LDNC [Linear]

High Voltage Monolithic Inverter and Dual Boost; 高压变频器单片和双升压
LDNC
型号: LDNC
厂家: Linear    Linear
描述:

High Voltage Monolithic Inverter and Dual Boost
高压变频器单片和双升压

高压
文件: 总24页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3587  
High Voltage Monolithic  
Inverter and Dual Boost  
FEATURES  
DESCRIPTION  
The LT®3587 provides a one chip solution for applications  
requiring two positive and one negative high voltage sup-  
plies. The LT3587 input voltage range of 2.5V to 6V makes  
it ideal for various battery-powered systems.  
n
Ideal for CCD, LCD, LED Backlight and OLED  
Applications  
n
Easy Generation of 15V (50mA), –8V (100mA) and  
20V (20mA) from a Li-Ion Cell  
n
V
Range: 2.5V to 6V  
VIN  
Asingleresistorprogramseachofthethreeoutputvoltage  
levelsandtheoutputcurrentofBoost3.Theintelligentsoft-  
start allows for sequential soft-start of the Boost1 output  
followed by the negative output with a single capacitor.  
Internalsequencingcircuitryalsodisablestheinverteruntil  
the Boost1 output has reached 87% of its final value.  
n
Wide Output Ranges: Up to 32V for the Boosts and  
Up to –32V for the Inverter  
n
n
Output Disconnect for the Boost Channels  
Boost3 Allows Voltage Programming and/or Current  
Programming for a ‘One Wire Current Source’  
Overload Fault Protection with Fault I/O Pin Indicator  
Combined Soft-Start and Enable Pins  
n
n
n
The LT3587 integrates all the power switches, soft-start,  
and output-disconnect circuits into a small 3mm × 3mm  
QFN package. This high level of integration combined  
with small external components makes the LT3587 ideal  
for space constrained applications.  
Small 20-Pin 3mm × 3mm QFN Package  
APPLICATIONS  
n
Digital Still and Video Cameras  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Scanner and Display Systems  
n
PDA, Cellular Phones and Handheld Computers  
LED Backlight and OLED Display Drivers  
CCD Imager Bias  
General High Voltage Supply Bias  
n
n
n
TYPICAL APPLICATION  
Li-Ion Powered Supply for CCD Imager and Six White Backlight LEDs  
V
VIN  
2.5V TO 6V  
10μH  
Efficiency Curve  
15μH  
1μF  
90  
85  
80  
75  
70  
65  
60  
55  
50  
800  
700  
600  
500  
400  
300  
200  
100  
0
+
CDD = 50mA  
+
CDD  
2.2μF  
10μF  
1M  
SW3  
CAP3  
V
SW1  
CAP1  
CDD = 100mA  
IN  
LED = 20mA  
CCD POSITIVE  
15V, 50mA  
I
V
OUT1  
FB3  
8.06k  
ALL CHANNELS  
ENABLED  
FB1  
GND  
2.7pF  
LT3587  
2.2μF  
CDD  
LED DRIVER  
20mA, UP TO 6 LEDS  
V
EN/SS1  
EN/SS3  
FLT  
OUT3  
LED  
POWER DISSIPATION  
ALL CHANNELS  
ENABLED  
V
FB3  
1M  
FB2  
SW2  
6.8pF  
15μH  
15μH  
0
0.5  
1
1.5  
V
VIN  
2.5V TO 6V  
NORMALIZED CURRENT  
CCD NEGATIVE  
–8V, 100mA  
3587 TA01b  
22μF  
3587 TA01a  
3587fc  
1
LT3587  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V ..............................................................................6V  
IN  
Soft-Start Input Pins  
20 19 18 17 16  
EN/SS1, EN/SS3 .....................................................6V  
Feedback Pins  
FB1  
V
15  
14  
13  
12  
11  
V
1
2
3
4
5
OUT3  
CAP3  
SW3  
GND  
FLT  
OUT1  
FB1, FB2, I , V ................................. –0.2V to 6V  
FB3 FB3  
CAP1  
GND  
SW1  
21  
8
High Voltage Switch Pins  
SW1, SW2, SW3...................................................40V  
High Voltage Output Pins  
6
7
9 10  
CAP1, CAP3, V  
, V  
...................................32V  
OUT1 OUT3  
Bidirectional I/O Pin  
UD PACKAGE  
20-LEAD (3mm s 3mm) PLASTIC QFN  
= 68°C/W, θ = 4.2°C/W  
FLT..........................................................................6V  
FLT Current ........................................................10mA  
Operating Junction Temperature Range.. –40°C to 125°C  
Storage Temperature Range...................–65°C to 125°C  
θ
JA  
JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
20-Lead (3mm × 3mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 125°C  
LT3587EUD#PBF  
LT3587EUD#TRPBF  
LDNC  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VVIN = 3.6V, VEN/SS1 = VEN/SS3 = VVIN unless otherwise noted (Note 2, 3).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Operating Input Voltage Range  
Quiescent Current  
2.5  
6
4
V
V
V
= 0V, V  
= V OR  
2.4  
mA  
EN/SS1  
EN/SS1  
EN/SS1  
EN/SS3  
VIN  
= V , V  
= 0V OR  
VIN EN/SS3  
= V  
= V  
VIN  
EN/SS3  
Not Switching  
V
= V  
= 0V, In Shutdown  
5.5  
1
9
μA  
MHz  
%
EN/SS1  
EN/SS3  
l
l
Switching Frequency  
0.8  
87  
1.2  
Maximum Duty Cycle  
93  
50  
16  
1.0  
Minimum On Time  
70  
ns  
Power Fault Delay from Any Output to FLT  
FLT Input Threshold Low  
FLT Leakage Current  
ms  
V
l
l
l
0.4  
1.6  
1
V
FLT  
= 5V  
μA  
V
FLT Voltage Output Low  
I
FLT  
= 1mA  
0.4  
3587fc  
2
LT3587  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VVIN = 3.6V, VEN/SS1 = VEN/SS3 = VVIN unless otherwise noted (Note 2, 3).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Boost1  
CAP1 Bias Current  
FB1 Reference Voltage  
V
= 15V, V  
= Open  
OUT1  
60  
1.22  
15  
150  
1.25  
μA  
V
CAP1  
l
l
1.19  
14.25  
800  
V
Output Voltage  
R
= 1MΩ  
15.75  
V
OUT1  
FB1  
SW1 Current Limit  
SW1 V  
990  
200  
0.1  
mA  
mV  
μA  
V
I
= 400mA  
= 15V  
CESAT  
SW1  
SW1 Leakage Current  
V
V
5
SW1  
EN/SS1 for Full Inductor Current  
EN/SS1 Shutdown Voltage Threshold  
EN/SS1 Pin Bias Current  
= 1.1V, V = 0.1V  
2.5  
FB1  
FB2  
l
0.2  
–0.5  
100  
V
V
V
V
= 0V  
–1  
155  
5
–1.5  
μA  
mA  
Ω
EN/SS1  
V
OUT1  
Current Limit  
= 15V  
CAP1  
CAP1  
CAP1 to V  
On-Resistance (R  
)
= 15V, I = 50mA  
VOUT1  
8
1
OUT1  
DISC1  
V
Disconnect Leakage  
V
VIN  
= V  
= 6V, V = 0V  
VOUT1  
0.1  
μA  
OUT1  
CAP1  
Inverter  
l
l
FB2 Reference Voltage  
Output Voltage  
SW2 Current Limit  
–10  
–7.5  
900  
5
–8  
20  
mV  
V
R
= 1Mꢀ  
–8.5  
FB2  
1090  
250  
0.1  
87  
mA  
mV  
μA  
%
SW2 V  
I
= 600mA  
= 15V  
CESAT  
SW2  
SW2 Leakage Current  
V
SW2  
5
FB1 Threshold to Start Negative Channel  
Boost3  
Percent of Final Regulation Value  
90  
CAP3 Bias Current  
V
= 15V, V  
= Open  
OUT3  
70  
20  
150  
22  
μA  
mA  
V
CAP3  
l
l
l
Boost3 Programmed Current  
R
= 8.06kꢀ  
= 1Mꢀ, I  
= 1Mꢀ, I  
18  
0.77  
14  
IFB3  
V
V
Reference Voltage  
R
= 20mA  
0.8  
15  
0.83  
16  
FB3  
VFB3  
VOUT3  
VOUT3  
Output Voltage  
R
= 20mA  
V
OUT3  
VFB3  
SW3 Current Limit  
SW3 V  
400  
480  
250  
0.1  
mA  
mV  
μA  
V
I
= 200mA  
SW3  
CESAT  
SW3 Leakage Current  
V
= 15V  
5
2
SW3  
EN/SS3 for Full Inductor Current  
EN/SS3 Shutdown Voltage Threshold  
EN/SS3 Pin Bias Current  
V
= V  
= 0.6V  
VFB3  
IFB3  
l
0.2  
–0.5  
70  
V
V
= 0V  
–1  
110  
10  
–1.5  
μA  
mA  
EN/SS3  
V
OUT3  
Current Limit  
V
= 15V, V  
= 0V  
CAP3  
CAP3  
IFB3  
CAP3 to V  
On Resistance (R  
)
V
= 15V, I  
= 20mA  
15  
1
OUT3  
DISC3  
VOUT3  
V
OUT3  
Disconnect Leakage  
V
= V  
= 6V, V = 0V  
VOUT3  
0.1  
29  
μA  
V
VIN  
CAP3  
CAP3 Pin Overvoltage Clamp  
27  
31  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 3: The LT3587 is guaranteed to meet specified performance from  
0°C to 125°C. Specifications over the –40°C to 125°C operating range are  
assured by design, characterization and correlation with statistical process  
controls.  
3587fc  
3
LT3587  
TYPICAL PERFORMANCE CHARACTERISTICS Specifications are at T = 25°C unless otherwise noted.  
A
Quiescent Current  
When On But Not Switching  
vs Input Supply Voltage  
Shutdown Quiescent Current  
vs Input Supply Voltage  
VIN UVLO Voltage vs Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
2.20  
2.15  
2.10  
2.05  
2.00  
10  
8
V
= EN/SS1 = EN/SS3 = 3.6V  
V
= 3.6V  
VIN  
VIN  
125°C  
90°C  
FB1 = V  
= 1.5V  
FB3  
= 0V  
FB3  
EN/SS1 = EN/SS3 = 0V  
125°C  
FB2 = I  
90°C  
25°C  
25°C  
6
–40°C  
–40°C  
4
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
–50 –25  
0
25  
50  
75 100 125  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3587 G02  
3587 G03  
3587 G01  
FB2 Regulation Voltage  
vs Temperature  
FB1, VFB3 and IFB3 Regulation  
Voltage vs Temperature  
15  
10  
5
1.240  
1.230  
1.220  
1.210  
1.200  
0.825  
V
= 3.6V  
= 1MΩ  
= 100mA  
V
R
R
= 3.6V  
= R  
VIN  
FB2  
VIN  
FB1  
R
I
= 1MΩ  
VFB3  
= 8.06kΩ  
VNEG  
IFB3  
I
I
= 50mA  
= 20mA  
VOUT1  
VOUT3  
0.813  
0.800  
0.788  
0.775  
V
FB3  
V
IFB3  
0
FB1  
–5  
–10  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3587 G05  
3587 G04  
FB2 Bias Current in Regulation  
vs Temperature  
FB1, VFB3, IFB3 Bias Current in  
Regulation vs Temperature  
14.50  
14.25  
14.00  
13.75  
13.50  
13.25  
13.00  
106  
104  
102  
100  
98  
–7.75  
–7.85  
–7.95  
–8.05  
–8.15  
–8.25  
V
= 3.6V  
VIN  
FB2  
R
I
=1MΩ  
I
= 100mA  
VFB3  
VNEG  
I
FB1  
I
IFB3  
V
R
R
= 3.6V  
VIN  
FB1  
= R  
=1MΩ  
VFB3  
=8.06kΩ  
= 50mA  
= 20mA  
96  
IFB3  
I
I
VOUT1  
VOUT3  
94  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3587 G06  
3587 G07  
3587fc  
4
LT3587  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
Switches Current Limit  
Switching Frequency  
vs Temperature  
vs Temperature  
Switches VCESAT vs Current  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1.20  
1.10  
1.00  
0.90  
0.80  
V
= 3.6V  
SW3  
V
= 3.6V  
V
= 3.6V  
VIN  
VIN  
VIN  
DUTY CYCLE = 60%  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SW2  
SW1  
SW1  
SW2  
SW3  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
SW CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3587 G09  
3587 G10  
3587 G08  
SW1 and SW2 Current Limit  
vs EN/SS1 Voltage  
SW3 Current Limit  
vs EN/SS3 Voltage  
Switches Current Limit  
vs Duty Cycle  
1.6  
1.2  
0.8  
0.4  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.6V  
V
= 3.6V  
VIN  
V
= 3.6V  
VIN  
VIN  
SW2  
DUTY CYCLE = 60%  
SW3  
SW2  
SW1  
SW1  
SW3  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
0
10 20 30 40 50 60 70 80 90 100  
EN/SS1 VOLTAGE (V)  
EN/SS3 VOLTAGE (V)  
DUTY CYCLE (%)  
3587 G12  
3587 G13  
3587 G11  
EN/SS1, EN/SS3 Pull-Up Current  
In Shutdown vs Temperature  
Output Disconnects On Resistance  
Output Disconnects Current Limit  
vs Temperature  
vs Temperature (RDISC1, RDISC3  
)
14  
12  
10  
8
200.0  
167.5  
135.0  
102.5  
70  
1.50  
1.25  
1.00  
0.75  
0.50  
V
I
= 3.6V  
V
V
= 3.6V  
= V = 15V  
VOUT3  
V
= 3.6V  
VIN  
VIN  
VOUT1  
VIN  
= 50mA  
= 20mA  
EN/SS1 = EN/SS3 = 0V  
VOUT1  
VOUT3  
I
I
R
DISC3  
VOUT1  
R
DISC1  
6
I
VOUT3  
4
2
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3587 G14  
3587 G15  
3587 G16  
3587fc  
5
LT3587  
TYPICAL PERFORMANCE CHARACTERISTICS Specifications are at T = 25°C unless otherwise noted.  
A
EN/SS1, EN/SS3 Shutdown  
Threshold vs Temperature  
CAP3 Overvoltage Clamp  
vs Temperature  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
31  
30  
29  
28  
27  
V
= 3.6V  
V
VIN  
= 3.6V  
VIN  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3587 G17  
3587 G18  
PIN FUNCTIONS  
V
(Pin 1): Boost3 Output Pin. This pin is the drain of  
FB2 (Pin 6): Inverter Output Voltage Feedback Pin. Con-  
nect a resistor R from this pin to the Inverter Output  
OUT3  
an output disconnect PMOS transistor.  
FB2  
(V ) such that:  
NEG  
CAP3 (Pin 2): Boost3 Output Capacitor Pin. This pin is the  
sourceofanoutputPMOSdisconnect.Connectacapacitor  
from this pin to ground.  
R
= |V |/8μA  
NEG  
FB2  
Note that FB2 pin voltage is about 0V when in regulation.  
There is an internal 153k resistor from the FB2 pin to the  
internal reference.  
SW3 (Pin 3): Boost3 Switch Pin. Connect an inductor  
from this pin to V . Minimize trace area at this pin to  
IN  
minimize EMI.  
SW2 (Pin 9): Inverter Switch Pin. Connect an inductor  
GND (Pin 4, 7, 8, 12): Ground Pins.  
between this pin and V , as well as the flying capacitor  
IN  
from this pin to the anode of the lnverter ground return  
FLT (Pin 5): Fault Pin. This pin is a bidirectional open-  
drain pull-down pin. This pin pulls low when any of the  
enabled outputs fall out of regulation for more than 16ms.  
Each output is ignored during start-up until its respective  
enable/soft-start pin allows for full inductor current. This  
pin can also be externally forced low to disable all the  
supply outputs. Once this pin goes low (either due to an  
out of regulation condition or externally forced low), the  
pin latches low until the inputs to EN/SS1 and EN/SS3 are  
set low or the input supply pin is recycled. Pull up this pin  
diode. Minimize trace area at this pin to minimize EMI.  
NC (Pin 10): No Connect Pin. Leave open or connect to  
ground.  
SW1 (Pin 11): Boost1 Switch Pin. Connect an inductor  
from this pin to V . Minimize trace area at this pin to  
IN  
minimize EMI.  
CAP1 (Pin 13): Boost1 Output Capacitor Pin. This pin  
is the source of an output PMOS disconnect. Connect a  
capacitor from this pin to ground.  
to V with a 200k resistor when not used.  
IN  
3587fc  
6
LT3587  
PIN FUNCTIONS  
V
(Pin 14): Boost1 Output Pin. This pin is the drain  
V
(Pin 20): Boost3 Output Voltage Feedback Pin. Con-  
OUT1  
FB3  
of an output disconnect PMOS transistor.  
nect a resistor R  
such that:  
from this pin to V  
(or CAP3)  
VFB3  
OUT3  
FB1 (Pin 15): Boost1 Output Voltage Feedback Pin. Con-  
nect a resistor R  
such that:  
from this pin to V  
(or CAP1)  
R
= ((V /0.8V) – 1) • 56.3k  
VOUT3  
FB1  
OUT1  
VFB3  
There is an internal 56.3k resistor from the V  
pin to  
VFB3  
FB3  
R
= ((V /1.22V) – 1) • 88.5k  
VOUT1  
ground. In the current regulator configuration, R  
can  
FB1  
be optionally used to limit the maximum output voltage  
There is an internal 88.5k resistor from the FB1 pin to  
ground.  
to V  
, such that:  
CLAMP  
R
= ((V  
/0.8V) – 1) • 56.3k  
CLAMP  
VFB3  
EN/SS1(Pin16):Boost1/InverterShutdownandSoft-Start  
Pin. Boost1 and Inverter are enabled when the voltage  
on this pin is greater than 2.5V. They are disabled when  
the voltage is below 0.2V. An internal 1μA current source  
in conjunction with an external capacitor can be used to  
ramp this pin and provide soft-start.  
Note: When no voltage clamp is desired in the current  
regulator configuration, tie V to GND.  
FB3  
ExposedPad(Pin21):GroundPin.ConnecttoPCBground  
plane.Groundplaneconnectionthroughmultipleviasunder  
the package is recommended for optimum electrical and  
thermal performance.  
V (Pin 17): Input Supply Pin. Must be locally bypassed  
IN  
with an X5R or X7R type ceramic capacitor.  
EN/SS3 (Pin 18): Boost3 Shutdown and Soft-Start Pin.  
Boost3 is enabled when the voltage on this pin is greater  
than 2V. It is disabled when the voltage is below 0.2V. An  
internal 1μA current source in conjunction with an exter-  
nal capacitor can be used to ramp this pin and provide  
soft-start.  
I
(Pin 19): Boost3 Output Current Programming Pin.  
FB3  
Connect a resistor R  
from this pin to ground such  
IFB3  
that:  
R
= 200 • (0.8V/I  
)
IFB3  
VOUT3  
If Boost3 output is configured as a voltage regulator,  
can be optionally used to limit the maximum output  
R
IFB3  
current to I  
:
LIMIT  
R
IFB3  
= 200 • (0.8V/I  
)
LIMIT  
Note: Tie I to GND when no current limit is desired.  
FB3  
3587fc  
7
LT3587  
BLOCK DIAGRAM  
V
IN  
V
IN  
1μA  
EN/SS3  
L4  
SW3  
C5  
SOFT-  
+
OVERVOLTAGE  
PROTECTION  
+
V
REF  
0.8V  
START  
D
A8  
S3  
200mV  
V
C3  
CAP3  
A5  
+
X3  
S
C4  
FLT  
A6  
Q3  
Q
R
M2  
M3  
V
OUT3  
V
OUT3  
R
VFB3  
V
MAX  
Σ
V
FB3  
DISCONNECT  
CONTROL  
56.3k  
RAMP  
GENERATOR  
SHDN3  
I
V
IN  
FB3  
V
IN  
R
100k  
FLT  
IFB3  
EN/SS3  
C6  
EN/SS1  
EN/SS3  
FLT  
PTAT BIAS  
V
IN  
R
FILTER  
AND  
S
Q
V
C1  
V
C2  
V
C3  
BANDGAP  
AND LDO  
OSCILLATOR  
16ms  
DELAY  
L1  
V
SW1  
OUT1  
R
D
FB1  
S1  
EN/SS1  
A3  
CAP1  
V
C1  
X1  
S
FB1  
+
A1  
C1  
88.5k  
FLT  
M1  
+
Q
Q1  
R
V
OUT1  
DISCONNECT  
CONTROL  
Σ
200mV  
V
REF  
1.22V  
A7  
+
RAMP  
GENERATOR  
SHDN1  
V
IN  
1μA  
EN/SS1  
SOFT-  
START  
C3  
V
IN  
SEQUENCING  
153k  
L2  
FB2  
+
SW2  
V
C2  
X2  
S
A2  
R
FB2  
A4  
Q
Q2  
R
V
NEG  
GND  
+
C2  
Σ
D
S2  
RAMP  
GENERATOR  
L3  
V
NEG  
C7  
3587 F01  
Figure 1. Block Diagram  
3587fc  
8
LT3587  
OPERATION  
All three channels of the LT3587 use a constant frequency,  
current mode control scheme to provide voltage and/or  
current regulation at the output. Operation can be best un-  
derstood by referring to the Block Diagram in Figure 1.  
200mV, the bandgap reference, the start-up bias and the  
oscillators are also turned on. The SR latch X3 is set at  
the start of each oscillator cycle which turns on the power  
switch Q3. Q3 turns off based on its own feedback loop,  
whichconsistsoferroramplifierA5andPWMcomparator  
A6. The level at the negative input of A6 is set by the error  
amplifier A5, and is an amplified version of the difference  
between the reference voltage of 0.8V and the maximum  
If EN/SS1 is pulled higher than 200mV, the bandgap refer-  
ence, the start-up bias and the oscillator are turned on. At  
the start of each oscillator cycle, the SR latch X1 is set,  
whichturnsonthepowerswitchQ1.Avoltageproportional  
to the switch current is added to a stabilizing ramp and  
the resulting sum is fed into the positive terminal of the  
PWM comparator A3. When this voltage exceeds the level  
atthenegativeinputofA3, theSRlatchX1isreset, turning  
off the power switch Q1. The level at the negative input  
of A3 is set by the error amplifier A1, which is simply an  
amplified version of the difference between the reference  
voltage of 1.22V and the feedback voltage. In this manner,  
the error amplifier sets the correct peak switch current  
level to keep the output voltage in regulation. If the error  
amplifier output increases, more current is delivered to  
the output; if it decreases, less current is delivered.  
of the two feedback voltages at V and I . A separate  
FB3  
FB3  
comparator (not shown) sets the maximum current limit  
on Q3.  
The I  
pin is pulled up internally with a current that  
FB3  
is (1/200) times the load current out of the V  
pin.  
OUT3  
Therefore, an external resistor connected from this pin  
to ground generates a feedback voltage proportional to  
the V  
output load current at the I  
FB3  
pin. When the  
FB3  
OUT3  
FB3  
voltage at V is higher than the voltage at I , the third  
channelregulatestothefeedbackvoltageatV , whichin  
normal application is a divided down voltage from V  
FB3  
.
OUT3  
In this state, the third channel behaves as a boost voltage  
regulator. On the other hand if the voltage at I is higher,  
FB3  
Thesecondchannelisaninvertingconverter. Thischannel  
is also enabled through the EN/SS1 pin. The basic opera-  
tion of this second channel is the same as the positive  
channel. The SR latch X2 is also set at the start of each  
oscillator cycle. The power switch Q2 is turned on at the  
same time as Q1. Q2 turns off based on its own feedback  
loop, which consists of error amplifier A2 and PWM  
comparator A4. The reference voltage of this negative  
channel is ground.  
the third channel regulates to the feedback voltage at I  
,
FB3  
which therefore regulates the V  
output load current to  
OUT3  
a particular value. In this state, the third channel behaves  
as a boost current regulator.  
PMOS M1 is used as an output disconnect pass transistor  
fortherstchannel.M1disconnectstheload(V  
)from  
OUT1  
the input as long as the voltage between CAP1 and V  
IN  
is less than 2.5V (typical) and the voltage between CAP1  
and V is less than 10V (typ). Similarly, PMOS M3 is  
OUT1  
Voltage clamps (not shown) on the output of the error  
amplifiers A1 and A2 enforce current limit on Q1 and Q2  
respectively.  
used as an output disconnect pass transistor for the third  
channel. M3 disconnects the load (V ) from the input  
OUT3  
when the third channel is in shutdown (EN/SS3 voltage  
Similar to the first channel, the third channel is also a  
positive boost regulator. If EN/SS3 is pulled higher than  
is lower than 200mV) and the voltage between CAP3 and  
V
OUT3  
is less than 10V (typical).  
3587fc  
9
LT3587  
APPLICATIONS INFORMATION  
Inductor Selection  
Fortheinvertingchannel,theinrushcurrentowsfromthe  
input through inductor L2, charging the flying capacitor  
A 15μH inductor and a 10μH inductor are recommended  
for the LT3587 Boost1 channel and Boost3 channel re-  
spectively. The inverting channel can use 15μH or 22μH  
inductors. Although small size is the major concern for  
mostapplications, forhighefficiencytheinductorsshould  
have low core losses at 1MHz and low DCR (copper wire  
resistance). The inductor DCR should be on the order of  
half of the switch on resistance for its channel: 0.5ꢀ for  
Boost1,0.4fortheinverterand1forBoost3.Forrobust  
applications, the inductors should have current ratings  
corresponding to their respective peak current during  
regulation. Furthermore, with no soft-start, the inductor  
should also be able to withstand temporary high start-up  
currents of 1A, 1.1A and 480mA for the Boost1, inverter  
and Boost3 channels respectively (typ, refer to the Typical  
Performance Characteristics curves).  
C2 and returning through the Schottky diode D .  
S2  
The selection of inductor and capacitor values should  
ensure that the peak inrush current is below the rated  
momentary maximum current of the Schottky diodes. The  
peak inrush current can be estimated as follows:  
1  
tan1(ϕ)  
(VVIN 0.6)•e ϕ  
IP =  
L
C
4L  
R2C  
ϕ =  
1  
where L is the inductance, C is the capacitance and R is  
thetotalseriesresistanceintheinrushcurrentpath, which  
includes the resistance of the inductor and the Schottky  
diode. Note that in this equation, we model the Schottky  
as having a fixed 0.6V drop.  
Capacitor Selection  
The small size of ceramic capacitors makes them suitable  
for LT3587 applications. X5R and X7R types of ceramic  
capacitors are recommended because they retain their  
capacitance over wider voltage and temperature ranges  
than other types such as Y5V or Z5U. A 1μF input ca-  
pacitor is sufficient for most LT3587 applications. The  
output capacitors required for stability depend on the  
application. For most applications, the output capacitor  
values required are: 10μF for the Boost1 channel, 22μF  
for the inverter channel and 2.2μF for the Boost3 chan-  
nel. The inverter requires a 2.2μF flying capacitor. Note  
that this flying capacitor needs a voltage rating of at least  
Table 1 gives inrush peak currents for some component  
selections. Note that inrush current is not a concern if the  
input voltage rises slowly.  
Table 1. Inrush Peak Current  
V
(V)  
R (Ω)  
0.68  
L (μH)  
15  
C (μF)  
10  
I (A)  
VIN  
P
5
5
5
2.48  
1.19  
1.64  
1.64  
0.80  
1.10  
0.68  
22  
2.2  
2.2  
10  
0.68  
10  
3.6  
3.6  
3.6  
0.745  
0.745  
0.745  
15  
22  
2.2  
2.2  
V + |V |.  
IN  
NEG  
10  
Inrush Current  
Schottky Diode Selection  
For any of the external diode (D , D and D ) selec-  
tions, besides having sufficiently high reverse breakdown  
voltagetowithstandtheoutputvoltage, bothforwardvolt-  
age drop and diode capacitance need to be considered.  
Schottkydiodesratedforhighercurrentusuallyhavelower  
forward voltage drops and larger capacitance. Although  
lower forward voltage drop is good for efficiency, a large  
When a supply voltage is abruptly applied to the V pin,  
IN  
S1 S2  
S3  
the voltage difference between the V pin and the CAP  
IN  
pins generates inrush current. For the case of the Boost1  
channel, the inrush current flows from the input through  
the inductor L1 and the Schottky D to charge the Boost1  
S1  
output capacitor C1. Similarly for the Boost3 channel, the  
inrush current flows from the input through the inductor  
L4andtheSchottkyD tochargetheoutputcapacitorC4.  
S3  
3587fc  
10  
LT3587  
APPLICATIONS INFORMATION  
capacitancewillslowdowntheswitchingwaveform,which  
can cause significant switching losses at 1MHz switch-  
ing frequency. Some recommended Schottky diodes are  
listed in Table 2.  
The same constraints as the other Schottky diodes ap-  
ply for selecting D3. Therefore, the same recommended  
Schottky diodes in Table 2 can be used for D3.  
Boost3 Overcurrent and Overvoltage Protection  
Table 2. Recommended Schottky Diodes  
As briefly discussed in the Operation section, the regula-  
tion loop of Boost3 uses the maximum of the two voltages  
at V and I as feedback information to set the peak  
current of its power switch Q3. This allows for the Boost3  
loop to be configured as either a boost voltage regulator  
or a boost current regulator (Figure 3). Furthermore, this  
architecturealsoallowsforaprogrammablecurrentlimiton  
voltage regulation or voltage limit on current regulation.  
DIODE  
FORWARD FORWARD CAPACI-  
PART  
NUMBER  
CURRENT VOLTAGE  
TANCE  
FB3  
FB3  
(mA)  
DROP (V) (pF at 10V) MANUFACTURER  
RSX051VA-30  
1000  
0.35  
30  
ROHM  
www.rohm.com  
PMEG401OCEJ  
PMEG2005EB  
IR05H40CSPTR  
500  
500  
500  
0.49  
0.43  
0.48  
25  
8
NXP/Phillips  
www.nxp.com  
39  
Vishay  
www.vishay.com  
V
V
VIN  
VIN  
B0540WS  
ZLLS400  
500  
520  
0.48  
0.53  
20  
17  
Diodes Inc.  
www.diodes.com  
V
SW3  
CAP3  
V
SW3  
CAP3  
IN  
IN  
Zetex  
www.zetex.com  
LT3587  
BOOST3  
VOLTAGE  
LT3587  
BOOST3  
V
V
OUT3  
OUT3  
CURRENT  
REGULATOR  
R
R
VFB3  
VFB3  
REGULATOR  
Smaller Footprint Inverter Topology  
V
V
FB3  
FB3  
OPTIONAL  
VOLTAGE  
I
I
FB3  
FB3  
EN/SS3  
EN/SS3  
PROGRAMMABLE  
VOLTAGE LIMIT  
RESISTOR  
Incertainapplicationswithhighertoleranceofcurrentripple  
attheoutputoftheinverter,theinductorL3canbereplaced  
with a Schottky diode. Since the Schottky diode footprint  
isusuallysmallerthantheinductorfootprint,thisalternate  
topology is recommended if a smaller overall solution is a  
must. Note that this topology is only viable if the absolute  
REGULATION  
FEEDBACK  
RESISTOR  
R
IFB3  
R
IFB3  
CURRENT REGULATION  
FEEDBACK RESISTOR  
3587 F03  
OPTIONALPROGRAMMABLE  
CURRENT LIMIT RESISTOR  
Figure 3. Boost3 Configured as a Voltage  
Regulator and as a Current Regulator  
value of the inverter output is greater than V .  
IN  
When configured as a boost voltage regulator, a feedback  
resistor from the output pin V to the V pin sets the  
ThisSchottkydiodeisconfiguredwiththeanodeconnected  
to the output of the inverter and the cathode to the output  
end of the flying capacitor C2 as shown in Figure 2.  
OUT3  
FB3  
voltage level at V  
at a fixed level. In this case, the I  
OUT3  
FB3  
pin can either be grounded if no current limiting is desired  
or connected to ground with a resistor such that:  
R
FB1  
I
= 200 • (0.8V/R  
)
LIMIT  
IFB3  
1M  
LT3587  
SW2  
FB2  
whereI  
isthedesiredoutputcurrentlimitvalue.Recall  
LIMIT  
3587 F02  
that the pull-up current on the I pin is controlled to be  
FB3  
INVERTER  
OUTPUT  
C2  
2.2μF  
L2  
15μH  
typically 1/200 of the output load current at the V  
D3  
OUT3  
–8V, 100mA  
V
VIN  
pin. In this case, when the load current is less than I  
,
2.5V TO 4.5V  
LIMIT  
the Boost3 loop regulates the voltage at the V  
pin to  
C7  
22μF  
FB3  
DS2  
0.8V. When there is an increase in load current beyond  
, the voltage at V starts to drop and the voltage  
I
LIMIT  
FB3  
at I rises above 0.8V. The Boost3 loop then regulates  
FB3  
Figure 2. Inverter Configured with a Schottky  
Diode in Place of the Output Inductor  
the voltage at the I  
pin to 0.8V, limiting the output  
FB3  
3587fc  
11  
LT3587  
APPLICATIONS INFORMATION  
current at V  
to I . Figure 4 compares the transient  
LIMIT  
lower than 29V is obtained by connecting a resistor from  
the V pin to the V pin such that:  
OUT3  
responses with and without current limit when a current  
overload occurs.  
OUT3  
FB3  
R
FB3  
= ((V  
/0.8V) – 1) • 56.3k  
CLAMP  
where V  
is the desired output voltage clamp level. In  
CLAMP  
15V  
V
VOUT3  
5V/DIV  
this case, when the voltage level is less than V  
, the  
CLAMP  
Boost3 loop regulates the voltage at the I pin to 0.8V.  
FB3  
I
20mA  
VOUT3  
Whentheoutputloadfailsopen-circuitorisdisconnected,  
13mA/DIV  
LOAD STEP  
the voltage at I drops to reflect the lower output current  
FB3  
I
L4  
and the voltage at V  
starts to rise. When the voltage  
, the Boost3 loop then regulates  
FB3  
CLAMP  
200mA/DIV  
at V  
rises to V  
OUT3  
the voltage at the V  
pin to 0.8V, limiting the voltage  
. Figure 5 contrasts the transient  
FB3  
CLAMP  
3587 F04a  
level at V  
to V  
200μs/DIV  
OUT3  
V
= 3.6V  
VIN  
WITHOUT CURRENT LIMIT: I  
CONNECTED TO GND  
FB3  
responses with and without programmed V  
the output load is disconnected.  
when  
CLAMP  
V
STAYS AT 15V, OUTPUT CURRENT  
OUT3  
INCREASES FROM 20mA TO 40mA  
15V  
V
VOUT3  
20V  
V
VOUT3  
5V/DIV  
10V/DIV  
OUTPUT LOAD  
DISCONNECTED  
I
20mA  
VOUT3  
13mA/DIV  
LOAD STEP  
I
L4  
200mA/DIV  
I
L4  
200mA/DIV  
3587 F05a  
200μs/DIV  
WITHOUT PROGRAMMED OUTPUT VOLTAGE  
CLAMP: V CONNECTED TO GND  
V
= 3.6V  
VIN  
3587 F04b  
200μs/DIV  
V
= 3.6V  
VIN  
FB3  
WITH 20mA CURRENT LIMIT: R  
OUTPUT CURRENT STAYS AT 20mA,  
DROPS FROM 15V TO 7.5V  
= 8.06k  
IFB3  
V
OUT3  
Figure 4. Boost3 Waveform in an Output Current  
Overload Event with and Without Output Current Limit  
20V  
V
VOUT3  
10V/DIV  
OUTPUT LOAD  
DISCONNECTED  
The LT3587 CAP3 pin has an internal overvoltage protec-  
tion. When the voltage at the CAP3 pin is driven above  
29V (typ), the Boost3 loop is disabled and the SW3 pin  
stops switching.  
I
L4  
200mA/DIV  
3587 F05b  
When configured as a boost current regulator, a feedback  
200μs/DIV  
V
= 3.6V  
VIN  
WITH PROGRAMMED OUTPUT  
VOLTAGE CLAMP AT 24V  
resistor from the I pin to ground sets the output cur-  
FB3  
rent at V  
at a fixed level. In this case, if the V pin is  
grounded then the overvoltage protection defaults to the  
OUT3  
FB3  
Figure 5. Boost3 Output Open-Circuit Waveform with  
and Without Programmed Output Voltage Clamp  
open-circuit clamp voltage level of 29V. A voltage clamp  
3587fc  
12  
LT3587  
APPLICATIONS INFORMATION  
Setting The Output Voltages and The Boost3 Output  
Current  
Connecting a capacitor from the EN/SS3 pin to ground  
sets up a soft-start ramp for the Boost3 channel. As the  
1μA current charges up the capacitor, the Boost3 regula-  
tion loop is enabled when the EN/SS3 pin voltage goes  
The LT3587 has a trimmed internal feedback resistor. A 1M  
feedbackresistorfromeachoutputpintoitscorresponding  
feedbackpinsetstheoutputsto15VforBoost1,–8Vforthe  
inverter and 15V for Boost3. Note that only one resistor is  
needed to set the output voltage for each channel. Set the  
output voltages according to the following formulas:  
above 200mV. The V node voltage follows the EN/SS3  
C3  
voltage as it ramps up ensuring slow start-up on the  
Boost3 channel. When the voltage at the EN/SS3 pin is  
above 2V, the Boost3 regulation loop is free running with  
full inductor current.  
R
R
= ((V  
/1.22V) – 1) • 88.5k  
FB1  
FB2  
VOUT1  
Start Sequencing  
= |V |/8μA  
NEG  
The LT3587 also has internal sequencing circuitry that  
inhibits the inverter channel from operating until the feed-  
backvoltageoftheBoost1voltage(attheFB1pin)reaches  
about 1.1V (87% of the final voltage). This ensures that  
the Boost1 output voltage is near regulation before any  
negative voltage is generated at the inverter output.  
R
= ((V  
/0.8V) – 1) • 56.3k  
VFB3  
VOUT3  
Asdescribedinprevioussections,Boost3canbeconfigured  
as a boost current regulator. When configured as such, set  
the output current according to the following formula:  
R
= 200 • (0.8V/I  
)
IFB3  
VOUT3  
Figure 6 contrasts the start-up sequencing without any  
soft-start capacitor, and with a 10nF soft-start capacitor.  
Inordertomaintainaccuracy, usehighprecisionresistors  
when setting any of the channels output voltage and/or  
the Boost3 output current (1% is recommended).  
Soft-Start  
V
EN/SS1  
0V  
2V/DIV  
The LT3587 has two soft-start control pins: EN/SS1 and  
EN/SS3. The EN/SS1 pin controls the soft-start for both  
the Boost1 and the inverter, while the EN/SS3 pin controls  
the soft-start for the Boost3. Each of these soft-start pins  
is pulled up internally with a 1μA current source.  
I
VIN  
0mA  
500mA/DIV  
V
VOUT1  
10V/DIV  
0V  
0V  
V
NEG  
10V/DIV  
Connecting a capacitor from the EN/SS1 pin to ground  
programs a soft-start ramp for the Boost1 and the inverter  
channels. Use an open-drain transistor to pull this pin low  
to shut down both the Boost1 and the inverter. Turning off  
this transistor allows the 1μA pull-up current to charge the  
soft-start capacitor. When the voltage at the EN/SS1 pins  
goes above 200mV, the regulation loops for Boost1 and  
3587 F06a  
400μs/DIV  
V
EN/SS1  
2V/DIV  
I
VIN  
0mA  
500mA/DIV  
the inverter are enabled. The V node voltage follows the  
C1  
V
VOUT1  
0V  
0V  
10V/DIV  
EN/SS1 voltage as it continues to ramp up to ensure slow  
V
NEG  
start-up on the Boost1 channel. The V node follows the  
C2  
10V/DIV  
ramp voltage minus 0.7V. This ensures that the inverter  
starts up after the Boost1, but still has a slow ramping  
output to avoid large start-up currents. The Boost1 and  
the inverter regulation loops are free running with full  
inductor current when the voltage at the EN/SS1 pin is  
above 2.5V.  
3587 F06b  
4ms/DIV  
Figure 6. VEN/SS1, VOUT1, VNEG, IVIN with No Soft-Start  
Capacitor, and with a 10nF Soft-Start Capacitor  
3587fc  
13  
LT3587  
APPLICATIONS INFORMATION  
Output Disconnect  
The output disconnect feature on Boost3 is implemented  
similarlyusingM3. However, inthiscaseM3isonlyturned  
off when the EN/SS3 pin voltage is less than 200mV and  
the Boost3 regulation loop is disabled.  
Both the Boost1 and the Boost3 channels have an output  
disconnect between their respective CAP pin and V  
OUT  
IN  
pin. This disconnect feature prevents a DC path from V  
to V  
.
The disconnect transistor M3 is also current limited, pro-  
OUT  
vidingamaximumoutputcurrentatV  
of110mA(typ).  
OUT3  
ForBoost1, thisoutputdisconnectfeatureisimplemented  
using a PMOS (M1) as shown in the Block Diagram in  
Figure 1. When turned on, M1 is driven hard in the linear  
region to reduce power dissipation when delivering cur-  
M3 also has a similar protection circuit as M1 that limits  
the voltage drop across CAP3 and V to about 10V.  
OUT3  
Figure 8 shows the output voltage and current during an  
overload event with V initially at 24V.  
CAP3  
rent between the CAP1 pin and the V  
pin. M1 stays  
OUT1  
on as long as the voltage difference between CAP1 and  
V is greater than 2.5V. This allows for the positive bias  
IN  
I
VOUT3  
to stay high for as long as possible as the negative bias  
500mA/DIV  
0mA  
24V  
discharges during turn off.  
I
L4  
500mA/DIV  
ThedisconnecttransistorM1iscurrentlimitedtoprovidea  
maximumoutputcurrentof155mA(typ).However,thereis  
also a protection circuit for M1 that limits the voltage drop  
V
CAP3  
10V/DIV  
V
VOUT3  
10V/DIV  
across CAP1 and V  
to about 10V. When the voltage at  
OUT1  
CAP1 is greater than 10V, in an overload or a short-circuit  
3587 F08a  
40μs/DIV  
event, M1 current is limited to 155mA until the voltage  
across CAP1 to V  
grows to about 10V. Then M1 is  
OUT1  
I
VOUT3  
turned on hard without any current limit to allow for the  
voltage on CAP1 to discharge as fast as possible. When  
500mA/DIV  
0mA  
I
L4  
the voltage across CAP1 and V  
reduces to less than  
500mA/DIV  
OUT1  
10V, the output current is then again limited to 155mA.  
Figure 7 shows the output voltage and current during an  
V
CAP3  
24V  
10V/DIV  
V
VOUT3  
overload event with V  
initially at 15V.  
CAP1  
10V/DIV  
3587 F08b  
40μs/DIV  
V
= 3.6V  
VIN  
C4 = 1μF  
I
VOUT1  
Figure 8. VCAP3, VVOUT3, IVOUT3 and IL4 During a Short-Circuit  
Condition with and Without Programmed 20mA Current Limit  
500mA/DIV  
0mA  
I
L1  
500mA/DIV  
Choosing A Feedback Node  
V
CAP1  
15V  
15V  
10V/DIV  
Boost1 feedback resistor, R , may be connected to the  
FB1  
V
VOUT1  
V
pin or the CAP1 pin (see Figure 9). Similarly for  
OUT1  
10V/DIV  
Boost3 in a boost voltage regulator configuration, the  
3587 F07  
40μs/DIV  
V
VIN  
= 3.6V  
C1 = 4.7μF  
feedback resistor, R  
, may be connected to the V  
VFB3  
OUT3  
pins  
pin or the CAP3 pin. Regulating the V  
and V  
OUT1  
OUT3  
Figure 7. VCAP1,VVOUT1, IVOUT1 and IL1 During a Short-Circuit Event  
eliminatestheoutputoffsetresultingfromthevoltagedrop  
across the output disconnect PMOS transistors.  
3587fc  
14  
LT3587  
APPLICATIONS INFORMATION  
VVOUT1 +IVOUT1 RDISC1 1.22V  
13.8μA  
VVOUT3 +IVOUT3 RDISC3 0.8V  
14.3μA  
FLT  
B1  
B3 SW3  
V
IN  
SW1  
GND  
RFB1  
RFB3  
=
=
EN/SSEN/SS  
CAP3  
V
CAP1  
FB1  
FB3  
LT3587  
R
VFB3  
V
I
OUT3  
R
FB1  
V
FB3  
OUT1  
DN  
SW2  
FB2  
Fault Detection and Indicator  
The LT3587 features fault detection on all its outputs and  
a fault indicator pin (FLT). The fault detection circuitry is  
enabled only when at least one of the channels has com-  
pleted the soft-start process and is free running with full  
inductor current. Once the fault detection is enabled, the  
FLT  
B1  
B3 SW3  
V
IN  
SW1  
EN/SSEN/SS  
CAP3  
GND  
CAP1  
R
VFB3  
LT3587  
V
FB3  
R
FB1  
FB1  
V
I
OUT3  
Faultpinpullslowwhenanyofthefeedbackvoltages(V  
,
FB1  
V
FB3  
OUT1  
DN  
SW2  
FB2  
V
or Max(V  
,V )) fall below their regulation value  
FB2  
VFB3 IFB3  
for more than 16ms.  
3587 F09  
Figure 9. Feedback Connection Using the VOUT and CAP Pins  
One particularly important case is an overload or short-  
circuitconditiononanyofthechanneloutputs.Inthiscase,  
if the corresponding loop is unable to bring the output  
back into regulation within 16ms, a fault is detected and  
the Fault pin is pulled low.  
However, in the case of a short-circuit fault at the V  
OUT  
pins, the LT3587 will switch continuously because the FB1  
or the V pin is low. While operating in this open-loop  
FB3  
condition, the rising voltage at the CAP pins is limited  
only by the protection circuit of their respective output  
disconnects. At the worst case, the CAP pin rises to 10V  
Note that the fault condition is latched. Once the Fault pin  
is pulled low, all the three channels are disabled. In order  
to enable any of the channels again, reset the part by shut-  
ting it down and then turning it on again. This is done by  
first forcing both the EN/SS1 and EN/SS3 pins low below  
200mV and then either letting them go high again in a  
soft-start process or forcing them high immediately if no  
soft-startisdesired.Figure10showsthewaveformswhen  
a short-circuit condition occurs at Boost1 for more than  
16ms as well as the subsequent resetting of the part.  
abovethecorrespondingV  
pin. Sointhecaseofshort-  
OUT  
circuit fault to ground, the voltage on the CAP pins may  
reach 10V. When the short-circuit condition is removed,  
the V  
pins rise up to the voltage on the CAP pins,  
OUT  
potentiallyexceedingtheprogrammedoutputvoltageuntil  
the capacitor voltages fall back into regulation. While this  
is harmless to the LT3587, this should be considered in  
the context of the external circuitry if short-circuit events  
are expected.  
V
FLT  
Regulating the CAP pins ensures that the voltage on the  
OUT  
5V/DIV  
PART RESET  
V
pins never exceeds the set output voltage after a  
ENSS1/ENSS3  
5V/DIV  
short-circuit event. However, this setup does not com-  
pensateforthevoltagedropacrosstheoutputdisconnect,  
resulting in an output voltage that is slightly lower than  
the voltage set by the feedback resistor. This voltage drop  
is equal to the product of the output current and the on  
resistance of the PMOS disconnect transistor. This drop  
can be accounted for when using the CAP pin as the  
feedback node by setting the output voltage according to  
the following formula:  
V
VOUT1  
10V/DIV  
SHORT  
V
AT V  
OUT1  
NEG  
10V/DIV  
V
VOUT3  
20V/DIV  
3587 F10  
100ms/DIV  
Figure 10. Waveforms During Fault  
Detection of a Short-Circuit Event  
3587fc  
15  
LT3587  
APPLICATIONS INFORMATION  
Besides acting as a fault output indicator, the Fault pin  
is also an input pin. If this pin is externally forced low  
below 400mV, the LT3587 behaves as if a fault event has  
been detected and all the channels turn off. In order to  
turn the part back on, remove the external voltage that  
forces the pin low and reset the part. Figure 11 shows the  
waveforms when the Fault pin is externally forced low and  
the subsequent resetting of the part.  
Since the programmed V  
current is proportional to  
OUT3  
thecurrentthroughR , theLEDcurrentcanbeadjusted  
IFB3  
according to the following formula:  
I
= (0.8V – V  
) • 200/R  
DAC-OUT IFB3  
VOUT3  
A higher DAC output voltage level results in lower LED  
current and hence lower overall brightness. Conversely,  
a lower DAC output voltage results in higher LED current  
andhigherbrightness.NotethattheDACoutputimpedance  
should be low enough to be able to sink approximately  
1/200 of the desired maximum LED current without any  
appreciable error for accurate dimming control.  
V
FLT FORCED LOW  
PART RESET  
FLT  
5V/DIV  
ENSS1/ENSS3  
5V/DIV  
Note also that the maximum output current is limited by  
the output disconnect current limit to 110mA (typ).  
V
VOUT1  
10V/DIV  
V
NEG  
10V/DIV  
PWM Dimming  
V
VOUT3  
20V/DIV  
Changing the forward current flowing in the LEDs not  
only changes the brightness intensity of the LEDs, it also  
changes the color. The chromaticity of the LEDs changes  
with the change in forward current. Many applications  
cannot tolerate any shift in the color of the LEDs. Control-  
ling the intensity of the LEDs with a direct PWM signal  
allows dimming of the LEDs without changing the color.  
In addition, direct PWM dimming offers a wider dimming  
range to the user.  
3587 F11  
100ms/DIV  
Figure 11. Waveforms When the  
Fault Pin is Externally Forced Low  
Dimming Control For Boost3 Current Regulator as an  
LED Driver  
As shown on the front page application and the Block Dia-  
gram,oneofthemostcommonapplicationsfortheBoost3  
channel when configured as a boost current regulator is  
a backlight LED driver. In an LED driver application, there  
are two different ways to implement a dimming control of  
the LED string. The LED current can be adjusted either by  
using a digital to analog converter (DAC) with a resistor  
V
VIN  
2.5V TO 5V  
10μH  
1μF  
V
SW3  
IN  
CAP3  
LT3587  
R
IFB3  
or by using a PWM signal.  
V
LED DRIVER  
OUT3  
I
EN/SS3  
FB3  
Using a DAC and a Resistor  
R
IFB3  
Forsomeapplications,thepreferredmethodofbrightness  
controlisusingaDACandaresistor.TheBoost3configura-  
tion for using this method is shown in Figure 12.  
8.06k  
V
DAC  
LTC2630  
DAC-OUT  
3587 F12  
Figure 12. Dimming Using a DAC and a Resistor  
3587fc  
16  
LT3587  
APPLICATIONS INFORMATION  
Dimming the LEDs via a PWM signal essentially involves  
turning the LEDs on and off at the PWM frequency. The  
typical human eye has a sensitivity limit of ~60Hz. By  
increasing the PWM frequency to ~80Hz or higher, the eye  
will interpret that the pulsed light source is continuously  
on. Additionally, by modulating the duty cycle (amount of  
“on-time”), intensity of the LEDs is controlled. The color  
of the LEDs remains unchanged in this scheme since the  
LED current is either zero or a constant value.  
V
VIN  
2.5V TO 5V  
10μH  
V
IN  
SW3  
1μF  
CAP3  
LT3587  
LED DRIVER  
20mA  
V
OUT3  
I
EN/SS3  
FB3  
Figure 13 shows a partial application showing an LED  
driver for six white LEDs. If the voltage at the CAP3 pin is  
higher than 10V when the LEDs are on, direct PWM dim-  
ming method requires an external NMOS. This external  
NMOS is tied between the cathode of the lowest LED in  
the string and ground as shown in Figure 13.  
R
IFB3  
8.06k  
PWM  
FREQ  
MN1  
Si1304BDL  
2.5V  
0V  
A Si1304 logic-level MOSFET can be used since its source  
is connected to ground, and it is able to withstand the  
3587 F13  
open-circuit voltage at the V  
pin across its drain and  
Figure 13. Six White LEDs Driver With PWM Dimming  
OUT3  
source. The PWM signal must be applied to the EN/SS3  
pin of the LT3587 and the gate of the NMOS. The PWM  
signal should traverse between 0V to 2.5V, to ensure  
proper turn on and off of the Boost3 regulation loop and  
the NMOS transistor MN1. When the PWM signal goes  
high, the LEDs are connected to ground and a current of  
I
VOUT3  
0mA  
13mA/DIV  
I
L4  
0mA  
0V  
I
= 160V/R  
flows through the LEDs. When the  
VOUT3  
IFB3  
200mA/DIV  
PWM signal goes low, the LEDs are disconnected and  
turned off.  
ENSS3  
5V/DIV  
The output disconnect feature and the external NMOS  
ensure that the LEDs quickly turn off without discharging  
theoutputcapacitor. ThisallowstheLEDstoturnonfaster.  
Figure 14 shows the PWM dimming waveforms for the  
circuit in Figure 13.  
3587 F14  
2ms/DIV  
V
= 3.6V  
VIN  
6 LEDs  
Figure 14. PWM Dimming Waveforms  
3587fc  
17  
LT3587  
APPLICATIONS INFORMATION  
100  
1kHz  
10  
IDEAL  
300Hz  
1
0.1  
MEASURED  
100Hz  
0.01  
1
10  
PWM DIMMING RANGE  
100  
1
10  
DUTY CYCLE (%)  
100  
3587 F16  
3587 F15  
Figure 15. Average LED Current Variation with  
PWM Duty Cycle at 100Hz PWM Frequency  
Figure 16. Dimming Range Comparison  
of Three PWM Frequencies  
The time it takes for the LED current to reach its pro-  
grammed value sets the achievable dimming range for a  
givenPWMfrequency.Figure15showstheaveragecurrent  
variation over duty cycle for a 100Hz PWM frequency with  
the circuit in Figure 13.  
Example:  
f = 100Hz t  
= 1/f = 0.01s, t  
= 320μs  
PERIOD  
MIN-ON  
Dim Range = t  
/t  
= 0.01s/320μs ≈ 30:1  
PERIOD MIN-ON  
Min Duty Cycle = (t  
/t  
) • 100 = 3.2%  
MIN-ON PERIOD  
Notice that at lower end of the duty cycle, the linear rela-  
tion between the average LED current and the PWM duty  
cycle is no longer preserved. This indicates that the loop  
requires a fixed amount of time to reach its final current.  
When the duty cycle is reduced such that the amount of  
on time is in the order of or less than this settling time, the  
loop no longer has the time to regulate to its final current  
before it is turned off again and the initial current before  
settling is a larger proportion of the average current.  
Duty Cycle Range = 100% 3.2% at 100Hz  
Thecalculationsshowthatfora100Hzsignalthedimming  
rangeis30to1. Inaddition, theminimumPWMdutycycle  
of 3.2% ensures that the LED current varies linearly with  
duty cycle to within 10%. Figure 16 shows the dimming  
range achievable for three different frequencies with a  
minimum on time of 320μs.  
The dimming range can be further extended by combin-  
ing this PWM method with the DAC and resistor method  
discussedpreviously.Inthismannerbothanalogdimming  
and PWM dimming extend the dimming range for a given  
application. The color of the LEDs no longer remains  
constant because the forward current of the LED changes  
with the output voltage of the DAC. For the six LED ap-  
plication described above, the LEDs can be dimmed first  
by modulating the duty cycle of the PWM signal with the  
DACoutputat0V.Oncetheminimumdutycycleisreached,  
the value of the DAC output voltage can be increased to  
further dim the LEDs. The use of both techniques together  
allows the average LED current for the six LED application  
to be varied from 20mA down to less than 1μA.  
Depending on how much linearity on the average LED  
current is required, the minimum LED on time is chosen  
based on the graphs in Figure 15. For example, for ap-  
proximately 10% deviation from linearity at the lower  
duty cycle, the minimum on time of the LED current is  
approximately 320μs for a 3.6V input voltage.  
The achievable dimming range for this application with  
a 100Hz PWM frequency can be determined using the  
following method.  
3587fc  
18  
LT3587  
APPLICATIONS INFORMATION  
Lower Input Voltage Applications  
the LT3587. The outputs can be driven straight from the  
battery, resulting in higher efficiency.  
The LT3587 can be used in lower input voltage applica-  
tions. The V supply voltage to the LT3587 must be  
Figure 17 shows a typical digital still camera application  
with CCD positive and negative supply as well as an LED  
driver powered by two AA cells. The battery is connected  
to the input inductors and the chip is powered with a 3.3V  
logic supply voltage.  
IN  
2.5V to 6V. However, the inductors can be run off a lower  
voltage. This allows the outputs to be powered off two  
alkaline cells. Most portable devices and systems have  
a 3.3V logic supply voltage which can be used to power  
LED DRIVER  
20mA UP TO 12V  
C4  
2AA CELLS  
2V TO 3.2V  
1μF  
L4  
10μH  
L1  
15μH  
R
VFB3  
D
S3  
787k  
(OPTIONAL)  
D
S1  
C1  
4.7μF  
V
V
CAP3  
SW3  
SW1  
FB3 OUT3  
R
IFB3  
8.06k  
I
CAP1  
FB3  
C
FB1  
3.3pF  
FLT  
LT3587  
EN/SS1  
EN/SS3  
R
FB1  
787k  
FB1  
V
V
OUT1  
SW2  
GND  
FB2  
IN  
CCD POSITIVE  
12V, 10mA  
3.3V  
C6  
1μF  
L2  
15μH  
C
FB2  
R
1M  
FB2  
C2  
2.2μF  
6.8pF  
L3  
15μH  
CCD NEGATIVE  
–8V, 20mA  
2AA CELLS  
2V TO 3.2V  
D
C7  
10μF  
S2  
3587 F17  
C1: MURATA GRM21BR61E475KA12L  
C2: MURATA GRM188R61C225KE15D  
C4: MURATA GRM188R61E105KA12B  
C6: MURATA GRM155R61A105KE15D  
C7: MURATA GRM21BR71A106KE51L  
C
C
: MURATA GRM1555C1H3R3BZ01D  
: MURATA GRM1555C1H6R3BZ01D  
FB1  
FB2  
L1, L2, L3: SUMIDA CDRH2D18/HP-150N  
L4: TOKO 1071AS-100M  
D
, D , D : NXP PMEG2005EB  
S1 S2 S3  
Figure 17. 2 AA Cells Providing CCD Positive and Negative Supply  
and a Three White Backlight LED Driver  
3587fc  
19  
LT3587  
APPLICATIONS INFORMATION  
Board Layout Consideration  
The voltage signals of the SW1, SW2 and SW3 pins have  
riseandfalltimesofafewns. Minimizethelengthandarea  
of all traces connected to the SW1, SW2 and SW3 pins  
to reduce capacitive coupling between these fast nodes  
and other circuitry. In particular, keep all the traces of the  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To maximize efficiency, switch rise and fall times are made  
as short as possible. To prevent electromagnetic interfer-  
ence (EMI) problems, proper layout of the high frequency  
switching path is essential.  
feedback voltage pins (FB1, FB2, V and I ) away from  
FB3  
FB3  
the switching node. Always use a ground plane under the  
switching regulator to minimize interplane coupling.  
In order to minimize magnetic field radiation, reduce the  
parasiticinductancebykeepingthetracesthatconducthigh  
switching currents short, wide and with minimal overall  
loop area. These are typically the traces associated with  
the switches. Figure 18 outlines the critical paths.  
Finally, place as much of the output capacitors of each  
channelclosetotheirrespectiveCAPpins.Recommended  
component placement is shown in Figure 19.  
C2  
L2  
L3  
D
D
S3  
S1  
V
L1  
L4  
VIN  
V
NEG  
V
V
VIN  
VIN  
SW2  
SW1  
SW3  
D
S2  
CAP1  
LT3587  
GND  
CAP3  
LT3587  
GND  
C6  
C7  
LT3587  
GND  
Q2  
C1  
C4  
C6  
C6  
Q1  
Q3  
3587 F18  
Figure 18. High Current Paths  
V
IN  
CAP3  
V
NEG  
C6  
(OPT)  
C7  
L4  
C4  
R
C
FB2  
R
IFB3  
V
OUT3  
DS3  
L3  
FB2  
C5  
V
U1  
C6  
C3  
IN  
C2  
R
FB1  
DS2  
DS1  
C
FB1  
L2  
V
OUT1  
L1  
C1  
C6  
(OPT)  
C6  
(OPT)  
3587 F19  
V
CAP1  
IN  
Figure 19. Recommended Component Placement  
3587fc  
20  
LT3587  
TYPICAL APPLICATIONS  
Li-Ion Powered Supply for CCD Imager and Five White Backlight LEDs  
LED DRIVER  
20mA UP TO 24V  
R
VFB3  
C4  
V
VIN  
1.65M  
2.2μF  
2.5V TO 6V  
L4  
10μH  
L1  
15μH  
(OPTIONAL)  
C6  
1μF  
D
S3  
V
V
CAP3  
SW3  
V
SW1  
FB3 OUT3  
IN  
D
C1  
10μF  
S1  
R
IFB3  
8.06k  
I
CAP1  
FB3  
C
FB1  
2.7pF  
LT3587  
FLT  
R
FB1  
EN/SS1  
EN/SS3  
1M  
FB1  
V
OUT1  
SW2  
GND FB2  
C3  
100nF  
CCD POSITIVE  
15V, 50mA  
C5  
100nF  
C2  
2.2μF  
R
C
FB2  
6.8pF  
FB2  
L2  
15μH  
L3  
1M  
15μH  
V
CCD NEGATIVE  
–8V, 100mA  
VIN  
2.5V TO 6V  
D
C7  
22μF  
S2  
3587 TA02  
C1: MURATA GRM21BR61C106KE15L  
C2: MURATA GRM188R61C225KE15D  
C3, C5: MURATA GRM033R60J104KE19D  
C4: MURATA GRM21BR71E225KA73L  
C6: MURATA GRM155R61A105KE15D  
C7: TAIYO YUDEN LMK212BJ226MG-T  
C
C
: MURATA GRM1555C1H2R7BZ01D  
: MURATA GRM1555C1H6R8BZ01D  
FB1  
FB2  
L1, L2, L3: SUMIDA CDRH2D18/HP-150N  
L4: TOKO 1071AS-100M  
D
, D , D : IR IR05H40CSPTR  
S1 S2 S3  
3587fc  
21  
LT3587  
TYPICAL APPLICATIONS  
Driver For a CCD Imager and an OLED Display Panel with Soft-Start  
OLED DRIVER  
16V, 20mA  
V
VIN  
C4  
1μF  
2.5V TO 6V  
L4  
10μH  
L1  
15μH  
C6  
1μF  
D
S3  
R
VFB3  
1.07M  
R
IFB3  
7.15k  
C1  
CAP3  
SW3  
V
IN  
SW1  
CAP1  
V
V
FB3  
OUT3  
D
S1  
4.7μF  
(OPTIONAL)  
I
FB3  
C
FB1  
LT3587  
GND  
2.7pF  
FLT  
R
FB1  
1M  
EN/SS1  
FB1  
EN/SS3  
V
SW2  
FB2  
OUT1  
CCD POSITIVE  
15V, 50mA  
C3  
100nF  
C5  
100nF  
C
FB2  
6.8pF  
C2  
2.2μF  
R
FB2  
1M  
L2  
15μH  
D3  
V
CCD NEGATIVE  
–8V, 100mA  
VIN  
2.5V TO 6V  
3587 TA03  
C7  
22μF  
D
S2  
C1: TAIYO YUDEN TMK212BJ475KG-T  
C2: TAIYO YUDEN EMK107BJ225KA-T  
C3, C5: TAIYO YUDEN JMK063BJ104KP-F  
C4: TAIYO YUDEN GMK107BJ105KA-T  
C6: TAIYO YUDEN LMK105BJ105KV-F  
C7: TAIYO YUDEN LMK212BJ226MG-T  
C
C
: TAIYO YUDEN EMK105SK2R7JW-F  
: TAIYO YUDEN EMK105SH6R8JW-F  
FB1  
FB2  
L1, L2: SUMIDA CDRH2D18/HP-150N  
L4: TOKO 1071AS-100M  
D
, D , D , D3: NXP PMEG2005EB  
S1 S2 S3  
Extending the High Voltage Range and the Number of Independently Controlled Regulated Outputs  
D8  
24V  
C10  
1μF  
R5  
GND  
100k  
SHDN ADJ  
C11  
C8  
R6  
LT1964  
SUPPLY 5:  
40V, 5mA  
2.2μF  
2.2μF  
D5  
D7  
1.21M  
IN  
OUT  
OUT  
LT3014  
IN  
SUPPLY 4:  
–40V, 5mA  
C12  
C9  
2.2μF  
R6  
2.2μF  
3.24M  
D6  
SUPPLY 1  
D4  
C13  
1μF  
ADJ SHDN  
R7  
100k  
GND  
SUPPLY 2  
D10  
SUPPLY 3:  
C4  
2.2μF  
V
VIN  
25V, 1mA TO 10mA  
3V TO 6V  
L4  
15μH  
L1  
15μH  
C6  
1μF  
D
S3  
R
VFB3  
1.74M  
D
S1  
C1  
10μF  
V
FB3  
V
CAP3  
SW3  
V
IN  
SW1  
OUT3  
R
IFB3  
10.7k  
CAP1  
I
FB3  
C
FB1  
2.2pF  
FLT  
LT3587  
EN/SS1  
R
FB1  
1.21M  
EN/SS3  
FB1  
V
OUT1  
SW2  
GND  
FB2  
SUPPLY 1:  
18V, 50mA  
C3  
100nF  
C5  
C
FB2  
2.7pF  
C2  
2.2μF  
100nF  
R
FB2  
SUPPLY 2:  
–18V, 50mA  
L2  
22μH  
D3  
2.26M  
V
VIN  
3V TO 6V  
3587 TA04  
C7  
22μF  
D9  
D
S2  
C1: MURATA GRM31CR71E106KA12L  
C
C
: MURATA GRM1555C1H2R2BZ01D  
: MURATA GRM1555C1H2R7BZ01D  
FB1  
FB2  
C2, C8, C11: MURATA GCM21BR71E225KA73L  
C3, C5: MURATA GRM033R60J104KE19D  
C4: MURATA GRM21BR71E225KA73L  
C6: MURATA GRM155R61A105KE15D  
C7: MURATA GRM32ER61E226KE15L  
L1, L4: COILCRAFT LPS4018-153  
L2, L3: COILCRAFT LPS4018-223  
D
, D , D , D3, D4, D5, D6, D7, D9, D10: IR IR05H40CSPTR  
S1 S2 S3  
D8: DIODES INC DDZ9709T  
C9, C12: MURATA GRM31CR71H225KA55L  
C10, C13: MURATA GRM21BR71H105KA12L  
3587fc  
22  
LT3587  
PACKAGE DESCRIPTION  
UD Package  
20-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1720 Rev A)  
0.70 0.05  
3.50 0.05  
(4 SIDES)  
1.65 0.05  
2.10 0.05  
PACKAGE  
OUTLINE  
0.20 0.05  
0.40 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH  
R = 0.20 TYP  
OR 0.25 × 45°  
CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
R = 0.05  
TYP  
19 20  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.65 0.10  
(4-SIDES)  
(UD20) QFN 0306 REV A  
0.200 REF  
0.20 0.05  
0.40 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3587fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT3587  
TYPICAL APPLICATION  
General Purpose High Voltage Supplies Generator  
SUPPLY 3: 25V SUPPLY  
WITH SAFETY  
CURRENT LIMIT AT 25mA  
C4  
2.2μF  
V
VIN  
2.5V TO 6V  
L4  
10μH  
L1  
15μH  
C6  
1μF  
D
S3  
R
VFB3  
1.74M  
C1  
10μF  
D
V
V
CAP3  
SW3  
V
IN  
SW1  
CAP1  
S1  
R
IFB3  
6.34k  
FB3 OUT3  
I
FB3  
C
FB1  
2.7pF  
LT3587  
GND  
R
FB1  
C1: MURATA GRM31CR71E106KA12L  
FLT  
1M  
C2: MURATA GRM21BR71E225KA73L  
C3, C5: MURATA GRM033R60J104KE19D  
C4: MURATA GRM21BR71E225KA73L  
C6: MURATA GRM155R61A105KE15D  
C7: MURATA GRM32ER61E226KE15L  
FB1  
EN/SS1  
EN/SS3  
V
SW2  
FB2  
OUT1  
SUPPLY 1:  
15V, 50mA  
C5  
100nF  
C3  
100nF  
R
C
C
: MURATA GRM1555C1H2R7BZ01D  
: MURATA GRM1555C1H2R2BZ01D  
C
FB2  
2M  
FB1  
FB2  
C2  
2.2μF  
FB2  
2.2pF  
SUPPLY 2:  
–16V, 50mA  
L2  
22μH  
L3  
22μH  
L1: COILCRAFT LPS4018-153  
L2, L3: COILCRAFT LPS4018-223  
L4: TOKO 1071AS-100M  
V
VIN  
2.5V TO 6V  
C7  
22μF  
3587 TA05  
D
D
S2  
S4  
D
, D , D , D : IR IR05H40CSPTR  
S1 S2 S3 S4  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
= 1.2V, V  
LT1944  
Dual Output, Boost/Inverter, 350mA I , High Efficiency  
Boost-Inverting DC/DC Converter  
V
= 15V, V  
= 15V, V  
= 15V, V  
=
=
34V, I = 20, I < 1μA,  
Q SD  
SW  
IN(MIN)  
IN(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
MSOP-10 Package  
LT1945  
Dual Output, Boost/Inverter, 350mA I , High Efficiency  
V
= 1.2V, V  
34V, I = 20, I < 1μA,  
Q SD  
SW  
IN(MIN)  
IN(MAX)  
Boost-Inverting DC/DC Converter  
MSOP-10 Package  
LT3463/LT3463A  
Dual Output, Boost/Inverter, 250mA I , Constant Off-  
V
= 2.3V, V  
= 40V, I = 40μA, I < 1μA,  
Q SD  
SW  
IN(MIN)  
IN(MAX)  
Time, High Efficiency Step-Up DC/DC Converter with  
Integrated Schottkys  
3 × 3 DFN-10 Package  
LT3466/LT3466-1  
LT3471  
Dual Constant Current, 2MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
V
= 2.7V, V  
= 24V, V  
= 16V, V  
= 16V, V  
= 16V, V  
= 16V, V  
= 10V, V  
= 40V, I = 5mA, I < 16μA,  
Q SD  
IN(MIN)  
IN(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
3 × 3 DFN-10 Package  
Dual Output, Boost/Inverter, 1.3A I , 1.2MHz, High  
V
= 2.4V, V  
= 40V, I = 2.5mA, I < 1μA,  
Q SD  
SW  
IN(MIN)  
IN(MAX)  
Efficiency Boost-Inverting DC/DC Converter  
3 × 3 DFN-10 Package  
LT3472/LT3472A  
LT3473/LT3473A  
LT3494/LT3494A  
LT3497  
Dual Output, Boost/Inverter, 400mA I , 1.2MHz, High  
V
= 2.2V, V  
= 34V I = 2.8mA, I < 1μA,  
Q SD  
SW  
IN(MIN)  
IN(MAX)  
Efficiency Boost-Inverting DC/DC Converter  
3 × 3 DFN-10 Package  
40V, 1A, 1.2MHz Micropower Low Noise Boost Converter  
with Output Disconnect  
V
= 2.2V, V  
= 36V, I = 150μA, I < 1μA,  
Q SD  
IN(MIN)  
IN(MAX)  
3 × 3 DFN-12 Package  
40V, 180mA/350mA Micropower Low Noise Boost  
Converter with Output Disconnect  
V
= 2.3V, V  
= 40V, I = 65μA, I < 1μA,  
Q SD  
IN(MIN)  
IN(MAX)  
3 × 2 DFN-8 Package  
Dual 2.3MHz, Full Function LED Driver with Integrated  
Schottkys and 250:1 True Color PWM Dimming  
V
= 2.5V, V  
= 32V, I = 6mA, I < 12μA,  
Q SD  
IN(MIN)  
IN(MAX)  
2 × 3 DFN-10 Package  
LT3580  
40V, 2A, 2.5MHz Boost/Inverter DC/DC Converter  
V : 2.5V to 32V, V  
= 40V, I = 1mA, I < 1μA, MSOP-8E,  
OUT(MAX) Q SD  
IN  
3mm × 3mm DFN-8 Packages  
3587fc  
LT 0109 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LDO-512

Ultra Low Noise, High PSRR, Low Power, 30mA Very Low Dropout Voltage Regulators
STMICROELECTR

LDO03C

Single Output C Class Non-Isolated DC/DC Converter
ARTESYN

LDO03C

LDO03C Series
EMERSON-NETWO

LDO03C-005W05-HJ

Single Output C Class Non-Isolated DC/DC Converter
ARTESYN

LDO03C-005W05-HJ

LDO03C Series
EMERSON-NETWO

LDO03C-005W05-SJ

Single Output C Class Non-Isolated DC/DC Converter
ARTESYN

LDO03C-005W05-SJ

LDO03C Series
EMERSON-NETWO

LDO03C-005W05-VJ

Single Output C Class Non-Isolated DC/DC Converter
ARTESYN

LDO03C-005W05-VJ

LDO03C Series
EMERSON-NETWO

LDO06C

Single Output 6 A DC-DC C Class Non-Isolated DC/DC Converter
ARTESYN

LDO06C

6 A output current rating
EMERSON-NETWO

LDO06C-005W05-HJ

Single Output 6 A DC-DC C Class Non-Isolated DC/DC Converter
ARTESYN