LT1076IR#PBF [Linear]

LT1076 - Step-Down Switching Regulator; Package: DD PAK; Pins: 7; Temperature Range: -40°C to 85°C;
LT1076IR#PBF
型号: LT1076IR#PBF
厂家: Linear    Linear
描述:

LT1076 - Step-Down Switching Regulator; Package: DD PAK; Pins: 7; Temperature Range: -40°C to 85°C

开关
文件: 总16页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1074/LT1076  
Step-Down Switching  
Regulator  
ponents,areincludedonthechip.Thetopologyisaclassic  
positive “buck” configuration but several design innova-  
tions allow this device to be used as a positive-to-negative  
converter, a negative boost converter, and as a flyback  
converter. The switch output is specified to swing 40V  
below ground, allowing the LT1074 to drive a tapped-  
inductor in the buck mode with output currents up to 10A.  
FEATURES  
5A Onboard Switch (LT1074)  
Operates Up to 60V Input  
100kHz Switching Frequency  
Greatly Improved Dynamic Behavior  
Available in Low Cost 5 and 7-Lead Packages  
Only 8.5mA Quiescent Current  
The LT1074 uses a true analog multiplier in the feedback  
loop. This makes the device respond nearly instanta-  
neously to input voltage fluctuations and makes loop gain  
independent of input voltage. As a result, dynamic behav-  
ior of the regulator is significantly improved over previous  
designs.  
Programmable Current Limit  
Micropower Shutdown Mode  
U
APPLICATIO S  
Buck Converter with Output Voltage Range of 2.5V  
On-chip pulse by pulse current limiting makes the LT1074  
nearlybust-proofforoutputoverloadsorshorts.Theinput  
voltage range as a buck converter is 8V to 60V, but a self-  
boot feature allows input voltages as low as 5V in the  
inverting and boost configurations.  
to 50V  
Tapped-Inductor Buck Converter with 10A Output  
at 5V  
Positive-to-Negative Converter  
Negative Boost Converter  
Multiple Output Buck Converter  
TheLT1074isavailableinlowcostTO-220orDDpackages  
with frequency pre-set at 100kHz and current limit at 6.5A  
(LT1076 = 2.6A). A 7-pin TO-220 package is also available  
which allows current limit to be adjusted down to zero. In  
addition, full micropower shutdown can be programmed.  
See Application Note 44 for design details.  
U
DESCRIPTIO  
The LT®1074 is a 5A (LT1076 is rated at 2A) monolithic  
bipolar switching regulator which requires only a few  
external parts for normal operation. The power switch, all  
oscillator and control circuitry, and all current limit com-  
A fixed 5V output, 2A version is also available. See LT1076-5.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
Buck Converter Efficiency  
TYPICAL APPLICATIO  
LT1074  
Basic Positive Buck Converter  
100  
L1**  
50µH (LT1074)  
V
= 12V, V = 20V  
IN  
OUT  
100µH (LT1076)  
90  
80  
5V  
V
V
IN  
SW  
FB  
5A  
* USE MBR340 FOR LT1076  
** COILTRONICS #50-2-52 (LT1074)  
#100-1-52 (LT1076)  
PULSE ENGINEERING, INC.  
#PE-92114 (LT1074)  
10V TO 40V  
R1  
2.8k  
1%  
LT1074  
MBR745*  
V
= 5V, V = 15V  
IN  
OUT  
70  
60  
50  
GND  
V
C
#PE-92102 (LT1076)  
HURRICANE #HL-AK147QQ (LT1074)  
R2  
2.21k  
1%  
R3  
L = 50µH TYPE 52 CORE  
DIODE = MBR735  
2.7k  
#HL-AG210LL (LT1076)  
+
+
C3†  
200µF  
C2  
0.01µF  
C1  
500µF  
25V  
RIPPLE CURRENT RATING I /2  
OUT  
0
1
2
3
4
5
6
OUTPUT LOAD CURRENT (A)  
LT1074•TPC27  
LT1074•TA01  
sn1074 1074fds  
1
LT1074/LT1076  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Input Voltage  
I
Pin Voltage (Forced) ............................................ 5.5V  
LIM  
LT1074/ LT1076 .................................................. 45V  
LT1074HV/LT1076HV ......................................... 64V  
Switch Voltage with Respect to Input Voltage  
Maximum Operating Ambient Temperature Range  
Commercial .................................................0°C to 70°C  
Industrial ................................................ –40°C to 85°C  
Military (OBSOLETE) ..................... –55°C to 125°C  
Maximum Operating Junction Temperature Range  
Commercial ...............................................0°C to 125°C  
Industrial .............................................. –40°C to 125°C  
Military (OBSOLETE) .................... 55°C to 150°C  
Maximum Storage Temperature ............... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)......................300°C  
LT1074/ LT1076 .................................................. 64V  
LT1074HV/LT1076HV ......................................... 75V  
Switch Voltage with Respect to Ground Pin (V Negative)  
LT1074/LT1076 (Note 7) .........................S..W.......... 35V  
LT1074HV/LT1076HV (Note 7) ........................... 45V  
Feedback Pin Voltage..................................... –2V, +10V  
Shutdown Pin Voltage (Not to Exceed VIN) .............. 40V  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
FRONT VIEW  
BOTTOM VIEW  
5
4
3
2
1
V
V
V
V
V
NUMBER  
IN  
C
IN  
SW  
TAB IS  
GND  
1
4
GND  
2
LT1076CQ  
LT1076IQ  
LT1074CK  
CASE  
V
C
IS GND  
3
LT1074HVCK  
LT1074MK  
FB/SENSE  
Q PACKAGE  
5-LEAD PLASTIC DD  
FB  
SW  
LT1074HVMK  
LT1076CK  
K PACKAGE  
4-LEAD TO-3 METAL CAN  
LT1076: θJC = 4°C, θJA = 30°C/W  
LT1076HVCK  
LT1076MK  
LT1074: θJC = 2.5°C, θJA = 35°C/W  
LT1076: θJC = 4°C, θJA = 35°C/W  
LT1076CR  
FRONT VIEW  
LT1076HVMK  
OBSOLETE PACKAGE  
7
6
5
4
3
2
1
SHDN  
V
FB/SENSE  
GND  
LT1076IR  
Consider the T5 Package for Alternate Source  
C
LT1076HVCR  
LT1076HVIR  
TAB IS  
GND  
I
V
V
LT1074CT  
FRONT VIEW  
LIM  
SW  
IN  
LT1074HVCT  
LT1074IT  
5
4
3
2
1
V
V
IN  
SW  
R PACKAGE  
7-LEAD PLASTIC DD  
TAB IS  
GND  
GND  
LT1074HVIT  
LT1076CT  
V
C
LT1076: θJC = 4°C, θJA = 30°C/W  
FB  
LT1076HVCT  
LT1076IT  
T PACKAGE  
5-LEAD PLASTIC TO-220  
LEADS ARE FORMED STANDARD FOR  
STRAIGHT LEADS, ORDER FLOW 06  
LT1074CT7  
FRONT VIEW  
LT1074HVCT7  
LT1074IT7  
LT1076HVIT  
SHDN  
7
6
5
4
3
2
1
V
C
FB  
GND  
LT1074: θJC = 2.5°C, θJA = 50°C/W  
LT1076: θJC = 4°C, θJA = 50°C/W  
TAB IS  
GND  
LT1074HVIT7  
LT1076CT7  
I
LIM  
SW  
IN  
V
V
LT1076HVCT7  
T7 PACKAGE  
7-LEAD PLASTIC TO-220  
LT1074: θJC = 2.5°C, θJA = 50°C/W  
LT1076: θJC = 4°C, θJA = 50°C/W  
2
*Assumes package is soldered to 0.5 IN of 1 oz. copper over internal ground plane or over back side plane.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
sn1074 1074fds  
2
LT1074/LT1076  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Tj = 25°C, VIN = 25V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switch “On” Voltage (Note 2)  
LT1074  
I
I
I
I
= 1A, T 0°C  
1.85  
2.1  
2.3  
2.5  
V
V
V
V
SW  
SW  
SW  
SW  
j
= 1A, T < 0°C  
j
= 5A, T 0°C  
j
= 5A, T < 0°C  
j
LT1076  
LT1074  
LT1076  
I
I
= 0.5A  
= 2A  
1.2  
1.7  
V
V
SW  
SW  
Switch “Off” Leakage  
V
V
25V, V = 0  
5
10  
300  
500  
µA  
µA  
IN  
IN  
SW  
V
= V  
= 0 (Note 8)  
MAX, SW  
V
V
= 25V, V = 0  
150  
250  
µA  
µA  
IN  
IN  
SW  
V
= V  
= 0 (Note 8)  
MAX, SW  
Supply Current (Note 3)  
V
= 2.5V, V 40V  
8.5  
9
140  
11  
12  
300  
mA  
mA  
µA  
FB  
IN  
40V < V < 60V  
V
IN  
= 0.1V (Device Shutdown) (Note 9)  
SHUT  
Minimum Supply Voltage  
Normal Mode  
Startup Mode (Note 4)  
7.3  
3.5  
8
4.8  
V
V
Switch Current Limit (Note 5)  
LT1074  
I
R
R
Open  
5.5  
2
6.5  
4.5  
3
8.5  
A
A
A
LIM  
= 10k (Note 6)  
= 7k (Note 6)  
LIM  
LIM  
LT1076  
I
R
R
Open  
2.6  
1.8  
1.2  
3.2  
A
A
A
LIM  
= 10k (Note 6)  
= 7k (Note 6)  
LIM  
LIM  
Maximum Duty Cycle  
Switching Frequency  
85  
90  
%
90  
85  
85  
100  
110  
120  
125  
kHz  
kHz  
kHz  
kHz  
T 125°C  
j
T > 125°C  
j
V
= 0V through 2k(Note 5)  
20  
FB  
Switching Frequency Line Regulation  
Error Amplifier Voltage Gain (Note 7)  
Error Amplifier Transconductance  
Error Amplifier Source and Sink Current  
8V V V  
(Note 8)  
0.03  
2000  
5000  
0.1  
%/V  
V/V  
IN  
MAX  
1V V 4V  
C
3700  
8000  
µmho  
Source (V = 2V)  
100  
0.7  
140  
1
225  
1.6  
µA  
mA  
FB  
Sink (V = 2.5V)  
FB  
Feedback Pin Bias Current  
Reference Voltage  
V
= V  
0.5  
2
µA  
V
FB  
REF  
V = 2V  
2.155  
2.21  
2.265  
C
Reference Voltage Tolerance  
V
(Nominal) = 2.21V  
±0.5  
±1  
±1.5  
±2.5  
%
%
REF  
All Conditions of Input Voltage, Output  
Voltage, Temperature and Load Current  
Reference Voltage Line Regulation  
8V V V  
(Note 8)  
0.005  
0.02  
%/V  
IN  
MAX  
V Voltage at 0% Duty Cycle  
C
1.5  
–4  
V
Over Temperature  
mV/°C  
Multiplier Reference Voltage  
Shutdown Pin Current  
24  
10  
V
V
V
= 5V  
5
20  
50  
µA  
µA  
SH  
SH  
V  
(2.5V)  
THRESHOLD  
Shutdown Thresholds  
Switch Duty Cycle = 0  
Fully Shut Down  
2.2  
0.1  
2.45  
0.3  
2.7  
0.6  
V
V
Thermal Resistance Junction to Case  
LT1074  
LT1076  
2.5  
4.0  
°C/W  
°C/W  
sn1074 1074fds  
3
LT1074/LT1076  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: Switch frequency is internally scaled down when the feedback pin  
of a device may be impaired.  
Note 2: To calculate maximum switch “on” voltage at currents between  
voltage is less than 1.3V to avoid extremely short switch on times. During  
testing, V is adjusted to give a minimum switch on time of 1µs.  
FB  
low and high conditions, a linear interpolation may be used.  
R
– 1k  
R
– 1k  
5.5k  
LIM  
LIM  
Note 6: I  
(LT1074), I  
LIM  
(LT1076).  
LIM  
Note 3: A feedback pin voltage (V ) of 2.5V forces the V pin to its low  
2k  
Note 7: Switch to input voltage limitation must also be observed.  
Note 8: V = 40V for the LT1074/76 and 60V for the LT1074HV/76HV.  
FB  
C
clamp level and the switch duty cycle to zero. This approximates the zero  
load condition where duty cycle approaches zero.  
MAX  
Note 4: Total voltage from V pin to ground pin must be 8V after start-  
IN  
Note 9: Does not include switch leakage.  
up for proper regulation.  
W
BLOCK DIAGRA  
INPUT SUPPLY  
LT1074  
320µA  
10µ A  
0.3V  
+
6V  
500  
µ-POWER  
SHUTDOWN  
6V TO ALL  
CIRCUITRY  
REGULATOR  
AND BIAS  
CURRENT  
LIMIT  
COMP  
0.04  
+
CURRENT  
LIMIT  
SHUTDOWN  
2.35V  
C2  
+
250Ω  
I
*
LIM  
SHUTDOWN*  
4.5V  
10k  
FREQ SHIFT  
R
R/S  
LATCH  
100kHz  
OSCILLATOR  
G1  
S
Q
SYNC  
R
3V(p-p)  
V
IN  
+
400 Ω  
15Ω  
Z
C1  
+
ANALOG  
A1  
ERROR  
AMP  
MULTIPLIER  
X
PULSE WIDTH  
COMPARATOR  
XY  
Z
Y
2.21V  
SWITCH  
OUTPUT  
(V  
)
SW  
FB  
V
24V (EQUIVALENT)  
C
LT1076  
0.1Ω  
*AVAILABLE ON PACKAGES WITH PIN  
COUNTS GREATER THAN 5.  
100Ω  
SWITCH  
OUTPUT (V  
)
SW  
LT1074 • BD01  
sn1074 1074fds  
4
LT1074/LT1076  
W
U
BLOCK DIAGRA DESCRIPTIO  
A switch cycle in the LT1074 is initiated by the oscillator  
setting the R/S latch. The pulse that sets the latch also  
locks out the switch via gate G1. The effective width of this  
pulse is approximately 700ns, which sets the maximum  
switchdutycycletoapproximately93%at100kHzswitch-  
ing frequency. The switch is turned off by comparator C1,  
whichresetsthelatch.C1hasasawtoothwaveformasone  
input and the output of an analog multiplier as the other  
input. The multiplier output is the product of an internal  
referencevoltage,andtheoutputoftheerroramplifier,A1,  
divided by the regulator input voltage. In standard buck  
regulators, this means that the output voltage of A1  
required to keep a constant regulated output is indepen-  
dent of regulator input voltage. This greatly improves line  
transient response, and makes loop gain independent of  
input voltage. The error amplifier is a transconductance  
type with a GM at null of approximately 5000µmho. Slew  
current going positive is 140µA, while negative slew  
current is about 1.1mA. This asymmetry helps prevent  
overshoot on start-up. Overall loop frequency compensa-  
tion is accomplished with a series RC network from VC to  
ground.  
voltages by feeding the FB signal into the oscillator and  
creating a linear frequency downshift when the FB signal  
dropsbelow1.3V. Currenttriplevelissetbythevoltageon  
the ILIM pin which is driven by an internal 320µA current  
source. When this pin is left open, it self-clamps at about  
4.5Vandsetscurrentlimitat6.5AfortheLT1074and2.6A  
for the LT1076. In the 7-pin package an external resistor  
canbeconnectedfromtheILIM pintogroundtosetalower  
current limit. A capacitor in parallel with this resistor will  
soft-start the current limit. A slight offset in C2 guarantees  
thatwhentheILIM pinispulledtowithin200mVofground,  
C2outputwillstayhighandforceswitchdutycycletozero.  
The “Shutdown” pin is used to force switch duty cycle to  
zerobypullingtheILIM pinlow,ortocompletelyshutdown  
the regulator. Threshold for the former is approximately  
2.35V, and for complete shutdown, approximately 0.3V.  
Total supply current in shutdown is about 150µA. A 10µA  
pull-up current forces the shutdown pin high when left  
open. A capacitor can be used to generate delayed start-  
up. A resistor divider will program “undervoltage lockout”  
if the divider voltage is set at 2.35V when the input is at the  
desired trip point.  
Switch current is continuously monitored by C2, which  
resets the R/S latch to turn the switch off if an overcurrent  
condition occurs. The time required for detection and  
switch turn off is approximately 600ns. So minimum  
switch “on” time in current limit is 600ns. Under dead  
shorted output conditions, switch duty cycle may have to  
beaslowas2%tomaintaincontrolofoutputcurrent. This  
would require switch on time of 200ns at 100kHz switch-  
ing frequency, so frequency is reduced at very low output  
The switch used in the LT1074 is a Darlington NPN (single  
NPN for LT1076) driven by a saturated PNP. Special  
patented circuitry is used to drive the PNP on and off very  
quickly even from the saturation state. This particular  
switch arrangement has no “isolation tubs” connected to  
theswitchoutput, whichcanthereforeswingto40Vbelow  
ground.  
sn1074 1074fds  
5
LT1074/LT1076  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VC Pin Characteristics  
VC Pin Characteristics  
Feedback Pin Characteristics  
2.0  
1.5  
500  
400  
200  
150  
100  
50  
300  
V
ADJUSTED FOR  
= 0 AT V = 2V  
C
1.0  
FB  
C
V
FB  
2.5V  
200  
START OF  
FREQUENCY SHIFTING  
I
0.5  
100  
0
0
0
–100  
–200  
–300  
–400  
–500  
–0.5  
–1.0  
–1.5  
–2.0  
–50  
–100  
–150  
–200  
SLOPE 400kΩ  
V
2V  
FB  
3
0
1
2
3
4
5
6
7
8
9
0
1
2
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10  
VOLTAGE (V)  
VOLTAGE (V)  
VOLTAGE (V)  
LT1074•TPC02  
LT1074•TPC01  
LT1074•TPC03  
Shutdown Pin Characteristics  
Shutdown Pin Characteristics  
ILIM Pin Characteristics  
40  
30  
0
–5  
100  
50  
T = 25°C  
CURRENT FLOWS OUT  
OF SHUTDOWN PIN  
j
0
20  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
T
= 25°C  
j
–50  
V
= 50V  
IN  
10  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
SHUTDOWN  
THRESHOLD  
THIS POINT MOVES  
0
WITH V  
IN  
–10  
–20  
–30  
–40  
DETAILS OF THIS  
AREA SHOWN IN  
OTHER GRAPH  
0
10 20 30 40 50 60 70 80  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
–2 –1  
0
1
2
3
4
5
6
7
8
VOLTAGE (V)  
VOLTAGE (V)  
VOLTAGE (V)  
LT1074•TPC04  
LT1074•PC05  
LT1074•TPC06  
Supply Current  
20  
18  
16  
14  
12  
10  
8
DEVICE NOT SWITCHING  
V
= 1V  
C
6
4
2
0
0
10  
20  
30  
40  
50  
60  
INPUT VOLTAGE (V)  
LT1074•TPC11  
sn1074 1074fds  
6
LT1074/LT1076  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reference Voltage vs  
Temperature  
Supply Current (Shutdown)  
Switch “On” Voltage  
300  
250  
2.25  
2.24  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
T = 25°C  
j
2.23  
2.22  
200  
150  
LT1074  
2.21  
2.20  
2.19  
100  
50  
0
LT1076  
2.18  
2.17  
0
10  
20  
30  
40  
50  
60  
–25  
0
25 50  
–50  
75 100 125 150  
0
1
2
3
4
5
6
INPUT VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
SWITCH CURRENT (A)  
LT1074•TPC13  
LT1074•TPC14  
LT1074•TPC28  
Switching Frequency vs  
Temperature  
Reference Shift with Ripple  
Voltage  
Error Amplifier Phase and GM  
20  
10  
8k  
7k  
6k  
5k  
4k  
3k  
2k  
1k  
0
200  
150  
100  
50  
120  
115  
110  
105  
100  
95  
0
–10  
–20  
–30  
–40  
θ
TRI WAVE  
SQUARE  
WAVE  
0
G
M
–50  
–100  
–150  
–200  
–50  
–60  
–70  
–80  
90  
85  
80  
0
20 40 60 80 100 120 140 160 180 200  
1k  
10k  
100k  
1M  
10M  
–50 –25  
0
25 50 75 100 125 150  
PEAK-TO-PEAK RIPPLE AT FB PIN (mV)  
FREQUENCY (Hz)  
JUNCTION TEMPERATURE (°C)  
LT1074•TPC18  
LT1074•TPC16  
LT1074•TPC17  
Feedback Pin Frequency Shift  
Current Limit vs Temperature*  
160  
8
7
6
5
4
3
2
1
0
140  
120  
100  
I
PIN OPEN  
LIM  
R
= 10kΩ  
LIM  
80  
150°C  
60  
–55°C  
R
= 5kΩ  
LIM  
40  
25°C  
20  
0
*MULTIPLY CURRENTS BY 0.4 FOR LT1076  
–50 –25 25 50 75 100 125 150  
JUNCTION TEMPERATURE (°C)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
FEEDBACK PIN VOLTAGE (V)  
LT1074•TPC19  
LT1074•TPC22  
sn1074 1074fds  
7
LT1074/LT1076  
U
U
PI DESCRIPTIO S  
VIN PIN  
VGND VOUT  
(
)(  
)
The VIN pin is both the supply voltage for internal control  
circuitry and one end of the high current switch. It is  
important, especially at low input voltages, that this pin be  
bypassed with a low ESR, and low inductance capacitor to  
prevent transient steps or spikes from causing erratic  
operation. At full switch current of 5A, the switching  
transients at the regulator input can get very large as  
shown in Figure 1. Place the input capacitor very close to  
the regulator and connect it with wide traces to avoid extra  
inductance. Use radial lead capacitors.  
VOUT  
=
2.21  
To ensure good load regulation, the ground pin must be  
connected directly to the proper output node, so that no  
high currents flow in this path. The output divider resistor  
should also be connected to this low current connection  
line as shown in Figure 2.  
LT1074  
FB  
GND  
dl  
L
(
)
P
(
(
)
R2  
dt  
STEP =  
I
ESR  
) (  
)
SW  
RAMP =  
HIGH CURRENT  
RETURN PATH  
NEGATIVE OUTPUT NODE  
WHERE LOAD REGULATION  
WILL BE MEASURED  
I
T
ON  
(
) (  
)
SW  
C
LT1074•PD01  
LT1074•PD02  
Figure 1. Input Capacitor Ripple  
Figure 2. Proper Ground Pin Connection  
LP = Total inductance in input bypass connections  
and capacitor.  
FEEDBACK PIN  
The feedback pin is the inverting input of an error amplifier  
which controls the regulator output by adjusting duty  
cycle. The noninverting input is internally connected to a  
trimmed 2.21V reference. Input bias current is typically  
0.5µA when the error amplifier is balanced (IOUT = 0). The  
error amplifier has asymmetrical GM for large input sig-  
nals to reduce startup overshoot. This makes the amplifier  
more sensitive to large ripple voltages at the feedback pin.  
100mVp-p ripple at the feedback pin will create a 14mV  
offset in the amplifier, equivalent to a 0.7% output voltage  
shift. Toavoidoutputerrors, outputripple(P-P)shouldbe  
less than 4% of DC output voltage at the point where the  
output divider is connected.  
“Spike” height (dI/dt • LP) is approximately 2V per  
inch of lead length for LT1074 and 0.8V per inch for  
LT1076.  
“Step” for ESR = 0.05and ISW = 5A is 0.25V.  
“Ramp” for C = 200µF, TON = 5µs, and ISW = 5A,  
is 0.12V.  
Input current on the VIN Pin in shutdown mode is the sum  
of actual supply current (140µA, with a maximum of  
300µA), and switch leakage current. Consult factory for  
special testing if shutdown mode input current is critical.  
GROUND PIN  
See the “Error Amplifier” section for more details.  
It might seem unusual to describe a ground pin, but in the  
case of regulators, the ground pin must be connected  
properly to ensure good load regulation. The internal  
reference voltage is referenced to the ground pin; so any  
error in ground pin voltage will be multiplied at the output;  
Frequency Shifting at the Feedback Pin  
The error amplifier feedback pin (FB) is used to downshift  
the oscillator frequency when the regulator output voltage  
is low. This is done to guarantee that output short-circuit  
sn1074 1074fds  
8
LT1074/LT1076  
U
U
PI DESCRIPTIO S  
current is well controlled even when switch duty cycle  
must be extremely low. Theoretical switch “on” time for a  
buck converter in continuous mode is:  
SHUTDOWN PIN  
Theshutdownpinisusedforundervoltagelockout,micro-  
power shutdown, soft-start, delayed start, or as a general  
purpose on/off control of the regulator output. It controls  
switching action by pulling the ILIM pin low, which forces  
the switch to a continuous “off” state. Full micropower  
shutdown is initiated when the shutdown pin drops below  
0.3V.  
VOUT + VD  
V f  
IN  
tON  
=
VD = Catch diode forward voltage ( 0.5V)  
f = Switching frequency  
The V/I characteristics of the shutdown pin are shown in  
Figure 4. For voltages between 2.5V and VIN, a current of  
10µA flows out of the shutdown pin. This current in-  
creases to 25µA as the shutdown pin moves through the  
2.35Vthreshold.Thecurrentincreasesfurtherto30µAat  
the 0.3V threshold, then drops to 15µA as the shutdown  
voltage fall below 0.3V. The 10µA current source is in-  
cluded to pull the shutdown pin to its high or default state  
when left open. It also provides a convenient pull-up for  
delayed start applications with a capacitor on the shut-  
down pin.  
At f = 100kHz, tON must drop to 0.2µs when VIN = 25V  
and the output is shorted (VOUT = 0V). In current limit,  
the LT1074 can reduce tON to a minimum value of  
0.6µs, much too long to control current correctly for  
VOUT = 0. To correct this problem, switching frequency  
is lowered from 100kHz to 20kHz as the FB pin drops  
from 1.3V to 0.5V. This is accomplished by the circuitry  
TO  
OSCILLATOR  
V
OUT  
Q1  
+2V  
2.21V  
When activated, the typical collector current of Q1 in  
Figure5, is2mA. Asoft-startcapacitorontheILIM pinwill  
delay regulator shutdown in response to C1, by  
(5V)(CLIM)/2mA. Soft-start after full micropower shut-  
down is ensured by coupling C2 to Q1.  
R1  
+
R3  
3k  
ERROR  
AMPLIFIER  
EXTERNAL  
DIVIDER  
V
C
FB  
R2  
2.21k  
0
LT1074•PD03  
T = 25°C  
CURRENT FLOWS OUT  
OF SHUTDOWN PIN  
j
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
Figure 3. Frequency Shifting  
shown in Figure 3.  
SHUTDOWN  
THRESHOLD  
Q1 is off when the output is regulating (VFB = 2.21V). As  
the output is pulled down by an overload, VFB will eventu-  
ally reach 1.3V, turning on Q1. As the output continues to  
drop, Q1 current increases proportionately and lowers the  
frequencyoftheoscillator. Frequencyshiftingstartswhen  
the output is 60% of normal value, and is down to its  
minimum value of 20kHz when the output is 20% of  
normal value. The rate at which frequency is shifted is  
determined by both the internal 3k resistor R3 and the  
external divider resistors. For this reason, R2 should not  
be increased to more than 4k, if the LT1074 will be  
subjected to the simultaneous conditions of high input  
voltage and output short-circuit.  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
VOLTAGE (V)  
LT1074•PC05  
Figure 4. Shutdown Pin Characteristics  
sn1074 1074fds  
9
LT1074/LT1076  
U
U
PI DESCRIPTIO S  
V
IN  
Hysteresis in undervoltage lockout may be accomplished  
by connecting a resistor (R3) from the ILIM pin to the  
shutdown pin as shown in Figure 7. D1 prevents the  
shutdown divider from altering current limit.  
300µA  
10µ A  
SHUTDOWN  
PIN  
+
I
LIM  
PIN  
C1  
C2  
V
IN  
R1  
2.3V  
0.3V  
SHUT  
LT1074  
EXTERNAL  
LIM  
D1*  
Q1  
R3  
6V  
C
I
LIM  
+
R2  
OPTIONAL CURRENT  
LIMIT RESISTOR  
LT1074•PD09  
*1N4148  
TO TOTAL  
REGULATOR  
SHUTDOWN  
Figure 7. Adding Hysteresis  
LT1074•PD07  
Figure 5. Shutdown Circuitry  
R1  
R2  
Trip Point = VTP = 2.35V 1+  
Undervoltage Lockout  
UndervoltagelockoutpointissetbyR1andR2inFigure 6.  
To avoid errors due to the 10µA shutdown pin current, R2  
is usually set at 5k, and R1 is found from:  
If R3 is added, the lower trip point (VIN descending) will be  
the same. The upper trip point (VUTP) will be:  
R1 R1  
R2 R3  
R1  
R3  
VUTP = VSH  
1
+
0.8V  
VTP VSH  
(
)
R1= R2  
VSH  
If R1 and R2 are chosen, R3 is given by:  
VTP = Desired undervoltage lockout voltage  
VSH 0.8V R1  
(
)( )  
VSH = Threshold for lockout on the  
shutdown pin = 2.45V  
R3 =  
R1  
R2  
VUTP VSH 1+  
Ifquiescentsupplycurrentiscritical, R2maybeincreased  
up to 15k, but the denominator in the formula for R2  
should replace VSH with VSH – (10µA)(R2).  
Example: An undervoltage lockout is required such that  
the output will not start until VIN = 20V, but will continue  
to operate until VIN drops to 15V. Let R2 = 2.32k.  
R1  
V
IN  
SHUT  
LT1074  
GND  
15V 2.35V  
(
)
R1= 2.34k  
= 12.5k  
(
)
R2  
5k  
2.35V  
2.35 0.8 12.5  
(
)(  
)
R3 =  
= 3.9k  
LT1074•PD08  
12.5  
2.32  
20 2.35 1+  
Figure 6. Undervoltage Lockout  
sn1074 1074fds  
10  
LT1074/LT1076  
U
U
PI DESCRIPTIO S  
ILIM PIN  
from forcing current back into the ILIM pin. To calculate a  
value for RFB, first calculate RLIM, the RFB:  
The ILIM pin is used to reduce current limit below the  
preset value of 6.5A. The equivalent circuit for this pin is  
shown in Figure 8.  
ISC 0.44 * RL  
(
)(  
)
RFB =  
RL in kΩ  
(
)
0.5* RL 1kΩ − ISC  
TO LIMIT  
CIRCUIT  
(
)
V
IN  
320µ A  
*Change 0.44 to 0.16, and 0.5 to 0.18 for LT1076.  
D2  
Q1  
Example: ILIM = 4A, ISC = 1.5A, RLIM = (4)(2k) + 1k = 9k  
D1  
4.3V  
R1  
8K  
1.5 0.44 9kΩ  
(
)(  
)
D3  
6V  
RFB =  
3.8kΩ  
(
)
0.5 9k 1k 1.5  
(
)
I
LIM  
LT1047•PD12  
V
OUT  
Figure 8. ILIM Pin Circuit  
LT1074  
FB  
I
LIM  
When ILIM is left open, the voltage at Q1 base clamps at 5V  
through D2. Internal current limit is determined by the  
current through Q1. If an external resistor is connected  
between ILIM and ground, the voltage at Q1 base can be  
reduced for lower current limit. The resistor will have a  
voltage across it equal to (320µA)(R), limited to 5V when  
clamped by D2. Resistance required for a given current  
limit is:  
R
D2  
1N4148  
FB  
R
LIM  
LT1074•PD13  
Figure 9. Foldback Current Limit  
Error Amplifier  
RLIM = ILIM(2k) + 1k(LT1074)  
RLIM = ILIM(5.5k) + 1k(LT1076)  
The error amplifier in Figure 10 is a single stage design  
with added inverters to allow the output to swing above  
and below the common mode input voltage. One side of  
theamplifieristiedtoatrimmedinternalreferencevoltage  
of 2.21V. The other input is brought out as the FB (feed-  
back) pin. This amplifier has a GM (voltage “in” to current  
“out”) transfer function of 5000µmho. Voltage gain is  
determined by multiplying GM times the total equivalent  
output loading, consisting of the output resistance of Q4  
and Q6 in parallel with the series RC external frequency  
compensation network. At DC, the external RC is ignored,  
and with a parallel output impedance for Q4 and Q6 of  
400k, voltage gain is 2000. At frequencies above a few  
hertz, voltage gain is determined by the external compen-  
sation, RC and CC.  
As an example, a 3A current limit would require  
3A(2k) + 1k = 7kfor the LT1074. The accuracy of these  
formulas is ±25% for 2A ILIM 5A (LT1074) and  
7A ILIM 1.8A (LT1076), so ILIM should be set at least  
25% above the peak switch current required.  
Foldback current limiting can be easily implemented by  
adding a resistor from the output to the ILIM pin as shown  
in Figure 9. This allows full desired current limit (with or  
without RLIM) when the output is regulating, but reduces  
currentlimitundershort-circuitconditions.Atypicalvalue  
for RFB is 5k, but this may be adjusted up or down to set  
the amount of foldback. D2 prevents the output voltage  
sn1074 1074fds  
11  
LT1074/LT1076  
U
U
PI DESCRIPTIO S  
5.8V  
Q4  
90µ A  
µ
90  
A
Q3  
50µ A  
V
D1  
C
EXTERNAL  
FREQUENCY  
COMPENSATION  
FB  
Q2  
Q1  
50µA  
90µ A  
X1.8  
D2  
R
C
Q6  
2.21V  
140µ A  
C
C
300  
LT1074 • PD11  
ALL CURRENTS SHOWN ARE AT NULL CONDITION  
Figure 10. Error Amplifier  
The error amplifier has asymmetrical peak output current.  
Q3 and Q4 current mirrors are unity-gain, but the Q6  
mirror has a gain of 1.8 at output null and a gain of 8 when  
the FB pin is high (Q1 current = 0). This results in a  
maximum positive output current of 140µA and a maxi-  
mumnegative(sink)outputcurrentof1.1mA.Theasym-  
metry is deliberate—it results in much less regulator  
output overshoot during rapid start-up or following the  
release of an output overload. Amplifier offset is kept low  
by area scaling Q1 and Q2 at 1.8:1.  
Gm  
2π f CC  
AV = Gm RC at high frequencies  
AV =  
at mid frequencies  
Phase shift from the FB pin to the VC pin is 90° at mid  
frequencies where the external CC is controlling gain, then  
drops back to 0° (actually 180° since FB is an inverting  
input) when the reactance of CC is small compared to RC.  
The low frequency “pole” where the reactance of CC is  
equal to the output impedance of Q4 and Q6 (rO), is:  
Amplifier swing is limited by the internal 5.8V supply for  
positive outputs and by D1 and D2 when the output goes  
low. Low clamp voltage is approximately one diode drop  
(0.7V – 2mV/°C).  
1
fPOLE  
=
r 400kΩ  
O
2π r C  
O
Although fPOLE varies as much as 3:1 due to rO variations,  
mid-frequency gain is dependent only on Gm, which is  
specified much tighter on the data sheet. The higher  
frequency “zero” is determined solely by RC and CC.  
Note that both the FB pin and the VC pin have other internal  
connections. Refer to the frequency shifting and synchro-  
nizing discussions.  
1
fZERO  
=
2π RC CC  
sn1074 1074fds  
12  
LT1074/LT1076  
U
TYPICAL APPLICATIO S  
Tapped-Inductor Buck Converter  
L2  
5µH  
L1*  
V
V
OUT  
IN  
V
V
SW  
20VTO 35V  
5V, 10A†  
IN  
3
1
D2  
35V  
5W  
R1  
D1**  
LT1074HV  
2.8k  
C1  
4400  
(2 EA  
+
µ
F
FB  
GND  
V
C
2200µF,  
+
C4  
390  
16V  
D3  
R2  
2.21k  
R3  
1k  
C2  
0.2  
16V)  
µ
F
1N5819  
+
C3  
0.01µF  
µF  
200  
µF  
50V  
* PULSE ENGINEERING #PE±65282  
** MOTOROLA MBR2030CTL  
IF INPUT VOLTAGE IS BELOW 20V,  
MAXIMUM OUTPUT CURRENT WILL BE REDUCED. SEE AN44  
LT1074 •TA02  
Positive-to-Negative Converter with 5V Output  
V
IN  
+
C1  
4.5V to  
40V  
220  
µ
F
50V  
+
L1  
25  
µ
H
5A††  
R3*  
2.74k  
R1**  
5.1k  
V
IN  
V
SW  
+
C2  
LT1074  
1000  
µF  
R2**  
10k  
10V  
OPTIONAL FILTER  
V
FB  
V
C
GND  
D1†  
MBR745  
5µH  
+
200  
µF  
R4  
1.82k*  
10V  
C3  
0.1  
C4**  
0.01  
µ
F
µ
F
–5V,1A***  
* = 1% FILM RESISTORS  
D1 = MOTOROLA-MBR745  
LOWER REVERSE VOLTAGE RATING MAY BE USED FOR LOWER INPUT VOLTAGES.  
LOWER CURRENT RATING IS ALLOWED FOR LOWER OUTPUT CURRENT. SEE AN44.  
C1 = NICHICON-UPL1C221MRH6  
C2 = NICHICON-UPL1A102MRH6  
L1 = COILTRONICS-CTX25-5-52  
††  
LOWER CURRENT RATING MAY BE USED FOR LOWER OUTPUT CURRENT. SEE AN44.  
** R1, R2, AND C4 ARE USED FOR LOOP FREQUENCY COMPENSATION WITH LOW INPUT VOLTAGE,  
BUT R1 AND R2 MUST BE INCLUDED IN THE CALCULATION FOR OUTPUT VOLTAGE DIVIDER VALUES.  
FOR HIGHER OUTPUT VOLTAGES, INCREASE R1, R2, AND R3 PROPORTIONATELY.  
FOR INPUT VOLTAGE > 10V, R1, R2, AND C4 CAN BE ELIMINATED, AND COMPENSATION IS  
DONE TOTALLY ON THE V PIN.  
C
R3 =  
R1 = (R3) (1.86)  
–2.37 (K)  
V
OUT  
R2 = (R3) (3.65)  
** MAXIMUM OUTPUT CURRENT OF 1A IS DETERMINED BY MINIMUM INPUT  
VOLTAGE OF 4.5V. HIGHER MINIMUM INPUT VOLTAGE WILL ALLOW MUCH HIGHER  
OUTPUT CURRENTS. SEE AN44.  
LT1074 • TA03  
sn1074 1074fds  
13  
LT1074/LT1076  
U
PACKAGE DESCRIPTIO  
K Package  
4-Lead TO-3 Metal Can  
(Reference LTC DWG # 05-08-1311)  
0.760 – 0.775  
(19.30 – 19.69)  
0.320 – 0.350  
(8.13 – 8.89)  
0.060 – 0.135  
(1.524 – 3.429)  
0.420 – 0.480  
(10.67 – 12.19)  
0.038 – 0.043  
(0.965 – 1.09)  
1.177 – 1.197  
(29.90 – 30.40)  
0.655 – 0.675  
(16.64 – 19.05)  
0.470 TP  
P.C.D.  
0.151 – 0.161  
(3.84 – 4.09)  
DIA 2 PLC  
0.167 – 0.177  
(4.24 – 4.49)  
R
0.490 – 0.510  
(12.45 – 12.95)  
R
72°  
18°  
K4(TO-3) 1098  
OBSOLETE PACKAGE  
Q Package  
5-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1461)  
0.060  
(1.524)  
TYP  
0.390 – 0.415  
(9.906 – 10.541)  
0.060  
(1.524)  
0.165 – 0.180  
(4.191 – 4.572)  
0.256  
(6.502)  
0.045 – 0.055  
(1.143 – 1.397)  
15° TYP  
+0.008  
0.004  
–0.004  
0.060  
(1.524)  
0.183  
(4.648)  
0.059  
(1.499)  
TYP  
0.330 – 0.370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
0.095 – 0.115  
(2.413 – 2.921)  
0.075  
(1.905)  
0.067  
(1.70)  
BSC  
0.050 ± 0.012  
(1.270 ± 0.305)  
0.300  
(7.620)  
0.013 – 0.023  
(0.330 – 0.584)  
+0.012  
0.143  
–0.020  
0.028 – 0.038  
(0.711 – 0.965)  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 1098  
(
)
–0.508  
sn1074 1074fds  
14  
LT1074/LT1076  
U
PACKAGE DESCRIPTIO  
R Package  
7-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1462)  
0.060  
(1.524)  
TYP  
0.390 – 0.415  
(9.906 – 10.541)  
0.060  
0.256  
0.165 – 0.180  
(4.191 – 4.572)  
(1.524)  
(6.502)  
0.045 – 0.055  
(1.143 – 1.397)  
15° TYP  
+0.008  
0.004  
–0.004  
0.060  
0.183  
0.059  
(1.499)  
TYP  
0.330 – 0.370  
(8.382 – 9.398)  
(1.524)  
(4.648)  
+0.203  
–0.102  
0.102  
(
)
0.095 – 0.115  
(2.413 – 2.921)  
0.075  
(1.905)  
0.050  
(1.27)  
BSC  
0.050 ± 0.012  
(1.270 ± 0.305)  
0.300  
(7.620)  
0.013 – 0.023  
(0.330 – 0.584)  
+0.012  
0.143  
–0.020  
0.026 – 0.036  
(0.660 – 0.914)  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
(
)
–0.508  
R (DD7) 1098  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
0.165 – 0.180  
(4.191 – 4.572)  
0.147 – 0.155  
(3.734 – 3.937)  
DIA  
0.390 – 0.415  
(9.906 – 10.541)  
0.045 – 0.055  
(1.143 – 1.397)  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
(14.478 – 15.748)  
0.620  
(15.75)  
TYP  
0.460 – 0.500  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.700 – 0.728  
(17.78 – 18.491)  
0.095 – 0.115  
(2.413 – 2.921)  
SEATING PLANE  
0.152 – 0.202  
(3.861 – 5.131)  
0.155 – 0.195*  
(3.937 – 4.953)  
0.260 – 0.320  
(6.60 – 8.13)  
0.013 – 0.023  
(0.330 – 0.584)  
0.067  
BSC  
0.135 – 0.165  
(3.429 – 4.191)  
0.028 – 0.038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0399  
sn1074 1074fds  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1074/LT1076  
U
TYPICAL APPLICATIO  
Negative Boost Converter  
R1  
12.7k  
100pF  
V
IN  
V
FB  
R2  
2.21k  
LT1074  
V
SW  
V
C
GND  
C3  
+
+
C1  
200µF  
1000  
µ
F
L1  
25  
C2  
15V  
D1*  
25V  
µ
H
1nF  
0.01µF  
R3  
750  
V
OUT  
–15V**  
V
IN  
–5V TO –15V  
*
**  
MBR735  
I
(MAX) = 1A TO 3A DEPENDING  
+
OUT  
100µF  
ON INPUT VOLTAGE. SEE AN44  
5µH  
OPTIONAL OUTPUT FILTER  
LT1074 • TA04  
U
PACKAGE DESCRIPTIO  
T7 Package  
7-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1422)  
0.165 – 0.180  
(4.191 – 4.572)  
0.147 – 0.155  
(3.734 – 3.937)  
DIA  
0.390 – 0.415  
(9.906 – 10.541)  
0.045 – 0.055  
(1.143 – 1.397)  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
(14.478 – 15.748)  
0.620  
(15.75)  
TYP  
0.460 – 0.500  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.700 – 0.728  
(17.780 – 18.491)  
0.095 – 0.115  
(2.413 – 2.921)  
0.155 – 0.195*  
(3.937 – 4.953)  
SEATING PLANE  
0.152 – 0.202  
(3.860 – 5.130)  
0.260 – 0.320  
(6.604 – 8.128)  
0.013 – 0.023  
(0.330 – 0.584)  
0.050  
BSC  
0.026 – 0.036  
(0.660 – 0.914)  
(1.27)  
0.135 – 0.165  
(3.429 – 4.191)  
*MEASURED AT THE SEATING PLANE  
T7 (TO-220) 0399  
RELATED PARTS  
PART NUMBER  
LT1375/LT1376  
LT1374/LT1374HV  
LT1370  
DESCRIPTION  
COMMENTS  
1.5A, 500kHz Step-Down Switching Regulators  
4.5A, 500kHz Step-Down Switching Regulators  
6A, 500kHz High Efficiency Switching Regulator  
Wide Input Range, High Efficiency Step-Down Regulator  
High Power Synchronous DC/DC Controller  
3A, 1.25MHz, Step-Down Regulator  
V
IN  
V
IN  
Up to 25V, I  
Up to 1.25A, SO-8  
OUT  
Up to 25V (32V for HV), I  
Up to 4.25A, SO-8/DD  
OUT  
6A/42V Internal Switch, 7-Lead DD/TO-220  
LT1676  
V
IN  
V
IN  
V
IN  
from 7.4V to 60V, I  
Up to 0.5A, SO-8  
OUT  
LT1339  
Up to 60V, I  
Up to 50A, Current Mode  
OUT  
LT1765  
= 3V to 25V, V =1.2V, TSSOP-16E, SO8 Package  
µF  
sn1074 1074fds  
LT/CPI 0202 1.5K REV D • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1994  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY