LT1124IS8-1#TRPBF [Linear]

IC DUAL OP-AMP, 200 uV OFFSET-MAX, 12.5 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOP-8, Operational Amplifier;
LT1124IS8-1#TRPBF
型号: LT1124IS8-1#TRPBF
厂家: Linear    Linear
描述:

IC DUAL OP-AMP, 200 uV OFFSET-MAX, 12.5 MHz BAND WIDTH, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOP-8, Operational Amplifier

放大器 光电二极管
文件: 总20页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1124/LT1125  
Dual/Quad Low Noise,  
High Speed Precision Op Amps  
FeaTures  
DescripTion  
The LT®1124 dual and LT1125 quad are high performance  
op amps that offer higher gain, slew rate and bandwidth  
than the industry standard OP-27 and competing OP-270/  
OP-470 op amps. In addition, the LT1124/LT1125 have  
lower I and I than the OP-27; lower V and noise  
n
100% Tested Low Voltage Noise:  
2.7nV/√Hz Typ  
4.2nV/√Hz Max  
n
Slew Rate: 4.5V/µs Typ  
n
Gain-Bandwidth Product: 12.5MHz Typ  
Offset Voltage,  
B
OS  
OS  
n
than the OP-270/OP-470.  
Prime Grade: 70µV Max  
Low Grade: 100µV Max  
In the design, processing and testing of the device, par-  
ticular attention has been paid to the optimization of the  
entire distribution of several key parameters. Slew rate,  
gain bandwidth and 1kHz noise are 100% tested for each  
individual amplifier. Consequently, the specifications  
of even the lowest cost grades (the LT1124C and the  
LT1125C) have been spectacularly improved compared  
to equivalent grades of competing amplifiers.  
n
High Voltage Gain: 5 Million Min  
n
Supply Current Per Amplifier: 2.75mA Max  
n
Common Mode Rejection: 112dB Min  
n
Power Supply Rejection: 116dB Min  
n
Available in 8-Pin SO Package  
applicaTions  
Power consumption of the LT1124 is one-half of two  
OP-27s. Low power and high performance in an 8-pin  
SO package make the LT1124 a first choice for surface  
mounted systems and where board space is restricted.  
n
Two and Three Op Amp Instrumentation Amplifiers  
n
Low Noise Signal Processing  
n
Active Filters  
n
Microvolt Accuracy Threshold Detection  
For a decompensated version of these devices, with three  
times higher slew rate and bandwidth, please see the  
LT1126/LT1127 data sheet.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 4775884, 4837496.  
n
Strain Gauge Amplifiers  
n
Direct Coupled Audio Gain Stages  
n
Tape Head Preamplifiers  
n
Infrared Detectors  
Typical applicaTion  
Instrumentation Amplifier with Shield Driver  
Input Offset Voltage Distribution  
3
+
1k  
30k  
(All Packages, LT1124 and LT1125)  
1
1/4  
LT1125  
2
R
F
758 DUALS  
200 QUADS  
2316 UNITS  
TESTED  
V
=
15V  
S
A
15V  
4
3.4k  
T
= 25°C  
30  
20  
10  
0
5
6
GUARD  
+
R
G
7
1/4  
LT1125  
100Ω  
OUTPUT  
30k  
10  
+
+
11  
8
1/4  
LT1125  
R
G
INPUT  
100Ω  
9
–15V  
GUARD  
GAIN = 30 (1 + R /R ) ≈ 1000  
F
G
POWER BW = 170kHz  
SMALL-SIGNAL BW = 400kHz  
R
F
13  
12  
NOISE = 3.8µV/√Hz AT OUTPUT  
= 35µV  
+
3.4k  
V
OS  
–100  
–60  
–20  
20  
60  
100  
14  
1/4  
LT1125  
INPUT OFFSET VOLTAGE (µV)  
1k  
1124/25 TA02  
1124/25 TA01  
11245ff  
1
For more information www.linear.com/LT1124  
LT1124/LT1125  
absoluTe MaxiMuM raTings  
(Note 1)  
Supply Voltage........................................................ 22V  
Input Voltages............................Equal to Supply Voltage  
Output Short-Circuit Duration.......................... Indefinite  
Differential Input Current (Note 6) ....................... 25mA  
Lead Temperature (Soldering, 10 sec)...................300°C  
Storage Temperature Range .................. –65°C to 150°C  
Operating Temperature Range  
LT1124AC/LT1124C  
LT1125AC/LT1125C (Note 10) ..............–40°C to 85°C  
LT1124AI/LT1124I ................................–40°C to 85°C  
LT1124AMP/LT1125MP...................... –55°C to 125°C  
LT1124AM/LT1124M  
LT1125AM/LT1125M  
OBSOLETE......................................... –55°C to 125°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
OUT B  
–IN B  
+IN B  
+IN A  
1
2
3
4
8
7
6
5
–IN A  
OUT B  
–IN B  
+IN B  
A
A
V
A
B
OUT A  
B
B
+
V
V
+IN B  
–IN B  
V
OUT B  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 190°C/W  
JA  
T
= 140°C, θ = 130°C/W  
JMAX  
JMAX  
JA  
T
= 140°C, θ = 190°C/W  
JA  
JMAX  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE 8-PIN  
PDIP CONFIGURATION. INSTEAD, IT FOLLOWS THE ROTATED  
LT1013DS8 SO PACKAGE PIN LOCATIONS  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
T
= 160°C, θ = 100°C/W  
JMAX  
JA  
OBSOLETE PINOUT  
OBSOLETE PACKAGE  
Consider the N8 for Alternate Source  
TOP VIEW  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
TOP VIEW  
A
B
D
C
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
+
V
V
A
B
D
C
14  
13  
12  
11  
10  
9
+IN D  
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
+
V
V
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
OUT B  
8
N PACKAGE  
14-LEAD PDIP  
T
JMAX  
= 140°C, θ = 110°C/W (N)  
JA  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
J PACKAGE  
14-LEAD CERAMIC DIP  
T
= 160°C, θ = 80°C/W  
T
= 140°C, θ = 130°C/W  
JA  
JMAX  
JA  
JMAX  
OBSOLETE PACKAGE  
Consider the N for Alternate Source  
11245ff  
2
For more information www.linear.com/LT1124  
LT1124/LT1125  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
1124  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LT1124CS8#PBF  
LT1124CS8#TRPBF  
LT1124AIS8#TRPBF  
LT1124IS8#TRPBF  
LT1124AMPS8#TRPBF  
LT1124CS8-1#TRPBF  
LT1124AIS8-1#TRPBF  
LT1124IS8-1#TRPBF  
8-Lead Plastic SO, Rotated Pinout 0°C to 70°C  
8-Lead Plastic SO, Rotated Pinout –40°C to 85°C  
8-Lead Plastic SO, Rotated Pinout –40°C to 85°C  
8-Lead Plastic SO, Rotated Pinout –55°C to 125°C  
8-Lead Plastic SO, Standard Pinout 0°C to 70°C  
8-Lead Plastic SO, Standard Pinout –40°C to 85°C  
8-Lead Plastic SO, Standard Pinout –40°C to 85°C  
8-Lead Plastic SO, Standard Pinout –55°C to 125°C  
LT1124AIS8#PBF  
LT1124IS8#PBF  
1124AI  
1124I  
LT1124AMPS8#PBF  
LT1124CS8-1#PBF  
LT1124AIS8-1#PBF  
LT1124IS8-1#PBF  
LT1124AMPS8-1#PBF  
124AMP  
11241  
11241  
11241  
LT1124AMPS8-1#TRPBF 11241  
OBSOLETE PINOUT  
LT1125CSW 16-Lead Plastic SO Wide  
LT1125CSW#PBF  
LT1125MPSW  
LT1124ACN8#PBF  
LT1124CN8#PBF  
LT1125ACN#PBF  
LT1125CN#PBF  
LEAD BASED FINISH  
LT1124CS8  
LT1125CSW#TRPBF  
LT1125MPSW#TR  
LT1124ACN8#TRPBF  
LT1124CN8#TRPBF  
LT1125ACN#TRPBF  
LT1125CN#TRPBF  
TAPE AND REEL  
LT1124CS8#TR  
LT1124AIS8#TR  
LT1124IS8#TR  
0°C to 70°C  
LT1125MPSW  
LT1124ACN8  
LT1124CN8  
LT1125ACN  
LT1125CN  
PART MARKING*  
1124  
16-Lead Plastic SO Wide  
8-Lead PDIP  
–55°C to 125°C  
0°C to 70°C  
8-Lead PDIP  
0°C to 70°C  
14-Lead PDIP  
0°C to 70°C  
14-Lead PDIP  
0°C to 70°C  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
8-Lead Plastic SO, Rotated Pinout 0°C to 70°C  
8-Lead Plastic SO, Rotated Pinout –40°C to 85°C  
8-Lead Plastic SO, Rotated Pinout –40°C to 85°C  
LT1124AIS8  
1124AI  
LT1124IS8  
1124I  
LT1125CSW  
LT1124ACN8  
LT1124CN8  
LT1125CSW#TR  
LT1124ACN8#TR  
LT1124CN8#TR  
LT1125ACN#TR  
LT1125CN#TR  
LT1125CSW  
LT1124ACN8  
LT1124CN8  
LT1125ACN  
LT1125CN  
LT1124CJ8  
LT1124AMJ8  
LT1124MJ8  
LT1125CJ  
16-Lead Plastic SO Wide  
8-Lead PDIP  
0°C to 70°C  
0°C to 70°C  
8-Lead PDIP  
0°C to 70°C  
LT1125ACN  
14-Lead PDIP  
0°C to 70°C  
LT1125CN  
14-Lead PDIP  
0°C to 70°C  
LT1124CJ8  
LT1124CJ8#TR  
LT1124AMJ8#TR  
LT1124MJ8#TR  
LT1125CJ#TR  
8-Lead CERAMIC DIP  
8-Lead CERAMIC DIP  
8-Lead CERAMIC DIP  
14-Lead CERAMIC DIP  
14-Lead CERAMIC DIP  
14-Lead CERAMIC DIP  
0°C to 70°C  
LT1124AMJ8  
LT1124MJ8  
–55°C to 125°C  
–55°C to 125°C  
0°C to 70°C  
LT1125CJ  
LT1125AMJ  
LT1125AMJ#TR  
LT1125MJ#TR  
LT1125AMJ  
LT1125MJ  
–55°C to 125°C  
–55°C to 125°C  
LT1125MJ  
OBSOLETE PACKAGE  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
11245ff  
3
For more information www.linear.com/LT1124  
LT1124/LT1125  
TA = 25°C, VS = 15V, unless otherwise noted.  
elecTrical characTerisTics  
LT1124AC/AI/AM  
LT1125AC/AM  
LT1124C/I/M  
LT1125C/M  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX UNITS  
V
OS  
Input Offset Voltage  
LT1124  
LT1125  
20  
25  
70  
90  
25  
30  
100  
140  
µV  
µV  
∆V  
Long-Term Input Offset  
Voltage Stability  
0.3  
0.3  
µV/Mo  
OS  
∆Time  
I
OS  
Input Offset Current  
LT1124  
LT1125  
5
6
15  
20  
6
7
20  
30  
nA  
nA  
I
Input Bias Current  
7
20  
8
30  
nA  
B
e
Input Noise Voltage  
0.1Hz to 10Hz (Notes 8, 9)  
70  
200  
70  
nV  
P-P  
n
Input Noise Voltage Density  
f = 10Hz (Note 5)  
O
3.0  
2.7  
5.5  
4.2  
3.0  
2.7  
5.5 nV/√Hz  
4.2 nV/√Hz  
O
f = 1000Hz (Note 3)  
i
Input Noise Current Density  
f = 10Hz  
O
1.3  
0.3  
1.3  
0.3  
pA/√Hz  
pA/√Hz  
n
O
f = 1000Hz  
V
Input Voltage Range  
12  
112  
116  
12.8  
126  
126  
12  
106  
110  
12.8  
124  
124  
V
dB  
dB  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
12V  
CM  
V = 4V to 18V  
S
A
R ≥ 10k, V =  
OUT  
R ≥ 2k, V  
10V  
10V  
5
2
17  
4
3.0  
1.5  
15  
3
V/µV  
V/µV  
VOL  
L
L
=
OUT  
V
Maximum Output Voltage Swing  
Slew Rate  
R ≥ 2k  
13  
3
13.8  
4.5  
12.5  
2.7  
8
13.8  
4.5  
V
V/µs  
MHz  
Ω
OUT  
L
SR  
R ≥ 2k (Notes 3, 7)  
L
GBW  
Gain-Bandwidth Product  
Open-Loop Output Resistance  
Supply Current per Amplifier  
Channel Separation  
f = 100kHz (Note 3)  
O
9
12.5  
75  
12.5  
75  
Z
V
OUT  
= 0, I  
= 0  
OUT  
O
I
2.3  
2.75  
2.3  
2.75  
mA  
dB  
S
f ≤ 10Hz (Note 9)  
10V, R = 2k  
134  
150  
130  
150  
V
OUT  
=
L
The l denotes the specifications which apply over the –55°C ≤ TA ≤ 125°C temperature range, VS = 15V, unless otherwise noted.  
LT1124AM  
LT1125AM  
TYP  
LT1124M  
LT1125M  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
MAX  
MIN  
MAX UNITS  
l
l
V
Input Offset Voltage  
LT1124  
LT1125  
50  
55  
170  
190  
60  
70  
250  
290  
µV  
µV  
OS  
l
∆V  
Average Input Offset  
Voltage Drift  
(Note 5)  
0.3  
1.0  
0.4  
1.5  
µV/°C  
OS  
∆Temp  
l
l
I
Input Offset Current  
LT1124  
LT1125  
18  
18  
45  
55  
20  
20  
60  
70  
nA  
nA  
OS  
l
l
l
l
I
Input Bias Current  
18  
12  
55  
20  
12  
70  
nA  
V
B
V
Input Voltage Range  
11.3  
106  
110  
11.3  
100  
104  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
11.3V  
122  
122  
120  
120  
dB  
dB  
CM  
V = 4V to 18V  
S
l
l
A
R ≥ 10k, V =  
OUT  
R ≥ 2k, V  
10V  
10V  
3
1
10  
3
2.0  
0.7  
10  
2
V/µV  
V/µV  
VOL  
L
L
=
OUT  
l
l
l
V
Maximum Output Voltage Swing  
Slew Rate  
R ≥ 2k  
12.5  
2.3  
13.6  
3.8  
12  
2
13.6  
3.8  
V
V/µs  
mA  
OUT  
L
SR  
R ≥ 2k (Notes 3, 7)  
L
I
Supply Current per Amplifier  
2.5  
3.25  
2.5  
3.25  
S
11245ff  
4
For more information www.linear.com/LT1124  
LT1124/LT1125  
The l denotes the specifications which apply over the 0°C ≤ TA ≤ 70°C  
elecTrical characTerisTics  
temperature range, VS = 15V, unless otherwise noted.  
LT1124AC  
LT1125AC  
TYP  
LT1124C  
LT1125C  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
MAX  
MIN  
l
l
V
OS  
Input Offset Voltage  
LT1124  
LT1125  
35  
40  
120  
140  
45  
50  
170  
210  
µV  
µV  
l
∆V  
Average Input Offset  
Voltage Drift  
(Note 5)  
0.3  
1
0.4  
1.5  
µV/°C  
OS  
∆Temp  
l
l
I
Input Offset Current  
LT1124  
LT1125  
6
7
25  
35  
7
8
35  
45  
nA  
nA  
OS  
l
l
l
l
I
Input Bias Current  
8
35  
9
45  
nA  
V
B
V
Input Voltage Range  
11.5  
109  
112  
12.4  
125  
125  
11.5  
102  
107  
12.4  
122  
122  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
11.5V  
dB  
dB  
CM  
V = 4V to 18V  
S
l
l
A
R ≥ 10k, V =  
OUT  
R ≥ 2k, V  
10V  
10V  
4.0  
1.5  
15  
3.5  
2.5  
1.0  
14  
2.5  
V/µV  
V/µV  
VOL  
L
L
=
OUT  
l
l
l
V
Maximum Output Voltage Swing  
Slew Rate  
R ≥ 2k  
12.5  
2.6  
13.7  
4
12  
13.7  
4
V
V/µs  
mA  
OUT  
L
SR  
R ≥ 2k (Notes 3, 7)  
L
2.4  
I
Supply Current per Amplifier  
2.4  
3
2.4  
3
S
The ldenotes the specifications which apply over the –40°C ≤ TA ≤ 85°C temperature range, VS = 15V, unless otherwise noted. (Note 10)  
LT1124AC/AI  
LT1125AC  
LT1124C/I  
LT1125C  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS (Note 2)  
MIN  
TYP  
MAX  
MIN  
l
l
V
OS  
Input Offset Voltage  
LT1124  
LT1125  
40  
45  
140  
160  
50  
55  
200  
240  
µV  
µV  
l
∆V  
Average Input Offset  
Voltage Drift  
(Note 5)  
0.3  
1
0.4  
1.5  
µV/°C  
OS  
∆Temp  
l
l
I
Input Offset Current  
LT1124  
LT1125  
15  
15  
40  
50  
17  
17  
55  
65  
nA  
nA  
OS  
l
l
l
l
I
Input Bias Current  
15  
12.2  
124  
124  
50  
17  
12.2  
121  
121  
65  
nA  
V
B
V
Input Voltage Range  
11.4  
107  
111  
11.4  
101  
106  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
=
11.4V  
dB  
dB  
CM  
V = 4V to 18V  
S
l
l
A
R ≥ 10k, V =  
OUT  
R ≥ 2k, V  
10V  
10V  
3.5  
1.2  
12  
3.2  
2.2  
0.8  
12  
2.3  
V/µV  
V/µV  
VOL  
L
L
=
OUT  
l
l
l
V
Maximum Output Voltage Swing  
Slew Rate  
R ≥ 2k  
12.5  
2.4  
13.6  
3.9  
12  
13.6  
3.9  
V
V/µs  
mA  
OUT  
L
SR  
R ≥ 2k (Notes 3, 7)  
L
2.1  
I
Supply Current per Amplifier  
2.4  
3.25  
2.4  
3.25  
S
11245ff  
5
For more information www.linear.com/LT1124  
LT1124/LT1125  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
voltage exceeds 1.4V, the input current should be limited to 25mA.  
Note 7: Slew rate is measured in A = –1; input signal is 7.5V, output  
V
measured at 2.5V.  
Note 8: 0.1Hz to 10Hz noise can be inferred from the 10Hz noise voltage  
density test. See the test circuit and frequency response curve for 0.1Hz  
to 10Hz tester in the Applications Information section of the LT1007 or  
LT1028 data sheets.  
Note 2: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers; i.e., out of 100 LT1125s (or 100  
LT1124s) typically 240 op amps (or 120) will be better than the indicated  
specification.  
Note 3: This parameter is 100% tested for each individual amplifier.  
Note 4: This parameter is sample tested only.  
Note 5: This parameter is not 100% tested.  
Note 6: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
Note 9: This parameter is guaranteed but not tested.  
Note 10: The LT1124C/LT1125C and LT1124AC/LT1125AC are guaranteed  
to meet specified performance from 0°C to 70°C and are designed,  
characterized and expected to meet these extended temperature limits,  
but are not tested at –40°C and 85°C. The LT1124AI and LT1124I are  
guaranteed to meet the extended temperature limits.  
Typical perForMance characTerisTics  
0.1Hz to 10Hz Voltage Noise  
0.01Hz to 1Hz Voltage Noise  
Voltage Noise vs Frequency  
100  
30  
V
=
15V  
S
A
T
= 25°C  
10  
3
MAXIMUM  
TYPICAL  
1/f CORNER  
2.3Hz  
1
0.1  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
1.0  
10  
FREQUENCY (Hz)  
100  
1000  
TIME (SECONDS)  
TIME (SECONDS)  
1124/25 G03  
1124/25 G01  
1124/25 G02  
Input Bias or Offset Current  
vs Temperature  
Current Noise vs Frequency  
10.0  
3.0  
30  
V
S
=
1ꢀV  
V
= 15V  
S
T
= 2ꢀ°C  
A
20  
10  
0
1.0  
0.3  
MAXIMUM  
TYPICAL  
LT1124M/LT1125M  
1/f CORNER  
100Hz  
LT1124AM/LT1125AM  
0.1  
10  
100  
1k  
10k  
–75 –50 –25  
0
25 50 75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1124 G04  
1124/25 G05  
11245ff  
6
For more information www.linear.com/LT1124  
LT1124/LT1125  
Typical perForMance characTerisTics  
Input Bias Current Over the  
Output Short-Circuit Current  
Common Mode Rejection Ratio  
vs Frequency  
Common Mode Range  
vs Time  
20  
160  
140  
120  
100  
80  
50  
V
T
=
15V  
T
= 25°C  
15V  
10V  
S
A
V
= 15V  
A
S
40  
30  
20  
10  
= 25°C  
V
V
=
S
CM  
15  
10  
5
25°C  
–55°C  
=
DEVICE WITH POSITIVE  
INPUT CURRENT  
125°C  
0
0
–10  
–20  
–30  
–5  
60  
125°C  
25°C  
DEVICE WITH NEGATIVE  
INPUT CURRENT  
–10  
–15  
–20  
40  
20  
–55°C  
–40  
–50  
0
–15 –10  
–5  
0
5
10  
15  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
COMMON MODE INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
TIME FROM OUTPUT SHORT TO GND (MINUTES)  
1124/25 G08  
1124/25 G07  
LT1124 G06  
Power Supply Rejection Ratio  
vs Frequency  
Voltage Gain vs Frequency  
Voltage Gain vs Temperature  
160  
20  
18  
16  
14  
12  
10  
8
180  
T
= 25°C  
V
=
15V  
A
S
A
LT1124AM/LT1125AM  
T
= 25°C  
140  
120  
100  
80  
140  
R = 10k  
L
LT1124M/LT1125M  
100  
60  
V
OUT  
=
15V  
= 10V  
S
V
–PSRR  
+PSRR  
60  
6
R = 2k  
L
LT1124AM/LT1125AM  
40  
20  
0
20  
4
2
LT1124M/LT1125M  
0
–20  
2
3
4
5
6
7
8
–75 –50 –25  
0
25 50 75 100 125  
1
100  
10k  
1M  
100M  
0.01  
1
10 10 10 10 10 10 10 10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1124/25 G09  
1124/25 G11  
1124/25 G10  
Input Offset Voltage Drift  
Distribution  
Gain, Phase Shift vs Frequency  
50  
40  
80  
40  
V
=
15V  
V = 15V  
S
S
A
L
200 N8  
100 S8  
96 J8  
T
= 25°C  
= 10pF  
100  
120  
C
Ø
396 UNITS TESTED  
30  
20  
30  
20  
10  
0
140  
160  
GAIN  
10  
0
180  
200  
–10  
0.1  
1
10  
100  
–0.8  
–0.4  
0
0.4  
0.8  
FREQUENCY (MHz)  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
1124/25 G12  
1124/25 G13  
11245ff  
7
For more information www.linear.com/LT1124  
LT1124/LT1125  
Typical perForMance characTerisTics  
Offset Voltage Drift with  
Temperature of Representative  
Units  
Small-Signal Transient Response  
Supply Current vs Supply Voltage  
50  
40  
3
2
1
0
V
=
15V  
S
50mV  
0
12±°C  
2±°C  
30  
20  
10  
–±±°C  
0
–10  
–20  
–30  
–40  
–50  
–50mV  
1124/25 G16  
A
V
C
= +1  
VCL  
S
L
=
15V ꢀO 5V  
= 15pF  
–50 –25  
0
25  
50  
75 100 125  
0
±±  
±10  
±1±  
±20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1124/25 G14  
1124/2± G1±  
Output Voltage Swing vs Load  
Current  
Common Mode Limit vs  
Temperature  
Large-Signal Transient Response  
+
+
V
V –0.8  
–1.0  
–0.5  
–1.0  
V
= ±±V TO ±18V  
S
10mV  
0
125°C  
–55°C  
–1.5  
–2.0  
–2.5  
–1.2  
+
V
= 3V TO 18V  
–1.4  
25°C  
–1.6  
1.2  
1.0  
0.8  
2.5  
2.0  
–10mV  
V
= –3V TO –18V  
–55°C  
125°C  
25°C  
1.5  
1124/25 G17  
A
V
= –1  
15V  
VCL  
S
0.6  
1.0  
0.5  
=
V
0.4  
V
–60  
–20  
20  
60  
100  
140  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
I
I
SOURCE  
SINK  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1124/25 G19  
1124/25 G18  
Channel Separation vs Frequency  
Warm-Up Drift  
180  
160  
140  
10  
8
V
=
15V  
S
A
LIMITED BY  
THERMAL INTERACTION  
T
= 25°C  
SO PACKAGE  
120  
100  
80  
V
=
15V  
S
L
6
R
= 2k  
V
= 7V  
P-P  
OUT  
= 25°C  
T
A
N, J PACKAGES  
4
60  
40  
20  
0
LIMITED BY PIN  
TO PIN CAPACITANCE  
2
0
0
100  
1k  
10k 100k 1M  
10M  
0
1
2
3
4
5
TIME AFTER POWER ON (MINUTES)  
FREQUENCY (Hz)  
1124/25 G20  
1124/25 G21  
11245ff  
8
For more information www.linear.com/LT1124  
LT1124/LT1125  
Typical perForMance characTerisTics  
Total Harmonic Distortion  
and Noise vs Frequency for  
Noninverting Gain  
Total Harmonic Distortion  
and Noise vs Frequency for  
Inverting Gain  
Total Harmonic Distortion  
and Noise vs Frequency for  
Competitive Devices  
0.1  
0.010  
0.1  
0.010  
0.1  
0.010  
Z
V
A
= 2k/15pF  
Z
= 2k/15pF  
Z
= 2k/15pF  
= 20Vp-p  
= –10  
L
O
V
L
O
V
L
O
V
= 20V  
V
A
= 20Vp-p  
V
A
P-P  
= +1, +10, +100  
= –1, –10, –100  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
A
= +100  
V
A
= –100  
A
OP270  
V
A
= +10  
V
OP27  
LT1124  
= –10  
V
0.001  
0.001  
0.001  
A
= +1  
V
A
= –1  
V
0.0001  
0.0001  
0.0001  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
1124/25 G22  
1124/25 G23  
1124/25 G24  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Noninverting Gain  
Total Harmonic Distortion and  
Noise vs Output Amplitude for  
Inverting Gain  
Intermodulation Distortion  
(CCIF Method)* vs Frequency  
LT1124 and OP270  
1
0.1  
1
0.1  
0.010  
0.001  
Z
L
= 2k/15pF  
= 1kHz  
Z = 2k/15pF  
L
f (IM) = 1kHz  
Z
O
A
= 2k/15pF  
= 1kHz  
L
f
f
O
A = –1, –10, –100  
V
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
f
V
A
= 13.5kHz  
= 20Vp-p  
= –10  
= +1, +10, +100  
O
O
V
V
MEASUREMENT BANDWIDTH  
= 10Hz TO 22kHz  
MEASUREMENT BANDWIDTH  
= 10Hz TO 80kHz  
A
= +100  
V
OP270  
LT1124  
0.010  
0.001  
0.0001  
0.010  
0.001  
0.0001  
A
= –100  
V
A
= +10  
V
A
= –10  
V
A
= –1  
A
= +1  
1
V
V
0.0001  
0.3  
10  
)
30  
0.3  
1
10  
OUTPUT SWING (Vp-p)  
30  
3k  
10k  
20k  
OUTPUT SWING (V  
FREQUENCY (Hz)  
P-P  
1124/25 G25  
1124/25 G26  
1124/25 G27  
11245ff  
9
For more information www.linear.com/LT1124  
LT1124/LT1125  
applicaTions inForMaTion  
The LT1124 may be inserted directly into OP-270 sock-  
ets. The LT1125 plugs into OP-470 sockets. Of course,  
all standard dual and quad bipolar op amps can also be  
replaced by these devices.  
(5µV/V). However, Table 1 can be used to estimate the  
expected matching performance between the two sides of  
the LT1124, and between amplifiers A and D, and between  
amplifiers B and C of the LT1125.  
Matching Specifications  
Offset Voltage and Drift  
Inmanyapplicationstheperformanceofasystemdepends  
on the matching between two op amps, rather than the  
individual characteristics of the two devices. The three op  
ampinstrumentationamplifierconfigurationshowninthis  
data sheet is an example. Matching characteristics are not  
100% tested on the LT1124/LT1125.  
Thermocouple effects, caused by temperature gradients  
across dissimilar metals at the contacts to the input termi-  
nals, can exceed the inherent drift of the amplifier unless  
propercareisexercised.Aircurrentsshouldbeminimized,  
package leads should be short, the two input leads should  
beclosetogetherandmaintainedatthesametemperature.  
Some specifications are guaranteed by definition. For  
example, 70µV maximum offset voltage implies that mis-  
match cannot be more than 140µV. 112dB (= 2.5µV/V)  
CMRR means that worst-case CMRR match is 106dB  
The circuit shown in Figure 1 to measure offset voltage  
is also used as the burn-in configuration for the LT1124/  
LT1125, with the supply voltages increased to 16V.  
50k*  
15V  
+
100Ω*  
50k*  
V
OUT  
–15V  
V
= 1000V  
OS  
OUT  
*RESISTORS MUST HAVE LOW  
THERMOELECTRIC POTENTIAL  
1124/25 F01  
Figure 1. Test Circuit for Offset Voltage and  
Offset Voltage Drift with Temperature  
Table 1. Expected Match  
PARAMETER  
LT1124AC/AM  
LT1125AC/AM  
LT1124C/M  
LT1125C/M  
50% YIELD  
98% YIELD  
110  
50% YIELD  
98% YIELD  
130  
UNITS  
µV  
V
Match, ∆V  
LT1124  
LT1125  
20  
30  
30  
50  
0.5  
7
OS  
OS  
150  
180  
µV  
Temperature Coefficient Match  
Average Noninverting I  
0.35  
6
1.0  
1.5  
µV/°C  
nA  
18  
25  
B
Match of Noninverting I  
CMRR Match  
7
22  
8
30  
nA  
B
126  
127  
115  
123  
127  
112  
dB  
PSRR Match  
118  
114  
dB  
11245ff  
10  
For more information www.linear.com/LT1124  
LT1124/LT1125  
applicaTions inForMaTion  
High Speed Operation  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the  
input and a current, limited only by the output short circuit  
protection, will be drawn by the signal generator. With  
When the feedback around the op amp is resistive (R ),  
F
a pole will be created with R , the source resistance and  
F
capacitance (R , C ), and the amplifier input capacitance  
S
S
R ≥500Ω, the output is capable of handling the current  
F
(C 2pF). Inlowclosedloopgainconfigurationsandwith  
IN  
requirements (I ≤ 20mA at 10V) and the amplifier stays  
L
R and R in the kilohm range, this pole can create excess  
S
F
in its active mode and a smooth transition will occur.  
phase shift and even oscillation. A small capacitor (C )  
F
in parallel with R eliminates this problem (see Figure 2).  
F
Noise Testing  
With R (C + C ) = R C the effect of the feedback pole  
S
S
IN  
F F,  
Each individual amplifier is tested to 4.2nV/√Hz voltage  
noise; i.e., for the LT1124 two tests, for the LT1125 four  
tests are performed. Noise testing for competing multiple  
op amps, if done at all, may be sample tested or tested  
using the circuit shown in Figure 4.  
is completely removed.  
C
F
R
F
2
2
2
2
e
= (e ) + (e ) + (e ) + (e )  
n OUT  
nA  
nB  
nC  
nD  
+
If the LT1125 were tested this way, the noise limit would  
C
OUTPUT  
IN  
R
C
S
2
S
be 4 • (4.2nV/√Hz) = 8.4nV/√Hz. But is this an effective  
screen? What if three of the four amplifiers are at a typical  
2.7nV/√Hz, and the fourth one was contaminated and has  
6.9nV/√Hz noise?  
1124/25 F02  
Figure 2. High Speed Operation  
2
2
2
2
RMS Sum = (2.7) + (2.7) + (2.7) + (6.9) = 8.33nV/√Hz  
Unity Gain Buffer Applications  
This passes an 8.4nV/√Hz spec, yet one of the ampli-  
fiers is 64% over the LT1125 spec limit. Clearly, for  
proper noise measurement, the op amps have to be tested  
individually.  
When R ≤ 100Ω and the input is driven with a fast, large  
F
signal pulse (>1V), the output waveform will look as  
shown in Figure 3.  
R
F
OUT  
D
+
C
+
+
+
B
4.5V/µs  
OUTPUT  
+
A
1124/25 F03  
1124/25 F04  
Figure 3. Unity-Gain Buffer Applications  
Figure 4. Competing Quad Op Amp Noise Test Method  
11245ff  
11  
For more information www.linear.com/LT1124  
LT1124/LT1125  
perForMance coMparison  
Table2summarizestheperformanceoftheLT1124/LT1125  
compared to the low cost grades of alternate approaches.  
performance is degraded when compared to singles, for  
the LT1124/LT1125 this is not the case.  
The comparison shows how the specs of the LT1124/  
LT1125 not only stand up to the industry standard OP-27,  
but in most cases are superior. Normally dual and quad  
Table 2. Guaranteed Performance, VS = 15V, TA = 25°C, Low Cost Devices  
LT1124CN8  
PARAMETER/UNITS  
LT1125CN  
OP-27 GP  
OP-270 GP  
OP-470 GP  
UNITS  
Voltage Noise, 1kHz  
4.2  
4.5  
5.0  
nV/√Hz  
100% Tested  
Sample Tested  
No Limit  
Sample Tested  
Slew Rate  
2.7  
1.7  
1.7  
1.4  
V/µs  
MHz  
100% Tested  
Not Tested  
Gain-Bandwidth Product  
8.0  
5.0  
Not Tested  
100% Tested  
No Limit  
No Limit  
Offset Voltage  
Offset Current  
LT1124  
100  
140  
100  
250  
µV  
µV  
LT1125  
1000  
LT1124  
LT1125  
20  
30  
75  
20  
30  
nA  
nA  
Bias Current  
30  
2.75  
80  
5.67  
0.7  
60  
3.25  
0.35  
90  
60  
2.75  
0.4  
100  
105  
nA  
mA  
V/µV  
dB  
Supply Current/Amp  
Voltage Gain, R = 2k  
1.5  
L
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
SO-8 Package  
106  
100  
94  
110  
104  
No  
dB  
Yes – LT1124  
Yes  
Typical applicaTions  
Gain 1000 Amplifier with 0.01% Accuracy, DC to 1Hz  
Gain Error vs Frequency Closed-Loop Gain = 1000  
20k  
TRIM  
1.0  
340k  
1%  
15k  
5%  
TYPICAL  
PRECISION  
OP AMP  
15V  
365Ω  
1%  
0.1  
1/2 LT1124  
OUTPUT  
LT1124/LT1125  
0.01  
+
RN60C FILM RESISTORS  
–15V  
INPUT  
CLOSED-LOOP GAIN  
GAIN ERROR =  
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1124/LT1125, IS USEFUL IN LOW  
FREQUENCY HIGH CLOSED-LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL  
PRECISION OP AMP MAY HAVE AN OPEN-LOOP GAIN OF ONE MILLION WITH 500kHz  
BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1%  
AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE  
SIGNALS CAN VARY AT A FASTER RATE. THE LT1124/LT1125 “GAIN PRECISION —  
OPEN-LOOP GAIN  
0.001  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1124/25 TA04  
BANDWIDTH PRODUCT” IS 75 TIMES HIGHER, AS SHOWN.  
1124/25 TA03  
11245ff  
12  
For more information www.linear.com/LT1124  
LT1124/LT1125  
scheMaTic DiagraM (1/2 LT1124, 1/4 LT1125)  
+
V
360µA  
570µA  
100µA  
Q28  
Q7  
200pF  
21k  
21k  
3.6k  
3.6k  
35pF  
Q27  
Q18  
20Ω  
Q9  
Q13  
Q8  
Q25  
OUTPUT  
Q26  
Q17  
Q10  
900Ω  
Q19  
Q20  
20Ω  
V
NONINVERTING  
INPUT (+)  
Q2A  
Q1A Q1B  
400Ω  
20pF  
Q30  
Q2B  
67pF  
+
V
Q3  
INVERTING  
INPUT (–)  
Q29  
+
V
Q22  
Q11  
Q23  
6k  
Q12 Q15  
Q16  
Q24  
200µA  
200µA  
100µA  
200Ω 6k  
200Ω  
50Ω  
V
1124/25 SS  
11245ff  
13  
For more information www.linear.com/LT1124  
LT1124/LT1125  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
11245ff  
14  
For more information www.linear.com/LT1124  
LT1124/LT1125  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
.130 ±.005  
(3.302 ±0.127)  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.255 ±.015*  
(6.477 ±0.381)  
.120  
(3.048)  
MIN  
.020  
(0.508)  
MIN  
+.035  
–.015  
.325  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
2
3
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
11245ff  
15  
For more information www.linear.com/LT1124  
LT1124/LT1125  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.785  
(19.939)  
MAX  
.005  
(0.127)  
MIN  
14  
13  
12  
11  
10  
9
8
.220 – .310  
.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
2
3
4
5
6
1
7
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 0801  
OBSOLETE PACKAGE  
11245ff  
16  
For more information www.linear.com/LT1124  
LT1124/LT1125  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.770ꢀ  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
.255 .015ꢀ  
(6.477 0.381)  
1
2
3
5
6
7
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 .005  
(3.302 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.127)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 0.076)  
(
)
–0.381  
N14 REV I 0711  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
ꢀTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
11245ff  
17  
For more information www.linear.com/LT1124  
LT1124/LT1125  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
11245ff  
18  
For more information www.linear.com/LT1124  
LT1124/LT1125  
revision hisTory (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
09/10 LT1124-1 added. Reflected throughout the data sheet.  
10/10 Revised part marking for LT1124AMPS8-1 in Order Information section.  
01/14 LT1124-1 removed.  
1 to 18  
3
E
F
1 to 3  
11245ff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
For more information www.linear.com/LT1124  
LT1124/LT1125  
Typical applicaTion  
Strain Gauge Signal Conditioner with Bridge Excitation  
15V  
5k  
1k  
3
THE LT1124/LT1125 IS CAPABLE OF PROVIDING EXCITATION CURRENT DIRECTLY  
+
2.5V  
TO BIAS THE 350Ω BRIDGE AT 5V WITH ONLY 5V ACROSS THE BRIDGE (AS OPPOSED  
TO THE USUAL 10V) TOTAL POWER DISSIPATION AND BRIDGE WARM-UP DRIFT IS  
REDUCED. THE BRIDGE OUTPUT SIGNAL IS HALVED, BUT THE LT1124/LT1125 CAN  
AMPLIFY THE REDUCED SIGNAL ACCURATELY.  
1
1/4  
LT1125  
LT1009  
2
–15V  
REFERENCE  
OUTPUT  
350Ω  
BRIDGE  
15V  
5
6
4
+
7
1/4  
LT1125  
0V TO 10V  
OUTPUT  
301k*  
10k  
ZERO  
TRIM  
13  
–15V  
1µF  
301k*  
15V  
1/4  
13  
12  
50k  
14  
499Ω*  
GAIN  
TRIM  
LT1125  
+
1k  
*RN60C FILM RESISTORS  
1124/25 TA05  
–15V  
relaTeD parTs  
PART NUMBER  
LT1007  
DESCRIPTION  
COMMENTS  
Single Low Noise, Precision Op Amp  
Single Low Noise, Precision Op Amps  
Dual/Quad Precision Picoamp Input  
Dual Low Noise JFET Op Amp  
Decompensated LT1124/LT1125  
Dual Low Noise JFET Op Amp  
Single LT1113  
2.5nV/√Hz 1kHz Voltage Noise  
0.85nV/√Hz Voltage Noise  
LT1028/LT1128  
LT1112/LT1114  
LT1113  
250pA Max I  
B
4.5nV/√Hz Voltage Noise, 10fA/√Hz Current Noise  
LT1126/LT1127  
LT1169  
11V/µs Slew Rate  
6nV/√Hz Voltage Noise, 1fA/√Hz Current Noise, 10pA Max I  
4.2nV/√Hz Voltage Noise, 10fA/√Hz Current Noise  
B
LT1792  
LT1793  
Single LT1169  
6nV/√Hz Voltage Noise, 1fA/√Hz Current Noise, 10pA Max I  
B
11245ff  
LT 0114 REV F • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT1124  
LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY