LT1168C [Linear]

Low Power, Single Resistor Gain Programmable, Micropower Precision Instrumentation Amplifier; 低功耗,单电阻增益可编程的,微功耗精密仪表放大器
LT1168C
型号: LT1168C
厂家: Linear    Linear
描述:

Low Power, Single Resistor Gain Programmable, Micropower Precision Instrumentation Amplifier
低功耗,单电阻增益可编程的,微功耗精密仪表放大器

仪表放大器
文件: 总20页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1168  
Low Power, Single  
Resistor Gain Programmable,  
Precision Instrumentation Amplifier  
U
FEATURES  
DESCRIPTIO  
TheLT®1168isamicropower,precisioninstrumentationam-  
Supply Current: 530µA Max  
Meets IEC 1000-4-2 Level 4 (±15kV) ESD Tests  
with Two External 5k Resistors  
Single Gain Set Resistor: G = 1 to 10,000  
Gain Error: G = 10, 0.4% Max  
Input Offset Voltage Drift: 0.3µV/°C Max  
Gain Nonlinearity: G = 10, 20ppm Max  
Input Offset Voltage: 40µV Max  
Input Bias Current: 250pA Max  
PSRR at AV =1: 103dB Min  
plifier that requires only one external resistor to set gains of  
1 to 10,000. The low voltage noise of 10nV/Hz (at 1kHz) is  
notcompromisedbylowpowerdissipation(350µAtypicalfor  
±15Vsupplies).Thewidesupplyrangeof±2.3Vto±18Vallows  
the LT1168 to fit into a wide variety of industrial as well as  
battery-powered applications.  
ThehighaccuracyoftheLT1168isduetoa20ppmmaximum  
nonlinearityand0.4%maxgainerror(G=10).Previousmono-  
lithic instrumentation amps cannot handle a 2k load resistor  
whereas the nonlinearity of the LT1168 is specified for loads  
as low as 2k. The LT1168 is laser trimmed for very low input  
offsetvoltage(40µVmax),drift(0.3µV/°C),highCMRR(90dB,  
G = 1) and PSRR (103dB, G = 1). Low input bias currents of  
250pA max are achieved with the use of superbeta process-  
ing. The output can handle capacitive loads up to 1000pF in  
any gain configuration while the inputs are ESD protected up  
to 13kV (human body). The LT1168 with two external 5k  
resistors passes the IEC 1000-4-2 level 4 specification.  
CMRR at AV = 1: 90dB Min  
Wide Supply Range: ±2.3V to ±18V  
1kHz Voltage Noise: 10nV/Hz  
0.1Hz to 10Hz Noise: 0.28µVP-P  
Available in 8-Pin PDIP and SO Packages  
U
APPLICATIO S  
Bridge Amplifiers  
Strain Gauge Amplifiers  
Thermocouple Amplifiers  
Differential to Single-Ended Converters  
TheLT1168isapin-for-pinimprovedsecondsourceforthe  
AD620andINA118.TheLT1168,offeredin8-pinPDIPand  
SOpackages,requiressignificantlylessPCboardareathan  
discrete op amp resistor designs. These advantages make  
the LT1168 the most cost effective solution for precision  
instrumentation amplifier applications.  
Differential Voltage to Current Converters  
Data Acquisition  
Battery-Powered and Portable Equipment  
Medical Instrumentation  
Scales  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Single Supply* Pressure Monitor  
Gain Nonlinearity  
BI TECHNOLOGIES  
67-8-3 R40KQ, (0.02% RATIO MATCH)  
5V  
1
3
8
40k  
+
7
3.5k  
3.5k  
3.5k  
3.5k  
REF  
IN  
R1  
G = 200  
249  
6
LT1168  
4
DIGITAL  
ADC  
20k  
DATA  
LTC®1286  
1
2
5
OUTPUT  
3
+
1
1/2  
AGND  
40k  
LT1112  
2
G = 1000  
= 2k  
OUT  
OUTPUT VOLTAGE (2V/DIV)  
1168 TA01a  
R
L
1168 TA01  
V
= ±10V  
*See Theory of Operation section  
1
LT1168  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
Supply Voltage ...................................................... ±20V  
Differential Input Voltage (Within the  
TOP VIEW  
Supply Voltage) ..................................................... ±40V  
Input Voltage (Equal to Supply Voltage) ................ ±20V  
Input Current (Note 2) ....................................... ±20mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) .. 40°C to 85°C  
Specified Temperature Range  
LT1168AC/LT1168C (Note 5) ............. 40°C to 85°C  
LT1168AI/LT1168I ............................. 40°C to 85°C  
Storage Temperature Range ................. 40°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LT1168ACN8  
LT1168ACS8  
LT1168AIN8  
LT1168AIS8  
LT1168CN8  
LT1168CS8  
LT1168IN8  
LT1168IS8  
R
1
2
3
4
R
G
8
7
6
5
G
+
–IN  
+IN  
+V  
S
OUTPUT  
REF  
–V  
S
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/ W (N8)  
TJMAX = 150°C, θJA = 190°C/ W (S8)  
S8 PART MARKING  
1168  
1168A  
1168AI 1168I  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = ±15V, VCM = 0V, RL = 10k unless otherwise noted.  
LT1168AC/LT1168AI LT1168C/LT1168I  
SYMBOL  
PARAMETER  
Gain Range  
Gain Error  
CONDITIONS (Note 6)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
G = 1 + (49.4k/R )  
1
10k  
1
10k  
G
G = 1  
0.008  
0.04  
0.04  
0.08  
0.02  
0.4  
0.5  
0.5  
0.015  
0.05  
0.05  
0.08  
0.03  
0.5  
0.6  
%
%
%
%
G = 10 (Note 7)  
G = 100 (Note 7)  
G = 1000 (Note 7)  
0.6  
Gain Nonlinearity (Notes 7, 8)  
V = ±10V, G = 1  
2
10  
20  
6
20  
40  
3
15  
25  
10  
25  
60  
ppm  
ppm  
ppm  
O
V = ±10V,G = 10 and 100  
O
V = ±10V, G = 1000  
O
V = ±10V, G = 1, R = 2k  
4
20  
40  
15  
40  
75  
5
30  
50  
20  
60  
90  
ppm  
ppm  
ppm  
O
L
V = ±10V,G = 10 and 100, R = 2k  
O
L
V = ±10V, G = 1000, R = 2k  
O
L
V
V
V
Total Input Referred Offset Voltage V  
= V + V /G  
OST OSI OSO  
OST  
OSI  
Input Offset Voltage  
Output Offset Voltage  
Input Offset Current  
Input Bias Current  
G = 1000, V = ±5V to ±15V  
15  
40  
50  
40  
40  
20  
50  
60  
80  
60  
µV  
µV  
pA  
pA  
S
G = 1, V = ±5V to ±15V  
200  
300  
250  
300  
450  
500  
OSO  
S
I
I
OS  
B
e
Input Noise Voltage, RTI  
0.1Hz to 10Hz, G = 1  
0.1Hz to 10Hz, G = 1000  
2.00  
0.28  
2.00  
0.28  
µV  
P-P  
µV  
P-P  
n
Input Noise Voltage Density, RTI  
f = 1kHz  
10  
165  
5
15  
10  
165  
5
15  
nV/Hz  
nV/Hz  
O
Output Noise Voltage Density, RTI f = 1kHz (Note 9)  
220  
220  
O
i
Input Noise Current  
Input Noise Current Density  
Input Resistance  
f = 0.1Hz to 10Hz  
O
pA  
P-P  
n
f = 10Hz  
O
74  
74  
fA/Hz  
GΩ  
R
IN  
V
= ±10V  
IN  
300  
1250  
200  
1250  
2
LT1168  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = ±15V, VCM = 0V, RL = 10k unless otherwise noted.  
LT1168AC/LT1168AI LT1168C/LT1168I  
SYMBOL PARAMETER  
CONDITIONS (Note 6)  
MIN  
TYP  
1.6  
1.6  
MAX  
MIN  
TYP  
1.6  
1.6  
MAX  
UNITS  
pF  
C
C
Differential Input Capacitance  
f = 100kHz  
O
IN(DIFF)  
IN(CM)  
Common Mode Input  
Capacitance  
f = 100kHz  
O
pF  
V
Input Voltage Range  
G = 1, Other Input Grounded  
CM  
V = ±2.3V to ±5V  
–V + 1.9  
–V + 1.9  
S
+V – 1.2  
+V – 1.4  
S
–V + 1.9  
–V + 1.9  
S
+V – 1.2  
+V – 1.4  
S
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
CMRR  
PSRR  
Common Mode  
Rejection Ratio  
1k Source Imbalance,  
V
= 0V to ±10V  
G = 1  
CM  
90  
95  
85  
95  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
106  
120  
126  
115  
135  
140  
100  
110  
120  
115  
135  
140  
Power Supply  
Rejection Ratio  
V = ±2.3V to ±18V  
S
G = 1  
103  
122  
131  
135  
108  
128  
145  
150  
100  
118  
126  
130  
108  
128  
145  
150  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
I
Supply Current  
V = ±2.3V to ±18V  
S
350  
530  
350  
530  
µA  
S
V
Output Voltage Swing  
R = 10k  
L
OUT  
V = ±2.3V to ±5V  
–V + 1.1  
–V + 1.2  
S
+V – 1.2  
+V – 1.3  
S
–V + 1.1  
–V + 1.2  
S
+V – 1.2  
+V – 1.3  
S
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
I
Output Current  
Bandwidth  
20  
32  
20  
32  
mA  
OUT  
BW  
G = 1  
G = 10  
G = 100  
G = 1000  
400  
200  
13  
400  
200  
13  
kHz  
kHz  
kHz  
kHz  
1
1
SR  
Slew Rate  
G = 1, V  
= ±10V  
0.3  
0.5  
0.3  
0.5  
V/µs  
OUT  
Settling Time to 0.01%  
10V Step  
G = 1 to 100  
G = 1000  
30  
200  
30  
200  
µs  
µs  
REFIN  
Reference Input Resistance  
Reference Input Current  
Reference Voltage Range  
Reference Gain to Output  
60  
18  
60  
18  
kΩ  
µA  
V
I
V
= 0V  
REF  
REFIN  
V
A
–V + 1.6  
S
+V – 1.6  
S
–V + 1.6  
S
+V – 1.6  
S
REF  
1 ± 0.0001  
1 ± 0.0001  
VREF  
The denotes the specifications which apply over the 0°C TA 70°C temperature range. VS = ±15V, VCM = 0V, RL = 10k unless  
otherwise noted.  
LT1168AC  
TYP  
LT1168C  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 6)  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
G = 1  
0.01  
0.40  
0.45  
0.50  
0.03  
1.5  
1.6  
1.7  
0.012  
0.500  
0.550  
0.600  
0.04  
1.6  
1.7  
1.8  
%
%
%
%
G = 10 (Note 7)  
G = 100 (Note 7)  
G = 1000 (Note 7)  
Gain Nonlinearity  
(Notes 7, 8)  
V
V
V
= ±10V, G = 1  
= ±10V, G = 10 and 100  
= ±10V, G = 1000  
2
7
25  
15  
30  
60  
3
10  
30  
20  
35  
80  
ppm  
ppm  
ppm  
OUT  
OUT  
OUT  
G/T  
Gain vs Temperature  
G < 1000 (Note 7)  
100  
200  
100  
200  
ppm/°C  
3
LT1168  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 0°C TA 70°C  
temperature range. VS = ±15V, VCM = 0V, RL = 10k unless otherwise noted.  
LT1168AC  
TYP  
LT1168C  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 6)  
= V + V /G  
MIN  
MAX  
60  
MIN  
MAX  
80  
UNITS  
V
V
V
V
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
OST  
OST  
OSI  
OSO  
V = ±5V to ±15V  
S
18  
3.0  
60  
23  
3.0  
70  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis (Notes 7, 10)  
Output Offset Voltage V = ±5V to ±15V  
Output Offset Voltage Hysteresis (Notes 7, 10)  
OSIH  
OSO  
OSOH  
380  
500  
µV  
S
30  
30  
µV  
/T  
OSI  
Input Offset Drift (RTI)  
Output Offset Drift  
(Note 9)  
(Note 9)  
0.05  
0.7  
100  
0.3  
65  
0.3  
3
0.06  
0.8  
120  
0.4  
105  
1.4  
0.4  
4
µV/°C  
µV/°C  
pA  
/T  
OSO  
I
I
I
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
400  
550  
OS  
/T  
pA/°C  
pA  
OS  
B
350  
600  
I /T  
Input Bias Current Drift  
Input Voltage Range  
1.4  
pA/°C  
B
V
G = 1, Other Input Grounded  
V = ±2.3V to ±5V  
CM  
–V + 2.1  
–V + 2.1  
+V – 1.3 –V + 2.1  
+V – 1.3  
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
+V – 1.4 –V + 2.1  
S
+V – 1.4  
S
S
S
CMRR  
PSRR  
Common Mode  
Rejection Ratio  
1k Source Imbalance,  
V
= 0V to ±10V  
G = 1  
CM  
88  
92  
83  
97  
113  
114  
92  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
115  
117  
110  
120  
135  
110  
120  
135  
Power Supply  
Rejection Ratio  
V = ±2.3V to ±18V  
S
G = 1  
102  
123  
127  
129  
115  
130  
135  
145  
98  
115  
130  
135  
145  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
118  
124  
126  
I
Supply Current  
V = ±2.3V to ±18V  
S
390  
615  
390  
615  
µA  
S
V
Output Voltage Swing  
R = 10k  
L
OUT  
V = ±2.3V to ±5V  
–V + 1.4  
–V + 1.6  
S
+V – 1.3 –V + 1.4  
+V – 1.3  
+V – 1.5  
S
V
V
S
S
S
S
S
V = ±5V to ±18V  
S
+V – 1.5 –V + 1.6  
S
S
I
Output Current  
Slew Rate  
16  
25  
16  
0.25  
+V – 1.6 –V + 1.6  
25  
mA  
V/µs  
V
OUT  
SR  
G = 1, V  
= ±10V  
0.25  
0.48  
0.48  
OUT  
V
Voltage Range  
(Note 9)  
–V + 1.6  
S
+V – 1.6  
S
REF  
S
S
The denotes the specifications which apply over the 40°C TA 85°C temperature range. VS = ±15V, VCM = 0V, RL = 10k unless  
otherwise noted. (Note 8)  
LT1168AI  
TYP  
LT1168I  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 6)  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
G = 1  
0.014  
0.600  
0.600  
0.600  
0.04  
1.9  
2.0  
2.1  
0.015  
0.700  
0.700  
0.700  
0.05  
2.0  
2.1  
2.2  
%
%
%
%
G = 10 (Note 7)  
G = 100 (Note 7)  
G = 1000 (Note 7)  
G
Gain Nonlinearity  
(Notes 7, 8)  
V = ±10V, G = 1  
3
10  
30  
20  
35  
70  
5
15  
35  
25  
40  
100  
ppm  
ppm  
ppm  
N
O
V = ±10V, G = 10 and 100  
O
VO = ±10V, G = 1000  
G/T  
Gain vs Temperature  
G < 1000 (Note 7)  
100  
200  
100  
200  
ppm/°C  
4
LT1168  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the 40°C TA 85°C  
temperature range. VS = ±15V, VCM = 0V, RL = 10k unless otherwise noted. (Note 5)  
LT1168AI  
TYP  
LT1168I  
TYP  
SYMBOL PARAMETER  
CONDITIONS (Note 6)  
= V + V /G  
MIN  
MAX  
75  
MIN  
MAX  
100  
600  
UNITS  
V
V
V
V
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
OST  
OST  
OSI  
OSO  
20  
3.0  
180  
30  
25  
3.0  
200  
30  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis (Notes 7, 10)  
Output Offset Voltage  
OSIH  
OSO  
OSOH  
500  
µV  
Output Offset Voltage Hysteresis (Notes 7, 10)  
µV  
/T  
OSI  
Input Offset Drift (RTI)  
Output Offset Drift  
(Note 9)  
(Note 9)  
0.05  
0.8  
110  
0.3  
120  
1.4  
0.3  
5
0.06  
1
0.4  
6
µV/°C  
µV/°C  
pA  
/T  
OSO  
I
I
I
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
550  
120  
0.3  
220  
1.4  
700  
OS  
/T  
pA/°C  
pA  
OS  
B
500  
800  
I /T  
Input Bias Current Drift  
Input Voltage Range  
pA/°C  
B
V
V = ±2.3V to ±5V  
–V + 2.1  
+V – 1.3 –V + 2.1  
+V – 1.3  
V
V
CM  
S
S
S
S
S
V = ±5V to ±18V  
S
–V + 2.1  
S
+V – 1.4 –V + 2.1  
S
+V – 1.4  
S
S
CMRR  
PSRR  
Common Mode  
Rejection Ratio  
1k Source Imbalance,  
= 0V to ±10V  
V
CM  
G = 1  
86  
98  
114  
116  
90  
81  
95  
112  
112  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
105  
118  
133  
105  
118  
133  
Power Supply  
Rejection Ratio  
V = ±2.3V to ±18V  
S
G = 1  
100  
120  
125  
128  
112  
125  
132  
140  
95  
112  
125  
132  
140  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
115  
120  
125  
I
Supply Current  
420  
650  
420  
650  
µA  
S
V
Output Voltage Swing  
V = ±2.3V to ±5V  
V = ±5V to ±18V  
S
–V + 1.4  
–V + 1.6  
S
+V – 1.3 –V + 1.4  
+V – 1.3  
+V – 1.5  
S
V
V
OUT  
S
S
S
S
S
+V – 1.5 –V + 1.6  
S
S
I
Output Current  
Slew Rate  
15  
22  
15  
0.22  
+V – 1.6 –V + 1.6  
22  
mA  
V/µs  
V
OUT  
SR  
0.22  
0.41  
0.42  
V
Voltage Range  
(Note 9)  
–V + 1.6  
S
+V – 1.6  
S
REF  
S
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be imparied.  
Note 6: Typical parameters are defined as the 60% of the yield parameter  
distribution.  
Note 2: If the input voltage exceeds the supplies, the input current should  
Note 7: Does not include the tolerance of the external gain resistor R .  
G
be limited to less than 20mA.  
Note 8: This parameter is measured in a high speed automatic tester that  
does not measure the thermal effects with longer time constants. The  
magnitude of these thermal effects are dependent on the package used,  
heat sinking and air flow conditions.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum.  
Note 4: The LT1168AC/LT1168C are guaranteed functional over the  
operating temperature range of 40°C and 85°C.  
Note 9: This parameter is not 100% tested.  
Note 10: Hysteresis in offset voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Offset voltage hysteresis is always measured at 25°C, but  
the IC is cycled to 85°C I-grade (or 70°C C-grade) or 40°C I-grade  
(0°C C-grade) before successive measurement. 60% of the parts will  
pass the typical limit on the data sheet.  
Note 5: The LT1168AC/LT1168C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT1168AC/LT1168C are designed,  
characterized and expected to meet specified performance from 40°C to  
85°C but are not tested or QA sampled at these temperatures. The  
LT1168AI/LT1168I are guaranteed to meet specified performance from  
40°C to 85°C.  
5
LT1168  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Distribution of Output Offset  
Voltage  
Distribution of Input Offset  
Voltage  
Distribution of Output Offset  
Voltage Drift  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
V
= ±15V  
S
97 N8 (2 LOTS)  
49 S0-8 (1 LOT)  
146 TOTAL PARTS  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
299 N8 (2 LOTS)  
337 S0-8 (2 LOTS)  
636 TOTAL PARTS  
S
A
G = 1  
299 N8 (2 LOTS)  
337 S0-8 (2 LOTS)  
636 TOTAL PARTS  
S
A
T
= –40°C TO 85°C  
A
G = 1  
G = 1000  
25  
20  
15  
10  
5
0
0
0
–150  
–50  
0
50  
100  
150  
0.2  
OUTPUT OFFSET VOLTAGE DRIFT (µV/°C)  
–100  
–60  
–20  
0
20  
40  
60  
–1.8  
–0.6  
–0.2  
–40  
–1.4  
–1.0  
OUTPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
1168 G01  
1168 G02  
1168 G03  
Distribution of Input Offset  
Voltage Drift  
Output Offset Voltage  
Long-Term Drift  
Input Offset Voltage  
Long-Term Drift  
50  
40  
5
4
35  
30  
V
T
= ±15V  
= 30°C  
V
T
= ±15V  
= 30°C  
V
T
= ±15V  
S
A
G = 1  
S
A
S
A
= –40°C TO 85°C  
G = 1000  
G = 1000  
30  
3
4 PARTS FROM 4 LOTS  
WARMED UP  
4 PARTS FROM 4 LOTS  
WARMED UP  
97 N8 (2 LOTS)  
49 S0-8 (1 LOT)  
146 TOTAL PARTS  
25  
20  
2
10  
1
20  
15  
10  
5
0
0
–10  
–20  
–30  
–40  
–50  
–1  
–2  
–3  
–4  
–5  
0
–0.35 –0.25  
–0.15 –0.05 0.05  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
1
1
–0.45  
0
2
3
0
2
3
TIME (MONTHS)  
TIME (MONTHS)  
1168 G04  
1168 G05  
1168 G05  
Voltage Noise Density  
vs Frequency  
Warm-Up Drift  
Gain vs Frequency  
60  
50  
1000  
100  
10  
35  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
A
S
A
S
A
G = 1  
G = 1000  
30  
25  
20  
15  
10  
5
1/f CORNER = 2Hz  
GAIN = 1  
40  
G = 100  
G = 10  
G = 1  
SO-8  
N-8  
30  
1/f CORNER = 7Hz  
GAIN = 10  
20  
GAIN = 100, 1000  
10  
1/f CORNER = 3Hz  
0
BW LIMIT  
GAIN = 100  
–10  
–20  
BW LIMIT  
GAIN = 1000  
1
0
0.01  
0.1  
1
10  
100  
1000  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
FREQUENCY (kHz)  
FREQUENCY (Hz)  
TIME AFTER POWER-ON (MINUTES)  
1168 G08  
1168 G09  
1168 G07  
6
LT1168  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
0.1Hz to 10Hz Noise Voltage,  
G = 1  
0.1Hz to 10Hz Noise Voltage,  
RTI G = 1000  
Current Noise Density  
vs Frequency  
1000  
100  
10  
V
= ±15V  
= 25°C  
S
A
V
= ±15V  
= 25°C  
V
= ±15V  
= 25°C  
S
A
S
A
T
T
T
RS  
1/f CORNER = 55Hz  
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (SEC)  
TIME (SEC)  
1168 G12  
1168 G10  
1168 G11  
0.1Hz to 10Hz Current Noise  
Short-Circuit Current vs Time  
Output Impedance vs Frequency  
50  
40  
1k  
V
= ±15V  
V
= ±15V  
= 25°C  
S
S
A
V
S
T
= ±15V  
= 25°C  
T
T
= 40°C  
= 25°C  
A
A
G = 1 TO 1000  
30  
T
100  
A
20  
10  
T
= 85°C  
A
0
10  
1
10  
20  
30  
40  
50  
T
= 85°C  
= 25°C  
A
A
T
T
= 40°C  
A
0.1  
0
1
2
3
0
1
2
3
4
5
6
7
8
9
10  
1k  
10k  
100k  
1M  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
FREQUENCY (Hz)  
TIME (SEC)  
1168 G14  
1168 G13  
1168 G15  
Overshoot vs Capacitive Load  
Input Bias Current  
Input Offset Current  
100  
90  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
T
= ±15V  
= 25°C  
302 N8 (2 LOTS)  
313 SO-8 (2 LOTS)  
615 TOTAL PARTS  
302 N8 (2 LOTS)  
313 SO-8 (2 LOTS)  
615 TOTAL PARTS  
V
T
±15V  
= 25°C  
S
A
V
V
= ±15V  
OUT  
= ∞  
S
A
S
= ±50mV  
R
L
80  
70  
60  
50  
G = 1  
40  
30  
20  
10  
0
+I  
B
+I  
B
G = 10  
–I  
B
G = 100, 1000  
100  
10  
1000  
10000  
–200  
–120  
40  
120  
–120 –80  
–40  
0
40  
80  
120  
–40  
200  
CAPACITIVE LOAD (pF)  
INPUT BIAS CURRENT (pA)  
INPUT OFFSET CURRENT (pA)  
1168 G16  
1168 G18  
1168 G17  
7
LT1168  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Change in Input Bias Current for  
VCM = 20V  
Settling Time vs Step Size  
Settling Time vs Gain  
1000  
100  
10  
10  
8
20  
18  
16  
14  
12  
10  
8
V
T
= ±15V  
= 25°C  
OUT  
V
V
T
= ±15V  
= ±10V  
302 N8 (2 LOTS)  
313 SO-8 (2 LOTS)  
615 TOTAL PARTS  
V
= ±15  
S
A
V  
S
CM  
A
TO 0.1%  
S
G = 1  
= 25°C  
TO 0.01%  
= 10V TO 0.01%  
= 25°C  
T
A
6
C
= 30pF  
= 1k  
L
L
R
4
V
OUT  
2
0V  
0V  
R
= 5TΩ  
R
INCM  
= 700GΩ  
INCM  
0
–2  
–4  
–6  
–8  
–10  
V
OUT  
6
4
TO 0.01%  
2
TO 0.1%  
1
0
1
10  
100  
1000  
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
4
8
12 16 20 24 28 32 34  
GAIN  
CHANGE IN INPUT BIAS CURRENT (pA)  
SETTLING TIME (µs)  
1168 G21  
1168 G20  
1168 G19  
Falling Edge Settling Time  
(0.10%)  
Settling Time (0.1%)  
vs Load Capacitance  
Input Bias and Offset Current  
vs Temperature  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
500  
400  
V
V
= ±15V  
CM  
S
0
–5  
= 0V  
G = 1, FALLING EDGE  
0.10  
0.05  
0
G = 1, RISING EDGE  
300  
10  
200  
G = 100, FALLING EDGE  
I
I
OS  
100  
0
0.05  
0.10  
0
B
G = 100,  
RISING EDGE  
G = 10,  
FALLING EDGE  
–5  
–100  
–200  
–300  
–400  
–500  
10  
G = 10,  
RISING EDGE  
V
T
= ±15V  
= 25°C  
= 1k  
S
5µs/DIV  
1168 G24  
A
R
L
t = 0  
STEP SIZE = 10V  
TA = 25°C  
VS = ±15V  
RL = 2k  
10  
30  
100  
300  
1000  
–75 –50 –25  
0
25 50 75 100 125  
LOAD CAPACITANCE (pF)  
TEMPERATURE  
C
L = 15pF  
1168 G22  
1168 G23  
Rising Edge Settling Time  
(0.10%)  
Settling Time (0.01%)  
vs Load Capacitance  
Undistorted Output Swing  
vs Frequency  
35  
30  
25  
20  
15  
10  
5
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
G = 100,  
RISING EDGE  
V
= ±15V  
= 25°C  
G = 100,  
FALLING EDGE  
S
A
10  
G = 10, 100, 1000  
G = 1  
T
5
0
0.10  
G = 1, RISING EDGE  
0.05  
0
10  
5
0.05  
0.10  
G = 10, FALLING EDGE  
G = 10, RISING EDGE  
G = 1,  
FALLING  
EDGE  
0
V
= ±15V  
= 25°C  
= 1k  
S
A
L
T
5µs/DIV  
1168 G25  
R
t = 0  
STEP SIZE = 10V  
0
TA = 25°C  
VS = ±15V  
RL = 2k  
1
10  
100  
1000  
10  
30  
100  
300  
1000  
FREQUENCY (kHz)  
LOAD CAPACITANCE (pF)  
C
L = 15pF  
1168 G27  
1168 G26  
8
LT1168  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Voltage Range vs Output  
Voltage for Various Gains  
Output Voltage Swing vs  
Load Current  
+V  
+V – 0.5  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
S
85°C  
+V = +V – 1.4V  
V
= ±15V  
CM  
S
S
S
25°C  
G = 1  
V
A
= ±15V  
= 25°C  
S
40°C  
+V – 1.0  
S
T
+V – 1.5  
S
G = 2  
+V – 2.0  
S
G = 10  
V
= –V + 1.2V  
S
OUT  
+V – 2.5  
S
G = 100  
G = 100  
–8  
–9  
G = 10  
G = 2  
–V + 2.5  
S
–V + 2.0  
S
–10  
–11  
–12  
–13  
–14  
–15  
V
= +V – 1.3V  
S
4
3
2
1
–V + 1.5  
S
OUT  
–V + 1.0  
S
G = 1  
–V + 0.5  
S
–V = –V + 1.9V  
CM  
S
–V  
S
0
0.01  
0.1  
1
10  
100  
3
–15 –11 –7  
–3  
7
11  
15  
OUTPUT CURRENT (mA)  
V
OUT  
(V)  
1168 G28  
1168 G43  
Output Short-Circuit Current  
vs Temperature  
Slew Rate vs Temperature  
60  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= ±15V  
OUT  
G = 1  
V
S
= ±15V  
S
= ±10V  
50  
40  
30  
20  
10  
SINKING CURRENT  
+SLEW  
–SLEW  
SOURCING CURRENT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1168 G29  
1168 G30  
Small-Signal Transient Response  
Large-Signal Transient Response  
Large-Signal Transient Response  
1168 G31  
1168 G32  
1168 G33  
G = 10  
50µs/DIV  
50µs/DIV  
G = 1  
10µs/DIV  
G = 1  
VS = ±15V  
RL = 2k  
VS = ±15V  
RL = 2k  
V
S = ±15V  
RL = 2k  
CL = 60pF  
CL = 60pF  
C
L = 60pF  
9
LT1168  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Small-Signal Transient Response  
Large-Signal Transient Response  
Small-Signal Transient Response  
1168 G36  
1168 G34  
1168 G35  
10µs/DIV  
10µs/DIV  
50µs/DIV  
G = 100  
G = 10  
G = 100  
VS = ±15V  
RL = 2k  
V
S = ±15V  
VS = ±15V  
RL = 2k  
RL = 2k  
CL = 60pF  
C
L = 60pF  
C
L = 60pF  
Negative Power Supply Rejection  
Ratio vs Frequency  
Small-Signal Transient Response  
Large-Signal Transient Response  
160  
140  
120  
100  
80  
G = 1000  
G = 100  
G = 10  
G = 1  
60  
40  
1168 G38  
1168 G37  
200µs/DIV  
G = 1000  
VS = ±15V  
RL = 2k  
200µs/DIV  
G = 1000  
VS = ±15V  
RL = 2k  
20  
V
= ±15V  
= 25°C  
S
A
T
0
0.1  
C
L = 60pF  
1
10  
100  
1k  
10k 100k  
CL = 60pF  
FREQUENCY (Hz)  
1168 G39  
Positive Power Supply Rejection  
Ratio vs Frequency  
Common Mode Rejection Ratio vs  
Frequency (1k Source Imbalance)  
Supply Current vs Temperature  
0.6  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
V
S
= ±15V  
G = 1000  
G = 100  
G = 1000  
G = 100  
0.5  
0.4  
0.3  
0.2  
0.1  
G = 10  
G = 1  
G = 10  
G = 1  
60  
60  
40  
40  
V
= ±15V  
= 25°C  
S
A
20  
20  
V
= ±15V  
= 25°C  
S
A
T
T
1k SOURCE IMBALANCE  
0
0
0.1  
1
10  
100  
1k  
10k 100k  
0.1  
1
10  
100  
1k  
10k 100k  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1168 G40  
1168 G41  
1168 G42  
10  
LT1168  
W
BLOCK DIAGRA  
+V  
S
VB  
R5  
30k  
R6  
30k  
+
OUTPUT  
6
A1  
R3  
C1  
400Ω  
–IN  
2
Q1  
R1  
24.7k  
+
–V  
S
A3  
1
8
R
R
G
–V  
–V  
S
S
VB  
G
+V  
S
R7  
30k  
R8  
30k  
+
REF  
A2  
5
R4  
400Ω  
C2  
+IN  
3
Q2  
R2  
24.7k  
+V  
S
7
4
–V  
S
–V  
S
1168 F01  
PREAMP STAGE  
DIFFERENCE AMPLIFIER STAGE  
Figure 1. Block Diagram  
U
THEORY OF OPERATIO  
The LT1168 is a modified version of the three op amp  
instrumentation amplifier. Laser trimming and monolithic  
construction allow tight matching and tracking of circuit  
parameters over the specified temperature range. Refer to  
the block diagram (Figure 1) to understand the following  
circuitdescription. ThecollectorcurrentsinQ1andQ2are  
trimmed to minimize offset voltage drift, thus assuring a  
high level of performance. R1 and R2 are trimmed to an  
absolute value of 24.7k to assure that the gain can be set  
accurately (0.6% at G = 100) with only one external  
resistor RG. The value of RG in parallel with R1 (R2)  
determines the transconductance of the preamp stage. As  
RG is reduced for larger programmed gains, the transcon-  
ductanceoftheinputpreampstageincreasestothatofthe  
input transistors Q1 and Q2. This increases the open-loop  
gain when the programmed gain is increased, reducing  
the input referred gain related errors and noise. The input  
voltage noise at gains greater than 50 is determined only  
by Q1 and Q2. At lower gains the noise of the difference  
amplifier and preamp gain setting resistors increase the  
noise. The gain bandwidth product is determined by C1,  
C2 and the preamp transconductance which increases  
withprogrammedgain.Therefore,thebandwidthdoesnot  
drop proportionally with gain.  
The input transistors Q1 and Q2 offer excellent matching,  
which is inherent in NPN bipolar transistors, as well as  
picoampere input bias current due to superbeta process-  
ing. The collector currents in Q1 and Q2 are held constant  
due to the feedback through the Q1-A1-R1 loop and  
Q2-A2-R2 loop which in turn impresses the differential  
input voltage across the external gain set resistor RG.  
SincethecurrentthatflowsthroughRG alsoflowsthrough  
R1 and R2, the ratios provide a gained-up differential  
11  
LT1168  
U
THEORY OF OPERATIO  
voltage, G = (R1 + R2)/RG, to the unity-gain difference  
amplifier A3. The common mode voltage is removed by  
A3, resulting in a single-ended output voltage referenced  
to the voltage on the REF pin. The resulting gain equation  
is:  
voltage of the LT1168 (Pin 6) is referenced to the voltage  
on the reference terminal (Pin 5). Resistance in series  
with the REF pin must be minimized for best common  
mode rejection. For example, a 6resistance from the  
REF pin to ground will not only increase the gain error by  
0.02% but will lower the CMRR to 80dB.  
G = (49.4k/RG) + 1  
solving for the gain set resistor gives:  
RG = 49.4k/(G – 1)  
Input Voltage Range  
The input voltage range for the LT1168 is specified in the  
data sheet at 1.4V below the positive supply to 1.9V  
above the negative supply for a gain of one. As the gain  
increases the input voltage range decreases. This is due  
to the IR drop across the internal gain resistors R1 and  
R2 in Figure 1. For the unity gain condition there is no IR  
drop across the gain resistors R1 and R2, the output of  
the GM amplifiers is just the differential input voltage at  
Pin 2 and Pin 3 (level shifted by one VBE from Q1 and Q2).  
When a gain resistor is connected across Pins 1 and 8,  
the output swing of the GM cells is now the differential  
input voltage (level shifted by VBE) plus the differential  
voltage times the gain (ratio of the internal gain resistors  
to the external gain resistor across Pins 1 and 8). To  
calculate how close to the positive rail the input (VIN) can  
swing for a gain of 2 and a maximum expected output  
swing of 10V, use the following equation:  
Table 1 shows appropriate 1% resistor values for a variety  
of gains.  
Table 1  
DESIRED GAIN  
R
G
CLOSEST 1% VALUE RESULTANT GAIN  
1
Open  
49400Ω  
12350Ω  
5488.89Ω  
2600Ω  
Open  
49900Ω  
12400Ω  
5490Ω  
2610Ω  
1000Ω  
499Ω  
1
2
1.99  
5
4.984  
9.998  
19.93  
50.4  
10  
20  
50  
1008.16Ω  
498.99Ω  
248.24Ω  
99Ω  
100  
200  
500  
1000  
99.998  
199.4  
495  
249Ω  
100Ω  
49.95Ω  
49.4Ω  
1001  
+VS – VIN = 0.5 – (VOUT/G) • (G – 1)/2  
Substituting yields:  
Input and Output Offset Voltage  
The offset voltage of the LT1168 has two components: the  
output offset and the input offset. The total offset voltage  
referred to the input (RTI) is found by dividing the output  
offset by the programmed gain (G) and adding it to the  
input offset. At high gains the input offset voltage domi-  
nates, whereas at low gains the output offset voltage  
dominates. The total offset voltage is:  
0.5 – (10/2) • (1/2) = 3V  
below the positive supply or 12V for a 15V supply. To  
calculate how far above the negative supply the input can  
swing for a gain of 10 with a maximum expected output  
swing of –10V, the equation for the negative case is:  
VS + VIN = 1.5 – (VOUT/G) • (G – 1)/2  
Substituting yields:  
Total input offset voltage (RTI)  
= input offset + (output offset/G)  
Total output offset voltage (RTO)  
= (input offset • G) + output offset  
1.5 – (–10/10) • 9/2 = 6V  
above the negative supply or 9V for a negative supply  
voltage of –15V. Figures 2 and 3 are for the positive  
common mode and negative common mode cases  
respectively.  
Reference Terminal  
The reference terminal is one end of one of the four 30k  
resistors around the difference amplifier. The output  
12  
LT1168  
U
THEORY OF OPERATIO  
+V  
S
potential, the voltage on the REF pin can be further level  
shifted. The application in the front of this data sheet,  
SingleSupplyPressureMonitor,isanexample.Anopamp  
isusedtobufferthevoltageontheREFpinsinceaparasitic  
series resistance will degrade the CMRR.  
G = 1  
AREA OF OPERATION  
–1  
–2  
G = 2  
AREA OF  
OPERATION  
–3  
–4  
–5  
–6  
–7  
G = 100  
AREA OF  
OPERATION  
G = 10  
AREA OF  
OPERATION  
Output Offset Trimming  
T
= 25°C  
A
The LT1168 is laser trimmed for low offset voltage so that  
no external offset trimming is required for most applica-  
tions. In the event that the offset needs to be adjusted, the  
circuitinFigure4isanexampleofanoptionaloffsetadjust  
circuit. Theopampbufferprovidesalowimpedancetothe  
REF pin where resistance must be kept to minimum for  
best CMRR and lowest gain error.  
INPUT COMMON  
MODE RANGE IS  
BELOW THE CURVE  
–8  
2
4
8
10  
12  
14  
0
6
V
OUT  
(V)  
1168 F02  
Figure 2. Positive Input Range vs  
Output Voltage for Different Gains  
9
8
7
6
5
4
3
2
1
G = 10  
T = 25°C  
A
2
AREA OF  
INPUT COMMON  
–IN  
OPERATION MODE RANGE IS  
ABOVE THE CURVE  
1
6
R
LT1168  
REF  
OUTPUT  
G
+V  
G = 100  
AREA OF  
OPERATION  
S
8
3
5
+
G = 2  
+IN  
10mV  
AREA OF  
OPERATION  
100Ω  
1/2 LT1112  
G = 1  
AREA OF OPERATION  
+
±10mV  
10k  
ADJUSTMENT RANGE  
–V  
S
100Ω  
–14 –12 –10 –8  
0
–6  
(V)  
–4  
–2  
V
–10mV  
OUT  
1168 F03  
Figure 3. Negative Input Voltage Range  
vs Output Voltage for Various Gains  
–V  
1168 F04  
S
Figure 4. Optional Trimming of Output Offset Voltage  
Single Supply Operation  
For best results under single supply operation, the REF pin  
shouldberaisedabovethenegativesupply(Pin4)and one  
of the inputs should be at least 2.5V above ground. The  
barometerapplicationlaterinthisdatasheetisanexample  
that satisfies these conditions. The resistance RSET from  
the bridge transducer to ground sets the operating current  
forthebridge,andwithR6,alsohastheeffectofraisingthe  
input common mode voltage. The output of the LT1168 is  
always inside the specified range since the barometric  
pressurerarelygoeslowenoughtocausetheoutputtoclip  
(30.00 inches of Hg corresponds to 3.000V). For applica-  
tions that require the output to swing at or below the REF  
Input Bias Current Return Path  
The low input bias current of the LT1168 (250pA) and the  
high input impedance (200G) allow the use of high  
impedance sources without introducing additional offset  
voltage errors, even when the full common mode range is  
required. However, a path must be provided for the input  
bias currents of both inputs when a purely differential  
signal is being amplified. Without this path the inputs will  
float to either rail and exceed the input common mode  
range of the LT1168, resulting in a saturated input stage.  
Figure 5 shows three examples of an input bias current  
13  
LT1168  
U
THEORY OF OPERATIO  
path. The first example is of a purely differential signal  
sourcewitha10kinputcurrentpathtoground.Sincethe  
impedance of the signal source is low, only one resistor is  
needed. Two matching resistors are needed for higher  
impedance signal sources as shown in the second  
example. Balancing the input impedance improves both  
common mode rejection and DC offset.  
+
MICROPHONE,  
HYDROPHONE,  
ETC  
LT1168  
THERMOCOUPLE  
LT1168  
LT1168  
+
+
200k  
200k  
10k  
CENTER-TAP PROVIDES  
BIAS CURRENT RETURN  
1168 F05  
Figure 5. Providing an Input Common Mode Current Path  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT1168 is a low power precision instrumentation  
amplifier that requires only one external resistor to accu-  
rately set the gain anywhere from 1 to 1000. The LT1168  
is trimmed for critical DC parameters such as gain error  
(0.04%, G = 10), input offset voltage (40µV, RTI), CMRR  
(90dB min, G = 1) and PSRR (103dB min, G = 1). These  
trimsallowtheamplifiertoachieveveryhighDCaccuracy.  
The LT1168 achieves low input bias current of just 250pA  
(max) through the use of superbeta processing. The  
output can handle capacitive loads up to 1000pF in any  
gain configuration and the inputs are protected against  
ESD strikes up to ±13kV (human body).  
specification to level 4 for both air and contact discharge.  
A2N4393drain/sourcetogateisagoodlowleakagediode  
for use with resistors between 1k and 20k, see Figure 6.  
The input resistors should be carbon and not metal film or  
carbon film in order to withstand the fault conditions.  
OPTIONAL FOR  
R
IN  
< 20k  
J1  
2N4393  
J2  
2N4393  
+V  
S
R
IN  
+
OUT  
R
LT1168  
G
REF  
R
IN  
Input Protection  
1168 F06  
–V  
S
The LT1168 can safely handle up to ±20mA of input  
current in an overload condition. Adding an external 5k  
input resistor in series with each input allows DC input  
fault voltage up to ±100V and improves the ESD immunity  
to ±8kV (contact) and ±15kV (air discharge), which is the  
IEC 1000-4-2 level 4 specification. If lower value input  
resistors must be used, a clamp diode from the positive  
supply to each input will maintain the IEC 1000-4-2  
Figure 6. Input Protection  
RFI Reduction  
In many industrial and data acquisition applications,  
instrumentation amplifiers are used to accurately amplify  
small signals in the presence of large common mode  
14  
LT1168  
W U U  
APPLICATIO S I FOR ATIO  
U
voltages or high levels of noise. Typically, the sources of  
these very small signals (on the order of microvolts or  
millivolts) are sensors that can be a significant distance  
from the signal conditioning circuit. Although these sen-  
sors may be connected to signal conditioning circuitry,  
using shielded or unshielded twisted-pair cabling, the ca-  
bling may act as antennae, conveying very high frequency  
interference directly into the input stage of the LT1168.  
frequency is known, the common mode time constants  
can be set followed by the differential mode time constant.  
To avoid any possibility of inadvertently affecting the  
signal to be processed, set the common mode time  
constantanorderofmagnitude(ormore)smallerthanthe  
differential mode time constant. Set the common mode  
time constants such that they do not degrade the LT1168  
inherent AC CMR. Then the differential mode time con-  
stant can be set for the bandwidth required for the appli-  
cation. Settingthedifferentialmodetimeconstantcloseto  
the sensor’s BW also minimizes any noise pickup along  
the leads. To avoid any possibility of common mode to  
differential mode signal conversion, match the common  
mode time constants to 1% or better. If the sensor is an  
RTD or a resistive strain gauge and is in proximity to the  
instrumentation amplifier, then the series resistors RS1, 2  
can be omitted.  
The amplitude and frequency of the interference can have  
an adverse effect on an instrumentation amplifier’s input  
stage by causing an unwanted DC shift in the amplifier’s  
input offset voltage. This well known effect is called RFI  
rectification and is produced when out-of-band interfer-  
ence is coupled (inductively, capacitively or via radiation)  
and rectified by the instrumentation amplifier’s input tran-  
sistors. These transistors act as high frequency signal  
detectors, in the same way diodes were used as RF  
envelope detectors in early radio designs. Regardless of  
the type of interference or the method by which it is  
coupled into the circuit, an out-of-band error signal ap-  
pearsinserieswiththeinstrumentationamplifier’sinputs.  
+V  
S
C
R
XCM1  
S1  
0.001µF  
1.6k  
+
+
IN  
IN  
C
XD  
To significantly reduce the effect of these out-of-band  
signals on the input offset voltage of instrumentation  
amplifiers, simple lowpass filters can be used at the  
inputs. This filter should be located very close to the input  
pins of the circuit. An effective filter configuration is  
illustrated in Figure 7, where three capacitors have been  
added to the inputs of the LT1168. Capacitors CXCM1 and  
CXCM2 form lowpass filters with the external series resis-  
tors RS1, 2 to any out-of-band signal appearing on each of  
the input traces. Capacitor CXD forms a filter to reduce any  
unwantedsignalthatwouldappearacrosstheinputtraces.  
An added benefit to using CXD is that the circuit’s AC  
common mode rejection is not degraded due to common  
mode capacitive imbalance. The differential mode and  
commonmodetimeconstantsassociatedwiththecapaci-  
tors are:  
R
LT1168  
V
G
OUT  
0.1µF  
R
1.6k  
S2  
C
XCM2  
0.001µF  
–V  
S
f
500Hz  
1168 F07  
3dB  
EXTERNAL RFI  
FILTER  
Figure 7. Adding a Simple RC Filter at the Inputs to an  
Instrumentation Amplifier is Effective in Reducing Rectification  
of High Frequency Out-of-Band Signals  
Nerve Impulse Amplifier  
The LT1168’s low current noise makes it ideal for EMG  
monitors that have high source impedances. Demonstrat-  
ing the LT1168’s ability to amplify low level signals, the  
circuit in Figure 8 takes advantage of the amplifier’s high  
gainandlownoiseoperation. Thiscircuitamplifiesthelow  
level nerve impulse signals received from a patient at  
Pins 2and3. RG andtheparallelcombinationofR3andR4  
set a gain of ten. The potential on LT1112’s Pin 1 creates  
tDM(LPF) = (RS1 + RS2)(CXD + CXCM1 + CXCM2)  
||  
tCM(LPF) = (RS1 RS2)(CXCM1+ CXCM2  
)
Setting the time constants requires a knowledge of the  
frequency, or frequencies of the interference. Once this  
15  
LT1168  
W U U  
U
APPLICATIO S I FOR ATIO  
a ground for the common mode signal. C1 was chosen to  
maintain the stability of the patient ground. The LT1168’s  
high CMRR ensures that the desired differential signal is  
amplified and unwanted common mode signals are at-  
tenuated. Since the DC portion of the signal is not impor-  
tant, R6 and C2 make up a 0.3Hz highpass filter. The AC  
signal at LT1112’s Pin 5 is amplified by a gain of 101 set  
by R7/R8 +1. The parallel combination of C3 and R7 form  
a lowpass filter that decreases this gain at frequencies  
above 1kHz. The ability to operate at ±3V on 350µA of  
supply current makes the LT1168 ideal for battery-pow-  
ered applications. Total supply current for this application  
is 1.05mA. Proper safeguards, such as isolation, must be  
added to this circuit to protect the patient from possible  
harm.  
Low IB Favors High Impedance Bridges, Lowers  
Dissipation  
The LT1168’s low supply current, low supply voltage  
operation and low input bias currents allow it to fit nicely  
into battery-powered applications. Low overall power  
dissipation necessitates using higher impedance bridges.  
The single supply pressure monitor application on the  
front of this data sheet, shows the LT1168 connected to  
the differential output of a 3.5k bridge. The picoampere  
input bias currents keep the error caused by offset current  
to a negligible level. The LT1112 level shifts the LT1168’s  
reference pin and the ADC’s analog ground pins above  
ground. The LT1168’s and LT1112’s combined power  
dissipation is still less than the bridge’s. This circuit’s total  
supply current is just 2.2mA.  
3V  
PATIENT/CIRCUIT  
PROTECTION/ISOLATION  
3
8
0.3Hz  
HIGHPASS  
7
+IN  
+
3V  
C1  
0.01µF  
C2  
0.47µF  
R3  
R1  
12k  
30k  
6
5
6
8
R
LT1168  
G = 10  
G
+
6k  
R2  
1M  
7
1/2  
OUTPUT  
1V/mV  
R4  
30k  
R6  
1M  
LT1112  
1
2
5
4
4
R7  
10k  
+
2
3
–3V  
1/2  
LT1112  
1
–3V  
PATIENT  
GND  
R8  
100Ω  
A
= 101  
C3  
15nF  
V
POLE AT 1kHz  
–IN  
1168 F08  
Figure 8. Nerve Impulse Amplifier  
14  
12  
THERMOMETRICS  
DC95F103W  
THERMO  
METRICS  
15V  
3
8
+
7
LT1168  
4
DC95G104Z  
10  
6
PRECISION  
THERMISTOR  
49.4kΩ  
R
T
V
OUT  
= 1.25 •  
8
6
4
2
R
T
REF  
1
2
5
YSI #44006  
–15V  
YSI #44011  
1168 F09  
LT1634-1.25  
22k  
0
–20  
0
20 40 60  
120  
–40  
80 100  
TEMPERATURE (°C)  
–15V  
1168 F10  
Figure 9. Precision Temperature Without Precision Resistors  
Figure 10. Response of Figure 9 for Various Thermistors  
16  
LT1168  
U
TYPICAL APPLICATIO S  
Single Supply Barometer  
V
S
R5  
LUCAS NOVA SENOR  
NPC-1220-015-A-3L  
V
S
200k  
3
2
8
+
1
+
2
1
1
7
1/2  
LT1490  
4
2
1
5k  
5k  
LT1634CCZ-1.25  
R1  
4
6
825Ω  
LT1168  
G = 60  
R6  
1k  
R2  
12Ω  
5k  
2
6
5k  
5
8
3
TO  
3
+
4-DIGIT  
DVM  
R
SET  
4
R4  
50k  
5
6
5
+
R3  
50k  
7
1/2  
LT1490  
R7  
50k  
R8  
100k  
VOLTS INCHES Hg  
0.6% ACCURACY AT 25°C  
1.7% ACCURACY AT 0°C TO 60°C  
= 8V TO 30V  
2.800  
3.000  
3.200  
28.00  
30.00  
32.00  
V
S
1168 TA03  
AC Coupled Instrumentation Amplifier  
2
–IN  
+IN  
1
6
R
LT1168  
REF  
OUTPUT  
G
R1  
1M  
8
3
C1  
0.1µF  
5
+
+
2
6
1
LT1677  
f
=
–3dB  
3
(2π)(R1)(C1)  
= 1.59Hz  
1168 TA02  
17  
LT1168  
U
TYPICAL APPLICATIO S  
4-Digit Pressure Sensor  
9V  
R8  
LUCAS NOVA SENOR  
392k  
9V  
NPC-1220-015A-3L  
3
2
4
+
2
1
1
3
1
4
1/4  
LT1114  
2
1
7
5k  
5k  
LT1634CCZ-1.25  
R1  
11  
825Ω  
6
LT1168  
G = 60  
R9  
1k  
R2  
12Ω  
5k  
2
6
5k  
8
3
5
TO  
+
4-DIGIT  
DVM  
+
4
R
SET  
10  
9
+
8
1/4  
LT1114  
5
12  
13  
+
14  
1/4  
0.6% ACCURACY AT ROOM TEMP  
LT1114  
1.7% ACCURACY AT 0°C TO 60°C  
R7  
180k  
R6  
50k  
R5  
100k  
R4  
100k  
VOLTS INCHES Hg  
2.800  
3.000  
3.200  
28.00  
30.00  
32.00  
C1  
1µF  
1168 TA04  
R3  
51k  
18  
LT1168  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1168  
U
TYPICAL APPLICATIO  
Low Power Programmable Audio HPF/LPF with “Pop-Less” Switching  
+15V  
7
3
8
+
6
7
R3  
8k  
R2  
4k  
R1  
4k  
GAIN SET  
1
2
LT1168  
HPF  
LPF  
5
P
P
2
4
1
C1  
100µF  
–15V  
3
2
14  
1
16  
8
9
5
6
7
11  
LTC®201  
5
6
+
+15V  
8
1/2 LT1462  
15 12 13  
4
10  
2
3
NC +15V –15V  
1
1/2 LT1462  
V
+
IN  
1168 TA05  
4
P
P
0
0
1
1
1
0 < 0.8V  
1 > 2.4V  
1
2
–15V  
TOTAL SUPPLY CURRENT < 400µA  
POLE 100 200 400  
Hz  
RELATED PARTS  
PART NUMBER  
LTC1043  
LTC1100  
LT1101  
DESCRIPTION  
Dual Precision Instrumentation Building Block  
COMMENTS  
Switched Capacitor, Rail-to-Rail Input, 120dB CMRR  
G = 10 or 100, V = 10µV, I = 50pA  
Precision Chopper-Stabilized Instrumentation Amplifier  
Precision, Micropower, Single Supply Instrumentation Amplifier  
High Speed, JFET Instrumentation Amplifier  
OS  
B
G = 10 or 100, I = 105µA  
S
LT1102  
G = 10 or 100, Slew Rate = 30V/µs  
Lower Noise than LT1168, e = 7.5nV/Hz  
LT1167  
Single Resistor Programmable Precision Instrumentation Amplifier  
N
1168f LT/TP 0800 4K • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY