1400I [Linear]

Complete SO-8, 12-Bit, 400ksps ADC with Shutdown; 完整的SO - 8 , 12位, 400ksps与关断ADC
1400I
型号: 1400I
厂家: Linear    Linear
描述:

Complete SO-8, 12-Bit, 400ksps ADC with Shutdown
完整的SO - 8 , 12位, 400ksps与关断ADC

文件: 总20页 (文件大小:487K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1400  
Complete SO-8, 12-Bit,  
400ksps ADC with  
Shutdown  
U
DESCRIPTIO  
FEATURES  
TheLTC®1400isacomplete400ksps,12-bitA/Dconverter  
which draws only 75mW from 5V or ±5V supplies. This  
easy-to-use device comes complete with a 200ns sample-  
and-hold and a precision reference. Unipolar and bipolar  
conversion modes add to the flexibility of the ADC. The  
LTC1400 has two power saving modes: Nap and Sleep.  
In Nap mode, it consumes only 6mW of power and can  
wake up and convert immediately. In the Sleep mode, it  
consumes 30μW of power typically. Upon power-up from  
Sleepmode,areferenceready(REFRDY)signalisavailable  
in the serial data word to indicate that the reference has  
settled and the chip is ready to convert.  
Complete 12-Bit ADC in SO-8  
Single Supply 5V or ±5V Operation  
Sample Rate: 400ksps  
Power Dissipation: 75mW (Typ)  
72dB S/(N + D) and –80dB THD at Nyquist  
No Missing Codes over Temperature  
Nap Mode with Instant Wake-Up: 6mW  
Sleep Mode: 30μW  
High Impedance Analog Input  
Input Range (1mV/LSB): 0V to 4.096V or ±2.048V  
Internal Reference Can Be Overdriven Externally  
3-Wire Interface to DSPs and Processors (SPI and  
MICROWIRETM Compatible)  
U
The LTC1400 converts 0V to 4.096V unipolar inputs from  
a single 5V supply and ±2.048V bipolar inputs from ±5V  
supplies. Maximum DC specs include ±1LSB INL, ±1LSB  
DNLand45ppm/°Cdriftovertemperature.GuaranteedAC  
performance includes 70dB S/(N + D) and –76dB THD at  
an input frequency of 100kHz, over temperature.  
APPLICATIO S  
High Speed Data Acquisition  
Digital Signal Processing  
Multiplexed Data Acquisition Systems  
Audio and Telecom Processing  
Digital Radio  
Spectrum Analysis  
Low Power and Battery-Operated Systems  
The 3-wire serial port allows compact and efficient data  
transfer to a wide range of microprocessors, microcon-  
trollers and DSPs.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Handheld or Portable Instruments  
U
TYPICAL APPLICATIO  
Single 5V Supply, 400kHz, 12-Bit Sampling A/D Converter  
Power Consumption vs Sample Rate  
100  
NORMAL CONVERSION  
10  
5V  
NAP MODE  
BETWEEN CONVERSION  
1
V
V
SS  
CC  
+
10µF  
0.1µF  
MPU  
P1.4  
LTC1400  
SLEEP AND NAP MODE  
ANALOG INPUT  
(0V TO 4.096V)  
A
V
CONV  
CLK  
IN  
0.1  
0.01  
BETWEEN CONVERSION  
SLEEP MODE BETWEEN  
CONVERSION  
2.42V REF  
P1.3  
P1.2  
REF  
OUT  
+
GND  
D
10µF  
0.1µF  
OUT  
SERIAL  
DATA LINK  
6.4MHz CLOCK  
0.001  
1400 TA01  
100  
SAMPLE RATE (Hz)  
0.01 0.1  
1
10  
1k 10k 100k 1M  
1400 TA02  
1400fa  
1
LTC1400  
W W W U  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1, 2)  
TOP VIEW  
Supply Voltage (V ) ..................................................7V  
CC  
V
V
SS  
1
2
3
4
8
7
6
5
CC  
Negative Supply Voltage (V )..................... –6V to GND  
SS  
A
CONV  
CLK  
IN  
Total Supply Voltage (V to V )  
CC  
SS  
V
REF  
Bipolar Operation Only..........................................12V  
Analog Input Voltage (Note 3)  
GND  
D
OUT  
S8 PACKAGE  
8-LEAD PLASTIC SO  
Unipolar Operation....................0.3V to (V + 0.3V)  
CC  
Bipolar Operation........... (V – 0.3V) to (V + 0.3V)  
SS  
CC  
T
= 150°C, θ = 130°C/W  
JA  
JMAX  
Digital Input Voltage (Note 4)  
ORDER PART NUMBER  
S8 PART MARKING  
Unipolar Operation................................. –0.3V to 12V  
Bipolar Operation.........................(V – 0.3V) to 12V  
SS  
LTC1400CS8  
LTC1400IS8  
1400  
1400I  
Digital Output Voltage  
Unipolar Operation....................0.3V to (V + 0.3V)  
CC  
Order Options Tape and Reel: Add #TR  
Bipolar Operation........... (V – 0.3V) to (V + 0.3V)  
SS  
CC  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Power Dissipation.............................................. 500mW  
Operation Temperature Range  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
LTC1400C ................................................ 0°C to 70°C  
LTC1400I ............................................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
W U  
POWER REQUIRE E TS The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C unless otherwise noted. (Note 5)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Positive Supply Voltage (Note 6)  
Unipolar  
Bipolar  
4.75  
4.75  
5.25  
5.25  
V
V
CC  
V
Negative Supply Voltage (Note 6)  
Positive Supply Current  
Bipolar Only  
–2.45  
–5.25  
V
SS  
I
I
f
= 400ksps  
SAMPLE  
15  
1.0  
5.0  
30  
3.0  
20.0  
mA  
mA  
μA  
CC  
Nap Mode  
Sleep Mode  
Negative Supply Current  
Power Dissipation  
f
= 400ksps, V = –5V  
0.3  
0.2  
1
0.6  
0.5  
5
mA  
mA  
μA  
SS  
SAMPLE  
SS  
Nap Mode  
Sleep Mode  
P
f
= 400ksps  
SAMPLE  
75  
6
30  
160  
20  
125  
mW  
mW  
μW  
D
Nap Mode  
Sleep Mode  
U
U
A ALOG I PUT The  
denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at T = 25°C unless otherwise noted. (Note 5)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
4.75V ≤ V ≤ 5.25V (Unipolar)  
MIN  
TYP  
MAX  
UNITS  
V
Analog Input Range (Note 7)  
0 to 4.096  
±2.048  
V
V
IN  
CC  
4.75V ≤ V ≤ 5.25V, 5.25V ≤ V ≤ –2.45V (Bipolar)  
CC  
SS  
I
Analog Input Leakage Current  
Analog Input Capacitance  
During Conversions (Hold Mode)  
±1  
μA  
IN  
C
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
45  
5
pF  
pF  
IN  
1400fa  
2
LTC1400  
U
CO VERTER CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C unless otherwise noted. With internal reference (Notes 5, 8)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
12  
(Note 9)  
±1  
±1  
LSB  
LSB  
(Note 10)  
±6  
±8  
LSB  
LSB  
Full-Scale Error  
Full-Scale Tempco  
U W  
±15  
±45  
LSB  
I
= 0  
±10  
ppm/°C  
OUT(REF)  
DY A IC ACCURACY  
The  
denotes the specifications which apply over the full operating temperature range,  
= 400kHz unless otherwise noted. (Note 5)  
otherwise specifications are at T = 25°C. V = 5V, V = 5V, f  
SAMPLE  
A
CC  
SS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/(N + D)  
Signal-to-Noise  
Plus Distortion Ratio  
100kHz Input Signal  
Commercial  
Industrial  
70  
69  
72  
dB  
dB  
200kHz Input Signal  
72  
dB  
THD  
Total Harmonic Distortion  
Up to 5th Harmonic  
100kHz Input Signal  
200kHz Input Signal  
–82  
–80  
–76  
–76  
dB  
dB  
Peak Harmonic or  
Spurious Noise  
100kHz Input Signal  
200kHz Input Signal  
–84  
–82  
dB  
dB  
IMD  
Intermodulation Distortion  
f
f
= 99.51kHz, f = 102.44kHz  
–82  
–70  
dB  
dB  
IN1  
IN1  
IN2  
= 199.12kHz, f = 202.05kHz  
IN2  
Full Power Bandwidth  
4
MHz  
kHz  
U U Full Linear BandwidtUh (S/(N + D) ≥ 68dB)  
I TER AL REFERE CE CHARACTERISTICS  
900  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C unless otherwise noted. (Note 5)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.420  
±10  
MAX  
2.440  
±45  
UNITS  
V
V
V
V
Output Voltage  
Output Tempco  
Load Regulation  
I
I
= 0  
= 0  
2.400  
REF  
REF  
REF  
OUT  
OUT  
ppm/°C  
4.75V ≤ V ≤ 5.25V  
0.01  
0.01  
LSB/V  
LSB/V  
CC  
–5.25V ≤ V ≤ 0V  
SS  
V
V
Load Regulation  
0 ≤ |I | ≤ 1mA  
2
4
LSB/mA  
ms  
REF  
REF  
OUT  
Wake-Up Time from Sleep Mode (Note 7)  
C
= 10μF  
VREF  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C unless otherwise noted. (Note 5)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
Digital Input Capacitance  
High Level Output Voltage  
V
CC  
V
CC  
V
IN  
= 5.25V  
= 4.75V  
= 0V to V  
2.0  
IH  
IL  
0.8  
V
I
IN  
±10  
μA  
pF  
CC  
C
V
5
IN  
V
CC  
V
CC  
= 4.75V, I = 10μA  
= 4.75V, I = 200μA  
4.7  
V
V
OH  
O
O
4.0  
1400fa  
3
LTC1400  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C unless otherwise noted. (Note 5)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Low Level Output Voltage  
V
V
= 4.75V, I = 160μA  
0.05  
0.10  
V
V
OL  
CC  
CC  
O
= 4.75V, I = 1.6mA  
0.4  
O
I
OZ  
Hi-Z Output Leakage D  
V
OUT  
= 0V to V  
±10  
μA  
pF  
OUT  
CC  
C
Hi-Z Output Capacitance D  
Output Source Current  
Output Sink Current  
(Note 7)  
15  
–10  
10  
OZ  
OUT  
I
I
V
V
= 0V  
mA  
mA  
SOURCE  
OUT  
= V  
SINWK U  
OUT  
CC  
TI I G CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C unless otherwise noted. (Note 5)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
f
t
t
Maximum Sampling Frequency  
Conversion Time  
(Note 6)  
400  
SAMPLE(MAX)  
CONV  
f
= 6.4MHz  
2.1  
μs  
CLK  
Acquisition Time  
(Unipolar Mode)  
(Bipolar Mode V = –5V)  
(Note 7)  
230  
200  
300  
270  
ns  
ns  
ACQ  
SS  
f
t
t
t
t
t
t
t
t
t
CLK Frequency  
0.1  
50  
6.4  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK  
CLK Pulse Width  
(Notes 7, 12)  
(Note 7)  
CLK  
Time to Wake Up from Nap Mode  
CLK Pulse Width to Return to Active Mode  
CONVto CLKSetup Time  
350  
WK(NAP)  
50  
80  
0
1
2
3
4
5
6
7
CONVAfter Leading CLK↑  
CONV Pulse Width  
(Note 11)  
50  
Time from CLKto Sample Mode  
Aperture Delay of Sample-and-Hold  
Minimum Delay Between Conversion (Unipolar Mode)  
(Note 7)  
80  
45  
Jitter < 50ps (Note 7)  
65  
265  
235  
385  
355  
ns  
ns  
(Bipolar Mode V = –5V)  
SS  
t
t
t
t
Delay Time, CLKto D  
Delay Time, CLKto D  
Valid  
Hi-Z  
C
C
C
= 20pF  
= 20pF  
= 20pF  
40  
40  
25  
80  
80  
ns  
ns  
ns  
ns  
8
OUT  
LOAD  
LOAD  
LOAD  
9
OUT  
Time from Previous Data Remains Valid After CLK↑  
Minimum Time between Nap/Sleep Request to Wake Up Request  
14  
50  
10  
11  
(Notes 7, 12)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Guaranteed by design, not subject to test.  
Note 8: Linearity, offset and full-scale specifications apply for unipolar and  
bipolar modes.  
Note 9: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 10: Bipolar offset is the offset voltage measured from –0.5LSB when  
the output code flickers between 0000 0000 0000 and 1111 1111 1111.  
Note 11: The rising edge of CONV starts a conversion. If CONV returns  
low at a bit decision point during the conversion, it can create small errors.  
For best performance ensure that CONV returns low either within 120ns  
after conversion starts (i.e., before the first bit decision) or after the 14  
clock cycle. (Figure 13 Timing Diagram).  
Note 2: All voltage values are with respect to GND.  
Note 3: When these pin voltages are taken below V (ground for unipolar  
SS  
mode) or above V , they will be clamped by internal diodes. This product  
CC  
can handle input currents greater than 40mA below V (ground for  
SS  
unipolar mode) or above V without latch-up.  
CC  
Note 4: When these pin voltages are taken below V (ground for unipolar  
SS  
mode), they will be clamped by internal diodes. This product can handle  
input currents greater than 40mA below V (ground for unipolar mode)  
SS  
without latch-up. These pins are not clamped to V  
.
CC  
Note 5: V = 5V, f  
= 400kHz, t = t = 5ns unless otherwise  
r f  
CC  
SAMPLE  
Note 12: If this timing specification is not met, the device may not respond  
specified.  
to a request for a conversion. To recover from this condition a NAP  
Note 6: Recommended operating conditions.  
request is required.  
1400fa  
4
LTC1400  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Differential Nonlinearity vs  
Output Code  
Integral Nonlinearity vs  
Output Code  
S/(N + D) vs Input Frequency  
and Amplitude  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
V
= 0dB  
IN  
f
= 400kHz  
f
= 400kHz  
SAMPLE  
SAMPLE  
V
= –20dB  
IN  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
V
= 60dB  
IN  
f
= 400kHz  
SAMPLE  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
2048 2560  
2048 2560  
3072 3584 4096  
0
512 1024 1536  
3072 3584 4096  
0
512 1024 1536  
OUTPUT CODE  
OUTPUT CODE  
1400 TPC06  
1400 TPC01  
1400 TPC02  
Signal-to-Noise Ratio (Without  
Harmonics) vs Input Frequency  
Peak Harmonic or Spurious Noise  
vs Input Frequency  
Acquisition Time vs  
Source Impedance  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
f
= 400kHz  
A
SAMPLE  
f
= 400kHz  
SAMPLE  
0
10  
100  
INPUT FREQUENCY (kHz)  
1000  
10  
100  
1000  
()  
10000  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
R
SOURCE  
1400 TPC05  
1400 TPC08  
1400 TPC07  
Reference Voltage vs  
Load Current  
Power Supply Feedthrough vs  
Ripple Frequency  
Supply Current vs Temperature  
0
2.435  
2,430  
2.425  
2.420  
2.415  
2.410  
2.405  
2.400  
2.395  
2.390  
20  
15  
10  
5
f
= 400kHz  
SAMPLE  
f
= 400kHz  
SAMPLE  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
(V  
= 10mV)  
RIPPLE  
SS  
V
(V  
= 1mV)  
RIPPLE  
CC  
0
1
10  
100  
1000  
–50 –25  
0
25  
50  
75 100 125  
–8  
–1  
0
1
2
–7 –6 –5 –4 –3 –2  
RIPPLE FREQUENCY (kHz)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1400 TPC07.5  
1400 TPC04  
1400 TPC03  
1400fa  
5
LTC1400  
U U  
U
PI FU CTIO S  
V
(Pin 1): Positive Supply, 5V. Bypass to GND (10μF  
CLK (Pin 6): Clock. This clock synchronizes the serial data  
transfer. A minimum CLK pulse of 50ns will cause the ADC  
to wake up from Nap or Sleep mode.  
CC  
tantalum in parallel with 0.1μF ceramic).  
A (Pin2):AnalogInput.0Vto4.096V(Unipolar),±2.048V  
IN  
(Bipolar).  
CONV (Pin 7): Conversion Start Signal. This active high  
signal starts a conversion on its rising edge. Keeping CLK  
low and pulsing CONV two/four times will put the ADC  
into Nap/Sleep mode.  
V
(Pin 3): 2.42V Reference Output. Bypass to GND  
REF  
(10μF tantalum in parallel with 0.1μF ceramic).  
GND (Pin 4): Ground. GND should be tied directly to an  
analog ground plane.  
V
(Pin 8): Negative Supply. –5V for bipolar operation.  
SS  
Bypass to GND with 0.1μF ceramic. V should be tied to  
SS  
D
(Pin 5): The A/D conversion result is shifted out  
GND for unipolar operation.  
OUT  
from this pin.  
U
U
W
FU CTIO AL BLOCK DIAGRA  
C
ZEROING SWITCH  
SAMPLE  
V
A
CC  
IN  
GND  
V
SS  
V
REF  
2.42V REF  
12-BIT CAPACITIVE DAC  
COMP  
CLK  
12  
CONTROL  
LOGIC  
CONV  
SUCCESSIVE APPROXIMATION  
REGISTER/PARALLEL TO  
SERIAL CONVERTER  
D
OUT  
1400 BD01  
TEST CIRCUITS  
5V  
3k  
D
OUT  
D
OUT  
3k  
C
LOAD  
C
LOAD  
Hi-Z TO V  
OH  
Hi-Z TO V  
OL  
V
OL  
OH  
TO V  
OH  
V
OH  
OL  
TO V  
OL  
V
TO Hi-Z  
V
TO Hi-Z  
1400 TC01  
1400fa  
6
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
Conversion Details  
Dynamic Performance  
TheLTC1400hasexcellenthighspeedsamplingcapability.  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental. Figure 2a shows a  
typical LTC1400 FFT plot.  
The LTC1400 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analog signal to a 12-bit serial output based on a preci-  
sion internal reference. The control logic provides easy  
interface to microprocessors and DSPs through 3-wire  
connections.  
A rising edge on the CONV input starts a conversion. At  
the start of a conversion the successive approximation  
register(SAR)isreset. Onceaconversioncyclehasbegun  
it cannot be restarted.  
Signal-to-Noise Ratio  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
to frequencies from DC to half the sampling frequency.  
Figure 2a shows a typical spectral content with a 400kHz  
sampling rate and a 100kHz input. The dynamic perfor-  
mance is excellent for input frequencies up to the Nyquist  
limit of 200kHz as shown in Figure 2b.  
During conversion, the internal 12-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure 1, the A input connects to the sample-and-hold  
IN  
capacitor during the acquired phase and the comparator  
offset is nulled by the feedback switch. In this acquire  
phase, it typically takes 200ns for the sample-and-hold  
capacitor to acquire the analog signal. During the convert  
phase, the comparator feedback switch opens, putting the  
comparator into the compare mode. The input switches  
0
f
f
= 400kHz  
SAMPLE  
IN  
–10  
–20  
= 94.824kHz  
connect C  
to ground, injecting the analog input  
SINAD = 72.5dB  
THD = 82dB  
SAMPLE  
–30  
charge onto the summing junction. This input charge is  
successively compared with the binary-weighted charges  
supplied by the capacitive DAC. Bit decisions are made by  
the high speed comparator. At the end of a conversion,  
–40  
–50  
60  
–70  
–80  
the DAC output balances the A input charge. The SAR  
IN  
–90  
contents (a 12-bit data word) which represent the input  
–100  
–110  
–120  
voltage, are output through the serial pin D  
.
OUT  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (kHz)  
SAMPLE  
S1  
1400 F02a  
C
SAMPLE  
DAC  
Figure 2a. LTC1400 Nonaveraged, 4096 Point FFT  
Plot with 100kHz Input Frequency in Bipolar Mode  
SAMPLE  
HOLD  
+
A
IN  
COMP  
Effective Number of Bits  
C
V
DAC  
The effective number of bits (ENOBs) is a measurement  
of the effective resolution of an ADC and is directly related  
to the S/(N + D) by the equation:  
S
A
R
DAC  
D
OUT  
S / N+D 1.76  
(
)
1400 F01  
N=  
6.02  
Figure 1. A Input  
IN  
1400fa  
7
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
0
f
f
= 400kHz  
= 199.121kHz  
SAMPLE  
IN  
V22 + V32 + V42 +…Vn2  
–10  
–20  
THD= 20log  
SINAD = 72.1dB  
THD = 80dB  
V1  
–30  
–40  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughVnaretheamplitudesofthesecond  
through nth harmonics. THD vs input frequency is shown  
inFigure4.TheLTC1400hasgooddistortionperformance  
up to the Nyquist frequency and beyond.  
–50  
60  
–70  
–80  
–90  
–100  
–110  
–120  
0
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (kHz)  
f
= 400kHz  
SAMPLE  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1400 F02b  
Figure 2b. LTC1400 Nonaveraged, 4096 Point FFT  
Plot with 200kHz Input Frequency in Bipolar Mode  
where N is the effective number of bits of resolution and  
S/(N + D) is expressed in dB. At the maximum sampling  
rate of 400kHz, the LTC1400 maintains very good ENOBs  
up to the Nyquist input frequency of 200kHz (refer to  
Figure 3).  
3RD HARMONIC  
THD  
2ND HARMONIC  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
1400 F04  
12  
11  
10  
9
74  
68  
62  
56  
50  
Figure 4. Distortion vs Input Frequency in Bipolar Mode  
NYQUIST  
FREQUENCY  
8
Intermodulation Distortion  
7
6
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
5
4
3
2
1
f
= 400kHz  
SAMPLE  
0
10k  
100k  
INPUT FREQUENCY (Hz)  
1M  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at sum and difference  
frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3, etc.  
For example, the 2nd order IMD terms include (fa + fb)  
and (fa – fb) while the 3rd order IMD terms includes (2fa  
+ fb), (2fa – fb), (fa + 2fb) and (fa – 2fb). If the two input  
sine waves are equal in magnitude, the value (in decibels)  
of the 2nd order IMD products can be expressed by the  
following formula.  
1400 F03  
Figure 3. Effective Bits and Signal-to-Noise +  
Distortion vs Input Frequency in Bipolar Mode  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half of the sampling frequency. THD  
is expressed as:  
Amplitude at (fa ± fb)  
IMD fa ± fb = 20log  
(
)
Amplitude at fa  
1400fa  
8
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
0
settles in 200ns to small load current transient will allow  
maximum speed operation. If a slower op amp is used,  
more settling time can be provided by increasing the time  
between conversions. Suitable devices capable of driving  
f
= 400kHz  
SAMPLE  
–10  
–20  
fa = 99.512kHz  
fb = 102.441kHz  
fa fb  
–30  
–40  
–50  
3fa  
2fb – fa  
the ADC’s A input include the LT®1360 and the LT1363  
2fa  
IN  
60  
–70  
2fa + fb  
op amps.  
2fa – fb  
fa + fb  
2fb  
2fb + fa  
–80  
fb – fa  
3fb  
LTC1400 comes with a built-in unipolar/bipolar detection  
–90  
–100  
–110  
–120  
circuit. If V potential is forced below GND, the internal  
SS  
circuitry will automatically switch to bipolar mode.  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (kHz)  
The following list is a summary of the op amps that are  
suitable for driving the LTC1400, more detailed informa-  
tion is available in the Linear Technology databooks or the  
Linear Technology Website.  
1400 F05  
Figure 5. Intermodulation Distortion Plot in Bipolar Mode  
Figure 5 shows the IMD performance at a 100kHz input.  
Peak Harmonic or Spurious Noise  
LT1215/LT1216: Dual and quad 23MHz, 50V/μs single  
supply op amps. Single 5V to ±15V supplies, 6.6mA  
specifications, 90ns settling to 0.5LSB.  
Thepeakharmonicorspuriousnoiseisthelargestspectral  
component excluding the input signal and DC. This value  
is expressed in decibels relative to the RMS value of a  
full-scale input signal.  
LT1223: 100MHz video current feedback amplifier. ±5V  
to ±15V supplies, 6mA supply current. Low distortion up  
to and above 400kHz. Low noise. Good for AC applica-  
tions.  
LT1227: 140MHz video current feedback amplifier. ±5V to  
±15V supplies, 10mA supply current. Lowest distortion  
at frequencies above 400kHz. Low noise. Best for AC  
applications.  
Full Power and Full Linear Bandwidth  
The full power bandwidth is the input frequency at which  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB for a full-scale input signal.  
LT1229/LT1230: Dual and quad 100MHz current feedback  
amplifiers.±2Vto±15Vsupplies,6mAsupplycurrenteach  
amplifier. Low noise. Good AC specs.  
The full linear bandwidth is the input frequency at which  
the S/(N + D) has dropped to 68dB (11 effective bits). The  
LTC1400 has been designed to optimize input bandwidth,  
allowing the ADC to undersample input signals with fre-  
quencies above the converter’s Nyquist Frequency. The  
noise floor stays very low at high frequencies; S/(N +  
D) becomes dominated by distortion at frequencies far  
beyond Nyquist.  
LT1360: 37MHz voltage feedback amplifier. ±5V to ±15V  
supplies. 3.8mA supply current. Good AC and DC specs.  
70ns settling to 0.5LSB.  
LT1363:50MHz, 450V/μsopamps. ±5Vto±15Vsupplies.  
6.3mA supply current. Good AC and DC specs. 60ns  
settling to 0.5LSB.  
Driving the Analog Input  
LT1364/LT1365:Dualandquad50MHz,450V/μsopamps.  
±5V to ±15V supplies, 6.3mA supply current per amplifier.  
60ns settling to 0.5LSB.  
The analog input of the LTC1400 is easy to drive. It draws  
only one small current spike while charging the sample-  
and-hold capacitor at the end of a conversion. During  
conversion, the analog input draws only a small leakage  
current. The only requirement is that the amplifier driv-  
ing the analog input must settle after the small current  
spike before the next conversion starts. Any op amp that  
Internal Reference  
The LTC1400 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference, which is factory  
1400fa  
9
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
trimmed to 2.42V. It is internally connected to the DAC  
and is available at Pin 3 to provide up to 1mA of current to  
an external load. For minimum code transition noise, the  
reference output should be decoupled with a capacitor to  
filterwidebandnoisefromthereference(10μFtantalumin  
Unipolar/Bipolar Operation and Adjustment  
Figure 8 shows the ideal input/output characteristics for  
the LTC1400. The code transitions occur midway between  
successive integer LSB values (i.e., 0.5LSB, 1.5LSB,  
2.5LSB, … FS – 1.5LSB). The output code is straight  
binary with 1LSB = 4.096V/4096 = 1mV. Figure 9 shows  
the input/output transfer characteristics for the bipolar  
mode in two’s complement format.  
parallel with a 0.1μF ceramic). The V pin can be driven  
REF  
with a DAC or other means to provide input span adjust-  
ment in bipolar mode. The V  
pin must be driven to at  
REF  
least 2.45V to prevent conflict with the internal reference.  
The reference should not be driven to more than 5V.  
FS  
4096  
1LSB =  
111...111  
111...110  
111...101  
111...100  
Figure 6 shows an LT1360 op amp driving the reference  
pin. Figure 7 shows a typical reference, the LT1019A-5  
connected to the LTC1400. This will provide an improved  
drift (equal to the maximum 5ppm/°C of the LT1019A-  
5) and a ±4.231V full scale. If V  
is forced lower than  
REF  
UNIPOLAR  
ZERO  
2.42V, the REFRDY bit in the serial data output will be  
000...011  
000...010  
000...001  
000...000  
forced to low.  
5V  
INPUT RANGE  
0V  
1
LSB  
V
FS – 1LSB  
CC  
A
V
IN  
±0.846 • V  
REF(OUT)  
INPUT VOLTAGE (V)  
1400 F08  
+
LTC1400  
V
2.45V  
3Ω  
REF(OUT)  
LT1360  
Figure 8. LTC1400 Unipolar Transfer Characteristics  
REF  
10µF  
011...111  
GND  
V
SS  
BIPOLAR  
ZERO  
011...110  
–5V  
1400 F06  
000...001  
000...000  
111...111  
111...110  
Figure 6. Driving the V  
with the LT1360 Op Amp  
REF  
5V  
100...001  
100...000  
INPUT RANGE ±4.231V  
(= ±0.846 • V  
V
CC  
A
V
IN  
)
REF  
10V  
LTC1400  
–1 0V  
1
–FS/2  
FS/2 – 1LSB  
V
LSB  
LSB  
IN  
V
REF  
OUT  
INPUT VOLTAGE (V)  
11400 F09  
3Ω  
10µF  
LT1019A-5  
GND  
Figure 9. LTC1400 Bipolar Transfer Characteristics  
GND  
V
SS  
Unipolar Offset and Full-Scale Error Adjustments  
–5V  
1400 F07  
In applications where absolute accuracy is important,  
offset and full-scale errors can be adjusted to zero. Figure  
10a shows the extra components required for full-scale  
Figure 7. Supplying a 5V Reference Voltage  
to the LTC1400 with the LT1019A-5  
1400fa  
10  
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
R1  
error adjustment. Figure 10b shows offset and full-scale  
adjustment. Offset error must be adjusted before full-  
scale error. Zero offset is achieved by applying 0.5mV  
(i.e., 0.5LSB) at the input and adjusting the offset trim  
until the LTC1400 output code flickers between 0000  
0000 0000 and 0000 0000 0001. For zero full-scale er-  
ror, apply an analog input of 4.0945V (FS – 1.5LSB or  
last code transition) at the input and adjust R5 until the  
LTC1400 output code flickers between 1111 1111 1110  
and 1111 1111 1111.  
50Ω  
V
+
IN  
A1  
A
IN  
R4  
R2  
10k  
100Ω  
LTC1400  
GND  
R3  
10k  
FULL-SCALE  
ADJUST  
ADDITIONAL PINS OMITTED FOR CLARITY  
±20LSB TRIM RANGE  
1400 F10a  
Bipolar Offset and Full-Scale Error Adjustments  
Figure 10a. LTC1400 Full-Scale Adjust Circuit  
Bipolaroffsetandfull-scaleerrorsareadjustedinasimilar  
fashion to the unipolar case. Bipolar offset error adjust-  
ment is achieved by applying an input voltage of –0.5mV  
(–0.5LSB) to the input in Figure 10c and adjusting the  
op amp until the ADC output code flickers between 0000  
00000000and111111111111.Forfull-scaleadjustment,  
an input voltage of 2.0465V (FS – 1.5LSBs) is applied to  
the input and R5 is adjusted until the output code flickers  
between 0111 1111 1110 and 0111 1111 1111.  
R1  
10k  
ANALOG  
INPUT  
+
0V TO 4.096V  
A
A1  
IN  
R2  
10k  
10k  
R4  
5V  
100k  
LTC1400  
R9  
20Ω  
R5  
4.3k  
FULL-SCALE  
ADJUST  
R3  
100k  
5V  
R7  
R8  
10k  
100k  
Board Layout and Bypassing  
OFFSET  
ADJUST  
R6  
400Ω  
To obtain the best performance from the LTC1400, a  
printed circuit board is required. Layout for the printed  
circuit board should ensure that digital and analog signal  
linesareseparatedasmuchaspossible.Inparticular,care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC. The analog  
input should be screened by GND.  
1400 F10b  
Figure 10b. LTC1400 Offset and Full-Scale Adjust Circuit  
R1  
10k  
ANALOG  
INPUT  
±2.048V  
+
A1  
R2  
10k  
A
IN  
High quality tantalum and ceramic bypass capacitors  
R4  
100k  
should be used at the V and V pins as shown in the  
CC  
REF  
LTC1400  
R5  
4.3k  
Typical Application on the first page of this data sheet.  
For the bipolar mode, a 0.1μF ceramic provides adequate  
FULL-SCALE  
ADJUST  
bypassing for the V pin. For optimum performance, a  
SS  
R3  
10μF surface mount AVX capacitor with a 0.1μF ceramic  
100k  
5V  
R8  
R7  
isrecommendedfortheV andV pins.Thecapacitors  
100k  
CC  
REF  
20k  
OFFSET  
mustbelocatedasclosetothepinsaspossible.Thetraces  
connecting the pins and the bypass capacitors must be  
kept short and should be made as wide as possible. In  
ADJUST  
R6  
–5V  
200Ω  
1400 F10c  
unipolar mode operation, V should be isolated from  
SS  
any noise source before shorting to the GND pin.  
Figure 10c. LTC1400 Bipolar Offset and Full-Scale Adjust Circuit  
1400fa  
11  
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
Input signal leads to A and signal return leads from GND  
theLTC1400GNDpin.ThegroundreturnfromtheLTC1400  
Pin 4 to the power supply should be low impedance for  
noise free operation. Digital circuitry grounds must be  
connected to the digital supply common.  
IN  
(Pin 4) should be kept as short as possible to minimize  
noisecoupling.Inapplicationswherethisisnotpossible,a  
shielded cable between source and ADC is recommended.  
Also,sinceanypotentialdifferenceingroundsbetweenthe  
signalsourceandADCappearsasanerrorvoltageinseries  
with the input signal, attention should be paid to reducing  
the ground circuit impedance as much as possible.  
InapplicationswheretheADCdataoutputsandcontrolsig-  
nalsareconnectedtoacontinuouslyactivemicroprocessor  
bus, it is possible to get errors in the conversion results.  
These errors are due to feedthrough from the micropro-  
cessor to the successive approximation comparator. The  
problem can be eliminated by forcing the microprocessor  
into a Wait state during conversion or by using three-state  
buffers to isolate the ADC data bus.  
ANALOG SUPPLY  
GND  
DIGITAL SUPPLY  
–5V  
5V  
GND  
5V  
Power-Down Mode  
+
+
+
Upon power-up, the LTC1400 is initialized to the active  
state and is ready for conversion. However, the chip can  
be easily placed into the Nap or Sleep mode by exercising  
the right combination of CLK and CONV signal. In the Nap  
modeallpowerisoffexcepttheinternalreference,whichis  
still active and provides 2.42V output voltage to the other  
circuitry. In this mode, the ADC draws only 6mW of power  
instead of 75mW (for minimum power, the logic inputs  
must be within 500mV of the supply rails). The wake-up  
time from the Nap mode to the active mode is 350ns.  
V
GND  
V
GND  
V
CC  
SS  
CC  
LTC1400  
DIGITAL CIRCUITRY  
1400 F11  
Figure 11. Power Supply Connection  
Figure11showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated at  
t
t
11  
11  
CLK  
t
t
1
1
CONV  
NAP  
SLEEP  
V
REF  
REFRDY  
1400 F12  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS. REFRDY APPEARS AS A BIT IN THE D  
WORD.  
OUT  
Figure 12. Nap Mode and Sleep Mode Waveforms  
1400fa  
12  
LTC1400  
U U  
W U  
APPLICATIO S I FOR ATIO  
In the Sleep mode, power consumption is reduced to a  
minimum by cutting off the supply to all internal circuitry  
includingthereference.Figure12showsthewaystopower  
down the LTC1400. The chip can enter the Nap mode by  
keeping the CLK signal low and pulsing the CONV signal  
twice. For Sleep mode operation, CONV signal should be  
pulsed four times while CLK is kept low.  
Digital Interface  
The digital interface requires only three digital lines. CLK  
and CONV are both inputs, and the D  
the conversion result in serial form.  
output provides  
OUT  
Figure13showsthedigitaltimingdiagramoftheLTC1400  
during the A/D conversion. The CONV rising edge starts  
the conversion. Once initiated, it can not be restarted until  
the conversion is completed. If the time from CONV signal  
The LTC1400 can be returned to active mode easily. The  
rising edge of CLK will wake-up the LTC1400. During the  
to CLK rising edge is less than t , the digital output will  
2
transition from Sleep mode to active mode, the V volt-  
REF  
be delayed by one clock cycle.  
age ramp-up time is a function of the loading conditions.  
With a 10μF bypass capacitor, the wake-up time from  
Sleep mode is typically 4ms. A REFRDY signal will be  
activated once the reference has settled and is ready for  
The digital output data is updated on the rising edge of the  
CLK line. D  
data should be captured by the receiving  
OUT  
system on the rising CLK edge. Data remains valid for a  
minimum time of t after the rising CLK edge to allow  
capture to occur.  
an A/D conversion. This REFRDY bit is output to the D  
10  
OUT  
pin before the rest of the A/D converted code.  
t
2
t
7
t
3
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
1
2
14  
CLK  
t
t
5
4
CONV  
t
t
6
ACQ  
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
8
Hi-Z  
Hi-Z  
D
OUT  
REFRDY D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REFRDY  
t
CONV  
t
1400 F13  
SAMPLE  
Figure 13. ADC Digital Timing Diagram  
CLK  
CLK  
V
V
IH  
IH  
t
8
t
9
t
10  
V
V
90%  
10%  
OH  
OL  
D
D
OUT  
OUT  
1400 F14  
Figure 14. CLK to D  
Delay  
OUT  
1400fa  
13  
LTC1400  
U
TYPICAL APPLICATIO S  
Hardware Interface to TMS320C50’s TDM Serial Port (Frame Sync is Generated from TFSX)  
TMS320C50  
5V  
TCLKX  
TCLKR  
TFSX  
1
2
6
7
V
A
CLK  
CC  
IN  
UNIPOLAR  
INPUT  
+
CONV  
LTC1400  
TFSR  
0.1µF  
10µF  
5
3
TDR  
V
V
D
REF  
OUT  
+
GND  
4
SS  
8
0.1µF  
10µF  
1400 TA04a  
Logic Analyzer Waveforms Show 3.2μs Throughput Rate (Input Voltage = 3.046V, Output Code = 1011 1110 0110 = 3046 )  
10  
Data from LTC1400 Loaded into TMS320C50’s TRCV Register  
X
D10 D9  
D7 D6 D5 D4 D3  
D2  
D1 D0  
X
X
RDY D11  
D8  
1400 TA05c  
Data Stored in TMS320C50’s Memory (in Right Justified Format)  
0
RDY D11  
D10  
D9 D8 D7 D6 D5  
D4  
D3 D2 D1  
D0  
0
0
1400 TA05d  
1400fa  
14  
LTC1400  
U
TYPICAL APPLICATIO S  
TMS320C50 Code for Circuit  
THIS PROGRAM DEMONSTRATES LTC1400 INTERFACE TO TMS320C50  
FRAME SYNC PULSE IS GENERATED FROM TFSX  
*Start Serial Communication*  
SACL TDXR  
SPLK #040h, IMR  
CLRC INTM  
; Generate frame sync pulse  
; Turn on TRNT receiver interrupt  
; Enable interrupt  
*Initialization*  
.mmregs  
; Defines global symbolic names  
CLRC SXM  
; For Unipolar input, set for right shift  
;- - Initialized data memory to zero  
; with no sign extension  
; Load the auxiliary register pointer with seven  
.ds  
0F00h  
; Initialize data to zero  
MAR *AR7  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
.word  
.word  
.word  
.word  
.word  
.word  
0
0
0
0
0
0
; Begin sample data location  
; .  
; Location of data  
; .  
LAR AR7, #0F00h  
; Load the auxiliary register seven with #0F00h  
; as the begin address for data storage  
WAIT: NOP  
NOP  
; Wait for a receive interrupt  
;
;
; .  
NOP  
; End sample data location  
SACL TDXR  
; !! regenerate the frame sync pulse  
;
;- - Set up the ISR vector  
B
WAIT  
.ps  
B
080Ah  
; Serial ports interrupts  
; - - - - - - - end of main program - - - - - - - - - - ;  
rint :  
xint :  
trnt :  
txnt :  
RECEIVE  
TRANSMIT  
TREC  
; 0A;  
; 0C;  
; 0E;  
; 10;  
B
*Receiver Interrupt Service Routine*  
TREC:  
B
B
TTRANX  
LAMM TRCV  
SFR  
SFR  
; Load the data received from LTC1400  
; Shift right two times  
;
;- - Setup the reset vector  
.ps 0A00h  
.entry  
START:  
AND #1FFFh, 0  
; ANDed with #1FFFh  
; For converting the data to right  
; justified format  
*TMS32C050 Initialization*  
SETC INTM  
; Temporarily disable all interrupts  
; Set data page pointer to zero  
;
LDP #0  
SACL *+, 0  
; Write to data memory pointed by AR7 and  
; increase the memory address by one  
;
OPL #0834h, PMST ; Set up the PMST status and control register  
LACC #0  
LACC AR7  
SUB #0F05h,0  
SAMMCWSR  
SAMMPDWSR  
; Set software wait state to 0  
;
; Compare to end sample address #0F05h  
BCND END_TRCV, GEQ ; If the end sample address has exceeded jump  
to END_TRCV  
;
; Else Re-enable the TRNT receive interrupt  
; Return to main program and enable interrupt  
*Configure Serial Port*  
SPLK #0038h, TSPC ; Set TDM Serial Port  
SPLK #040h, IMR  
RETE  
; TDM = 0 Stand Alone mode  
; DLB = 0 Not loop back  
; FO = 0 16 Bits  
*After Obtained the Data from LTC1400, Program Jump to END_TRCV*  
END_TRCV:  
; FSM = 1 Burst Mode  
; MCM = 1 CLKX is generated internally  
; TXM = 1 FSX as output pin  
; Put serial port into reset  
; (XRST = RRST =0)  
SPLK #002h, IMR  
CLRC INTM  
; Enable INT2 for program to halt  
SUCCESS:  
SUCCESS  
B
SPLK #00F8h, TSPC ; Take Serial Port out of reset  
; (XRST = RRST = 1)  
SPLK #0FFFFh, IFR ; Clear all the pending interrupts  
*Fill the Unused Interrupt with RETE, to avoid program get “lost”*  
TTRANX:  
RETE  
RECEIVE:  
RETE  
TRANSMIT:  
RETE  
INT2:  
B halt  
; Halts the running CPU  
1400fa  
15  
LTC1400  
U
TYPICAL APPLICATIO S  
LTC1400 Interface to ADSP2181’s SPORT0 (Frame Sync is Generated from RFS0)  
ADSP2181  
SCLKO  
5V  
1
2
6
7
CLK  
V
A
CC  
IN  
UNIPOLAR  
INPUT  
+
CONV  
LTC1400  
RFSO  
DR0  
10µF  
0.1µF  
3
5
V
V
D
REF  
OUT  
+
GND  
SS  
8
0.1µF  
10µF  
4
1400 TA05a  
Logic Analyzer Waveforms Show 2.88μs Throughput Rate (Input Voltage = 2.240V, Output Code = 1000 1100 0000 = 2240 )  
10  
Data from LTC1400 (Normal Mode)  
X
D10 D9  
D7 D6 D5 D4 D3  
D2  
D1 D0  
X
X
RDY D11  
D8  
1400 TA05c  
Data Stored in ADSP2181’s Memory (Normal Mode, SLEN = D)  
0
RDY D11  
D10  
D9 D8 D7 D6 D5  
D4  
D3 D2 D1  
D0  
0
0
1400 TA05d  
1400fa  
16  
LTC1400  
U
TYPICAL APPLICATIO S  
ADSP2181 Code for Circuit  
THIS PROGRAM DEMONSTRATES LTC1400 INTERFACE TO ADSP-2181  
FRAME SYNC PULSE IS GENERATED FROM RFS0  
/*Section 3: configure CLKDIV and RFSDIV, setup interrupts*/  
/*to configure CLKDIV reg*/  
ax0 = 2;  
/*Section 1: Initialization*/  
dm(0x3FF5) = ax0; /*set the serial clock divide modulus reg  
.module/ram/abs = 0 adspltc; /*define the program module*/  
SCLKDIV*/  
jump start;  
/*jump over interrupt vectors*/  
/*the input clock frequency = 16.67MHz*/  
/*CLKOUT frequency = 2x = 33MHz*/  
/*SCLK= 1/2*CLKOUT*1/(SCLKDIV+1)*/  
/*for SCLKDIV = 2, SCLK = 33/6 = 5.5MHz*/  
/*to Configure RFSDIV*/  
nop; nop; nop;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
ax0 = rx0;  
/*code vectors here upon IRQ2 int*/  
/*code vectors here upon IRQL1 int*/  
/*code vectors here upon IRQL0 int*/  
/*code vectors here upon SPORT0 TX int*/  
/*Section 5*/  
ax0 = 15;  
/*set the RFSDIV reg = 15*/  
/*= > the frame sync pulse for every 16 SCLK*/  
/*if frame sync pulse in every 15 SCLK, ax0 = 14*/  
dm (0x2000) = ax0; /*begin of SPORT0 receive interrupt*/  
rti;  
/* */  
/* */  
dm(0x3FF4) = ax0;  
/*to setup interrupt*/  
ifc = 0x0066;  
/*end of SPORT0 receive interrupt*/  
/*code vectors here upon /IRQE int*/  
/*code vectors here upon BDMA interrupt*/  
/*code vectors here upon SPORT1 TX (IRQ1) int*/  
/*code vectors here upon SPORT1 RX (IRQ0) int*/  
/*code vectors here upon TIMER int*/  
/*code vectors here upon POWER DOWN int*/  
/*clear any extraneous SPORT interrupts*/  
/*IRQXB = level sensitivity*/  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
icntl = 0;  
/*disable nesting interrupt*/  
/*bit 0 = timer int = 0*/  
imask= 0x0020;  
/*bit 1 = SPORT1 or IRQ0B int = 0*/  
/*bit 2 = SPORT1 or IRQ1B int = 0*/  
/*bit 3 = BDMA int = 0*/  
/*Section 2: Configure SPORT0*/  
start:  
/*to configure SPORT0 control reg*/  
/*bit 4 = IRQEB int = 0*/  
/*bit 5 = SPORT0 receive int = 1*/  
/*bit 6 = SPORT0 transmit int = 0*/  
/*bit 7 = IRQ2B int = 0*/  
/*SPORT0 address = 0X3FF6*/  
/*RFS is used for frame sync generation*/  
/*RFS0 is internal, TFS is not use*/  
/*bit 0-3 = Slen*/  
/*F = 15 = 1111*/  
/*E = 14 = 1110*/  
/*D = 13 = 1101*/  
/*bit 4,5 data type right justified zero filled MSB*/  
/*bit 6 INVRFS = 0*/  
/*enable SPORT0 receive interrupt*/  
/*Section 4: Configure System Control Register and Start Communication*/  
/*to configure system control reg*/  
ax0 = dm(0x3FFF);  
ay0 = 0xFFF0;  
ar = ax0 AND ay0;  
ay0 = 0x1000;  
/*read the system control reg*/  
/*set wait state to zero*/  
ar = ar OR ay0;  
dm(0x3FFF) = ar;  
/*bit12 = 1, enable SPORT0*/  
/*bit 7 INVTFS = 0*/  
/*bit 8 IRFS = 1 receive internal frame sync*/  
/*bit 9,10,11 are for TFS (don’t care)*/  
/*bit 12 TFSW = 1 receive is Normal mode*/  
/*bit 13 RTFS = 1 receive is framed mode*/  
/*bit 14 ISCLK internal = 1*/  
/*frame sync pulse regenerated automatically*/  
cntr = 5000;  
do waitloop until ce;  
nop;  
nop;  
nop;  
nop;  
nop;  
/*bit 15 multichannel mode = 0*/  
/*normal mode, bit12 = 0*/  
ax0 = 0x6B0D;  
/*if alternate mode bit12 = 1, ax0 = 0x7F0E*/  
dm (0x3FF6) =ax0;  
nop;  
waitloop: nop;  
rts;  
.endmod;  
1400fa  
17  
LTC1400  
U
TYPICAL APPLICATIO S  
Quick Look Circuit for Converting Data to Parallel Format  
5V  
1
8
V
V
SS  
5V  
CC  
+
CONV  
10µF  
0.1µF  
10  
SRCLR  
LTC1400  
7
6
5
12  
11  
14  
13  
15  
1
2
3
4
5
6
7
9
CONV  
CLK  
RCK  
QA  
QB  
QC  
QD  
QE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
ANALOG INPUT  
(0V TO 4.096V)  
2
3
A
V
IN  
2.42V  
REFERENCE  
OUTPUT  
SRCK  
74HC595  
REF  
+
4
GND  
D
SER  
10µF  
0.1µF  
OUT  
QF  
G
QG  
QH  
QH'  
3-WIRE SERIAL  
INTERFACE LINK  
10  
SRCLR  
12  
11  
14  
13  
15  
1
2
3
4
5
6
7
9
RCK  
QA  
QB  
QC  
QD  
QE  
D8  
D9  
D10  
D11  
REFRDY  
SRCK  
74HC595  
CLK  
SER  
QF  
G
QG  
QH  
QH'  
1400 TA03  
1400fa  
18  
W
BLOCK DIAGRA  
LTC1400  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1400fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC1400  
U
TYPICAL APPLICATIO S  
LTC1400 Interface to TMS320C50  
TMS320C50  
5V  
TCLKX  
TCLKR  
TFSX  
1
2
6
7
V
A
CLK  
CC  
IN  
UNIPOLAR  
INPUT  
+
CONV  
LTC1400  
TFSR  
0.1µF  
10µF  
5
3
TDR  
V
V
D
REF  
OUT  
+
GND  
4
SS  
8
0.1µF  
10µF  
1400 TA04a  
LTC1400 Interface to ADSP2181  
ADSP2181  
5V  
1
2
6
7
SCLKO  
RFSO  
DR0  
CLK  
V
A
CC  
IN  
UNIPOLAR  
INPUT  
+
CONV  
LTC1400  
10µF  
0.1µF  
3
5
V
V
D
REF  
OUT  
+
GND  
SS  
8
0.1µF  
10µF  
4
1400 TA05a  
RELATED PARTS  
PART NUMBER  
LTC1285/LTC1288  
LTC1286/LTC1298  
LTC1290  
DESCRIPTION  
COMMENTS  
12-Bit, 3V, 7.5/6.6ksps, Micropower Serial ADCs  
0.48mW, 1 or 2 Channel Input, SO-8  
12-Bit, 5V 12.5/11.16ksps, Micropower Serial ADCs  
12-Bit, 50ksps 8-Channel Serial ADC  
1.25mW, 1 or 2 Channel Input, SO-8  
5V or ± 5V Input Range, 30mW, Full-duplex  
5V or ± 5V Input Range, 30mW, Half-duplex  
3V, 15mW, MSOP Package  
LTC1296  
12-Bit, 46.5ksps 8-Channel Serial ADC  
LTC1403/LTC1403A 12-/14-Bit, 2.8Msps Serial ADCs  
LTC1407/LTC1407A 12-/14-Bit, 3Msps Simultaneous Sampling ADCs  
3V, 14mW, 2-Channel Differential Inputs, MSOP Package  
5V or ± 5V, 20mW, Internal Reference, SSOP-16  
5V, Configurable Bipolar or Unipolar Inputs to ±10V  
1.22mW, 1-/2-Channel Inputs, MSOP and SO-8  
4.25mW, 1-/2-Channel Inputs, MSOP and SO-8  
1.22mW, 1-/2-Channel Inputs, MSOP and SO-8  
4.25mW, 1-/2-Channel Inputs, MSOP and SO-8  
LTC1417  
LTC1609  
14-Bit, 400ksps Serial ADC  
16-Bit, 200ksps Serial ADC  
LTC1860L/LTC1861L 12-Bit, 3V, 150ksps Serial ADCs  
LTC1860/LTC1861 12-Bit, 5V, 250ksps Serial ADCs  
LTC1864L/LTC1864L 16-Bit, 3V, 150KSPS Serial ADCs  
LTC1864/LTC1864 16-Bit, 5V, 250ksps Serial ADCs  
1400fa  
LT 0606 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2006  
(408)432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY