LT1021BCN8-5 [Linear]

Precision Reference; 精密基准
LT1021BCN8-5
型号: LT1021BCN8-5
厂家: Linear    Linear
描述:

Precision Reference
精密基准

文件: 总16页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1021  
Pre c isio n Re fe re nc e  
U
DESCRIPTIO  
EATURE  
S
F
The LT®1021 is a precision reference with ultralow drift  
and noise, extremely good long term stability and almost  
total immunity to input voltage variations. The reference  
output will both source and sink up to 10mA. Three  
voltages are available: 5V, 7V and 10V. The 7V and 10V  
units canbeusedas shuntregulators (two-terminalzeners)  
with the same precision characteristics as the three-  
terminal connection. Special care has been taken to mini-  
mize thermal regulation effects and temperature  
induced hysteresis.  
Pin Compatible with Most Bandgap Reference  
Applications, Including Ref 01, Ref 02, LM368,  
MC1400 and MC1404 with Greatly Improved  
Stability, Noise and Drift  
Ultralow Drift: 5ppm/°C Max Slope  
Trimmed Output Voltage  
Operates in Series or Shunt Mode  
Output Sinks and Sources in Series Mode  
Very Low Noise: <1ppm P-P (0.1Hz to 10Hz)  
>100dB Ripple Rejection  
Minimum Input/Output Differential of 1V  
100% Noise Tested  
TheLT1021references arebasedonaburiedzenerdiode  
structure that eliminates noise and stability problems  
associated with surface breakdown devices. Further, a  
subsurface zener exhibits better temperature drift and  
time stability than even the best bandgap references.  
O U  
PPLICATI  
A/D and D/A Converters  
Precision Regulators  
Digital Voltmeters  
Inertial Navigation Systems  
Precision Scales  
Portable Reference Standard  
S
A
Unique circuit design makes the LT1021 the first IC  
reference to offer ultralow drift without the use of high  
power on-chip heaters.  
The LT1021-7 uses no resistive divider to set output  
voltage,andthereforeexhibits thebestlongtermstability  
and temperature hysteresis. The LT1021-5 and LT1021-  
10areintendedforsystems requiringaprecise5Vor10V  
reference with an initial tolerance as low as ±0.05%.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Typical Distribution of Temperature Drift  
24  
Basic Positive and Negative Connections  
DISTRIBUTION  
OF THREE RUNS  
21  
18  
15  
12  
9
LT1021  
(7 AND 10 ONLY)  
LT1021  
GND  
V
IN  
IN  
V
OUT  
IN  
OUT  
NC  
OUT  
GND  
–V  
OUT  
V
– (V )  
OUT  
6
R1 =  
R1  
I
+ 1.5mA  
LOAD  
3
–15V  
(V )  
1021 TA01  
– 0  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
OUTPUT DRIFT (ppm/°C)  
1021 TA01  
1
LT1021  
ABSOLUTE AXI U RATI GS (Note 1)  
W W W  
U
Input Voltage .......................................................... 40V  
Input/Output Voltage Differential ............................ 35V  
Output-to-Ground Voltage (Shunt Mode Current Limit)  
LT1021-5............................................................. 10V  
LT1021-7............................................................. 10V  
LT1021-10........................................................... 16V  
Trim Pin-to-Ground Voltage  
Output Short-Circuit Duration  
V = 35V......................................................... 10 sec  
IN  
V 20V ................................................... Indefinite  
IN  
Operating Temperature Range  
Commercial ............................................ 0°C to 70°C  
Industrial ........................................... 40°C to 85°C  
Military ............................................ 55°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
Positive ............................................... Equal to VOUT  
Negative ........................................................... – 20V  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
LT1021BCH-5  
LT1021BMH-5  
LT1021CCH-5  
LT1021CMH-5  
LT1021BCN8-5  
LT1021CCN8-5  
LT1021CIN8-5  
TOP VIEW  
TOP VIEW  
NC*  
DNC*  
1
2
3
4
DNC*  
DNC*  
8
7
6
5
LT1021DCN8-5  
LT1021DIN8-5  
LT1021DCS8-5  
LT1021BCN8-7  
LT1021DCN8-7  
LT1021DCS8-7  
LT1021BCN8-10  
LT1021CCN8-10  
LT1021CIN8-10  
LT1021DCN8-10  
LT1021DCS8-10  
LT1021DIN8-10  
8
1
3
NC*  
NC*  
7
5
V
IN  
LT1021DCH-5  
LT1021DMH-5  
LT1021BCH-7  
LT1021BMH-7  
LT1021DCH-7  
LT1021DMH-7  
LT1021BCH-10  
LT1021BMH-10  
LT1021CCH-10  
LT1021CMH-10  
LT1021DCH-10  
LT1021DMH-10  
DNC*  
GND  
V
0UT  
6
V
2
V
OUT  
IN  
TRIM**  
TRIM  
**  
NC*  
4
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
GND  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
*CONNECTED INTERNALLY.  
D0 NOT CONNECT EXTERNAL  
CIRCUITRY TO THESE PINS  
**NO TRIM PIN ON LT1021-7.  
DO NOT CONNECT EXTERNAL  
CIRCUITRY TO PIN 5 ON LT1021-7  
*CONNECTED INTERNALLY.  
D0 NOT CONNECT EXTERNAL  
CIRCUITRY TO THESE PINS  
**NO TRIM PIN ON LT1021-7.  
DO NOT CONNECT EXTERNAL  
CIRCUITRY TO PIN 5 ON LT1021-7  
T
T
JMAX = 130°C, θJA = 130°C/W (N)  
JMAX = 130°C, θJA = 150°C/W (S)  
TJMAX = 150°C, θJA = 150°C/W,θJC = 45°C/W  
S8 PART MARKING  
021DC5  
021DC7  
021DC1  
2
LT1021  
ELECTRICAL CHARACTERISTICS The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. V = 10V, IOUT = 0, unless otherwise noted.  
IN  
LT1021-5  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Output Voltage (Note 2)  
LT1021C-5  
LT1021B-5/LT1021D-5  
4.9975  
4.9500  
5.000  
5.000  
5.0025  
5.0500  
V
V
Output Voltage Temperature Coefficient (Note 3)  
Line Regulation (Note 4)  
T
T T  
LT1021B-5  
LT1021C-5/LT1021D-5  
MIN J MAX  
2
3
5
20  
ppm/°C  
ppm/°C  
7.2V V 10V  
4
12  
20  
6
ppm/V  
ppm/V  
ppm/V  
ppm/V  
IN  
10V V 40V  
2
IN  
10  
Load Regulation (Sourcing Current)  
Load Regulation (Sinking Current)  
Supply Current  
0 I  
(Note 4)  
10mA  
10mA  
10  
60  
20  
35  
ppm/mA  
ppm/mA  
OUT  
0 I  
100  
150  
ppm/mA  
ppm/mA  
OUT  
(Note 4)  
0.8  
1.2  
1.5  
mA  
mA  
Output Voltage Noise (Note 6)  
0.1Hz f 10Hz  
10Hz f 1kHz  
3.0  
2.2  
µV  
P-P  
µV  
RMS  
3.5  
Long Term Stability of Output Voltage (Note 7)  
Temperature Hysteresis of Output  
t = 1000Hrs Noncumulative  
T = ±25°C  
15  
10  
ppm  
ppm  
The denotes specifications that apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
V = 12V, IOUT = 0, unless otherwise noted.  
IN  
LT1021-7  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Output Voltage (Note 2)  
6.95  
7.00  
7.05  
V
Output Voltage Temperature Coefficient (Note 3)  
T
T T  
MIN J MAX  
LT1021B-7  
LT1021D-7  
2
3
5
20  
ppm/°C  
ppm/°C  
Line Regulation (Note 4)  
8.5V V 12V  
1.0  
2.0  
0.5  
1.0  
4
8
2
4
ppm/V  
ppm/V  
ppm/V  
ppm/V  
IN  
12V V 40V  
IN  
Load Regulation (Sourcing Current)  
Load Regulation (Shunt Mode)  
Supply Current (Series Mode)  
Minimum Current (Shunt Mode)  
Output Voltage Noise (Note 6)  
0 I  
(Note 4)  
10mA  
12  
25  
40  
ppm/mA  
ppm/mA  
OUT  
1.2mA I  
(Notes 4, 5)  
10mA  
50  
100  
150  
ppm/mA  
ppm/mA  
SHUNT  
0.75  
0.7  
1.2  
1.5  
mA  
mA  
V is Open  
IN  
1.0  
1.2  
mA  
mA  
0.1Hz f 10Hz  
10Hz f 1kHz  
4.0  
2.5  
µV  
P-P  
µV  
RMS  
4.0  
Long Term Stability of Output Voltage (Note 7)  
Temperature Hysteresis of Output  
t = 1000Hrs Noncumulative  
T = ±25°C  
7
3
ppm  
ppm  
3
LT1021  
ELECTRICAL CHARACTERISTICS The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. V = 15V, IOUT = 0, unless otherwise noted.  
IN  
LT1021-10  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Output Voltage (Note 2)  
LT1021C-10  
LT1021B-10/LT1021D-10  
9.995  
9.950  
10.00  
10.00  
10.005  
10.050  
V
V
Output Voltage Temperature Coefficient (Note 3)  
Line Regulation (Note 4)  
T
T T  
LT1021B-10  
LT1021C-10/LT1021D-10  
MIN J MAX  
2
5
5
20  
ppm/°C  
ppm/°C  
11.5V V 14.5V  
1.0  
4
6
2
4
ppm/V  
ppm/V  
ppm/V  
ppm/V  
IN  
14.5V V 40V  
0.5  
IN  
Load Regulation (Sourcing Current)  
Load Regulation (Shunt Mode)  
Supply Current (Series Mode)  
Minimum Current (Shunt Mode)  
Output Voltage Noise (Note 6)  
0 I  
(Note 4)  
10mA  
12  
50  
25  
40  
ppm/mA  
ppm/mA  
OUT  
1.7mA I  
(Notes 4, 5)  
10mA  
100  
150  
ppm/mA  
ppm/mA  
SHUNT  
1.2  
1.1  
1.7  
2.0  
mA  
mA  
V is Open  
IN  
1.5  
1.7  
mA  
mA  
0.1Hz f 10Hz  
10Hz f 1kHz  
6.0  
3.5  
µV  
P-P  
µV  
RMS  
6
Long Term Stability of Output Voltage (Note 7)  
Temperature Hysteresis of Output  
t = 1000Hrs Noncumulative  
T = ±25°C  
15  
5
ppm  
ppm  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: Shunt mode regulation is measured with the input open. With the  
input connected, shunt mode current can be reduced to 0mA. Load  
regulation will remain the same.  
Note 2: Output voltage is measured immediately after turn-on. Changes  
due to chip warm-up are typically less than 0.005%.  
Note 6: RMS noise is measured with a 2-pole highpass filter at 10Hz and a  
2-pole lowpass filter at 1kHz. The resulting output is full-wave rectified and  
then integrated for a fixed period, making the final reading an average as  
opposed to RMS. Correction factors are used to convert from average to  
RMS and correct for the non-ideal bandpass of the filters.  
Note 3: Temperature coefficient is measured by dividing the change in  
output voltage over the temperature range by the change in temperature.  
Separate tests are done for hot and cold; T to 25°C and 25°C to T  
.
MIN  
MAX  
Incremental slope is also measured at 25°C.  
Peak-to-peak noise is measured with a single highpass filter at 0.1Hz and a  
2-pole lowpass filter at 10Hz. The unit is enclosed in a still-air environment  
to eliminate thermocouple effects on the leads. Test time is 10 seconds.  
Note 4: Line and load regulation are measured on a pulse basis. Output  
changes due to die temperature change must be taken into account  
separately. Package thermal resistance is 150°C/W for TO-5 (H), 130°C/W  
for N and 150°C/W for the SO-8.  
Note 7: Consult factory for units with long term stability data.  
4
LT1021  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Minimum Input/Output Differential  
LT1021-7, LT1021-10  
Ripple Rejection  
Ripple Rejection  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
130  
115  
110  
105  
100  
95  
V
C
OUT  
= 15V  
= 0  
f = 150Hz  
T = 125 °C  
LT1021-7  
IN  
J
120  
110  
100  
90  
LT1021-7  
T = –55 °C  
J
LT1021-10  
T = 25 °C  
J
LT1021-10  
LT1021-5  
LT1021-5  
80  
70  
90  
60  
50  
85  
0
2
4
6
8
10 12 14 16 18 20  
25 30  
INPUT VOLTAGE (V)  
0
5
10 15 20  
35 40  
10  
100  
1k  
10k  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
LT1021 G02  
1021 G03  
LT1021 G01  
Start-Up (Shunt Mode)  
LT1021-7, LT1021-10  
Start-Up (Series Mode)  
Output Voltage Noise Spectrum  
13  
12  
11  
10  
9
11  
10  
9
400  
350  
300  
250  
200  
150  
100  
50  
V
IN  
= 0V TO 12V  
LT1021-10  
1k  
V
+ 2V  
OUT  
LT1021-10  
V
OUT  
0V  
OUT  
IN  
GND  
NC  
8
8
LT1021-7  
LT1021-5  
7
LT1021-10  
LT1021-7  
7
6
5
6
LT1021-7  
5
LT1021-5  
4
0
3
6
10  
12  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
12  
0
2
4
8
0
2
4
6
8
10  
14  
TIME (µs)  
TIME (µs)  
LT1021 G06  
LT1021 G05  
LT1021 G04  
Output Voltage Temperature Drift  
LT1021-5  
Output Voltage Noise  
Load Regulation LT1021-5  
5.006  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
16  
14  
12  
10  
8
5
4
C
= 0  
V
IN  
= 8V  
OUT  
FILTER = 1 POLE  
= 0.1Hz  
f
LOW  
3
2
1
0
LT1021-7  
–1  
– 2  
– 3  
– 4  
– 5  
6
LT1021-10  
4
LT1021-5  
2
0
10  
100  
1k  
10k  
50 –25  
0
25  
50  
75 100 125  
–10 8 – 6 – 4 – 2  
0
2
4
6
8
10  
TEMPERATURE (°C)  
BANDWIDTH (Hz)  
SOURCING  
SINKING  
LT1021 G07  
LT1021 G08  
OUTPUT CURRENT (mA)  
LT1021 G09  
5
LT1021  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Sink Mode* Current Limit  
LT1021-5  
Quiescent Current LT1021-5  
Thermal Regulation LT1021-5  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
60  
50  
I
= 0  
V
IN  
= 8V  
V
= 25V  
OUT  
IN  
POWER = 200mW  
LOAD  
REGULATION  
0
– 0.5  
1.0  
40  
T = – 55°C  
J
THERMAL  
REGULATION  
30  
20  
T = 25°C  
J
T = 125°C  
J
I
= 10mA  
LOAD  
10  
0
0
60 80  
TIME (ms)  
0
20 40  
100 120 140  
0
5
10 15 20 25  
INPUT VOLTAGE (V)  
40  
0
2
4
6
8
10 12 14 16 18  
30 35  
OUTPUT VOLTAGE (V)  
LT1021 G12  
LT1021 G10  
*NOTE THAT AN INPUT VOLTAGE IS REQUIRED  
FOR 5V UNITS.  
LT1021 G11  
Output Noise 0.1Hz to 10Hz  
LT1021-5  
Load Transient Response  
LT1021-5, CLOAD = 1000pF  
Load Transient Response  
LT1021-5, CLOAD = 0  
FILTERING = 1 ZERO AT 0.1Hz  
2 POLES AT 10Hz  
I
= 0  
I
= 0  
SINK  
SOURCE  
I
= 0  
I
= 0  
SOURCE  
SINK  
5µV (1ppm)  
50mV  
50mV  
20mV  
20mV  
I
= 0.2mA  
I
= 0.2mA  
SINK  
I
= 0.2mA  
SINK  
I = 2-10mA  
SINK  
SOURCE  
I
= 0.5mA  
SOURCE  
I
= 2-10mA  
SOURCE  
I
= 2-10mA  
I
= 2-10mA  
SINK  
SOURCE  
I  
SOURCE  
= 100µA  
I  
SOURCE  
= 100µA  
P-P  
I  
SINK  
= 100µA  
I  
SINK  
= 100µA  
P-P  
P-P  
P-P  
4
6
0
1
2
3
4
0
1
2
3
4
0
5
10 15 20  
0
5
10 15 20  
0
1
2
3
5
TIME (µs)  
TIME (µs)  
TIME (MINUTES)  
LT1021 G13  
LT1021 G14  
LT1021 G15  
Output Voltage Temperature  
Drift LT1021-7  
Load Regulation  
LT1021-7, LT1021-10  
Quiescent Current LT1021-7  
7.003  
7.002  
7.001  
7.000  
6.999  
6.998  
6.997  
5
4
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
IN  
= 12V  
I
= 0  
OUT  
3
2
1
T = – 55°C  
J
0
T = 25°C  
J
–1  
– 2  
– 3  
– 4  
– 5  
T = 125°C  
J
0
–10 8 – 6 – 4 – 2  
0
2
4
6
8
10  
50  
0
25  
50  
75 100 125  
–25  
0
5
10 15 20 25  
INPUT VOLTAGE (V)  
40  
30 35  
TEMPERATURE (°C)  
SOURCING  
SINKING  
OUTPUT CURRENT (mA)  
LT1021 G16  
LT1021 G17  
LT1021 G18  
6
LT1021  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Shunt Mode Current Limit  
LT1021-7  
Shunt Characteristics LT1021-7  
Thermal Regulation LT1021-7  
1.2  
1.0  
60  
50  
INPUT PIN OPEN  
V = 27V  
IN  
POWER = 200mW  
INPUT PIN OPEN  
LOAD  
0
0.5  
–1.0  
–1.5  
REGULATION  
0.8  
40  
T = 55°C  
J
T = 25°C  
J
THERMAL  
REGULATION*  
0.6  
0.4  
30  
20  
T = 125°C  
J
I
= 10mA  
LOAD  
0.2  
0
10  
0
60 80  
20 40  
TIME (ms)  
0
100 120 140  
0
1
2
3
4
5
6
7
8
9
0
2
4
6
8
10 12 14 16 18  
OUTPUT VOLTAGE (V)  
OUTPUT TO GROUND VOLTAGE (V)  
LT1021 G20  
1021 G19  
*INDEPENDENT OF TEMPERATURE COEFFICIENT  
LT1021 G21  
Load Transient Response  
LT1021-7, CLOAD = 0  
Load Transient Response  
LT1021-7, CLOAD = 1000pF  
Output Noise 0.1Hz to 10Hz  
LT1021-7  
I
= 0  
FILTERING = 1 ZERO AT 0.1Hz  
2 POLES AT 10Hz  
SOURCE  
I
= 0.8mA  
I
= 0.6mA  
SINK  
SINK  
I
= 0  
SOURCE  
5mV  
20mV  
I
= 1.2mA  
SINK  
5µV (0.7ppm)  
5mV  
50mV  
I
= 0.8mA  
SINK  
I
= 0.5mA  
I
= 0.5mA  
SOURCE  
SOURCE  
I
= 1.4mA  
I
= 1mA  
SINK  
SINK  
I
= 2-10mA  
I
= 2-10mA  
I
= 2-10mA  
I
= 2-10mA  
SINK  
SINK  
SOURCE  
SOURCE  
I  
= 100µA  
I  
= 100µA  
I  
= 100µA  
I  
= 100µA  
SOURCE  
P-P  
SOURCE P-P  
SINK  
1
P-P  
SINK P-P  
4
6
0
1
2
3
5
0
1
2
3
4
0
2
3
4
0
5
10 15 20  
0
5
10 15 20  
TIME (µs)  
5µs/DIV  
TIME (MINUTES)  
NOTE VERTICAL SCALE CHANGE  
NOTE VERTICAL SCALE CHANGE  
LT1021 G24  
BETWEEN SOURCING AND SINKING  
BETWEEN SOURCING AND SINKING  
LT1021 G22  
LT1021 G23  
Output Voltage Temperature  
Drift LT1021-10  
Load Regulation  
LT1021-7, LT1021-10  
Input Supply Current LT1021-10  
10.006  
10.004  
10.002  
10.000  
9.998  
5
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
IN  
= 12V  
I
= 0  
OUT  
T = – 55°C  
J
4
3
T = 25°C  
J
2
T = 125°C  
J
1
0
–1  
– 2  
– 3  
– 4  
– 5  
9.996  
9.994  
0
50  
0
25  
50  
75 100 125  
–25  
–10 8 – 6 – 4 – 2  
0
2
4
6
8
10  
0
5
10 15 20 25  
INPUT VOLTAGE (V)  
40  
30 35  
TEMPERATURE (°C)  
SOURCING  
SINKING  
LT1021 G25  
OUTPUT CURRENT (mA)  
1021 G26  
1021 G27  
7
LT1021  
U W  
TYPICALPERFOR A CE CHARACTERISTICS  
Shunt Mode Current Limit  
LT1021-10  
Shunt Characteristics LT1021-10  
Thermal Regulation LT1021-10  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
60  
50  
INPUT PIN OPEN  
INPUT PIN OPEN  
V = 30V  
IN  
POWER = 200mW  
LOAD  
0
0.5  
–1.0  
–1.5  
REGULATION  
40  
T = – 55°C  
J
30  
20  
THERMAL  
REGULATION*  
T = 25°C  
J
T = 125°C  
J
I
= 10mA  
LOAD  
10  
0
0
60 80  
TIME (ms)  
0
20 40  
100 120 140  
0
2
4
6
10  
12  
0
2
4
6
10  
14 16 18  
8
8
12  
OUTPUT TO GROUND VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1021 G29  
1021 G28  
*INDEPENDENT OF TEMPERATURE COEFFICIENT  
1021 G30  
Load Transient Response  
LT1021-10, CLOAD = 0  
Load Transient Response  
LT1021-10, CLOAD = 1000pF  
Output Noise 0.1Hz to 10Hz  
LT1021-10  
FILTERING = 1 ZERO AT 0.1Hz  
2 POLES AT 10Hz  
I
= 0.6mA  
I
= 0.8mA  
SINK  
SINK  
I
= 0  
I
= 0  
SOURCE  
SOURCE  
20mV  
50mV  
10µV (1ppm)  
10mV  
5mV  
I
= 1.2mA  
SINK  
I
= 0.8mA  
SINK  
I
= 0.2mA  
SOURCE  
I
= 0.5mA  
SOURCE  
I
= 1.4mA  
I
= 1mA  
SINK  
SINK  
I
= 2-10mA  
I
= 2-10mA  
I
= 2-10mA  
SOURCE  
SINK  
SOURCE  
I
= 2-10mA  
SINK  
= 100µA  
P-P  
I  
= 100µA  
I  
SOURCE  
= 100µA  
P-P  
I  
= 100µA  
I  
SINK  
SOURCE  
P-P  
SINK  
P-P  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
5
6
TIME (µs)  
TIME (µs)  
TIME (MINUTES)  
NOTE VERTICAL SCALE CHANGE  
NOTE VERTICAL SCALE CHANGE  
1021 G33  
BETWEEN SOURCING AND SINKING  
BETWEEN SOURCING AND SINKING  
1021 G31  
1021 G32  
8
LT1021  
U
W U U  
APPLICATIONS INFORMATION  
Effect of Reference Drift on System Accuracy  
The LT1021-10 “C” version is pre-trimmed to ±5mV and  
therefore can utilize a restricted trim range. A 75k resistor  
in series with a 20kpotentiometer will give ±10mV trim  
range. Effect on the output TC will be only 1ppm/°C for the  
±5mV trim needed to set the “Cdevice to 10.000V.  
A large portion of the temperature drift error budget in  
many systems is the system reference voltage. This graph  
indicates the maximum temperature coefficient allowable  
if the reference is to contribute no more than 0.5LSB error  
to the overall system performance. The example shown is  
a 12-bit system designed to operate over a temperature  
range from 25°C to 65°C. Assuming the system calibra-  
tion is performed at 25°C, the temperature span is 40°C.  
It can be seen from the graph that the temperature coeffi-  
cient of the reference must be no worse than 3ppm/°C if  
it is to contribute less than 0.5LSB error. For this reason,  
the LT1021 family has been optimized for low drift.  
LT1021-5  
The LT1021-5 does have an output voltage trim pin, but  
the TC of the nominal 4V open-circuit voltage at this pin is  
about 1.7mV/°C. For the voltage trimming not to affect  
reference output TC, the external trim voltage must track  
thevoltageonthetrimpin. Inputimpedanceofthetrimpin  
is about 100kand attenuation to the output is 13:1. The  
technique shown below is suggested for trimming the  
output of the LT1021-5 while maintaining minimum shift  
in output temperature coefficient. The R1/R2 ratio is  
chosen to minimize interaction of trimming and TC shifts,  
so the exact values shown should be used.  
Maximum Allowable Reference Drift  
100  
8-BIT  
10-BIT  
LT1021-5  
10  
V
OUT  
IN  
GND TRIM  
OUT  
12-BIT  
14-BIT  
R1  
27k  
R2  
50k  
1N4148  
1.0  
0
10 20  
40  
60 70 80  
100  
90  
30  
50  
1021 AI02  
TEMPERATURE SPAN (°C)  
LT1021 AI01  
LT1021-7  
The 7V version of the LT1021 has no trim pin because the  
internal architecture does not have a point which could be  
driven conveniently from the output. Trimming must  
therefore be done externally, as is the case with ordinary  
reference diodes. Unlike these diodes, however, the out-  
putoftheLT1021canbeloadedwithatrimpotentiometer.  
The following trim techniques are suggested; one for  
voltage output and one for current output. The voltage  
output is trimmed for 6.95V. Current output is 1mA, as  
shown, into a summing junction, but all resistors may be  
scaled for currents up to 10mA.  
Trimming Output Voltage  
LT1021-10  
TheLT1021-10has atrimpinforadjustingoutputvoltage.  
The impedance of the trim pin is about 12kwith a  
nominal open-circuit voltage of 5V. It is designed to be  
driven from a source impedance of 3kor less to mini-  
mize changes in the LT1021 TC with output trimming.  
Attenuation between the trim pin and the output is 70:1.  
This allows ±70mV trim range when the trim pin is tied to  
the wiper of a potentiometer connected between the  
output and ground. A 10kpotentiometer is recom-  
mended, preferably a 20 turn cermet type with stable  
characteristics over time and temperature.  
Both of these circuits use the trimmers in a true potentio-  
metric mode to reduce the effects of trimmer TC. The  
voltageoutputhas a200impedance, soloadingmustbe  
9
LT1021  
U
W U U  
APPLICATIONS INFORMATION  
Kelvin Connections  
minimized. In the current output circuit, R1 determines  
outputcurrent.ItshouldhaveaTCcommensuratewiththe  
LT1021 or track closely with the feedback resistor around  
the op amp.  
Although the LT1021 does not have true force/sense  
capabilityatits outputs,significantimprovements inground  
loop and line loss problems can be achieved with proper  
hook-up. In series mode operation, the ground pin of the  
LT1021 carries only 1mA and can be used as a sense  
line, greatly reducing ground loop and loss problems on  
the low side of the reference. The high side supplies load  
current so line resistance must be kept low. Twelve feet of  
#22 gauge hook-up wire or 1 foot of 0.025 inch printed  
circuit trace will create 2mV loss at 10mA output current.  
This is equivalent to 1LSB in a 10V, 12-bit system.  
LT1021-7  
IN  
OUT  
R1*  
200Ω  
1%  
R2*  
14k  
1%  
GND  
R3  
V
OUT  
10k  
6.950V  
TC TRACKING TO 50ppm/°C  
1021 AI03  
The following circuits show proper hook-up to minimize  
errors due to ground loops and line losses. Losses in the  
output lead can be greatly reduced by adding a PNP boost  
transistor if load currents are 5mA or higher. R2 can be  
added to further reduce current in the output sense lead.  
LT1021-7  
IN  
OUT  
R1*  
7.15k  
GND  
R2**  
182k  
R3  
50k  
1.000mA  
Standard Series Mode  
OP AMP  
LT1021  
KEEP THIS LINE RESISTANCE LOW  
+
INPUT  
IN  
OUT  
1021 AI04  
+
GND  
LOAD  
*RESISTOR TC DETERMINES I  
TC  
OUT  
**TC (10 • R1) TC. R2 AND R3 SCALE  
WITH R1 FOR DIFFERENT OUTPUT CURRENTS  
GROUND  
RETURN  
1021 AI05  
Capacitive Loading and Transient Response  
The LT1021 is stable with all capacitive loads, but for  
optimum settling with load transients, output capacitance  
shouldbeunder1000pF. Theoutputstageofthereference  
is class AB with a fairly low idling current. This makes  
transient response worst-case at light load currents. Be-  
cause of internal current drain on the output, actual worst-  
Series Mode with Boost Transistor  
INPUT  
R1  
220Ω  
2N3906  
case occurs at ILOAD = 0 on LT1021-5, ILOAD  
=
IN  
0.8mA (sinking) on LT1021-7 and ILOAD = 1.4mA (sink-  
ing) on LT1021-10. Significantly better load transient  
response is obtained by moving slightly away from these  
points. SeeLoadTransientResponsecurves fordetails. In  
general, best transient response is obtained when the  
output is sourcing current. In critical applications, a 10µF  
solid tantalum capacitor with several ohms in series  
provides optimum output bypass.  
LT1021  
OUT  
LOAD  
GND  
R2*  
GROUND  
RETURN  
1021 AI06  
*OPTIONALREDUCES CURRENT IN OUTPUT SENSE LEAD  
R2 = 2.4k (LT1021-5), 3k (LT1021-7), 5.6k (LT1021-10)  
10  
LT1021  
U
W U U  
APPLICATIONS INFORMATION  
Effects of Air Movement on Low Frequency Noise  
copper lead frames used on dual-in-line packages are not  
nearly as sensitive to thermally generated noise because  
they are intrinsically matched.  
TheLT1021has verylownoisebecauseoftheburiedzener  
usedinits design.Inthe0.1Hzto10Hzband,peak-to-peak  
noise is about 0.5ppm of the DC output. To achieve this  
low noise, however, care must be taken to shield the  
reference from ambient air turbulence. Air movement can  
create noise because of thermoelectric differences  
betweenICpackageleads (especiallykovarleadTO-5)and  
printed circuit board materials and/or sockets. Power  
dissipation in the reference, even though it rarely exceeds  
20mW, is enough to cause small temperature gradients in  
thepackageleads.Variations inthermalresistance,caused  
by uneven air flow, create differential lead temperatures,  
therebycausingthermoelectricvoltagenoiseattheoutput  
of the reference. The following XY plotter trace dramati-  
cally illustrates this effect. The first half of the plot was  
done with the LT1021 shielded from ambient air with a  
small foam cup. The cup was then removed for the second  
half of the trace. Ambient in both cases was a lab environ-  
ment with no excessive air turbulence from air condition-  
ers, opening/closing doors, etc. Removing the foam cup  
increases the output noise by almost an order of magni-  
tude in the 0.01Hz to 1Hz band! The kovar leads of the  
TO-5 (H) package are the primary culprit. Alloy 42 and  
There is nothing magical about foam cups—any enclo-  
sure which blocks air flow from the reference will do.  
Smaller enclosures are better since they do not allow the  
build-up of internally generated air movement. Naturally,  
heat generating components external to the reference  
itself should not be included inside the enclosure.  
Noise Induced By Air Turbulence (TO-5 Package)  
LT1021-7 (TO-5 PACKAGE)  
f = 0.01Hz TO 10Hz  
20µV  
FOAM CUP  
REMOVED  
8
12  
0
2
4
6
10  
TIME (MINUTES)  
1021 AI07  
U
TYPICAL APPLICATIONS  
Restricted Trim Range for Improved  
Resolution, 10V, C” Version Only  
LT1021-10 Full Trim Range (±0.7%)  
Negative Series Reference  
15V  
R1  
LT1021-10  
IN  
LT1021C-10  
V
IN  
V
OUT  
OUT  
IN  
10.000V  
V
IN  
OUT  
LT1021-10  
4.7k  
IN  
OUT  
GND TRIM  
GND TRIM  
R1  
75k  
D1  
15V  
GND  
R1*  
10k  
R2  
4.7k  
R2  
50k  
–10V AT 50mA  
–15V  
1021 TA03  
1021 TA11  
Q1  
2N2905  
LT1021 TA04  
TRIM RANGE ±10mV  
*CAN BE RAISED TO 20k FOR  
LESS CRITICAL APPLICATIONS  
11  
LT1021  
U
TYPICAL APPLICATIONS  
Boosted Output Current  
with No Current Limit  
Boosted Output Current  
with Current Limit  
Ultraprecise Current Source  
+
+
V (V  
+ 1.8V)  
V V  
OUT  
+ 2.8V  
OUT  
D1*  
LED  
R1  
220Ω  
R1  
220Ω  
LT1021-7  
OUT  
8.2Ω  
15V  
IN  
2N2905  
17.4k  
1%  
GND  
2N2905  
IN  
LT1021  
OUT  
TRIM  
100  
IN  
LT1021  
OUT  
10V AT  
100mA  
6.98k*  
0.1%  
10V AT  
100mA  
GND  
15V  
+
2µF  
SOLID  
TANT  
GND  
7
+
2µF  
SOLID  
TANT  
2
3
*LOW TC  
6
LT1001  
+
1021 TA05  
1021 TA06  
4
*GLOWS IN CURRENT LIMIT,  
DO NOT OMIT  
–15V  
I
= 1mA  
OUT  
REGULATION < 1ppm/V  
COMPLIANCE = 13V TO 7V  
1021 TA07  
Operating 5V Reference from 5V Supply  
2-Pole Lowpass Filtered Reference  
5V LOGIC  
SUPPLY  
1µF  
MYLAR  
1N914  
V
IN  
CMOS LOGIC GATE**  
LT1021-5  
+
1N914  
8.5V  
5V  
f
2kHz*  
IN  
OUT  
IN  
REFERENCE  
V
REF  
LT1021  
LT1001  
+
C1*  
5µF  
C2*  
5µF  
GND  
IN  
OUT  
+
V
IN  
R1  
R2  
36k  
36k  
GND  
TOTAL NOISE  
0.5µF  
MYLAR  
*FOR HIGHER FREQUENCIES C1 AND C2 MAY BE DECREASED  
**PARALLEL GATES FOR HIGHER REFERENCE CURRENT LOADING  
2µV  
f = 10Hz  
RMS  
1021 TA16  
1Hz f 10kHz  
–V  
REF  
1021 TA13  
Trimming 10V Units to 10.24V  
CMOS DAC with Low Drift Full-Scale Trimming**  
LT1021-10  
V
IN  
IN  
OUT  
V
OUT  
= 10.24V  
R3  
OUT  
LT1021-10  
TRIM  
GND  
4.02K  
1%  
TRIM GND  
R4*  
100Ω  
FULL-SCALE  
ADJUST  
FB  
I
R1  
4.99k  
1%  
30pF  
CMOS  
DAC  
7520, ETC  
4.32k  
5k  
OUT  
10V  
F.S.  
REF  
LT1007C  
R2  
40.2Ω  
1%  
+
V= –15V*  
*MUST BE WELL REGULATED  
1.2k  
–15V  
*TC LESS THAN 200ppm/°C  
**NO ZERO ADJUST REQUIRED  
WITH LT1007 (V 60µV)  
dV  
OUT  
15mV  
V
=
dV–  
LT1236 TA15  
1021 TA12  
0S  
12  
LT1021  
U
TYPICAL APPLICATIONS  
Negative Shunt Reference Driven  
Strain Gauge Conditioner for 350Bridge  
by Current Source  
R1  
357Ω  
1/2W  
LT1021-10  
OUT  
GND  
28mA  
LT1021-10  
28.5mA  
15V  
IN  
OUT  
5V  
–10V (I  
1mA)  
LOAD  
350STRAIN  
GAUGE BRIDGE**  
R3  
2M  
GND  
2.5mA  
R2  
20k  
2
3
+
3
LM334  
6
6
V
×100  
R4  
20k  
OUT  
LT1012C  
LM301A  
2  
1
+
27Ω  
R5  
2M  
100pF  
8
R6*  
2M  
–11V TO 40V  
1021 TA14  
–5V  
1021 TA09  
357Ω  
1/2W  
–15V  
**BRIDGE IS ULTRALINEAR WHEN ALL LEGS ARE  
*THIS RESISTOR PROVIDES POSITIVE FEEDBACK TO  
THE BRIDGE TO ELIMINATE LOADING EFFECT OF  
ACTIVE, TWO IN COMPRESSION AND TWO IN TENSION,  
OR WHEN ONE SIDE IS ACTIVE WITH ONE COMPRESSED  
AND ONE TENSIONED LEG  
THE AMPLIFIER. EFFECTIVE Z OF AMPLIFIER  
IN  
STAGE IS 1M. IF R2 TO R5 ARE CHANGED,  
SET R6 = R3  
OFFSET AND DRIFT OF LM301A ARE VIRTUALLY  
ELIMINATED BY DIFFERENTIAL CONNECTION OF LT1012C  
Precision DAC Reference with System TC Trim  
Handling Higher Load Currents  
15V  
30mA  
LT1021-10  
IN  
15V  
OUT  
R1*  
169Ω  
IN  
8.87k  
1%  
GND  
LT1021-10  
V
10V  
OUT  
OUT  
50k  
ROOM TEMP  
TRIM  
D1  
1N457  
GND  
10k  
1%  
TYPICAL LOAD  
CURRENT = 30mA  
10.36k  
1%  
R
L
50k  
TC TRIM*  
1.24k  
1%  
1021 TA08  
200k  
1%  
D2  
1N457  
10k  
1%  
*SELECT R1 TO DELIVER TYPICAL LOAD CURRENT.  
LT1021 WILL THEN SOURCE OR SINK AS NECESSARY  
TO MAINTAIN PROPER OUTPUT. DO NOT REMOVE LOAD  
AS OUTPUT WILL BE DRIVEN UNREGULATED HIGH. LINE  
REGULATION IS DEGRADED IN THIS APPLICATION  
50k  
8.45k  
1mA  
DAC  
*TRIMS 1mA REFERENCE CURRENT  
TC BY ±40ppm/°C. THIS TRIM SCHEME HAS  
VERY LITTLE EFFECT ON ROOM TEMPERATURE  
CURRENT TO MINIMIZE ITERATIVE TRIMMING  
1021 TA17  
13  
LT1021  
TYPICAL APPLICATIONS  
U
Ultralinear Platinum Temperature Sensor*  
LT1021-10  
IN  
20V  
OUT  
GND  
R2*  
5k  
R10  
182k  
1%  
R14  
5k  
R1**  
253k  
R11  
6.65M  
1%  
R15  
10k  
R8  
10M  
R **  
F
654k  
R9  
100k  
R12  
1k  
R13  
24.3k  
20V  
7
2
R5  
200k  
1%  
R4  
4.75k  
1%  
R3**  
5k  
6
V
=100mV/°C  
OUT  
LT1001  
50°C T 150°C  
3
+
4
R
S
100AT  
0°C  
–15V  
R6  
619k  
1%  
STANDARD INDUSTRIAL 100PLATINUM 4-WIRE SENSOR,  
ROSEMOUNT 78S OR EQUIVALENT. α = 0.00385  
R7  
392k  
1%  
TRIM R9 FOR V  
OUT  
= 0V AT 0°C  
= 10V AT 100°C  
= 5V AT 50°C  
TRIM R12 FOR V  
OUT  
TRIM R14 FOR V  
OUT  
USE TRIM SEQUENCE AS SHOWN. TRIMS ARE NONINTERACTIVE  
SO THAT ONLY ONE TRIM SEQUENCE IS NORMALLY REQUIRED.  
–15V  
*FEEDBACK LINEARIZES OUTPUT TO ±0.005°C FROM  
50°C TO 150°C  
**WIREWOUND RESISTORS WITH LOW TC  
1021 TA10  
U
W
EQUIVALE T SCHE ATIC  
INPUT  
Q3  
D1  
D2  
OUTPUT  
R1  
D3  
Q1  
+
A1  
R2  
D4  
6.3V  
Q2  
GND  
LT1021 ES  
14  
LT1021  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
H Package  
8-Lead TO-5 Metal Can (0.200 PCD)  
(LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
(1.016)  
MAX  
0.050  
(1.270)  
MAX  
0.165 – 0.185  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
PIN 1  
0.028 – 0.034  
(0.711 – 0.864)  
0.200  
(5.080)  
TYP  
0.110 – 0.160  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
H8(TO-5) 0.200 PCD 1197  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
4
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
0.125  
(0.229 – 0.381)  
0.020  
(3.175)  
MIN  
+0.035  
–0.015  
(0.508)  
MIN  
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
+0.889  
–0.381  
(0.457 ± 0.076)  
8.255  
(
)
N8 1098  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1021  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1019  
Precision Bandgap Reference  
Precision 5V Reference  
Precision Reference  
0.05%, 5ppm/°C  
0.02%, 2ppm/°C  
LT1027  
LT1236  
LTC®1258  
SO-8, 5V and 10V, 0.05%, 5ppm/°C  
200mV Dropout, MSOP  
Micropower Reference  
LT1389  
Nanopower Shunt Reference  
Micropower Reference  
800nA Operating Current  
SOT-23, 2.5V, 5V, 10V  
LT1460  
LT1634  
Micropower Shunt Reference  
0.05%, 10ppm/°C, MSOP  
1021fa LT/GP 0399 2K REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY