error counter rollover  
occurs. It is cleared when the counter is read.  
B2BlkOvrFlw  
MstReiBitOvrFlw  
MstReiBlkOvrFlw  
This bit is set when a B2_BLKCNT error counter rollover  
occurs. It is cleared when the counter is read.  
This bit is set when a MR_BIPCNT error counter rollover  
occurs. It is cleared when the counter is read.  
This bit is set when a MR_BLKCNT error counter rollover  
occurs. It is cleared when the counter is read.  
IS_PROT—Receive Protection Section Interrupt Source (A3H)  
The interrupts in this byte should ONLY be enabled when the chip is configured as an ADM Protection Main or a Terminal  
Protection Main. Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive  
Interrupt Enable Register 4.  
Bit  
Name  
Description  
Type  
Default  
7:4  
3
Reserved  
ProtSF  
This bit is set when the DMSPPSF input changes state. It is cleared  
when status register (C3H) is read.  
RO  
RO  
RO  
RO  
0
0
0
0
2
1
0
ProtSD  
This bit is set when the DMSPPSD input changes state. It is  
cleared when status register (C3H) is read.  
ProtK1Chg  
ProtK2Chg  
This bit is set when there is a change in the R_ProtK1 (22H) regis-  
ter. It is cleared when that register is read.  
This bit is set when there is a change in the R_ProtK2 (23H) regis-  
ter. It is cleared when that register is read.  
122  
SXT6051 Microprocessor Interface & Register Description  
IS_A_HPT—Receive Adaptation and HPT Interrupt Source (A4H)  
Each of this bit can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable  
Register 5.  
Bit  
Name  
Description  
Type  
Default  
7
Lop  
This bit is set when there is a change in the LopSt bit  
RO  
0
(C4H<7>). It is cleared when status register (C4H) is read.  
6
5
4
3
2
1
0
NewDataFlg  
AuAis  
This bit is set when there is a change in the NewDataFlgSt bit  
(C4H<6>). It is cleared when status register (C4H) is read.  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
This bit is set when there is a change in the AuAisSt bit  
(C4H<5>). It is cleared when status register (C4H) is read.  
RcvAuNegOvrFlw This bit is set when a R_AU_NgNt error counter rollover  
occurs. It is cleared when the counter is read.  
RcvAuPosOvrFlw  
VcAis  
This bit is set when a R_AU_PcNt error counter rollover  
occurs. It is cleared when the counter is read.  
This bit is set when there is a change in the VcAisSt bit  
(C4H<2>). It is cleared when status register (C4H) is read.  
RcvC2Chg  
RcvK3Chg  
This bit is set when there is a change in the R_C2 register  
(83H). It is cleared when that register is read.  
This bit is set when there is a change in the R_K3 register  
(84H). It is cleared when that register is read.  
IS_HPT—Receive HPT Interrupt Source (A5H)  
Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable  
Register 6.  
Bit  
Name  
Description  
Type  
Default  
7
J1MsMtch  
This bit is set when there is a change in the J1MsMtchSt bit  
RO  
0
(C5H<7>). It is cleared when the status register (C5H) is read.  
6
5
4
3
J1Crc7Err  
HptUnEqp  
HptSlm  
This bit is set when there is a change in the J1Crc7St bit  
(C5H<6>). It is cleared when the status register (C5H) is read.  
RO  
RO  
RO  
RO  
0
0
0
0
This bit is set when there is a change in the HptUneqSt bit  
(C5H<5>). It is cleared when the status register (C5H) is read.  
This bit is set when there is a change in the HptSlmSt bit  
(C5H<4>). It is cleared when the status register (C5H) is read.  
HptRdi  
This bit is set when the register 85H<3:1> bits (filtered received  
G1 RDI bits) change (see G1RdiDetCnt = 80H<7>. It is cleared  
when register 85H is read.  
2
1
0
HpaLom  
This bit is set when there is a change in the HpaLomSt bit  
(C5H<2>). It is cleared when the status register (C5H) is read.  
RO  
RO  
RO  
0
0
0
HptReiOvrFlw This bit is set when the value in the HPTREI_CNT counter roll-  
over. It is cleared when the counter is read.  
B3OvrFlw  
This bit is set when the value in the B3_ECNT counter rollover.  
It is cleared when the counter is read.  
123  
SXT6051 STM-1/0 SDH Overhead Terminator  
IS_RETIME—Receive Retiming Interrupt Source (A6H)  
Each of these bits can cause the chip interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable  
Register 7.  
Bit  
Name  
Reserved  
RcvFifoOvrFlw  
Description  
Type  
Default  
7:1  
0
Indicates that the receive FIFO has overflowed. It is cleared  
when the register is read. It is only valid when receive re-tim-  
ing is enabled (RcvRetimDsbl = 51H<3> = 0).  
RO  
0
0 = No overflow  
1 = Overflow  
IS_XMT—Transmit Interrupt Source (E0H)  
Each of these bits can cause the chip interrupt pin to become active if enabled via the bits the Transmit Interrupt Enable  
Register.  
Bit  
Name  
Reserved  
Description  
Type  
Default  
7:4  
3
XmtAuNegOvrFlw This bit is set when an T_AU_NCNTerror counter rollover  
RO  
RO  
RO  
0
0
0
occurs. It is cleared when the counter is read.  
2
1
XmtAuPosOvrFlw This bit is set when an T_AU_PCNT error counter rollover  
occurs. It is cleared when the counter is read.  
XmtFifoOvrFlw  
Indicates that the transmit FIFO has overflowed It is cleared  
when this register is read.  
0 =No overflow  
1 = Overflow  
0
XmtTbParOvrFlw  
Transmit telecom bus (MTBDATA) parity overflow indica-  
tion. A parity error on the 8 bit telecom bus value incre-  
ments a counter which overflows at 3 setting this bit. The  
counter and this bit are cleared when this register is read.  
RO  
0
0 = No overflow  
1 = Overflow  
124  
SXT6051 Microprocessor Interface & Register Description  
IS_GLOB—Global Interrupt Source (D1H)  
This register indicates that an interrupt register contains an active interrupt.  
Bit  
Name  
XmtRegInt  
Description  
Type  
Default  
7
Indicates that an interrupt in the IS_XMT register (E0H)  
RO  
X
is active.  
0 = No active interrupts  
1 = active interrupts  
6
5
4
3
2
1
0
RcvRetimRegInt  
RcvHptRegInt  
Indicates that an interrupt in the IS_RETIME register  
(A6H) is active.  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
X
X
X
X
X
X
X
0 = No active interrupts  
1 = active interrupts  
Indicates that an interrupt in the IS_HPT register (A5H)  
is active.  
0 = No active interrupts  
1 = active interrupts  
RcvAdapRegInt  
RcvProtRegInt  
Indicates that an interrupt in the IS_A_HPT register  
(A4H) is active.  
0 = No active interrupts  
1 = active interrupts  
Indicates that an interrupt in the IS_PROT register  
(A3H) is active.  
0 = No active interrupts  
1 = active interrupts  
RcvMuxRegInt  
RcvRegenMuxRegInt  
RcvRegenRegInt  
Indicates that an interrupt in the IS_MUX register  
(A2H) is active.  
0 = No active interrupts  
1 = active interrupts  
Indicates that an interrupt in the IS_RGMUX register  
(A1H) is active.  
0 = No active interrupts  
1 = active interrupts  
Indicates that an interrupt in the IS_RG register (A0H)  
is active.  
0 = No active interrupts  
1 = active interrupts  
125  
SXT6051 STM-1/0 SDH Overhead Terminator  
Interrupt Enable Registers  
All of the interrupt registers in the above section are capa-  
ble of activating the chip interrupt pin if their correspond-  
ing interrupt enable bits are set to 1. Default value is 0  
(disabled). The Interrupt Enable Register bit assignments  
mirror the assignments in the corresponding Interrupt  
Source Registers. For example, the status bits in the IS_RG  
Register (A0H) are enabled by setting the corresponding  
bit location in the IE_RG Register (B0H).  
IE_RG—Receive Regenerator  
Section Interrupt Enable (B0H)  
Interrupt enable register for IS_RG.  
IE_RGMUX—Receive Regenerator  
and Multiplexer Section Interrupt  
Enable (B1H)  
Interrupt enable register for IS_RGMUX.  
IE_MUX—Receive Multiplexor  
Section Interrupt Enable (B2H)  
Interrupt enable register for IS_MUX.  
IE_PROT—Receive Protection  
Section Interrupt Enable (B3H)  
Interrupt enable register for IS_PROT.  
IE_A_HPT—Receive Adaptation  
and HPT Interrupt Enable (B4H)  
Interrupt enable register for IS_A_HPT.  
IE_HPT—Receive HPT Interrupt  
Enable (B5H)  
Interrupt enable register for IS_HPT.  
IE_RETIME—Receive Retiming  
Interrupt Enable (B6H)  
Interrupt enable register for IS_RETIME.  
IE_XMT—Transmit Interrupt Enable  
(E1H)  
Interrupt enable register IS_XMT.  
126  
SXT6051 Microprocessor Interface & Register Description  
Status Registers  
These registers are closely associated with the interrupt source registers. Almost all of the interrupt source bits have an asso-  
ciated status bit. Generally, when an interrupt is being acknowledged, the status bit will be checked to see the present status  
of the interrupt-generating source. Overflow interrupt sources do not have status bits associated with them since the counter  
acts as “status.” Byte change interrupt sources do not have status bits associated with them since the received byte acts as  
“status.”  
S_RG—Receive Regenerator Section Status (C0H).  
Bit  
Name  
Description  
Type  
Default  
7:3  
2
Reserved  
LosSt  
Present status of Loss of Signal detect  
RO  
X
0 = No LOS  
1 = LOS  
1
0
LofSt  
OofSt  
Present status of Loss of Frame detect  
RO  
RO  
X
X
0 = No LOF  
1 = LOF  
Present status of Out of Frame detect  
0 = No OOF  
1 = OOF  
S_RGMUX—Receive Regenerator and Multiplexer Section Status (C1H)  
.
Bit  
Name  
Description  
Type  
Default  
7:6  
5
Reserved  
MspSfSt  
This bit indicates the present status of the Signal Fail detection. For  
both MASTER and SLAVE configurations the value is reflected at  
the SF output pin. When configured as a SLAVE the value is also  
reflected at the DMSPPSF output pin.  
RO  
X
0 = No Signal Fail  
1 = Signal Fail = MstAisSt OR (AisOnExcB2En AND ExcB2ErrSt).  
Detection of “110” in RcvK2<2:0> bits (01H).  
0 = No “110” detect  
4
3
2
MstRdiSt  
ExcB2ErrSt  
MstAisSt  
RO  
RO  
RO  
X
X
X
1 = “110” detect  
Present status of excessive BER detects  
0 = No excessive BER  
1 = Excessive BER  
Detection of “111” in RcvK2<2:0> bits (01H)  
0 = No “111” detect  
1 = “111” detect  
127  
SXT6051 STM-1/0 SDH Overhead Terminator  
Bit  
Name  
Description  
Type  
Default  
1
J0MsMtchSt Present status of comparison between received and expected J0  
string  
RO  
X
0 = OK comparison  
1 = Bad comparison  
0
J0Crc7ErrSt  
Present status of comparison between received and expected J0  
string CRC-7 value  
RO  
X
0 = OK comparison  
1 = Bad comparison  
S_PROT—Receive Protection Section Status (C3H)  
These status bits are only relevant when the chip is configured as an ADM Protection Main or a Terminal Protection Main.  
They reflect the protection bus DMSPPSF and DMSPPSD inputvalues (a slave’s DMSPPSD output is updated by a micro-  
processor write to SigDegrade = 21H<1>. A slave’s DMSPPSF output is updated whenever MspSFSt is updated).  
Bit  
Name  
Description  
Type  
Default  
7:4  
3
Reserved  
ProtSfSt  
ProtSdSt  
Reserved  
Present status of DMSPPSF input  
Present status of DMSPPSD input  
RO  
RO  
X
X
2
1:0  
S_A_HPT—Receive Adaptation and HPT Status (C4H)  
.
Bit  
Name  
LopSt  
Description  
Type  
Default  
7
Present status of Loss of Pointer detects  
0 = No LOP  
RO  
X
1 = LOP – Invalid pointer value OR (SS bits!= “10” AND AuP-  
ntrSSEn)  
6
5
NewDataFlgSt Present status of New Data Flag.  
RO  
RO  
X
X
0 = NDF = 0  
1 = NDF = 1  
AuAisSt  
Present status of Pointer processing AIS detects  
0 = No AIS  
1= AIS – H1:H2 bytes (AU pointer) = “11111111 11111111”  
4:3  
2
Reserved  
VcAisSt  
Present status of VC AIS detect  
0 = No AIS  
RO  
X
1 – AIS – C2 (signal label) = “11111111”  
1:0  
Reserved  
128  
SXT6051 Microprocessor Interface & Register Description  
S_HPT—Receive HPT Status (C5H)  
.
Bit  
Name  
Description  
Type  
Default  
7
J1MsMtchSt  
Present status of comparison between received and expected J1  
string.  
RO  
X
0 = OK comparison  
1 = Bad comparison  
6
J1Crc7ErrSt  
Present status of comparison between received and expected J1  
string CRC-7 value.  
RO  
X
0 = OK comparison  
1 = Bad comparison  
5
4
HptUnEqpSt:  
HptSlmSt  
Present status of unequipped status detects  
0 = Equipped  
RO  
RO  
X
X
1 = Unequipped – C2 = “00000000” AND (see register 81H)  
Present status of Signal Label Mismatch detection  
0 = No mismatch  
1 = Mismatch – (RcvC2!= ExpcC2) AND (RcvC2 != 00H) AND  
(RcvC2 != 01H)  
3
2
Reserved  
HpaLomSt  
Present status of Loss of Multiframe detects  
RO  
X
0 = No LOM  
1 = LOM  
1:0  
Reserved  
129  
SXT6051 STM-1/0 SDH Overhead Terminator  
S_AIS_PROT—Receive AIS & Protection Switch Status (D0H)  
This register is used primarily for testing purposes. It indicates the status of internal chip logic for AIS generation processes  
and protection switch status.  
Bit  
Name  
Description  
Type  
Default  
7
GenRstAisSt  
Present status of receive side RST AIS generator.  
0 = No AIS  
RO  
X
1 = AIS – (see register 40H)  
6
5
GenMstAisSt  
GenMsaAisSt  
Present status of receive side MST AIS generator.  
0 = No AIS  
RO  
RO  
X
X
1 = AIS – (RcvMstAisEn AND MspSFSt) OR RcvMstAisFrc  
Present status of receive side MSA AIS generator.  
0 = No AIS  
1 = AIS = (RcvMsaAisEn AND (AuAisSt OR LopSt)) OR RcvM-  
saAisFrc  
4
GenHptAisSt  
Present status of receive side HPT AIS generator. The value of  
this bit is reflected at the AISRX output pin.  
RO  
RO  
X
X
0 = No AIS  
1 = AIS – (RcvHptAisEn AND (HptSlmSt OR HptUneqSt OR  
J1MsMtchSt)) OR RcvHptAisFrc  
3:1  
0
Reserved  
ProtSwSt  
Protection switch status (this bit value is identical to ProtSw bit  
value).  
0 = Protecting  
1 = Not protecting  
130  
SXT6051 STM-1/0 SDH Overhead Terminator  
TESTABILITY  
The SXT6051 provides a method for enhancing testability;  
IEEE1149.1 Boundary Scan (JTAG) is used for testing of  
the interconnect.  
An asynchronous reset pin (JTRS) allows resetting of the  
boundary scan circuitry.  
Table 29: Boundary Scan Port  
Pin #  
Name  
I/O  
Function  
IEEE 1149.1 Boundary Scan  
The boundary scan circuitry allows the user to test the  
interconnection between the SXT6051 and the circuit  
board.  
109  
JTMS  
I
Test Mode Select:  
Determines state of  
TAP Controller. Pull up  
48k  
The boundary scan port consists of 5 pins as shown in the  
table below. The heart of the scan circuitry is the Test  
Access Port controller (TAP). The TAP controller is a state  
machine that controls the function of the boundary scan cir-  
cuitry. Inputs to the TAP controller are the Test Mode  
Select (JTMS) and the Test Clock (JTCK) signals.  
110  
108  
JTCK  
JTRS  
I
I
Test Clock: Clock for  
all boundary scan cir-  
cuitry  
Test Reset: Active Low  
asynchronous signal  
that causes the TAP  
controller to reset. Pull  
down 35k  
Data and instructions are shifted into the SXT6051 through  
the Test Data In input pin (JTDI). Data and instructions are  
shifted out through the Test Data Out output pin (JTDO).  
107  
106  
JTDI  
I
Test Data In: input for  
instructions and data.  
Pull up 48k  
JTDO  
O
Test data Out: Output of  
instructions and data.  
Figure 48:Test Access Port  
Boundary Scan  
Bypass Register  
JTDI  
TDO  
Device ID register  
Instruction Register  
JTMS  
JTCK  
JTRS  
Test Access  
Port Controller  
131  
Testability  
BYPASS (‘b11): This instruction allows a device to be  
removed from the scan chain by inserting a one-bit shift  
register stage between TDI and TDO during data shifts.  
When the instruction is active, the test logic has no impact  
upon the system logic performing its function. When  
selected, the shift-register is set to a logic zero on the rising  
edge of the JTCK during the CAPTURE-DR state.  
Instruction Register and  
Definitions  
The SXT6051 supports the following instructions identi-  
fied by IEEE1149.1: EXTEST, SAMPLE/PRELOAD,  
BYPASS and IDCODE. Instructions are shifted into the  
instruction register during the SHIFT-IR state, and become  
active upon exiting the UPDATE-IR state. The instruction  
register definition is shown in the following figure.  
IDCODE (‘b10): This instruction allows the reading of  
component types via the scan chain. During this instruc-  
tion, the 32-bit Device Identification Register (ID-Regis-  
ter) is placed between TDI and TDO. The ID Register  
captures a fixed value of (117A30FDH) on the rising edge  
of JTCK during the CAPTURE-DR state. The Device  
Identification Register contains the following information:  
Manufacturer ID: ‘d126; Design Part Number: ‘d 6051;  
Design Version Number: ‘d1.  
Figure 49:Instruction Register  
TDI  
MSB  
LSB  
Boundary Scan Register  
The Boundary Scan Register is a 209-bit shift register,  
made of two types of 4 types of shift-register cells. Accord-  
ing to the Boundary Scan Description Language (BSDL),  
EXTEST (‘b00): This instruction allows the testing of cir-  
cuitry external to the package (typically the board intercon-  
nect) to be tested. While the instruction is active, the  
boundary scan register is connected between TDI and  
TDO, for any data shifts. Boundary scan cells at the output  
pins are used to apply test stimuli, while those at input pins  
capture test results. Signals present on input pins are loaded  
into the BSR inputs cells on the rising edge of JTCK during  
CAPTURE-DR state. BSR input cell contents are shifted  
one bit location on each rising edge of JTCK during the  
SHIFT-DR state. BSR output cell contents appear at output  
pins on the falling edge of JTCK during the UPDATE-IR  
state.  
JTAG_BSRINBOTH,  
JTAG_BSRCTL  
JTAG_BSROUTBOTH  
designated  
and  
TYPE2,  
are  
JTAG_BSRINCLKOBS are designated TYPE1.  
Summary Information  
Length  
JTCK  
209 BSR cells  
JTAG Test Clock  
JTAG Test Data Input  
JTDI  
One test cycle is:  
JTDO_C  
JTAG Test Data Output Control  
enable (internal signal)  
1. A test stimuli pattern is shifted into the BSR during  
SHIFT-DR state  
JTDO  
JTMS  
JTRS  
JTAG Test Data Output  
JTAG Test Mode Select  
JTAG Test Reset  
2. This pattern is applied to output pins during the  
UPDATE-DR state  
3. The response is loaded in to input BSR cells during the  
CAPTURE-DR state  
4. The results are shifted out and next test stimuli shifted  
into the BSR  
SAMPLE/PRELOAD (‘b01): This instruction allows a  
snapshot of the normal operation of the SXT6051. The  
boundary scan register is connected between the TDI and  
TDO for any data shifts while this instruction is active. All  
BSR cells capture data present at their inputs on the rising  
edge of JTCK during the CAPTURE-DR state. No action  
is taken during the UPDATE-DR state.  
132  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Figure 50:Boundary Scan Cell  
Data in  
Data out  
Scan out  
Scan in  
Type 1  
Shift dr  
Clock dr  
Scan out  
Data out  
Data in  
Scan in  
Shift dr  
Type 2  
Clock dr  
Update dr  
M ode  
133  
Testability  
Table 30: Boundary Scan Order (Sheet 1 of 6)  
Numbering in  
Scan chain  
Associated  
Control enable  
Pin Name  
Type  
Type of BSR Cell  
SCANEN  
Data  
1
2
3
4
5
6
7
8
9
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
DRETCLK  
Clock  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Clock  
DRETFRMI  
B3OUT  
OEN_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
OEN_C  
DMSPP_C  
RPOWBYC  
RPOWC  
RPOW2  
RPOW1  
RPOHEN  
RPOHFR  
RPOHCK  
RPOH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
B2OUT  
RMDC  
RMD  
RRDC  
RRD  
RDOW  
RMOW  
ROWBYC  
ROWC  
RROW  
RSOHFR  
RSOHEN  
RSOH  
DMSPPSD /O  
DMSPPSD /I  
DMSPPSF /O  
DMSPPSF /I  
DMSPPAUEN /O  
DMSPPAUEN /I  
DMSPPJ0EN /O  
DMSPPJ0EN /I  
DMSPPCKI  
DMSPP_C  
DMSPP_C  
DMSPP_C  
DMSPP_C  
134  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 30: Boundary Scan Order (Sheet 2 of 6)  
Numbering in  
Associated  
Control enable  
Pin Name  
Type  
Type of BSR Cell  
Scan chain  
DMSPPCKO  
Data  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
OEN_C  
DMSPP_C (internal)  
DMSPPDATA /O<7>  
DMSPPDATA /I<7>  
DMSPPDATA /O<6>  
DMSPPDATA /I<6>  
DMSPPDATA /O<5>  
DMSPPDATA /I<5>  
DMSPPDATA /O<4>  
DMSPPDATA /I<4>  
DMSPPDATA /O<3>  
DMSPPDATA /I<3>  
DMSPPDATA /O<2>  
DMSPPDATA /I<2>  
DMSPPDATA /O<1>  
DMSPPDATA /I<1>  
DMSPPDATA /O<0>  
DMSPPDATA /I<0>  
OEN  
Enbl  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Clock  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Clock  
Data  
Data  
Data  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
DMSPP_C  
DMSPP_C  
DMSPP_C  
DMSPP_C  
DMSPP_C  
DMSPP_C  
DMSPP_C  
DMSPP_C  
SCANTEST  
DHPOSD  
DHNEGD  
DHICLK  
LOS  
DHBDATA <0>  
DHBDATA <1>  
DHBDATA <2>  
DHBDATA <3>  
DHBDATA <4>  
DHBDATA <5>  
DHBDATA <6>  
DHBDATA <7>  
DHBCLK  
STMMODE  
B1OUT  
OEN_C  
OEN_C  
AISRX  
135  
Testability  
Table 30: Boundary Scan Order (Sheet 3 of 6)  
Numbering in  
Scan chain  
Associated  
Control enable  
Pin Name  
Type  
Type of BSR Cell  
LOF  
OOF  
Data  
71  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
OEN_C  
OEN_C  
Data  
Enbl  
Data  
Data  
Data  
Data  
Data  
Clock  
Clock  
Data  
Data  
Enbl  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Enbl  
Data  
Enbl  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
72  
73  
OEN_C (internal)  
SD  
74  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRINCLKOBS  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
OEN_C  
OEN_C  
SF  
75  
SCRAMSEL  
76  
MFRMO  
77  
OEN_C  
MFRMI  
78  
MHICLK  
79  
80  
81  
MHBCLKI  
MMSAPAYEN  
MMSAJ1EN  
TB3Z_C  
TB3Z_C  
82  
83  
84  
PARSEL_C (internal)  
MHBCLKO  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
PARSEL_C  
PARSEL_C  
PARSEL_C  
PARSEL_C  
PARSEL_C  
PARSEL_C  
PARSEL_C  
PARSEL_C  
PARSEL_C  
SERSEL_C  
SERSEL_C  
MHBDATA <0>  
MHBDATA <1>  
MHBDATA <2>  
MHBDATA <3>  
MHBDATA <4>  
MHBDATA <5>  
MHBDATA <6>  
MHBDATA <7>  
MICLK  
85  
86  
87  
88  
89  
90  
91  
92  
93  
MHNEGD  
94  
SERSEL_C (internal)  
MHPOSD  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
SERSEL_C  
MMSPP_C  
MMSPP_C  
MMSPP_C  
MMSPP_C  
MMSPP_C  
MMSPP_C (internal)  
MMSPPDATA /O<0>  
MMSPPDATA /I<0>  
MMSPPDATA /O<1>  
MMSPPDATA /I<1>  
MMSPPDATA /O<2>  
MMSPPDATA /I<2>  
MMSPPDATA /O<3>  
MMSPPDATA /I<3>  
MMSPPDATA /O<4>  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
136  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 30: Boundary Scan Order (Sheet 4 of 6)  
Numbering in  
Associated  
Control enable  
Pin Name  
Type  
Type of BSR Cell  
Scan chain  
MMSPPDATA /I<4>  
MMSPPDATA /O<5>  
MMSPPDATA /I<5>  
MMSPPDATA /O<6>  
MMSPPDATA /I<6>  
MMSPPDATA /O<7>  
MMSPPDATA /I<7>  
MMSPPCKI  
MMSPPCKO  
MMSPPAUEN  
MMSPPJ0EN /O  
MMSPPJ0EN /I  
TSOH  
Data  
107  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
Data  
Data  
Data  
Data  
Data  
Data  
Clock  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Enbl  
Data  
Data  
Data  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
MMSPP_C  
MMSPP_C  
MMSPP_C  
OEN_C  
MMSPP_C  
MMSPP_C  
TSOHEN  
OEN_C  
OEN_C  
TSOHFR  
TROW  
TOWC  
OEN_C  
TMOW  
TDOW  
TOWBYC  
OEN_C  
OEN_C  
OEN_C  
TRD  
TRDC  
TMD  
TMDC  
TPOH  
TPOHCK  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TPOHFR  
TPOHEN  
TPOW1  
TPOW2  
TPOWC  
TB3Z_C  
TB3Z_C  
TPOWBYC  
RDB_C (internal)  
DATA /I<7>  
DATA /O<7>  
DATA /I<6>  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
RDB_C  
137  
Testability  
Table 30: Boundary Scan Order (Sheet 5 of 6)  
Numbering in  
Scan chain  
Associated  
Control enable  
Pin Name  
Type  
Type of BSR Cell  
DATA /O<6>  
Data  
143  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
RDB_C  
DATA /I<5>  
DATA /O<5>  
DATA /I<4>  
DATA /O<4>  
DATA /I<3>  
DATA /O<3>  
DATA /I<2>  
DATA /O<2>  
DATA /I<1>  
DATA /O<1>  
DATA /I<0>  
DATA /O<0>  
AD <7>  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Clock  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
RDB_C  
RDB_C  
RDB_C  
RDB_C  
RDB_C  
RDB_C  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
CS  
AS  
WR/RW  
RD/E  
MRESET  
INT  
OEN_C  
MCUTYPE  
MTBDATA [7]  
MTBDATA [6]  
MTBDATA [5]  
MTBDATA [4]  
MTBDATA [3]  
MTBDATA [2]  
MTBDATA [1]  
MTBDATA [0]  
138  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 30: Boundary Scan Order (Sheet 6 of 6)  
Numbering in  
Associated  
Control enable  
Pin Name  
Type  
Type of BSR Cell  
Scan chain  
MTBPAR  
MTBCKI  
Data  
179  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRCTL  
Clock  
Enbl  
Data  
Enbl  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
TB3Z_C (internal)  
MTBCKO  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
TB3Z_C  
TB_C  
TB_C (internal)  
MTBJ0J1EN /O  
MTBJ0J1EN /I  
MTBTUGEN1  
MTBTUGEN2  
MTBTUGEN3  
MTBPAYEN /O  
MTBPAYEN /I  
MTBH4EN /O  
MTBH4EN /I  
MMFRMI  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB_C  
TB_C  
DTBH4EN  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
TB3Z_C  
DTBPAYEN  
DTBTUGEN3  
DTBTUGEN2  
DTBTUGEN1  
DTBJ0J1EN  
DTBCK  
DTBPAR  
DTBDATA [0]  
DTBDATA [1]  
DTBDATA [2]  
DTBDATA [3]  
DTBDATA [4]  
DTBDATA [5]  
DTBDATA [6]  
DTBDATA [7]  
139  
Package Information  
PACKAGE INFORMATION  
The SXT6051 Overhead Terminator is packaged in a 208-  
pin QFP package. The package measures 28mm per side,  
plus 1.3mm pin lead length.  
• Part Number SXT6051  
• 208-pin Plastic Quad Flat Pack  
• Extended Temperature Range  
D
D 1  
Millimeters  
e
E 1  
E
Dim  
Min  
Max  
A
A1  
A2  
b
-
4.10  
-
e
/
2
0.25  
3.20  
0.17  
3.60  
0.27  
D
30.60 BSC.  
θ2  
D1  
E
28.00 BSC.  
30.60 BSC.  
28.00 BSC.  
.50 BSC.  
L1  
A2  
A
E1  
e
θ
A1  
L
0.50  
0.75  
θ3  
b
L
L1  
θ
1.30 REF  
0°  
5°  
5°  
7°  
θ2  
θ3  
16°  
16°  
140  
l
SXT6051 STM-1/0 SDH Overhead Terminator  
GLOSSARY OF TERMS  
AIS  
Alarm Indication Signal  
APS  
Automatic Protection Switching  
Administrative Unit Group  
Excessive Error Defect  
AUG  
EED  
FIFO  
HPT  
First in/First Out Memory  
High Order Path Termination  
High Order Path OverHead  
Loss of Frame  
HPOH  
LOF  
LOP  
Loss of Pointer  
MSA  
MSOH  
MST  
NDF  
NRZ  
OOF  
POH  
RDI  
Multiplexer Section Adaptation  
Multiplexer Section Overhead  
Multiplexer Section Termination  
New Data Flag  
Non-Return to Zero  
Out of Frame  
Path Overhead  
Remote Defect Indication  
Remote Error Indication  
Regenerator Section Overhead  
Synchronous Digital Hierarchy  
Synchronous Optical Network  
Synchronous Payload Envelope  
Synchronous Transport Module  
Synchronous Transport Module for Radio Relay  
Synchronous Transport Signal  
Tributary Unit Group  
REI  
RSOH  
SDH  
SONET  
SPE  
STM  
STM-RR  
STS  
TUG  
VC  
Virtual Container  
141  
SXT6051 STM-1/0 SDH Overhead Terminator  
Table 31: Changes from previous version (Rev. 1.0) to current (Rev. 1.1)  
Section  
Page #  
Change  
Description  
Pin  
Description  
15  
Modify  
Move descriptions of pins 112 and 113 from Multiplexer/demultiplexer Pro-  
tection Interface Section to External References section.  
Functional  
Description  
29  
27  
Delete  
Sentence: “The 00 for each calculated B2 bit is different from the one  
received.”  
Functional  
Description  
Modify  
Modified Figure 8, STM-O Framing Acquisition  
142  
SXT6051 Glossary of terms  
Notes  
143  
Corporate Headquarters  
9750 Goethe Road  
Sacramento, California 95827  
Telephone (916) 855-5000  
Fax: (916) 854-1101  
Web: www.level1.com  
The Americas  
International  
EAST  
WEST  
ASIA/PACIFIC  
EUROPE  
European Area  
Eastern Area Headquarters & Western Area  
Northeastern Regional Office Headquarters  
Asia / Pacific Area  
Headquarters  
Headquarters  
234 Littleton Road, Unit 1A  
Westford, MA 01886  
Tel: (508) 692-1193  
3375 Scott Blvd., #338  
101 Thomson Road  
United Square #08-01  
Singapore 307591  
Tel: +65 353-6722  
Fax: +65 353-6711  
Parc Technopolis - Bat. Zeta  
3, avenue du Canada -  
Z.A. de Courtaboeuf  
91974 Les Ulis Cedex  
France  
Santa Clara, CA 95054  
Tel: (408) 496-1950  
Fax: (408) 496-1955  
Fax: (508) 692-1244  
Tel: +33 1 64 86 2828  
Fax: +33 1 60 92 0608  
North Central  
Regional Office  
South Central  
Regional Office  
Central Asia/Pacific  
Regional Office  
Northern Europe  
Regional Office  
One Pierce Place  
Suite 500E  
Itasca, IL 60143  
Tel: (630) 250-6044  
Fax: (630) 250-6045  
2340 E. Trinity Mills Road Suite 305, 4F-3  
Suite 306  
75 Hsin Tai Wu Road,  
Torshamnsgatan 35  
164/40 Kista/Stockholm,  
Sweden  
Tel: +46 8 750 39 80  
Fax: +46 8 750 39 82  
Carrollton, TX 75006  
Tel: (972) 418-2956  
Fax: (972) 418-2985  
Sec. 1, Hsi-Chih,  
Taipei County, Taiwan  
R.O.C.  
Tel: +886 22 698 2525  
Fax: +886 22 698 3017  
Southeastern  
Regional Office  
Southwestern  
Regional Office  
Northern Asia/Pacific  
Regional Office  
Central and Southern  
Europe Regional Office  
4020 West Chase Blvd.  
Raleigh, NC 27615  
Tel: (305) 444-2966  
Fax: (305) 444-4650  
28203 Cabot Road  
Suite 300  
Laguna Niguel, CA 92677  
Tel: (714) 365-5655  
Fax: (714) 365-5653  
Nishi-Shinjuku, Mizuma "Regus"  
Building 8F  
Feringastrasse 6  
3-3-13, Nishi-Shinjuku, D-85774 Muenchen-  
Shinjuku-Ku  
Unterfoerhring, Germany  
Tel: +49 89 99 216 375  
Fax: +49 89 99 216 377  
Tokyo, 160 Japan  
Tel: +81 33 347-8630  
Fax: +81 48 855-0470  
Latin/South  
America  
9750 Goethe Road  
Sacramento, CA 95827  
USA  
Tel: (916) 855-5000  
Fax: (916) 854-1102  
Revision  
Date  
Status  
1.0  
1.1  
02/98  
05/98  
Product Release  
Corrected errors, see Table 31 for details  
This product is covered by one or more of the following patents. Additional patents pending.  
2002382-1; 5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746;  
5,166,635; 5,181,228; 5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,267,746; 5,461,661; 5,493,243; 5,534,863; 5,574,726; 5,581,585; 5,608,341  
Copyright © 1998 Level One Communications, Inc. Specifications subject to change without notice.  
All rights reserved. Printed in the United States of America.  
PDS-T  

相关型号:

SXT6234

E-Rate Multiplexer
LevelOne

SXT6234QC

PCM, Other/Special/Miscellaneous
ETC

SXT6234QE

Multiplexer
INTEL

SXT6251

Support Circuit, 1-Func, CMOS, PQFP208, PLASTIC, QFP-208
INTEL

SXT6282

PCM Transceiver, 8-Func, PQFP144, LQFP-144
INTEL

SXT6282QE

PCM Transceiver, 8-Func, PQFP144, 1.40 MM HEIGHT, LQFP-144
INTEL

SXT6A-12SA

SIP Non-Isolated Power Module
BOURNS

SXT6A-12SA-P

SIP Non-Isolated Power Module
BOURNS

SXT6A-3-5SA

SIP Non-Isolated Power Module
BOURNS

SXT6A-3-5SA-P

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT, SIP-5
BOURNS

SXTA42

NPN SILICON PLANAR HIGH VOLTAGE TRANSISTOR
ZETEX

SXTA42

NPN Silicon High Voltage Transistors
INFINEON