LT1126ACN8#PBF [Linear]

LT1126 - Dual Decompensated Low Noise, High Speed Precision Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C;
LT1126ACN8#PBF
型号: LT1126ACN8#PBF
厂家: Linear    Linear
描述:

LT1126 - Dual Decompensated Low Noise, High Speed Precision Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总12页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1126/LT1127  
Dual/Quad  
Decompensated Low Noise,  
High Speed Precision Op Amps  
U
FEATURES  
DESCRIPTIO  
The LT®1126 dual and LT1127 quad are high perfor-  
mance, decompensated op amps that offer higher slew  
rate and bandwidth than the LT1124 dual and the LT1125  
quad operational amplifiers. The enhanced AC perfor-  
mance is available without degrading DC specs of the  
LT1124/LT1125. Both LT1126/LT1127 are stable in a gain  
of 10 or more.  
100% Tested Low Voltage Noise: 2.7nV/Hz Typ,  
4.2nV/Hz Max  
Slew Rate: 11V/µs Typ  
Gain-Bandwidth Product: 65MHz Typ  
Offset Voltage, Prime Grade: 70µV Max  
Low Grade: 100µV Max  
High Voltage Gain: 5 Million Min  
Supply Current Per Amplifier: 3.1mA Max  
In the design, processing and testing of the device, par-  
ticular attention has been paid to the optimization of the  
entire distribution of several key parameters. Slew rate,  
gain-bandwidth and 1kHz noise are 100% tested for each  
individual amplifier. Consequently, the specifications of  
eventhelowestcostgrades(theLT1126CandtheLT1127C)  
have been enhanced.  
Common Mode Rejection: 112dB Min  
Power Supply Rejection: 116dB Min  
Available in 8-Lead SOIC, 8-Lead DIP, 16-Lead SO  
and 14-Lead DIP Packages  
U
APPLICATIO S  
Two and Three Op Amp Instrumentation Amplifiers  
Power consumption of the dual LT1126 is less than one  
halfoftwoOP-37s.Lowpowerandhighperformanceinan  
8-pin SO package makes the LT1126 a first choice for  
surface mounted systems and where board space is  
restricted.  
Low Noise Signal Processing  
Active Filters  
Microvolt Accuracy Threshold Detection  
Strain Gauge Amplifiers  
Direct Coupled Audio Gain Stages  
, LTC and LT are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
4775884, 4837496.  
Tape Head Preamplifiers  
Microphone Preamplifiers  
Accelerometer Amplifiers  
Infrared Detectors  
U
TYPICAL APPLICATIO  
Low Noise, Wide Bandwidth Instrumentation Amplifier  
Voltage Noise vs Frequency  
100  
– INPUT  
+
V
A
= ±15V  
= 25°C  
620  
10k  
S
1/4  
T
LT1127  
30  
6.2k  
10  
3
200Ω  
MAXIMUM  
TYPICAL  
1/4  
LT1127  
6.2k  
OUTPUT  
620Ω  
1/4  
LT1127  
1/f CORNER  
2.3Hz  
+
+ INPUT  
+
1
0.1  
10k  
1.0  
10  
FREQUENCY (Hz)  
100  
1000  
1126-7 TA01b  
GAIN = 1000, BANDWIDTH = 480kHz  
INPUT REFERRED NOISE = 4.5nV/ Hz AT 1kHz, 6µV  
1126-7 TA01  
OVER BANDWIDTH  
RMS  
11267fa  
1
LT1126/LT1127  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage ..................................................... ±22V  
Input Voltage ............................ Equal to Supply Voltage  
Output Short Circuit Duration .......................... Indefinite  
Differential Input Current (Note 5) ......................± 25mA  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1126AM/LT1126M  
LT1127AM/LT1127M (OBSOLETE) .. –55°C to 125°C  
LT1126AC/LT1126C  
LT1127AC/LT1127C ............................ –40°C to 85°C  
Storage Temperature Range  
All Grades ......................................... –65°C to 150°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
NUMBER  
+IN A  
1
2
3
4
8
7
6
5
–IN A  
OUT B  
–IN B  
+IN B  
A
LT1126ACN8  
LT1126CN8  
V
A
B
OUT A  
B
+
LT1126CS8  
V
+IN B  
–IN B  
V
OUT B  
N8 PACKAGE  
8-LEAD PDIP  
JMAX = 140°C, θJA = 130°C  
S8 PART  
MARKING  
S8 PACKAGE  
T
8-LEAD PLASTIC SO  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
TJMAX = 140°C, θJA = 190°C/W  
LT1126AMJ8  
LT1126MJ8  
LT1126CJ8  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE  
8-PIN PDIP CONFIGURATION. INSTEAD, IT FOLLOWS  
THE INDUSTRY STANDARD LT1013DS8 SO PACKAGE  
PIN LOCATIONS  
T
= 160°C, θ = 100°C/W  
JA  
JMAX  
1126  
OBSOLETE PACKAGE  
Consider the N8 for Alternate Source  
TOP VIEW  
TOP VIEW  
LT1127CSW  
LT1127ACN  
LT1127CN  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
A
B
D
C
14  
13  
12  
11  
10  
9
A
B
+IN D  
D
C
+
V
V
+
V
V
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
N PACKAGE  
14-LEAD PDIP  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
T
JMAX = 140°C, θJA = 110°C (N)  
TJMAX = 140°C, θJA = 130°C/W  
J PACKAGE  
LT1127AMJ  
LT1127MJ  
LT1127CJ  
14-LEAD CERAMIC DIP  
T
= 160°C, θ = 80°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
Consider the N for Alternate Source  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
11267fa  
2
LT1126/LT1127  
V = ±15V, T = 25°C, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
S
A
LT1126AM/AC  
LT1127AM/AC  
MIN  
LT1126M/C  
LT1127M/C  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1126  
LT1127  
20  
25  
70  
90  
25  
30  
100  
140  
µV  
µV  
OS  
V  
Long Term Input Offset  
Voltage Stability  
0.3  
0.3  
µV/Mo  
OS  
Time  
I
Input Offset Current  
LT1126  
LT1127  
5
6
15  
20  
6
7
20  
30  
nA  
nA  
OS  
I
e
Input Bias Current  
Input Noise Voltage  
± 7  
70  
± 20  
200  
± 8  
70  
± 30  
nA  
nVp-p  
B
0.1Hz to 10Hz (Notes 8, 9)  
n
Input Noise Voltage Density  
f = 10Hz (Note 5)  
3.0  
2.7  
5.5  
4.2  
3.0  
2.7  
5.5  
4.2  
nV/Hz  
nV/Hz  
O
f = 1000Hz (Note 3)  
O
i
Input Noise Current Density  
f = 10Hz  
f = 1000Hz  
O
1.3  
0.3  
1.3  
0.3  
pA/Hz  
pA/Hz  
n
O
V
Input Voltage Range  
± 12.0 ± 12.8  
± 12.0 ± 12.8  
V
dB  
dB  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V
= ±12V  
112  
116  
126  
126  
106  
110  
124  
124  
CM  
V = ± 4V to ±18V  
R 10k, V = ±10V  
R 2k, V = ±10V  
S
A
5.0  
2.0  
17.0  
4.0  
3.0  
1.5  
15.0  
3.0  
V/µV  
V/µV  
VOL  
L
O
L
O
V
Maximum Output Voltage Swing  
Slew Rate  
R 2kΩ  
± 13.0 ± 13.8  
± 12.5 ± 13.8  
V
V/µs  
MHz  
mA  
dB  
OUT  
L
SR  
R 2k(Notes 3, 7)  
8.0  
45  
11  
8.0  
45  
11  
L
GBW  
Gain-Bandwidth Product  
Open Loop Output Resistance  
Supply Current Per Amplifier  
Channel Separation  
f = 10kHz (Note 3)  
O
65  
65  
Z
V = 0, I = 0  
75  
75  
O
O
O
I
2.6  
150  
3.1  
2.6  
150  
3.1  
S
f 10Hz (Note 9)  
V = ±10V, R = 2kΩ  
134  
130  
O
L
The  
denotes the specifications which apply over the full operating temperature range, otherwise specifications are at V = ±15V,  
S
55°C T 125°C, unless otherwise noted.  
A
LT1126AM  
LT1127AM  
LT1126M  
LT1127M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 1)  
MIN TYP  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1126  
LT1127  
50  
55  
170  
190  
60  
70  
250  
290  
µV  
µV  
OS  
V  
Average Input Offset Voltage Drift  
Input Offset Current  
(Note 5)  
0.3  
1.0  
0.4  
1.5  
µV/°C  
OS  
Temp  
I
LT1126  
LT1127  
18  
18  
45  
55  
20  
20  
60  
70  
nA  
nA  
OS  
I
Input Bias Current  
± 18 ± 55  
± 11.3 ± 12  
± 20 ± 70  
± 11.3 ± 12  
nA  
V
B
V
Input Voltage Range  
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V
= ±11.3V  
106  
110  
122  
122  
100  
104  
120  
dB  
dB  
CM  
V = ± 4V to ±18V  
R 10k, V = ±10V  
R 2k, V = ±10V  
120  
S
A
3.0  
1.0  
10.0  
3.0  
2.0  
0.7  
10.0  
2.0  
V/µV  
V/µV  
VOL  
L
O
L
O
V
Maximum Output Voltage Swing  
Slew Rate  
R 2kΩ  
R 2k(Notes 3, 7)  
L
± 12.5 ± 13.6  
± 12.0 ± 13.6  
V
V/µs  
mA  
OUT  
L
SR  
7.2  
10  
7.0  
10  
I
Supply Current Per Amplifier  
2.8  
3.5  
2.8  
3.5  
S
11267fa  
3
LT1126/LT1127  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at V = ±15V, 0°C T 70°C, unless otherwise noted.  
S
A
LT1126AC  
LT1127AC  
MIN TYP  
LT1126C  
LT1127C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1126  
LT1127  
35  
40  
120  
140  
45  
50  
170  
210  
µV  
µV  
OS  
V /T  
Average Input Offset Voltage Drift  
Input Offset Current  
(Note 5)  
LT1126  
LT1127  
0.3  
6
7
1.0  
25  
35  
0.4  
7
8
1.5  
35  
45  
µV/°C  
OS  
I
nA  
nA  
OS  
I
V
Input Bias Current  
Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
± 8  
± 11.5 ± 12.4  
± 35  
± 9  
± 11.5 ± 12.4  
± 45  
nA  
V
dB  
dB  
V/µV  
V/µV  
B
CM  
CMRR  
PSRR  
A
V
= ±11.5V  
109  
125  
102  
122  
CM  
V = ±4V to ±18V  
R 10k, V = ±10V  
R 2k, V = ±10V  
112  
125  
107  
122  
S
4.0  
1.5  
15.0  
3.5  
2.5  
1.0  
14.0  
2.5  
VOL  
L
L
O
O
V
SR  
Maximum Output Voltage Swing  
Slew Rate  
Supply Current Per Amplifier  
R 2kΩ  
R 2k(Notes 3, 7)  
L
± 12.5 ± 13.7  
± 12.0 ± 13.7  
V
V/µs  
mA  
OUT  
L
7.5  
10.5  
7.3  
10.5  
I
2.7  
3.3  
2.7  
3.3  
S
The  
denotes the specifications which apply over the full operating temperature range, otherwise specifications are at V = ±15V,  
S
40°C T 85°C, unless otherwise noted. (Note 10)  
A
LT1126AC  
LT1127AC  
MIN TYP  
LT1126C  
LT1127C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS (Note 2)  
MAX  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
LT1126  
LT1127  
40  
45  
140  
160  
50  
55  
200  
240  
µV  
µV  
OS  
V /T  
Average Input Offset Voltage Drift  
Input Offset Current  
(Note 5)  
LT1126  
LT1127  
0.3  
15  
15  
1.0  
40  
50  
0.4  
17  
17  
1.5  
55  
65  
µV/°C  
OS  
I
nA  
nA  
OS  
I
V
Input Bias Current  
Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
± 15 ± 50  
± 11.4 ± 12.2  
± 17 ± 65  
± 11.4 ± 12.2  
nA  
V
dB  
dB  
V/µV  
V/µV  
B
CM  
CMRR  
PSRR  
A
V
= ±11.4V  
107  
124  
101  
121  
CM  
V = ± 4V to ±18V  
111  
124  
106  
121  
S
R 10k, V = ±10V  
R 2k, V = ±10V  
3.5  
1.2  
12.0  
3.2  
2.2  
0.8  
12.0  
2.3  
VOL  
L
L
O
O
V
SR  
Maximum Output Voltage Swing  
Slew Rate  
Supply Current Per Amplifier  
R 2kΩ  
R 2k(Note 7)  
L
± 12.5 ± 13.6  
± 12.0 ± 13.6  
V
V/µs  
mA  
OUT  
L
7.3  
10.2  
7.1  
10.2  
I
2.8  
3.4  
2.8  
3.4  
S
Note 7: Slew rate is measured in A = –10; input signal is ±1V, output  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
V
measured at ± 5V.  
Note 8: 0.1Hz to 10Hz noise can be inferred from the 10Hz noise voltage  
density test. See the test circuit and frequency response curve for 0.1Hz to  
10Hz tester in the Applications Information section of the LT1007 or  
LT1028 datasheets.  
Note 2: Typical parameters are defined as the 60% yield of parameter  
distributions of individual amplifiers; i.e., out of 100 LT1127s (or 100  
LT1126s) typically 240 op amps (or 120) will be better than the indicated  
specification.  
Note 3: This parameter is 100% tested for each individual amplifier.  
Note 4: This parameter is sample tested only.  
Note 9: This parameter is guaranteed but not tested.  
Note 10: The LT1126/LT1127 are designed, characterized and expected to  
meet these extended temperature limits, but are not tested at –40°C and at  
85°C. Guaranteed I grade parts are available. Consult factory.  
Note 5: This parameter is not 100% tested.  
Note 6: The inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input  
voltage exceeds ±1.4V, the input current should be limited to 25mA.  
11267fa  
4
LT1126/LT1127  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
The typical behavior of many LT1126/LT1127 parameters  
is identical to the LT1124/LT1125. Please refer to the  
LT1124/LT1125 data sheet for the following performance  
characteristics:  
Input Bias Current Over the Common Mode Range  
Voltage Gain vs Temperature  
Input Offset Voltage Drift Distribution  
Offset Voltage Drift with Temperature of Representative  
Units  
0.1Hz to 10Hz Voltage Noise  
0.01Hz to 1Hz Voltage Noise  
Current Noise vs Frequency  
Input Bias or Offset Current vs Temperature  
Output Short Circuit Current vs Time  
Output Voltage Swing vs Load Current  
Common Mode Limit vs Temperature  
Channel Separation vs Frequency  
Warm-Up Drift  
Power Supply Rejection Ratio vs Frequency  
Gain, Phase Shift vs Frequency  
Small-Signal Transient Response  
Large-Signal Transient Response  
50  
40  
60  
80  
V
= ±15V  
= 25°C  
= 10pF  
S
Ø
50mV  
T
A
+10V  
C
L
30  
20  
100  
120  
0V  
0mV  
–10V  
GAIN  
–50mV  
10  
0
140  
160  
180  
A
= –10, V = ±15V  
S
A
= –10, V  
=
15V OR 5V  
VCL  
VCL  
S
±
±
1126-7 G03  
C
= 15pF  
1126-7 G02  
L
–10  
0.1  
1.0  
10  
100  
FREQUENCY (MHz)  
1126-7 G01  
Common Mode Rejection Ratio vs  
Frequency  
Voltage Gain vs Frequency  
Supply Current vs Supply Voltage  
3
2
1
0
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
125°C  
25°C  
V
= ±15V  
= 25°C  
T
V
V
= 25°C  
= ±15V  
= ±10V  
S
A
A
S
CM  
T
–55°C  
60  
60  
40  
40  
20  
20  
0
–20  
0
0
± 5  
±10  
±15  
± 20  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
0.01  
1
100  
10k  
1M  
100M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1126-7 G05  
1126-7 G06  
1126-7 G04  
*See LT1115 data sheet for definition of CCIF testing  
11267fa  
5
LT1126/LT1127  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Total Harmonic Distortion  
and Noise vs Frequency for  
Inverting Gain  
Total Harmonic Distortion  
and Noise vs Frequency for  
Non-Inverting Gain  
Intermodulation Distortion  
(CCIF Method)* vs Frequency  
0.1  
0.010  
0.1  
0.010  
0.1  
0.010  
Z
= 2k/15pF  
Z
V
A
= 2k/15pF  
= 20Vp-p  
= –10, –100  
Z
V
A
= 2k/15pF  
= 20Vp-p  
= +10, +100  
L
L
O
V
L
O
V
f (IM) = 1kHz  
f
= 13.5kHz  
= 20Vp-p  
= –10  
O
V
A
MEASUREMENT BANDWITH  
= 10Hz TO 80kHz  
MEASUREMENT BANDWITH  
= 10Hz TO 80kHz  
O
V
MEASUREMENT BANDWITH  
= 10Hz TO 80kHz  
A
= +100  
V
A
= –100  
V
0.001  
0.001  
0.001  
A
= –10  
V
A
= +10  
V
LT1126  
0.0001  
0.0001  
0.0001  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
3k  
10k  
20k  
FREQUENCY (Hz)  
1126-7 G07  
1126-7 G08  
1126-7 G09  
*See LT1115 data sheet for definition of CCIF testing  
U
W U U  
APPLICATIO S I FOR ATIO  
Matching Specifications  
Some specifications are guaranteed by definition. For  
example, 70µV maximum offset voltage implies that mis-  
match cannot be more than 140µV. 112dB (= 2.5µV/V)  
CMRR means that worst case CMRR match is 106dB  
(5µV/V). However, the following table can be used to  
estimatetheexpectedmatchingperformancebetweenthe  
two sides of the LT1126, and between amplifiers A and D,  
and between amplifiers B and C of the LT1127.  
In many applications the performance of a system de-  
pends on the matching between two op amps, rather than  
the individual characteristics of the two devices. The three  
op amp instrumentation amplifier configuration shown in  
thisdatasheetisanexample. Matchingcharacteristicsare  
not 100% tested on the LT1126/LT1127.  
Expected Match  
LT1126AM/AC  
LT1127AM/AC  
LT1126M/C  
LT1127M/C  
PARAMETER  
Match, V  
50% YIELD  
98% YIELD  
50% YIELD  
98% YIELD  
UNITS  
V
LT1126  
LT1127  
20  
30  
110  
150  
30  
50  
130  
180  
µV  
µV  
OS  
OS  
Temperature Coefficient Match  
Average Non-Inverting I  
0.35  
6
1.0  
18  
0.5  
7
1.5  
25  
µV/°C  
nA  
B
Match of Non-Inverting I  
CMRR Match  
PSRR Match  
7
126  
127  
22  
115  
118  
8
123  
127  
30  
112  
114  
nA  
dB  
dB  
B
11267fa  
6
LT1126/LT1127  
U
W U U  
APPLICATIO S I FOR ATIO  
High Speed Operation  
with RS and RF in the kilohm range, this pole can create  
excess phase shift and even oscillation. A small capacitor  
(CF) in parallel with RF eliminates this problem. With  
RS (CS + CIN) = RF CF, the effect of the feedback pole is  
completely removed.  
When the feedback around the op amp is resistive (RF), a  
pole will be created with RF, the source resistance and  
capacitance (RS, CS), and the amplifier input capacitance  
(CIN 2pF). In low closed loop gain configurations and  
C
F
R
F
C
OUTPUT  
IN  
R
C
S
S
+
1126-7 AI01  
U
O
TYPICAL APPLICATI S  
Gain Error vs Frequency  
Closed Loop Gain = 1000  
Gain 1000 Amplifier with 0.01% Accuracy, DC to 5Hz  
1.0  
0.1  
TYPICAL  
PRECISION  
OP AMP  
20k  
TRIM  
340k  
1%  
15k  
5%  
365  
1%  
+15V  
+
LT1126  
OUTPUT  
RN60C FILM RESISTORS  
0.01  
LT1126/LT1127  
INPUT  
–15V  
THE HIGH GAIN AND WIDE BANDWIDTH OF THE LT1126/LT1127 IS USEFUL IN LOW FREQUENCY HIGH CLOSED  
LOOP GAIN AMPLIFIER APPLICATIONS. A TYPICAL PRECISION OP AMP MAY HAVE AN OPEN LOOP GAIN OF ONE  
MILLION WITH 500kHz BANDWIDTH. AS THE GAIN ERROR PLOT SHOWS, THIS DEVICE IS CAPABLE OF 0.1%  
AMPLIFYING ACCURACY UP TO 0.3Hz ONLY. EVEN INSTRUMENTATION RANGE SIGNALS CAN VARY AT A FASTER  
CLOSED LOOP GAIN  
OPEN LOOP GAIN  
GAIN ERROR =  
0.001  
0.1  
1
10  
100  
RATE. THE LT1126/LT1127 “GAIN PRECISION — BANDWIDTH PRODUCT” IS 330 TIMES HIGHER, AS SHOWN.  
1126-7 TA02  
FREQUENCY (Hz)  
1126-7 TA03  
11267fa  
7
LT1126/LT1127  
TYPICAL APPLICATI S  
U
O
Low Noise, Wideband, Gain = 100 Amplifier with High Input Impedance  
1.1k  
120  
120  
120  
+
500  
2.4k  
2.4k  
7.5k  
1/4  
LT1127  
1.1k  
+
1/4  
LT1127  
OUTPUT  
+
1/4  
LT1127  
INPUT  
1.1k  
2.4k  
–3dB BANDWIDTH = 910 kHz  
GAIN BANDWIDTH PRODUCT = 91.0MHz  
+
1/4  
LT1127  
3.2nV/Hz  
3  
WIDEBAND NOISE =  
= 1.85nV/Hz REFERRED TO INPUT  
RMS NOISE DC TO FULL BANDWIDTH = 21.2µV REFERRED TO INPUT  
1126-7 TA04  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
.200  
(5.080)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
.300 BSC  
(7.62 BSC)  
6
5
4
8
7
.015 – .060  
(0.381 – 1.524)  
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
.008 – .018  
FULL LEAD  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
1
2
3
.125  
3.175  
MIN  
(0.203 – 0.457)  
OPTION  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS  
J8 0801  
OBSOLETE PACKAGE  
11267fa  
8
LT1126/LT1127  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
.130 ± .005  
(3.302 ± 0.127)  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
8
1
7
6
5
.065  
(1.651)  
TYP  
.255 ± .015*  
(6.477 ± 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
4
3
.325  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
0°– 8° TYP  
(0.203 – 0.254)  
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
.030 ±.005  
TYP  
2. DRAWING NOT TO SCALE  
1
2
3
4
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
RECOMMENDED SOLDER PAD LAYOUT  
SO8 0303  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.785  
(19.939)  
MAX  
.005  
.200  
.300 BSC  
(7.62 BSC)  
(0.127)  
(5.080)  
MIN  
MAX  
14  
13  
12  
11  
10  
9
8
.015 – .060  
(0.381 – 1.524)  
.220 – .310  
.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
2
3
4
5
6
1
7
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 0801  
OBSOLETE PACKAGE  
11267fa  
9
LT1126/LT1127  
U
PACKAGE DESCRIPTIO  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.127)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 ± .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
N14 1103  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
11267fa  
10  
LT1126/LT1127  
U
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
11267fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1126/LT1127  
W
W
SCHE ATIC DIAGRA  
(1/2 LT1126, 1/4 LT1127)  
+
V
360µA  
570µA  
100µA  
Q7  
Q28  
20  
200pF  
21k  
21k  
3.6k  
3.6k  
5pF  
Q27  
Q18  
Q9  
Q3  
Q25  
OUTPUT  
Q17  
Q10  
Q8  
Q26  
Q19  
Q20  
20  
V
NON-INVERTING  
INPUT (+)  
Q2A  
Q1A Q1B  
400  
Q30  
Q2B  
67pF  
20pF  
+
V
Q13  
INVERTING  
INPUT (–)  
Q29  
+
V
Q22  
Q11  
Q23  
6k  
Q12 Q15  
Q16  
Q24  
200µA  
200µA  
100µA  
200  
6k  
200  
50  
V
1126-7 SS01  
RELATED PARTS  
PART NUMBER  
LT1124/LT1125  
LT1037  
DESCRIPTION  
COMMENTS  
Dual/Quad Low Noise High Speed Precision Op Amps  
Low Noise, High Speed Precision Op Amps  
Unity Gain Stable  
60MHz GBW, 11V/µs Slew Rate  
20MHz GBW, 100µV V  
LT1678/LT1679  
LT1028  
Dual/Quad Low Noise Rail-to-Rail Precision Op Amps  
Ultralow Noise Precision High Speed Op Amps  
215MHz, Rail-to-Rail Output Low Noise Op Amps  
OS  
1.1nV/Hz Max, 0.85 µV/Hz Typ  
1.1nV/Hz, 3.5mA Supply Current  
LT6230  
11267fa  
LT/LT 0705 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY