LT1173CS8-5#TR [Linear]

LT1173 - Micropower DC/DC Converter Adjustable and Fixed 5V, 12V; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1173CS8-5#TR
型号: LT1173CS8-5#TR
厂家: Linear    Linear
描述:

LT1173 - Micropower DC/DC Converter Adjustable and Fixed 5V, 12V; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

开关 光电二极管
文件: 总16页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1173  
Micropower  
DC/DC Converter  
Adjustable and Fixed 5V, 12V  
U
EATURE  
S
DESCRIPTIO  
F
Operates at Supply Voltages From 2.0V to 30V  
Consumes Only 110µA Supply Current  
Works in Step-Up or Step-Down Mode  
Only Three External Components Required  
Low Battery Detector Comparator On-Chip  
User-Adjustable Current Limit  
Internal 1A Power Switch  
Fixed or Adjustable Output Voltage Versions  
Space Saving 8-Pin MiniDIP or SO8 Package  
The LT1173 is a versatile micropower DC-DC converter.  
The device requires only three external components to  
deliver a fixed output of 5V or 12V. Supply voltage ranges  
from2.0Vto12Vin step-upmodeandto30Vinstep-down  
mode. The LT1173 functions equally well in step-up, step-  
down or inverting applications.  
The LT1173 consumes just 110µA supply current at  
standby, making it ideal for applications where low quies-  
cent current is important. The device can deliver 5V at  
80mA from a 3V input in step-up mode or 5V at 200mA  
from a 12V input in step-down mode.  
O U  
PPLICATI  
S
A
Flash Memory Vpp Generators  
3V to 5V, 5V to 12V Converters  
9V to 5V, 12V to 5V Converters  
LCD Bias Generators  
Peripherals and Add-On Cards  
Battery Backup Supplies  
Laptop and Palmtop Computers  
Cellular Telephones  
Portable Instruments  
Switch current limit can be programmed with a single  
resistor. An auxiliary gain block can be configured as a low  
battery detector, linear post regulator, under voltage lock-  
out circuit or error amplifier.  
For input sources of less than 2V, use the LT1073.  
and LTC are registered trademarks and LT is a trademark of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI S  
Logic Controlled Flash Memory VPP Generator  
VPP Output  
L1*  
100µH  
1N5818  
12V  
100mA  
5V  
IN  
47Ω  
VOUT  
5V/DIV  
I
V
IN  
SW1  
LIM  
1.07M†  
0V  
SANYO  
+
+
LT1173  
OS-CON  
10µF  
µ
100  
F
FB  
SW2  
PROGRAM  
5V/DIV  
GND  
124k†  
5ms/DIV  
1173 TA02  
1N4148  
PROGRAM  
LT1173 • TA01  
*L1 = GOWANDA GA20-103K  
COILTRONICS CTX100-4  
EFFICIENCY = 81%  
= 1% METAL FILM  
NO OVERSHOOT  
1
LT1173  
W W W  
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
Supply Voltage (VIN) ................................................ 36V  
SW1 Pin Voltage (VSW1) .......................................... 50V  
SW2 Pin Voltage (VSW2) .............................0.5V to VIN  
Feedback Pin Voltage (LT1173) ................................. 5V  
Sense Pin Voltage (LT1173, -5, -12) ....................... 36V  
Maximum Power Dissipation ............................. 500mW  
Maximum Switch Current ....................................... 1.5A  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature, (Soldering, 10 sec.)................ 300°C  
TOP VIEW  
ORDER PART  
I
1
2
3
4
FB (SENSE)*  
8
7
6
5
LIM  
NUMBER  
V
IN  
SET  
AO  
LT1173CN8  
LT1173CN8-5  
LT1173CN8-12  
SW1  
SW2  
GND  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
*FIXED VERSIONS  
TJMAX = 90°C, θJA = 130°C/W  
TOP VIEW  
LT1173CS8  
LT1173CS8-5  
LT1173CS8-12  
I
1
2
3
4
8
7
6
5
FB (SENSE)*  
LIM  
V
IN  
SET  
AO  
Consult factory for Industrial and Military grade parts  
SW1  
SW2  
S8 PART MARKING  
GND  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
*FIXED VERSIONS  
1173  
11735  
117312  
TJMAX = 90°C, θJA = 150°C/W  
ELECTRICAL CHARACTERISTICS TA = 25°C, VIN = 3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
Switch Off  
No Load  
MIN  
TYP  
110  
135  
250  
MAX  
UNITS  
I
I
Quiescent Current  
150  
µA  
µA  
µA  
V
Q
Q
Quiescent Current, Boost  
Mode Configuration  
LT1173-5  
LT1173-12  
V
Input Voltage  
Step-Up Mode  
Step-Down Mode  
LT1173 (Note 1)  
LT1173-5 (Note 2)  
LT1173-12 (Note 2)  
LT1173  
2.0  
12.6  
30  
IN  
V
Comparator Trip Point Voltage  
Output Sense Voltage  
1.20  
4.75  
11.4  
1.245  
5.00  
12.0  
5
1.30  
5.25  
12.6  
10  
V
V
OUT  
V
V
Comparator Hysteresis  
Output Hysteresis  
mV  
mV  
mV  
kHz  
%
LT1173-5  
20  
40  
LT1173-12  
50  
100  
30  
f
t
Oscillator Frequency  
Duty Cycle  
18  
43  
17  
23  
OSC  
ON  
Full Load  
51  
59  
Switch ON Time  
I
tied to V  
22  
32  
µs  
nA  
nA  
V
LIM  
IN  
Feedback Pin Bias Current  
Set Pin Bias Current  
Gain Block Output Low  
Reference Line Regulation  
LT1173, V = 0V  
10  
50  
FB  
V
= V  
20  
100  
0.4  
0.4  
0.075  
0.65  
1.0  
1.4  
SET  
REF  
V
V
I
= 100µA, V = 1.00V  
0.15  
0.2  
0.02  
0.5  
0.8  
OL  
SINK  
SET  
2.0V V 5V  
%/V  
%/V  
V
IN  
5V V 30V  
IN  
SW  
Voltage, Step-Up Mode  
V
V
= 3.0V, I = 650mA  
SW  
SAT  
SAT  
IN  
IN  
= 5.0V, I = 1A  
V
SW  
V
2
LT1173  
ELECTRICAL CHARACTERISTICS T = 25°C, V  
IN = 3V, unless otherwise noted.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.5  
UNITS  
V
V
SAT  
SW Voltage, Step-Down Mode  
V
= 12V, I = 650mA  
1.1  
SAT  
IN  
SW  
1.7  
V
A
Gain Block Gain  
R = 100k(Note 3)  
400  
1000  
400  
V/V  
mA  
%/°C  
µA  
V
L
Current Limit  
220to I to V  
LIM IN  
Current Limit Temperature Coeff.  
Switch OFF Leakage Current  
Maximum Excursion Below GND  
0.3  
Measured at SW1 Pin  
10µA, Switch Off  
1
10  
V
SW2  
I
400  
350  
mV  
SW1  
The  
denotes the specifications which apply over the full operating  
Note 2: The output voltage waveform will exhibit a sawtooth shape due to  
the comparator hysteresis. The output voltage on the fixed output versions  
will always be within the specified range.  
temperature range.  
Note 1: This specification guarantees that both the high and low trip points  
Note 3: 100kresistor connected between a 5V source and the AO pin.  
of the comparator fall within the 1.20V to 1.30V range.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch ON Voltage  
Saturation Voltage Step-Up Mode  
(SW2 Pin Grounded)  
Step-Down Mode  
Maximum Switch Current vs  
RLIM Step-Up Mode  
(SW1 Pin Connected to VIN)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
2V V 5V  
IN  
V
= 3.0V  
IN  
V
= 5.0V  
V
= 2.0V  
IN  
IN  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
10  
100  
()  
1000  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
I
(A)  
R
I
(A)  
SWITCH  
LIM  
SWITCH  
LT1173 • TPC01  
LT1173 • TPC03  
LT1173 • TPC02  
Maximum Switch Current vs  
RLIM Step-Down Mode  
Set Pin Bias Current vs  
Temperature  
Feedback Pin Bias Current vs  
Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
20  
15  
10  
5
18  
16  
14  
V
= 5V  
OUT  
V
= 3V  
IN  
V
= 3V  
IN  
V
= 24V  
IN  
L = 500µH  
V
= 12V  
IN  
L = 250µH  
12  
10  
8
100  
1000  
–50 –25  
0
25  
TEMPERATURE (°C)  
50  
75  
–50 –25  
0
25  
TEMPERATURE (°C)  
50  
75 100  
125  
100 125  
R
()  
LIM  
LT1173 • TPC09  
LT1173 •TPC04  
LT1173 •TPC05  
3
LT1173  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Quiescent Current vs Temperature  
Supply Current vs Switch Current  
Oscillator Frequency  
26.0  
25.5  
120  
110  
100  
90  
50  
40  
30  
V
= 3V  
IN  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
V
= 5V  
IN  
20  
10  
0
V
= 2V  
IN  
–50 –25  
0
25  
50  
75 100 125  
0
200  
400  
600  
800  
1000  
0
5
10  
15  
(V)  
20  
25  
30  
TEMPERATURE (°C)  
SWITCH CURRENT (mA)  
V
IN  
LT1173 •TPC06  
LT1173 •TPC07  
LT1173 • TPC08  
U
O
U
U
PI  
FU CTI  
S
ILIM (Pin 1): Connect this pin to VIN for normal use. Where  
lower current limit is desired, connect a resistor between  
ILIM and VIN. A 220resistor will limit the switch current  
to approximately 400mA.  
GND (Pin 5): Ground.  
AO (Pin 6): Auxiliary Gain Block (GB) output. Open collec-  
tor, can sink 100µA.  
SET (Pin 7): GB input. GB is an op amp with positive input  
connected to SET pin and negative input connected to  
1.245V reference.  
VIN (Pin 2): Input supply voltage.  
SW1 (Pin 3): Collector of power transistor. For step-up  
mode connect to inductor/diode. For step-down mode  
connect to VIN.  
FB/SENSE (Pin 8): On the LT1173 (adjustable) this pin  
goes to the comparator input. On the LT1173-5 and  
LT1173-12, this pin goes to the internal application resis-  
tor that sets output voltage.  
SW2 (Pin 4): Emitter of power transistor. For step-up  
mode connect to ground. For step-down mode connect to  
inductor/diode. Thispinmustneverbeallowedtogomore  
than a Schottky diode drop below ground.  
W
BLOCK DIAGRA S  
LT1173  
LT1173-5, -12  
SET  
A2  
AO  
SET  
V
IN  
A2  
AO  
V
GAIN BLOCK/  
ERROR AMP  
IN  
I
LIM  
SW1  
GAIN BLOCK/  
ERROR AMP  
I
LIM  
SW1  
1.245V  
REFERENCE  
1.245V  
REFERENCE  
OSCILLATOR  
A1  
A1  
OSCILLATOR  
DRIVER  
COMPARATOR  
SENSE  
DRIVER  
SW2  
R2  
753kΩ  
COMPARATOR  
R1  
LT1173-5: R1 = 250kΩ  
LT1173-12: R1 = 87.4kΩ  
GND  
SW2  
GND  
FB  
LT1173 • BD01  
LT1173 • BD02  
4
LT1173  
U
O
I
LT1173 OPERAT  
The LT1173 is a gated oscillator switcher. This type archi-  
tecture has very low supply current because the switch is  
cycledonlywhenthefeedbackpinvoltagedropsbelowthe  
reference voltage. Circuit operation can best be under-  
stoodbyreferringtotheLT1173blockdiagram.Compara-  
tor A1 compares the feedback pin voltage with the 1.245V  
referencevoltage.Whenfeedbackdropsbelow1.245V, A1  
switches on the 24kHz oscillator. The driver amplifier  
boosts the signal level to drive the output NPN power  
switch. An adaptive base drive circuit senses switch  
current and provides just enough base drive to ensure  
switchsaturationwithoutoverdrivingtheswitch,resulting  
in higher efficiency. The switch cycling action raises the  
output voltage and feedback pin voltage. When the feed-  
back voltage is sufficient to trip A1, the oscillator is gated  
off.AsmallamountofhysteresisbuiltintoA1ensuresloop  
stability without external frequency compensation. When  
the comparator is low the oscillator and all high current  
circuitryisturned off, lowering device quiescent current  
to just 110µA, for the reference, A1 and A2.  
A2 is a versatile gain block that can serve as a low battery  
detector, a linear post regulator, or drive an under voltage  
lockout circuit. The negative input of A2 is internally  
connected to the 1.245V reference. A resistor divider from  
VIN to GND, with the mid-point connected to the SET pin  
provides the trip voltage in a low battery detector applica-  
tion.Thegainblockoutput(AO)cansink100µA(usea47k  
resistor pull-up to +5V). This line can signal a microcon-  
troller that the battery voltage has dropped below the  
preset level.  
A resistor connected between the ILIM pin and VIN sets  
maximum switch current. When the switch current ex-  
ceeds the set value, the switch cycle is prematurely  
terminated. If current limit is not used, ILIM should be tied  
directly to VIN. Propagation delay through the current limit  
circuitry is approximately 2µs.  
In step-up mode the switch emitter (SW2) is connected to  
ground and the switch collector (SW1) drives the induc-  
tor; in step-down mode the collector is connected to VIN  
and the emitter drives the inductor.  
The oscillator is set internally for 23µs ON time and 19µs  
OFF time, optimizing the device for circuits where VOUT  
and VIN differ by roughly a factor of 2. Examples include a  
3V to 5V step-up converter or a 9V to 5V step-down  
converter.  
The LT1173-5 and LT1173-12 are functionally identical to  
the LT1173. The -5 and -12 versions have on-chip voltage  
setting resistors for fixed 5V or 12V outputs. Pin 8 on the  
fixed versions should be connected to the output. No  
external resistors are needed.  
O U  
W U  
PPLICATI  
A
S I FOR ATIO  
Measuring Input Current at Zero or Light Load  
approach is required to measure the 100µA off-state and  
Obtaining meaningful numbers for quiescent current and  
efficiency at low output current involves understanding  
howtheLT1173operates. Atveryloworzeroloadcurrent,  
the device is idling for seconds at a time. When the output  
voltage falls enough to trip the comparator, the power  
switch comes on for a few cycles until the output voltage  
rises sufficiently to overcome the comparator hysteresis.  
When the power switch is on, inductor current builds up  
to hundreds of milliamperes. Ordinary digital multimeters  
are not capable of measuring average current because of  
bandwidth and dynamic range limitations. A different  
500mA on-state currents of the circuit.  
Quiescent current can be accurately measured using the  
circuit in Figure 1. VSET is set to the input voltage of the  
LT1173. The circuit must be “booted” by shorting V2 to  
VSET. After the LT1173 output voltage has settled, discon-  
nect the short. Input voltage is V2, and average input  
current can be calculated by this formula:  
V2 V1  
100Ω  
I
=
01  
( )  
IN  
5
LT1173  
O U  
S
W U  
I FOR ATIO  
PPLICATI  
A
1MΩ  
theinductiveeventsaddtotheinputvoltagetoproducethe  
output voltage. Power required from the inductor is deter-  
mined by  
+12V  
1µF*  
100Ω  
LT1173  
LTC1050  
+
PL = (VOUT + VD – VIN) (IOUT  
)
(02)  
CIRCUIT  
V1  
V2  
+
1000µF  
where VD is the diode drop (0.5V for a 1N5818 Schottky).  
Energy required by the inductor per cycle must be equal or  
greater than  
V
SET  
*NON-POLARIZED  
LT1173 • TA06  
Figure 1. Test Circuit Measures No Load Quiescent Current of  
LT1073 Converter  
P
L
03  
( )  
F
OSC  
Inductor Selection  
in order for the converter to regulate the output.  
A DC-DC converter operates by storing energy as mag-  
netic flux in an inductor core, and then switching this  
energy into the load. Since it is flux, not charge, that is  
stored, the output voltage can be higher, lower, or oppo-  
site in polarity to the input voltage by choosing an  
appropriate switching topology. To operate as an efficient  
energy transfer element, the inductor must fulfill three  
requirements. First, the inductance must be low enough  
for the inductor to store adequate energy under the worst  
case condition of minimum input voltage and switch ON  
time. The inductance must also be high enough so that  
maximum current ratings of the LT1173 and inductor are  
not exceeded at the other worst case condition of maxi-  
mum input voltage and ON time. Additionally, the inductor  
coremustbeabletostoretherequiredflux;i.e., itmustnot  
saturate. At power levels generally encountered with  
LT1173 based designs, small axial leaded units with  
saturation current ratings in the 300mA to 1A range  
(depending on application) are adequate. Lastly, the in-  
ductor must have sufficiently low DC resistance so that  
excessive power is not lost as heat in the windings. An  
additional consideration is Electro-Magnetic Interference  
(EMI). Toroid and pot core type inductors are recom-  
mended in applications where EMI must be kept to a  
minimum; for example, where there are sensitive analog  
circuitry or transducers nearby. Rod core types are a less  
expensive choice where EMI is not a problem.  
When the switch is closed, current in the inductor builds  
according to  
–R't  
L
V
R'  
IN  
I t =  
1– e  
04  
( )  
( )  
L
where R' is the sum of the switch equivalent resistance  
(0.8typical at 25°C) and the inductor DC resistance.  
WhenthedropacrosstheswitchissmallcomparedtoVIN,  
the simple lossless equation  
V
L
IN  
I t =  
t
05  
( )  
( )  
L
can be used. These equations assume that at t = 0,  
inductor current is zero. This situation is called “discon-  
tinuous mode operation” in switching regulator parlance.  
Setting “t” to the switch ON time from the LT1173 speci-  
fication table (typically 23µs) will yield iPEAK for a specific  
“L” and VIN. Once iPEAK is known, energy in the inductor at  
the end of the switch ON time can be calculated as  
1
2
2
E = Li  
06  
( )  
L
PEAK  
EL mustbegreaterthanPL/FOSC fortheconvertertodeliver  
the required power. For best efficiency iPEAK should be  
kept to 1A or less. Higher switch currents will cause  
excessive drop across the switch resulting in reduced  
efficiency. In general, switch current should be held to as  
low a value as possible in order to keep switch, diode and  
inductor losses at a minimum.  
Specifying a proper inductor for an application requires  
first establishing minimum and maximum input voltage,  
outputvoltage,andoutputcurrent.Ina step-upconverter,  
6
LT1173  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
As an example, suppose 9V at 50mA is to be generated  
from a 3V input. Recalling Equation 02,  
In the negative-to-positive case, the switch saturates and  
the 0.8switch ON resistance value given for Equation 04  
can be used. In both cases inductor design proceeds from  
Equation 03.  
PL = (9V + 0.5V – 3V) (50mA) = 325mW.  
Energy required from the inductor is  
(07)  
The step-down case is different than the preceeding three  
in that the inductor current flows through the load in a  
step-downtopology(Figure6).Currentthroughtheswitch  
shouldbelimitedto~650mAinstep-downmode. Thiscan  
beaccomplishedbyusingtheILIM pin. Withinputvoltages  
in the range of 12V to 25V, a 5V output at 300mA can be  
generated with a 220µH inductor and 100resistor in  
series with the ILIM pin. With a 20V to 30V input range, a  
470µH inductor should be used along with the 100Ω  
resistor.  
P
325mW  
24kHz  
L
=
= 13.5µJ.  
08  
( )  
F
OSC  
Pickingan inductor valueof100µH with 0.2DCR results  
in a peak switch current of  
–123µs  
100µH  
3V  
i
=
1– e  
= 616mA.  
09  
( )  
PEAK  
1Ω  
Substituting iPEAK into Equation 04 results in  
Capacitor Selection  
2
1
2
Selecting the right output capacitor is almost as important  
as selecting the right inductor. A poor choice for a filter  
capacitor can result in poor efficiency and/or high output  
ripple.Ordinaryaluminumelectrolytics,whileinexpensive  
andreadilyavailable, mayhaveunacceptablypoorequiva-  
lent series resistance (ESR) and ESL (inductance). There  
are low-ESR aluminum capacitors on the market specifi-  
cally designed for switch mode DC-DC converters which  
work much better than general-purpose units. Tantalum  
capacitors provide still better performance at more ex-  
pense. We recommend OS-CON capacitors from Sanyo  
Corporation (San Diego, CA). These units are physically  
quite small and have extremely low ESR. To illustrate,  
Figures 2, 3, and 4 show the output voltage of an LT1173  
based converter with three 100µF capacitors. The peak  
switch current is 500mA in all cases. Figure 2 shows a  
Sprague 501D, 25V aluminum capacitor. VOUT jumps by  
over 120mV when the switch turns off, followed by a drop  
in voltage as the inductor dumps into the capacitor. This  
worksouttobeanESRofover240m.Figure3showsthe  
same circuit, but with a Sprague 150D, 20V tantalum  
capacitor replacing the aluminum unit. Output jump is  
now about 35mV, corresponding to an ESR of 70m.  
Figure 4 shows the circuit with a 16V OS-CON unit. ESR is  
now only 20m.  
E = 100µH 0.616A = 19.0µJ.  
)(  
10  
(
)
( )  
L
Since 19µJ > 13.5µJ the 100µH inductor will work. This  
trial-and-error approach can be used to select the opti-  
mum inductor. Keep in mind the switch current maximum  
rating of 1.5A. If the calculated peak current exceeds this,  
consider using the LT1073. The 70% duty cycle of the  
LT1073 allows more energy per cycle to be stored in the  
inductor, resulting in more output power.  
An inductor’s energy storage capability is proportional to  
its physical size. If the size of the inductor is too large for  
a particular application, considerable size reduction is  
possible by using the LT1111. This device is pin compat-  
ible with the LT1173 but has a 72kHz oscillator, thereby  
reducing inductor and capacitor size requirements by a  
factor of three.  
For both positive-to-negative (Figure 7) and negative-to-  
positive configurations (Figure 8), all the output power  
must be generated by the inductor. In these cases  
PL = ( VOUT + VD) (IOUT).  
(11)  
In the positive-to-negative case, switch drop can be mod-  
eled as a 0.75V voltage source in series with a 0.65Ω  
resistor so that  
VL = VIN – 0.75V – IL (0.65).  
(12)  
7
LT1173  
PPLICATI  
O U  
W U  
A
S I FOR ATIO  
5µs/DIV  
5µs/DIV  
5µs/DIV  
LT1173 • TA07  
LT1173 • TA09  
LT1173 • TA08  
Figure 2. Aluminum  
Figure 3. Tantalum  
Figure 4. OS-CON  
In very low power applications where every microampere  
is important, leakage current of the capacitor must be  
considered. The OS-CON units do have leakage current in  
the 5µA to 10µA range. If the load is also in the microam-  
pere range, a leaky capacitor will noticeably decrease  
efficiency. In this type application tantalum capacitors are  
the best choice, with typical leakage currents in the 1µA to  
5µA range.  
Step-Up (Boost Mode) Operation  
A step-up DC-DC converter delivers an output voltage  
higher than the input voltage. Step-up converters are not  
short circuit protected since there is a DC path from input  
to output.  
The usual step-up configuration for the LT1173 is shown  
in Figure 5. The LT1173 first pulls SW1 low causing VIN –  
VCESAT toappearacrossL1. Acurrentthenbuilds up in L1.  
At the end of the switch ON time the current in L1 is1:  
Diode Selection  
Speed, forward drop, and leakage current are the three  
main considerations in selecting a catch diode for LT1173  
converters.Generalpurposerectifierssuchasthe1N4001  
are unsuitable for use in any switching regulator applica-  
tion. Although they are rated at 1A, the switching time of  
a1N4001isinthe10µs-50µsrange.Atbest,efficiencywill  
be severely compromised when these diodes are used; at  
worst,thecircuitmaynotworkatall.MostLT1173circuits  
will be well served by a 1N5818 Schottky diode. The  
combination of 500mV forward drop at 1A current, fast  
turn ON and turn OFF time, and 4µA to 10µA leakage  
current fit nicely with LT1173 requirements. At peak  
switch currents of 100mA or less, a 1N4148 signal diode  
may be used. This diode has leakage current in the 1nA-  
5nArangeat25°Candlowercostthana1N5818. (Youcan  
also use them to get your circuit up and running, but  
beware of destroying the diode at 1A switch currents.) In  
situations where the load is intermittent and the LT1173 is  
idling most of the time, battery life can sometimes be  
extended by using a silicon diode such as the 1N4933,  
which can handle 1A but has leakage current of less than  
1µA. Efficiency will decrease somewhat compared to a  
1N5818 while delivering power, but the lower idle current  
may be more important.  
V
IN  
i
=
t
13  
( )  
PEAK  
ON  
L
D1  
L1  
V
V
IN  
OUT  
R3*  
I
V
LIM  
IN  
SW1  
R2  
R1  
+
C1  
LT1173 FB  
GND  
SW2  
* = OPTIONAL  
LT1173 • TA10  
Figure 5. Step-Up Mode Hookup.  
Refer to Table 1 for Component Values  
Immediately after switch turn off, the SW1 voltage pin  
starts to rise because current cannot instantaneously stop  
flowing in L1. When the voltage reaches VOUT + VD, the  
inductor current flows through D1 into C1, increasing  
VOUT. This action is repeated as needed by the LT1173 to  
Note 1: This simple expression neglects the effect of switch and coil  
resistance. This is taken into account in the “Inductor Selection” section.  
8
LT1173  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
keep VFB at the internal reference voltage of 1.245V. R1  
and R2 set the output voltage according to the formula  
R3 programs switch current limit. This is especially im-  
portant in applications where the input varies over a wide  
range. Without R3, the switch stays on for a fixed time  
each cycle. Under certain conditions the current in L1 can  
build up to excessive levels, exceeding the switch rating  
and/or saturating the inductor. The 100resistor pro-  
grams the switch to turn off when the current reaches  
approximately 800mA. When using the LT1173 in step-  
down mode, output voltage should be limited to 6.2V or  
less. Higher output voltages can be accommodated by  
inserting a 1N5818 diode in series with the SW2 pin  
(anode connected to SW2).  
R2  
R1  
V
= 1+  
1.245V .  
14  
( )  
(
)
OUT  
Step-Down (Buck Mode) Operation  
A step-down DC-DC converter converts a higher voltage  
to a lower voltage. The usual hookup for an LT1173 based  
step-down converter is shown in Figure 6.  
V
IN  
R3  
100Ω  
Inverting Configurations  
+
I
V
IN  
SW1  
FB  
LIM  
C2  
The LT1173 can be configured as a positive-to-negative  
converter (Figure 7), or a negative-to-positive converter  
(Figure 8). In Figure 7, the arrangement is very similar to  
a step-down, except that the high side of the feedback is  
referred to ground. This level shifts the output negative.  
As in the step-down mode, D1 must be a Schottky  
diode, and VOUT should be less than 6.2V. More nega-  
tive output voltages can be accomodated as in the prior  
section.  
LT1173  
GND  
L1  
V
SW2  
OUT  
R2  
R1  
D1  
1N5818  
+
C1  
LT1173 • TA11  
Figure 6. Step-Down Mode Hookup  
+V  
IN  
Whentheswitchturnson, SW2 pullsuptoVINVSW. This  
puts a voltage across L1 equal to VIN – VSW – VOUT  
R3  
,
causing a current to build up in L1. At the end of the switch  
ON time, the current in L1 is equal to  
+
I
V
IN  
SW1  
FB  
LIM  
C2  
LT1173  
GND  
V
V V  
IN  
L1  
SW  
OUT  
i
=
t
.
ON  
15  
SW2  
( )  
PEAK  
L
R1  
R2  
D1  
1N5818  
+
C1  
When the switch turns off, the SW2 pin falls rapidly and  
actually goes below ground. D1 turns on when SW2  
reaches 0.4V below ground. D1 MUST BE A SCHOTTKY  
DIODE. The voltage at SW2 must never be allowed to go  
below0.5V. Asilicondiodesuchasthe1N4933willallow  
SW2togoto0.8V, causingpotentiallydestructivepower  
dissipation inside the LT1173. Output voltage is deter-  
mined by  
–V  
OUT  
LT1173 • F07  
Figure 7. Positive-to-Negative Converter  
In Figure 8, the input is negative while the output is  
positive. In this configuration, the magnitude of the input  
voltage can be higher or lower than the output voltage. A  
levelshift, providedbythePNPtransistor, suppliesproper  
polarity feedback information to the regulator.  
R2  
R1  
V
= 1+  
1.245V .  
16  
( )  
(
)
OUT  
9
LT1173  
O U  
S
W U  
I FOR ATIO  
PPLICATI  
A
D1  
L1  
+V  
OUT  
+
R1  
C1  
I
L
I
V
2N3906  
LIM  
IN  
SW1  
+
LT1173  
C2  
ON  
AO  
GND  
FB  
SW2  
SWITCH  
OFF  
LT1173 • TA14  
R2  
R1  
V
=
1.245V + 0.6V  
( R2)  
OUT  
Figure 9. No Current Limit Causes Large Inductor  
Current Build-Up  
–V  
LT1173 • TA13  
IN  
Figure 8. Negative-to-Positive Converter  
PROGRAMMED CURRENT LIMIT  
Using the ILIM Pin  
I
L
The LT1173 switch can be programmed to turn off at a set  
switch current, a feature not found on competing devices.  
This enables the input to vary over a wide range without  
exceeding the maximum switch rating or saturating the  
inductor. Consider the case where analysis shows the  
LT1173 must operate at an 800mA peak switch current  
witha2.0Vinput.IfVIN risesto4V,thepeakswitchcurrent  
will rise to 1.6A, exceeding the maximum switch current  
rating. With the proper resistor selected (see the “Maxi-  
mum Switch Current vs RLIM” characteristic), the switch  
current will be limited to 800mA, even if the input voltage  
increases.  
ON  
SWITCH  
OFF  
LT1173 • TA15  
Figure 10. Current Limit Keeps Inductor Current Under Control  
Figure 11 details current limit circuitry. Sense transistor  
Q1, whose base and emitter are paralleled with power  
switchQ2,isratioedsuchthatapproximately0.5%ofQ2’s  
collector current flows in Q1’s collector. This current is  
passed through internal 80resistor R1 and out through  
the ILIM pin. The value of the external resistor connected  
between ILIM and VIN sets the current limit. When suffi-  
cient switch current flows to develop a VBE across R1 +  
RLIM, Q3 turns on and injects current into the oscillator,  
turning off the switch. Delay through this circuitry is  
approximately 2µs. The current trip point becomes less  
accurate for switch ON times less than 4µs. Resistor  
values programming switch ON time for 2µs or less will  
cause spurious response in the switch circuitry although  
the device will still maintain output regulation.  
Another situation where the ILIM feature is useful occurs  
when the device goes into continuous mode operation.  
This occurs in step-up mode when  
V
+
V
1
OUT  
DIODE  
<
.
17  
( )  
V V  
1DC  
IN  
SW  
When the input and output voltages satisfy this relation-  
ship, inductor current does not go to zero during the  
switch OFF time. When the switch turns on again, the  
current ramp starts from the non-zero current level in the  
inductor just prior to switch turn on. As shown in Figure  
9, the inductor current increases to a high level before the  
comparator turns off the oscillator. This high current can  
cause excessive output ripple and requires oversizing the  
output capacitor and inductor. With the ILIM feature,  
however, the switch current turns off at a programmed  
level as shown in Figure 10, keeping output ripple to a  
minimum.  
R
I
LIM  
(EXTERNAL)  
LIM  
V
IN  
R1  
80Ω  
(INTERNAL)  
Q3  
SW1  
Q2  
DRIVER  
Q1  
OSCILLATOR  
SW2  
LT1173 • TA28  
Figure 11. LT1173 Current Limit Circuitry  
10  
LT1173  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
+5V  
Using the Gain Block  
V
IN  
The gain block (GB) on the LT1173 can be used as an error  
amplifier, lowbatterydetectororlinearpostregulator. The  
gain block itself is a very simple PNP input op amp with an  
open collector NPN output. The negative input of the gain  
block is tied internally to the 1.245V reference. The posi-  
tive input comes out on the SET pin.  
LT1173  
100k  
R1  
R2  
1.245V  
REF  
+
V
AO  
TO  
BAT  
PROCESSOR  
SET  
GND  
Arrangement of the gain block as a low battery detector is  
straightforward.Figure12showshookup.R1andR2need  
only be low enough in value so that the bias current of the  
SET input does not cause large errors. 100kfor R2 is  
adequate. R3 can be added to introduce a small amount of  
hysteresis. This will cause the gain block to “snap” when  
the trip point is reached. Values in the 1M-10M range are  
optimal. The addition of R3 will change the trip point,  
however.  
R3  
V
– 1.245V  
11.7µA  
= BATTERY TRIP POINT  
R2 = 100kΩ  
R3 = 4.7MΩ  
LB  
R1 =  
V
LB  
LT1173 • TA16  
Figure 12. Setting Low Battery Detector Trip Point  
Table 1. Component Selection for Common Converters  
INPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
OUTPUT  
CURRENT (MIN)  
CIRCUIT  
FIGURE  
INDUCTOR  
VALUE  
INDUCTOR  
PART NUMBER  
CAPACITOR  
VALUE  
NOTES  
2.0-3.1  
2.0-3.1  
2.0-3.1  
2.0-3.1  
5
5
5
90mA  
10mA  
50mA  
10mA  
90mA  
30mA  
50mA  
25mA  
50mA  
300mA  
300mA  
75mA  
250mA  
150mA  
75mA  
5
5
5
5
5
5
5
5
6
6
6
7
7
8
8
47µH  
220µH  
47µH  
G GA10-472K, C CTX50-1  
G GA10-223K, C CTX  
G GA10-472K, C CTX50-1  
G GA10-153K  
100µF  
22µF  
*
12  
12  
12  
12  
15  
30  
5
47µF  
*
150µH  
120µH  
150µH  
120µH  
100µH  
47µH  
22µF  
G GA10-123K  
100µF  
47µF  
5
G GA10-153K  
**  
5
G GA10-123K C CTX100-4  
G GA10-103K, C CTX100-4  
G GA10-472K, C CTX50-1  
G GA20-223K  
47µF  
5
10µF, 50V  
100µF  
220µF  
470µF  
100µF  
220µF  
220µF  
47µF  
6.5-9.5  
12-20  
20-30  
5
**  
**  
**  
**  
**  
5
220µH  
470µH  
100µH  
470µH  
100µH  
100µH  
5
G GA20-473K  
–5  
–5  
5
G GA10-103K, C CTX100-4  
G GA40-473K  
12  
–5  
G GA10-103K, C CTX100-4  
G GA10-103K, C CTX100-4  
–5  
12  
G = Gowanda  
C = Coiltronics  
* Add 68from I to V  
LIM  
IN  
** Add 100from I  
to V  
IN  
LIM  
11  
LT1173  
PPLICATI  
O U  
W U  
A
S I FOR ATIO  
Table 2. Inductor Manufacturers  
MANUFACTURER  
Table 3. Capacitor Manufacturers  
MANUFACTURER  
PART NUMBERS  
PART NUMBERS  
Gowanda Electronics Corporation  
1 Industrial Place  
Gowanda, NY 14070  
GA10 Series  
GA40 Series  
Sanyo Video Components  
2001 Sanyo Avenue  
San Diego, CA 92173  
619-661-6835  
OS-CON Series  
716-532-2234  
Caddell-Burns  
7300 Series  
6860 Series  
Nichicon America Corporation  
927 East State Parkway  
Schaumberg, IL 60173  
708-843-7500  
PL Series  
258 East Second Street  
Mineola, NY 11501  
516-746-2310  
Coiltronics International  
984 S.W. 13th Court  
Pompano Beach, FL 33069  
305-781-8900  
Custom Toroids  
Surface Mount  
Sprague Electric Company  
Lower Main Street  
Sanford, ME 04073  
207-324-4140  
150D Solid Tantalums  
550D Tantalex  
Renco Electronics Incorporated  
60 Jefryn Boulevard, East  
Deer Park, NY 11729  
800-645-5828  
RL1283  
RL1284  
U
O
TYPICAL APPLICATI S  
3V to –22V LCD Bias Generator  
L1*  
100µH  
1N4148  
R1  
100Ω  
2.21M  
1%  
I
V
LIM  
IN  
SW1  
2 X 1.5V  
CELLS  
LT1173  
3V  
FB  
GND  
SW2  
+
4.7µF  
0.1µF  
118k  
1%  
1N5818  
1N5818  
+
22µF  
220k  
* L1 = GOWANDA GA10-103K  
COILTRONICS CTX100-4  
–22V OUTPUT  
7mA AT 2.0V INPUT  
FOR 5V INPUT CHANGE R1 TO 47.  
70% EFFICIENCY  
CONVERTER WILL DELIVER –22V AT 40mA.  
LT1173 • TA19  
12  
LT1173  
U
O
TYPICAL APPLICATI S  
3V to 5V Step-Up Converter  
9V to 5V Step-Down Converter  
L1*  
100µH  
100Ω  
V
IN  
SW1  
I
LIM  
I
V
LIM  
IN  
SW1  
9V  
BATTERY  
LT1173-5  
2 X 1.5V  
CELLS  
1N5818  
LT1173-5  
SENSE  
SW2  
5V OUTPUT  
150mA AT 3V INPUT  
60mA AT 2V INPUT  
GND  
L1*  
47µH  
SENSE  
SW2  
5V OUTPUT  
GND  
+
150mA AT 9V INPUT  
50mA AT 6.5V INPUT  
100µF  
+
1N5818  
100µF  
* L1 = GOWANDA GA10-472K  
COILTRONICS CTX50-1  
FOR HIGHER OUTPUT CURRENTS SEE LT1073 DATASHEET  
* L1 = GOWANDA GA10-103K  
LT1173 • TA18  
COILTRONICS CTX100-1 (SURFACE MOUNT)  
LT1173 • TA17  
+5V to –5V Converter  
+20V to 5V Step-Down Converter  
+V  
IN  
5V INPUT  
+V  
IN  
12V-28V  
100Ω  
100Ω  
I
V
I
V
LIM  
IN  
LIM  
IN  
SW1  
SW1  
+
22µF  
LT1173-5  
LT1173-5  
SENSE  
SW2  
SENSE  
SW2  
GND  
GND  
L1*  
100µH  
L1*  
220µH  
5V OUTPUT  
300mA  
+
+
µ
1N5818  
100µF  
1N5818  
100  
F
–5V OUTPUT  
75mA  
* L1= GOWANDA GA10-103K  
COILTRONICS CTX100-1  
* L1 = GOWANDA GA20-223K  
LT1173 • TA21  
LT1173 • TA20  
Telecom Supply  
L1*  
500µH  
MUR110  
+5V  
100mA  
44mH  
~
+
+
47µF  
+
48V DC  
390kΩ  
220µF  
10V  
100V  
3.6MΩ  
~
44mH  
10k  
VN2222  
12V  
2N5400  
10nF  
*L1 = CTX110077  
IRF530  
I
= 120µA  
Q
100Ω  
1N4148  
15V  
I
V
IN  
LIM  
SW1  
+
10µF  
16V  
1N965B  
LT1173  
FB  
GND  
SW2  
110kΩ  
LT1173 • TA22  
13  
LT1173  
U
O
TYPICAL APPLICATI S  
“5 to 5” Step-Up or Step-Down Converter  
L1*  
100µH  
1N5818  
SI9405DY  
+5V  
OUTPUT  
56Ω  
1
2
470k  
75k  
I
V
LIM  
IN  
SW1  
3
6
8
4 X NICAD  
+
+
7
OR  
SET LT1173 AO  
470µF  
470µF  
ALKALINE  
CELLS  
FB  
+
GND  
5
SW2  
4
240Ω  
470µF  
24k  
*L1 = COILTRONICS CTX100-4  
GOWANDA GA20-103K  
V
OUT  
= 2.6V TO 7.2V  
= 5V AT 100mA  
IN  
LT1173 • TA23  
V
2V to 5V at 300mA Step-Up Converter with Under Voltage Lockout  
L1*  
20µH, 5A  
1N5820  
47k  
100k  
2.2M  
220  
I
V
IN  
LIM  
100k  
100  
2N3906  
SW1  
2N4403  
AO  
LT1173  
2 X NICAD  
+5V OUTPUT  
300mA  
301k  
SET  
GND  
FB  
LOCKOUT AT  
1.85V INPUT  
SW2  
5Ω  
+
100µF  
OS-CON  
MJE200  
100k  
100k  
47Ω  
*L1 = COILTRONICS CTX-20-5-52  
1% METAL FILM  
LT1173 • TA24  
14  
LT1173  
U
O
TYPICAL APPLICATI S  
Voltage Controlled Positive-to-Negative Converter  
L1*  
50µH, 2.5A  
0.22  
MJE210  
V
IN  
5V-12V  
+
100µF  
–V  
1N5818  
1N5820  
220  
= –5.13 • V  
OUT  
C
2W MAXIMUM OUTPUT  
V
I
LIM  
IN  
150  
V
200k  
SW1  
IN  
39k  
+
LT1173  
V
(0V TO 5V)  
C
LT1006  
FB  
SW2  
GND  
LT1173 • TA25  
* L1 = GOWANDA GT10-101  
High Power, Low Quiescent Current Step-Down Converter  
L1*  
25µH, 2A  
0.22Ω  
MTM20P08  
V
5V  
500mA  
IN  
7V-24V  
18V  
1W  
+
1N5818  
2k  
51Ω  
1N5820  
470µF  
2N3904  
100Ω  
1/2W  
V
I
LIM  
IN  
SW1  
1N4148  
LT1173  
121k  
FB  
SW2  
GND  
40.2k  
* L1 = GOWANDA GT10-100  
EFFICIENCY 80% FOR 10mA I  
500mA  
LOAD  
STANDBY I 150µA  
Q
OPERATE STANDBY  
LT1173 • TA26  
2 Cell Powered Neon Light Flasher  
0.02µF  
L1*  
470µH  
1N4148  
1N4148  
1N4148  
95V REGULATED  
I
V
LIM  
IN  
SW1  
0.02µF  
0.02µF  
3V  
LT1173  
100M  
FB  
NE-2  
BLINKS AT  
0.5Hz  
GND  
SW2  
0.68µF  
200V  
1.3M  
3.3M  
LT1173 • TA27  
*TOKO 262LYF-0100K  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1173  
U
PACKAGE DESCRIPTIO Dimensions in inches (milimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0694  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTURSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0294  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
LT/GP 0894 2K REV B • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1994  
Linear Technology Corporation  
16  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY