LT1185CQ#PBF [Linear]

LT1185 - Low Dropout Regulator; Package: DD PAK; Pins: 5; Temperature Range: 0°C to 70°C;
LT1185CQ#PBF
型号: LT1185CQ#PBF
厂家: Linear    Linear
描述:

LT1185 - Low Dropout Regulator; Package: DD PAK; Pins: 5; Temperature Range: 0°C to 70°C

稳压器
文件: 总26页 (文件大小:537K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3015 Series  
1.5A, Low Noise,  
Negative Linear Regulator  
with Precision Current Limit  
FEATURES  
DESCRIPTION  
The LT®3015 series are low noise, low dropout, negative  
linear regulators with fast transient response. The devices  
supply up to 1.5A of output current at a typical dropout  
voltage of 310mV. Operating quiescent current is typically  
1.1mA and drops to < 1µA in shutdown. Quiescent current  
is also well controlled in dropout. In addition to fast tran-  
sient response, the LT3015 series exhibit very low output  
noise, making them ideal for noise sensitive applications.  
n
Output Current: 1.5A  
n
Dropout Voltage: 310mV  
n
Precision Current Limit with Foldback  
Low Output Noise: 60µV  
Low Quiescent Current: 1.1mA  
Precision Positive or Negative Shutdown Logic  
Fast Transient Response  
Wide Input Voltage Range: –1.8V to –30V  
Adjustable Output Voltage Range: –1.22V to –29.3V  
Fixed Output Voltages: –2.5V, 3V, 3.3V, 5V, 12V, 15V  
Controlled Quiescent Current in Dropout  
<1µA Quiescent Current in Shutdown  
Stable with 10µF Output Capacitor  
Stable with Ceramic, Tantalum or Aluminum Capacitors  
Thermal Limit with Hysteresis  
Reverse Output Protection  
n
(10Hz to 100kHz)  
RMS  
n
n
n
n
n
n
n
n
n
n
n
n
n
The LT3015 regulators are stable with a minimum 10µF  
output capacitor. Moreover, the regulator can use small  
ceramic capacitors without the necessary addition of ESR  
as is common with other regulators. Internal protection  
circuitryincludesreverseoutputprotection,precisioncur-  
rent limit with foldback and thermal limit with hysteresis.  
The LT3015 regulators are available in fixed output volt-  
ages of –2.5V, 3V, 3.3V, 5V, 12V and –15V and as an  
adjustable device with a –1.22V reference voltage. Pack-  
ages include the 5-lead TO-220 and DD-Pak, a thermally  
enhanced 12-lead MSOP and the low profile (0.75 mm)  
8-lead 3mm × 3mm DFN.  
5-Lead TO-220 and DD-Pak, Thermally Enhanced  
12-Lead MSOP and 8-Lead 3mm × 3mm × 0.75mm  
DFN Packages  
APPLICATIONS  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Post-Regulator for Switching Supplies  
n
Negative Logic Supplies  
n
Low Noise Instrumentation  
Industrial Supplies  
Negative Complement to the LT1963A  
n
n
Dropout Voltage  
TYPICAL APPLICATION  
450  
T
= 25°C  
J
–5V, 1.5A, Low Noise Regulator  
400  
350  
300  
250  
200  
150  
100  
50  
GND  
DD-PAK/TO-220  
LT3015-5  
10µF  
10µF  
SHDN  
SENSE  
DFN/MSOP  
V
V
OUT  
–5V  
–1.5A  
IN  
IN  
OUT  
–5.5V TO  
–30V  
3015 TA01  
0
0
–0.2 –0.4 –0.6 –0.8 –1.0 –1.2 –1.4 –1.6  
LOAD CURRENT (A)  
3015 TA01a  
3015fb  
1
LT3015 Series  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
SHDN Pin Voltage  
IN Pin Voltage ......................................................... 33V  
OUT Pin Voltage (Note 10)...................................... 33V  
OUT to IN Differential Voltage (Note 10) ........–0.3V, 33V  
SENSE Pin Voltage  
(with Respect to IN Pin) (Note 10) .................–0.3V, 33V  
ADJ Pin Voltage  
(with Respect to IN Pin) (Note 10) .................–0.3V, 33V  
SHDN Pin Voltage  
(with Respect to IN Pin) (Note 10) .................–0.3V, 55V  
(with Respect to GND Pin) ..............................–33V, 22V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Junction Temperature Range (Note 9)  
E-, I-Grade ........................................ –40°C to 125°C  
MP-Grade ......................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10Sec)  
MS12E Package................................................300°C  
Q, T Packages...................................................250°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
IN  
IN  
IN  
12 OUT  
11 OUT  
10 OUT  
IN  
IN  
1
2
3
4
8
7
6
5
OUT  
OUT  
13  
IN  
9
IN  
IN  
9
8
7
OUT  
SENSE/ADJ*  
GND  
SHDN  
GND  
SENSE/ADJ*  
GND  
SHDN  
GND  
MSE PACKAGE  
DD PACKAGE  
12-LEAD PLASTIC MSOP  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX  
= 125°C, q = 37°C/W, q = 10°C/W  
JA JC  
T
= 125°C, q = 40°C/W, q = 7.5°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 13) IS IN, MUST BE SOLDERED TO PCB  
*PIN 8 = SENSE FOR LT3015-2.5/-3/-3.3/-5/-12/-15  
*PIN 8 = ADJ FOR LT3015  
EXPOSED PAD (PIN 9) IS IN, MUST BE SOLDERED TO PCB  
*PIN 6 = SENSE FOR LT3015-2.5/-3/-3.3/-5/-12/-15  
*PIN 6 = ADJ FOR LT3015  
FRONT VIEW  
FRONT VIEW  
5
4
3
2
1
OUT  
5
4
3
2
1
OUT  
SENSE/ADJ*  
IN  
SENSE/ADJ*  
IN  
TAB IS IN  
TAB IS IN  
GND  
GND  
SHDN  
SHDN  
Q PACKAGE  
5-LEAD PLASTIC DD-PAK  
T PACKAGE  
5-LEAD PLASTIC TO-220  
T
= 125°C, q = 14°C/W, q = 3°C/W  
T
= 125°C, q = 50°C/W, q = 3°C/W  
JMAX JA JC  
JMAX  
JA  
JC  
*PIN 4 = SENSE FOR LT3015-2.5/-3/-3.3/-5/-12/-15  
*PIN 4 = ADJ FOR LT3015  
*PIN 4 = SENSE FOR LT3015-2.5/-3/-3.3/-5/-12/-15  
*PIN 4 = ADJ FOR LT3015  
3015fb  
2
LT3015 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LFXS  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
LT3015EDD#PBF  
LT3015EDD#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
LT3015IDD#PBF  
LT3015IDD#TRPBF  
LFXS  
LT3015EDD-2.5#PBF  
LT3015IDD-2.5#PBF  
LT3015EDD-3#PBF  
LT3015IDD-3#PBF  
LT3015EDD-2.5#TRPBF  
LT3015IDD-2.5#TRPBF  
LT3015EDD-3#TRPBF  
LT3015IDD-3#TRPBF  
LT3015EDD-3.3#TRPBF  
LT3015IDD-3.3#TRPBF  
LT3015EDD-5#TRPBF  
LT3015IDD-5#TRPBF  
LT3015EDD-12#TRPBF  
LT3015IDD-12#TRPBF  
LT3015EDD-15#TRPBF  
LT3015IDD-15#TRPBF  
LT3015EMSE#TRPBF  
LT3015IMSE#TRPBF  
LGDJ  
LGDJ  
LGDK  
LGDK  
LT3015EDD-3.3#PBF  
LT3015IDD-3.3#PBF  
LT3015EDD-5#PBF  
LT3015IDD-5#PBF  
LGDM  
LGDM  
LGDN  
LGDN  
LT3015EDD-12#PBF  
LT3015IDD-12#PBF  
LT3015EDD-15#PBF  
LT3015IDD-15#PBF  
LT3015EMSE#PBF  
LGDP  
LGDP  
LGDQ  
LGDQ  
3015  
LT3015IMSE#PBF  
3015  
12-Lead Plastic MSOP  
LT3015MPMSE#PBF  
LT3015EMSE-2.5#PBF  
LT3015IMSE-2.5#PBF  
LT3015MPMSE-2.5#PBF  
LT3015EMSE-3#PBF  
LT3015IMSE-3#PBF  
LT3015MPMSE-3#PBF  
LT3015EMSE-3.3#PBF  
LT3015IMSE-3.3#PBF  
LT3015MPMSE-3.3#PBF  
LT3015EMSE-5#PBF  
LT3015IMSE-5#PBF  
LT3015MPMSE-5#PBF  
LT3015EMSE-12#PBF  
LT3015IMSE-12#PBF  
LT3015MPMSE-12#PBF  
LT3015EMSE-15#PBF  
LT3015IMSE-15#PBF  
LT3015MPMSE-15#PBF  
LT3015MPMSE#TRPBF  
LT3015EMSE-2.5#TRPBF  
LT3015IMSE-2.5#TRPBF  
LT3015MPMSE-2.5#TRPBF  
LT3015EMSE-3#TRPBF  
LT3015IMSE-3#TRPBF  
LT3015MPMSE-3#TRPBF  
LT3015EMSE-3.3#TRPBF  
LT3015IMSE-3.3#TRPBF  
LT3015MPMSE-3.3#TRPBF  
LT3015EMSE-5#TRPBF  
LT3015IMSE-5#TRPBF  
LT3015MPMSE-5#TRPBF  
LT3015EMSE-12#TRPBF  
LT3015IMSE-12#TRPBF  
LT3015MPMSE-12#TRPBF  
LT3015EMSE-15#TRPBF  
LT3015IMSE-15#TRPBF  
LT3015MPMSE-15#TRPBF  
3015  
12-Lead Plastic MSOP  
301525  
301525  
301525  
30153  
30153  
30153  
301533  
301533  
301533  
30155  
30155  
30155  
301512  
301512  
301512  
301515  
301515  
301515  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
3015fb  
3
LT3015 Series  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LT3015Q  
PACKAGE DESCRIPTION  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic DD-Pak  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
5-Lead Plastic TO-220  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT3015EQ#PBF  
LT3015EQ#TRPBF  
LT3015IQ#PBF  
LT3015IQ#TRPBF  
LT3015Q  
LT3015MPQ#PBF  
LT3015EQ-2.5#PBF  
LT3015IQ-2.5#PBF  
LT3015MPQ-2.5#PBF  
LT3015EQ-3#PBF  
LT3015IQ-3#PBF  
LT3015MPQ-3#PBF  
LT3015EQ-3.3#PBF  
LT3015IQ-3.3#PBF  
LT3015MPQ-3.3#PBF  
LT3015EQ-5#PBF  
LT3015IQ-5#PBF  
LT3015MPQ-5#PBF  
LT3015EQ-12#PBF  
LT3015IQ-12#PBF  
LT3015MPQ-12#PBF  
LT3015EQ-15#PBF  
LT3015IQ-15#PBF  
LT3015MPQ-15#PBF  
LT3015ET#PBF  
LT3015MPQ#TRPBF  
LT3015EQ-2.5#TRPBF  
LT3015IQ-2.5#TRPBF  
LT3015MPQ-2.5#TRPBF  
LT3015EQ-3#TRPBF  
LT3015IQ-3#TRPBF  
LT3015MPQ-3#TRPBF  
LT3015EQ-3.3#TRPBF  
LT3015IQ-3.3#TRPBF  
LT3015MPQ-3.3#TRPBF  
LT3015EQ-5#TRPBF  
LT3015IQ-5#TRPBF  
LT3015MPQ-5#TRPBF  
LT3015EQ-12#TRPBF  
LT3015IQ-12#TRPBF  
LT3015MPQ-12#TRPBF  
LT3015EQ-15#TRPBF  
LT3015IQ-15#TRPBF  
LT3015MPQ-15#TRPBF  
LT3015ET#TRPBF  
LT3015Q  
LT3015Q-2.5  
LT3015Q-2.5  
LT3015Q-2.5  
LT3015Q-3  
LT3015Q-3  
LT3015Q-3  
LT3015Q-3.3  
LT3015Q-3.3  
LT3015Q-3.3  
LT3015Q-5  
LT3015Q-5  
LT3015Q-5  
LT3015Q-12  
LT3015Q-12  
LT3015Q-12  
LT3015Q-15  
LT3015Q-15  
LT3015Q-15  
LT3015T  
LT3015IT#PBF  
LT3015IT#TRPBF  
LT3015T  
LT3015ET-2.5#PBF  
LT3015IT-2.5#PBF  
LT3015ET-3#PBF  
LT3015IT-3#PBF  
LT3015ET-2.5#TRPBF  
LT3015IT-2.5#TRPBF  
LT3015ET-3#TRPBF  
LT3015IT-3#TRPBF  
LT3015ET-3.3#TRPBF  
LT3015IT-3.3#TRPBF  
LT3015ET-5#TRPBF  
LT3015IT-5#TRPBF  
LT3015ET-12#TRPBF  
LT3015IT-12#TRPBF  
LT3015ET-15#TRPBF  
LT3015IT-15#TRPBF  
LT3015T-2.5  
LT3015T-2.5  
LT3015T-3  
LT3015T-3  
LT3015ET-3.3#PBF  
LT3015IT-3.3#PBF  
LT3015ET-5#PBF  
LT3015IT-5#PBF  
LT3015T-3.3  
LT3015T-3.3  
LT3015T-5  
LT3015T-5  
LT3015ET-12#PBF  
LT3015IT-12#PBF  
LT3015ET-15#PBF  
LT3015IT-15#PBF  
LT3015T-12  
LT3015T-12  
LT3015T-15  
LT3015T-15  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3015fb  
4
LT3015 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum IN Pin Voltage  
(Notes 2, 12)  
I
I
= –0.5A  
= –1.5A  
–1.8  
–1.8  
V
V
LOAD  
LOAD  
l
–2.3  
Regulated Output Voltage (Note 3) LT3015-2.5: V = –3.0V, I  
= –1mA  
LOAD  
–2.475  
–2.45  
–2.97  
–2.94  
–3.267  
–3.234  
–4.95  
–4.9  
–11.88  
–11.76  
–14.85  
–14.7  
–2.5  
–2.5  
–3  
–2.525  
–2.55  
–3.03  
–3.06  
–3.333  
–3.366  
–5.05  
–5.1  
–12.12  
–12.24  
–15.15  
–15.3  
V
V
V
V
V
V
V
V
V
V
V
V
IN  
l
l
l
l
l
l
LT3015-2.5: –30V < V < –3.5V, 1.5A < I  
< –1mA  
IN  
LOAD  
LOAD  
LOAD  
LT3015-3: V = –3.5, I  
= –1mA  
IN  
LT3015-3: –30V < V < –4 V, 1.5A < I  
< –1mA  
–3  
IN  
LOAD  
LT3015-3.3: V = –3.8, I  
= –1mA  
–3.3  
–3.3  
–5  
IN  
LOAD  
LT3015-3.3: –30V < V < –4.3V, 1.5A < I  
< –1mA  
IN  
LOAD  
LT3015-5: V = –5.5, I  
= –1mA  
IN  
LT3015-5: –30V < V < –6V, 1.5A < I  
< –1mA  
LOAD  
–5  
IN  
LT3015-12: V = –12.5, I  
= –1mA  
–12  
–12  
–15  
–15  
IN  
LOAD  
LT3015-12: –30V < V < –13V, 1.5A < I  
< –1mA  
< –1mA  
IN  
LOAD  
LOAD  
LT3015-15: V = –15.5, I  
= –1mA  
IN  
LOAD  
LT3015-15: –30V < V < –16V, 1.5A < I  
IN  
ADJ Pin Voltage (Notes 2, 3)  
Line Regulation  
LT3015: V = –2.3V, I  
= –1mA  
LOAD  
–1.208 –1.22 –1.232  
–1.196 –1.22 –1.244  
V
V
IN  
l
LT3015: –30V < V < –2.3V, 1.5A < I  
< –1mA  
LOAD  
IN  
l
l
l
l
l
l
l
LT3015-2.5: ∆V = –3.0V to –30V, I  
= –1mA  
LOAD  
4
4.5  
5
12  
15  
16  
20  
27  
27  
6
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LT3015-3: ∆V = –3.5V to –30V, I  
= –1mA  
LOAD  
IN  
LT3015-3.3: ∆V = –3.8V to –30V, I  
= –1mA  
LOAD  
IN  
LT3015-5: ∆V = –5.5V to –30V, I  
= –1mA  
LOAD  
5.5  
9
IN  
LT3015-12: ∆V = –12.5V to –30V, I  
= –1mA  
= –1mA  
IN  
LOAD  
LOAD  
LT3015-15: ∆V = –15.5V to –30V, I  
9
IN  
LT3015: ∆V = –2.3V to –30V, I  
= –1mA (Note 2)  
LOAD  
2.5  
IN  
Load Regulation  
LT3015-2.5: V = –3.5V, I  
= –1mA to –1.5A  
= –1mA to –1.5A  
3
6
18  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IN  
LOAD  
LOAD  
= –1mA to –1.5A  
= –1mA to –1.5A  
l
l
l
l
l
l
l
LT3015-2.5: V = –3.5V, I  
IN  
LT3015-3: V = –4V, I  
4
7.5  
23  
IN  
LOAD  
LOAD  
LT3015-3: V = –4V, I  
IN  
LT3015-3.3: V = –4.3V, I  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A  
= –1mA to –1.5A (Note 2)  
= –1mA to –1.5A (Note 2)  
5
10.5  
25  
IN  
LOAD  
LOAD  
LT3015-3.3: V = –4.3V, I  
IN  
LT3015-5: V = –6V, I  
5.5  
13  
16  
2
10.5  
26  
IN  
LOAD  
LOAD  
LT3015-5: V = –6V, I  
IN  
LT3015-12: V = –13V, I  
25  
IN  
LOAD  
LOAD  
LOAD  
LOAD  
LT3015-12: V = –13V, I  
62  
IN  
LT3015-15: V = –16V, I  
30  
IN  
LT3015-15: V = –16V, I  
73  
IN  
LT3015: V = –2.3V, I  
3.8  
9
IN  
LOAD  
LOAD  
LT3015: V = –2.3V, I  
IN  
Dropout Voltage  
= V  
I
I
I
I
I
I
I
I
I
I
I
I
= –1mA  
0.055  
0.1  
0.095  
0.16  
0.16  
0.24  
0.23  
0.32  
0.27  
0.39  
0.39  
0.5  
V
V
V
V
V
V
V
V
V
V
V
V
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
l
l
l
l
l
l
V
(Notes 4, 5)  
OUT(NOMINAL)  
= –1mA  
IN  
= –100mA  
= –100mA  
= –500mA (DFN/MSOP)  
= –500mA (DFN/MSOP)  
= –500mA (DD-PAK/TO-220)  
= –500mA (DD-PAK/TO-220)  
= –1.5A (DFN/MSOP)  
= –1.5A (DFN/MSOP)  
= –1.5A (DD-PAK/TO-220)  
= –1.5A (DD-PAK/TO-220)  
0.17  
0.2  
0.31  
0.41  
0.51  
0.68  
l
l
l
l
l
GND Pin Current  
= V  
I
I
I
I
I
= 0mA  
1.1  
1.15  
2.9  
9.5  
35  
2.4  
2.5  
7
23  
70  
mA  
mA  
mA  
mA  
mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
(Notes 4, 6)  
OUT(NOMINAL)  
= –1mA  
= –100mA  
= –500mA  
= –1.5A  
IN  
Output Voltage Noise (Note 2)  
LT3015: C  
= 10µF, I  
= –1.5A, BW = 10Hz to 100kHz, V  
= –1.22V  
60  
µV  
RMS  
OUT  
LOAD  
OUT  
l
SENSE Pin Bias Current (Note 13) LT3015-2.5/-3/-3.3/-5/-12/-15  
70  
100  
130  
µA  
3015fb  
5
LT3015 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADJ Pin Bias Current (Notes 2, 7) LT3015: V = –2.3V  
–200  
30  
200  
nA  
IN  
l
l
l
l
Shutdown Threshold (Note 11)  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= Off-to-On (Positive)  
= Off-to-On (Negative)  
= On-to-Off (Positive)  
= On-to-Off (Negative)  
1.07  
–1.34  
0.5  
1.21  
–1.2  
1.35  
V
V
V
V
–1.06  
0.73  
–0.73  
–0.5  
l
l
l
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
V
SHDN  
= 0V  
= 15V  
= –15V  
–1  
0
1
µA  
µA  
µA  
17  
27  
–2.8  
–4.5  
l
Quiescent Current in Shutdown  
Ripple Rejection  
V
= –6V, V  
= 0V  
SHDN  
0.01  
6
µA  
IN  
LT3015-2.5: V = –4V (Avg)  
52  
52  
51  
48  
43  
40  
55  
62  
62  
61  
58  
53  
50  
65  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
IN  
V
= 0.5V  
,
LT3015-3: V = –4.5V (Avg)  
IN  
RIPPLE P-P  
= 120Hz,  
RIPPLE  
f
I
LT3015-3.3: V = –4.8V (Avg)  
IN  
= –1.5A  
LT3015-5: V = –6.5V (Avg)  
LOAD  
IN  
IN  
IN  
LT3015-12: V = –13.5V (Avg)  
LT3015-15: V = –16.5V (Avg)  
LT3015: V = –2.5V (Avg) (Note 2)  
IN  
l
l
l
Current Limit (Note 14)  
V
= –2.3V, V  
= 0V  
OUT  
1.7  
1.7  
1.7  
2
2
2
2.3  
2.3  
2.3  
A
A
A
IN  
LT3015-2.5/-3/-3.3/-5/-12/-15: V = V  
– 1V, V  
= –5%  
IN  
OUT(NOMINAL)  
OUT  
LT3015: V = –2.3V, V  
= 0.1V  
OUT  
IN  
l
l
Input Reverse Leakage Current  
LT3015-2.5/-3/-3.3/-5/-12/-15: V = 30V, V , V , V  
= Open Circuit  
4
5.5  
1.7  
mA  
mA  
IN  
OUT ADJ SHDN  
LT3015: V = 30V, V , VADJ, V = Open Circuit  
SHDN  
1.55  
IN  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3015 adjustable version is tested and specified for these  
conditions with the ADJ pin connected to the OUT pin.  
Note 3: Maximum junction temperature limits operating conditions. The  
regulated output voltage specification does not apply for all possible  
combinations of input voltage and output current, especially due to the  
current limit foldback which starts to decrease current limit at about  
Note 8: Positive SHDN pin current flows into the SHDN pin.  
Note 9: The LT3015 is tested and specified under pulsed load conditions  
such that T T . The LT3015E is guaranteed to meet performance  
specifications from 0°C to 125°C junction temperature. Specifications over  
the –40°C to 125°C operating temperature range are assured by design,  
characterization, and correlation with statistical process controls. The  
LT3015I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT3015MP is 100% tested and guaranteed over  
the full –55°C to 125°C operating junction temperature range.  
Note 10: Parasitic diodes exist internally between the OUT, ADJ, SHDN  
pins and the IN pin. Do not drive the OUT, ADJ, and SHDN pins more that  
0.3V below the IN pin during fault conditions, and these pins must remain  
at a voltage more positive than IN during normal operation.  
J
A
|V – V | = 8V. If operating at maximum output current, limit the input  
IN  
OUT  
voltage range. If operating at maximum input voltage, limit the output  
current range.  
Note 4: To satisfy minimum input voltage requirements, the LT3015 is  
tested and specified for these conditions with an external resistor divider  
(54.9k top, 49.9k bottom) for an output voltage of –2.56V. The external  
resistor adds 25μA of DC load on the output.  
Note 5: Dropout voltage is the minimum input-to-output voltage  
differential needed to maintain regulation at a specified output current. In  
Note 11: The SHDN threshold must be met to ensure device operation.  
Note 12: For LT3015, the minimum input voltage refers to the lowest  
input voltage before the parts goes out of regulation. For the fixed voltage  
versions of LT3015, the minimum input voltage refers to the lowest input  
voltage before the part can no longer sink 1.5A; for proper regulation, the  
dropout voltage requirements must be met.  
Note 13: Sense pin current flows out of the pin.  
Note 14: The current limit circuit incorporates foldback that decreases  
dropout, the output voltage is: V + V  
.
IN  
DROPOUT  
Note 6: GND pin current is tested with V = V  
and a current  
IN  
OUT(NOMINAL)  
source load. Therefore, the device is tested while operating in dropout.  
This is the worst-case GND pin current. GND pin current decreases slightly  
at higher input voltages.  
current limit for |V – V | ≥ 8V. Some level of output current is  
IN  
OUT  
provided at all V – V  
Performance Characteristics graph for Current Limit vs V – V  
differential voltages. Please consult the Typical  
IN  
OUT  
.
OUT  
IN  
Note 7: Positive ADJ pin bias current flows into the ADJ pin.  
3015fb  
6
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Typical Dropout Voltage  
(DFN/MSOP)  
Guaranteed Dropout Voltage  
(DFN/MSOP)  
Dropout Voltage (DFN/MSOP)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
L
= –1.5A  
T 125°C  
J
T 25°C  
J
I
= –0.5A  
L
I
L
= –0.1A  
125°C  
25°C  
–40°C  
–55°C  
I
= –1mA  
L
= TEST POINTS  
0
0
0
–0.2 –0.4 –0.6 –0.8 –1 –1.2 –1.4 –1.6  
OUTPUT CURRENT (A)  
0
–0.2 –0.4 –0.6 –0.8 –1 –1.2 –1.4 –1.6  
OUTPUT CURRENT (A)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3015 G01  
3015 G02  
3015 G03  
Typical Dropout Voltage  
(DD-PAK/TO-220)  
Guaranteed Dropout Voltage  
(DD-PAK/TO-220)  
Dropout Voltage (DD-PAK/TO-220)  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
I
= –1.5A  
= –0.5A  
T 125°C  
J
L
L
I
T 25°C  
J
I
L
= –0.1A  
125°C  
25°C  
–40°C  
–55°C  
I
= –1mA  
L
= TEST POINTS  
0
–0.2 –0.4 –0.6 –0.8 –1 –1.2 –1.4 –1.6  
OUTPUT CURRENT (A)  
0
–0.2 –0.4 –0.6 –0.8 –1 –1.2 –1.4 –1.6  
OUTPUT CURRENT (A)  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
3015 G04  
3015 G05  
3015 G06  
Quiescent Current  
LT3015-2.5/-3/-3.3/-5/-12/-15  
LT3015  
LT3015 ADJ Pin Voltage  
LT3015-2.5 Output Voltage  
–1.4  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
–1.244  
–1.238  
–1.232  
–1.226  
–1.220  
–1.214  
–1.208  
–1.202  
–1.196  
–1.192  
–2.55  
–2.54  
–2.53  
–2.52  
–2.51  
–2.50  
–2.49  
–2.48  
–2.47  
–2.46  
–2.45  
V
I
= –3V  
= –1mA  
V
I
= –2.3V  
IN  
L
IN  
L
= –1mA  
V
V
= –6V (LT3015/-2.5/-3/-3.3/-5)  
= –16V (LT3015-12/-15)  
IN  
IN  
L
L
R
R
= 120kΩ, I = –10µA (LT3015)  
L
= ∞, I = –0µA  
L
(LT3015-2.5/-3/-3.3/-5/-12/-15)  
V
= 0V  
SHDN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3015 G07  
3015 G09  
3015 G08  
3015fb  
7
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LT3015-3 Output Voltage  
LT3015-3.3 Output Voltage  
LT3015-5 Output Voltage  
–3.060  
–3.048  
–3.036  
–3.024  
–3.012  
–3.000  
–2.988  
–2.976  
–2.964  
–2.952  
–2.940  
–3.366  
–3.354  
–3.342  
–3.330  
–3.318  
–3.306  
–3.294  
–3.282  
–3.270  
–3.258  
–3.246  
–3.234  
–5.10  
–5.08  
–5.06  
–5.04  
–5.02  
–5.00  
–4.98  
–4.96  
–4.94  
–4.92  
–4.90  
V
L
= –3.5V  
V
L
= –3.8V  
= –1mA  
V
L
= –5.5V  
IN  
IN  
IN  
I
= –1mA  
I
I = –1mA  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3015 G10  
3015 G11  
3015 G12  
LT3015-12 Output Voltage  
LT3015-15 Output Voltage  
LT3015 Quiescent Current  
–12.24  
–12.20  
–12.16  
–12.12  
–12.08  
–12.04  
–12.02  
–12.00  
–11.96  
–11.92  
–11.88  
–11.84  
–11.80  
–11.76  
–15.30  
–15.25  
–15.20  
–15.15  
–15.10  
–15.05  
–15.00  
–14.95  
–14.90  
–14.85  
–14.80  
–14.75  
–14.70  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
V
I
= –12.5V  
= –1mA  
V
I
= –15.5V  
IN  
L
IN  
L
V
= V  
IN  
= –1mA  
SHDN  
T = 25°C  
J
V
= –1.22V  
OUT  
R
= 121kΩ  
L
V
= 0V  
SHDN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3015 G13  
3015 G14  
3015 G15  
LT3015-2.5 Quiescent Current  
LT3015-3 Quiescent Current  
LT3015-3.3 Quiescent Current  
–2.4  
–2.0  
–1.6  
–1.2  
–0.8  
–0.4  
0
–2.4  
–2.1  
–1.8  
–1.5  
–1.2  
–0.9  
–0.6  
–0.3  
0
–2.4  
–2.1  
–1.8  
–1.5  
–1.2  
–0.9  
–0.6  
–0.3  
0
T = 25°C  
T = 25°C  
T = 25°C  
J
J
J
V
= –2.5V  
V
= –3V  
V
= –3.3V  
OUT  
OUT  
OUT  
R
= ∞  
R
= ∞  
R = ∞  
L
L
L
V
= V  
IN  
SHDN  
V
= V  
IN  
SHDN  
V
= V  
IN  
SHDN  
V
= 0V  
V
= 0V  
V
= 0V  
SHDN  
SHDN  
SHDN  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3015 G16  
3015 G17  
3015 G18  
3015fb  
8
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LT3015-5 Quiescent Current  
LT3015-12 Quiescent Current  
LT3015-15 Quiescent Current  
–2.4  
–2.1  
–1.8  
–1.5  
–1.2  
–0.9  
–0.6  
–0.3  
0
–2.4  
–2.1  
–1.8  
–1.5  
–1.2  
–0.9  
–0.6  
–0.3  
0
–2.4  
–2.1  
–1.8  
–1.5  
–1.2  
–0.9  
–0.6  
–0.3  
0
T = 25°C  
T = 25°C  
T = 25°C  
J
J
J
V
= –5V  
V
= –12V  
V
= –15V  
OUT  
OUT  
OUT  
R
= ∞  
R
= ∞  
R = ∞  
L
L
L
V
= V  
V
= V  
IN  
SHDN  
IN  
SHDN  
V
= V  
IN  
SHDN  
V
= 0V  
V
= 0V  
V
= 0V  
SHDN  
SHDN  
SHDN  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3015 G19  
3015 G20  
3015 G21  
LT3015 GND Pin Current  
LT3015-2.5 GND Pin Current  
LT3015-3 GND Pin Current  
–25  
–20  
–15  
–10  
–5  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
T = 25°C  
T = 25°C  
J
T = 25°C  
J
J
V
= V  
V
= V  
V
= V  
SHDN  
IN  
SHDN  
IN  
= –3V  
SHDN  
IN  
*FOR V  
= –2.5V  
*FOR V  
*FOR V  
= –1.22V  
OUT  
OUT  
OUT  
R
L
= 1.67Ω  
R
L
= 2Ω  
L
L
I
= –1.5A*  
I
= –1.5A*  
R = 30Ω  
L
R
= 0.81Ω  
L
= –1.5A*  
I
L
R
L
= 25Ω  
L
I
= –0.1A*  
I = –0.1A*  
L
R
L
= 2.4Ω  
L
R
= 1.2kΩ  
L
I
= –0.5A*  
I
= –1mA*  
L
R
L
= 5Ω  
R = 2.5kΩ  
L
I = –1mA*  
L
L
R = 6Ω  
L
I = –0.5A*  
L
R
I
= 3kΩ  
L
L
R
L
= 12Ω  
I
= –0.5A*  
L
= –1mA*  
I
= –0.1A*  
0
0
0
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3015 G22  
3015 G23  
3015 G24  
LT3015-3.3 GND Pin Current  
LT3015-5 GND Pin Current  
LT3015-12 GND Pin Current  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
T = 25°C  
T = 25°C  
T = 25°C  
SHDN  
J
J
J
V
= V  
V
= V  
V
= V  
SHDN  
IN  
SHDN  
IN  
= –5V  
IN  
*FOR V  
= –3.3V  
*FOR V  
*FOR V  
= –12V  
OUT  
OUT  
OUT  
R
L
= 2.2Ω  
L
R
L
= 8Ω  
L
I
= –1.5A*  
I
= –1.5A*  
R
L
= 3.33Ω  
L
R = 50Ω  
L
I = –0.1A*  
L
R
L
L
= 33Ω  
I
= –1.5A*  
R
= 12kΩ  
L
I
= –0.1A*  
R
L
= 120Ω  
I = –1mA*  
L
L
I
= –0.1A*  
R
L
= 10Ω  
R
I
= 24Ω  
L
L
L
R
L
= 6.6Ω  
R
L
= 3.3kΩ  
R = 5kΩ  
L
I = –1mA*  
L
L
L
I
= –0.5A*  
= –0.5A*  
I
= –0.5A*  
I
= –1mA*  
0
0
0
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3015 G25  
3015 G26  
3015 G27  
3015fb  
9
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LT3015-15 GND Pin Current  
GND Pin Current vs ILOAD  
Positive SHDN Pin Thresholds  
–50  
–45  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T = 25°C  
SHDN  
V
V
= –2.3V  
OUT  
J
IN  
TURN ON THRESHOLD  
V
= V  
= –1.22V  
IN  
*FOR V  
= –15V  
OUT  
T = –55°C  
J
R
L
= 10Ω  
L
T = –40°C  
J
I
= –1.5A*  
TURN OFF THRESHOLD  
R
L
= 150Ω  
L
I
= –0.1A*  
R
L
= 15kΩ  
L
R
L
= 30Ω  
L
I
= –1mA*  
I
= –0.5A*  
T = 25°C  
J
T = 125°C  
J
V
= –2.3V  
IN  
0
0
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
0.0 –0.2 –0.4 –0.6 –0.8 –1.0 –1.2 –1.4 –1.6  
–75 –50 –25  
0
25 50 75 100 125 150 175  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
3015 G28  
3015 G29  
3015 G30  
Negative SHDN Pin Thresholds  
SHDN Pin Input Current  
SHDN Pin Input Current  
–1.4  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
25  
20  
15  
10  
5
24  
21  
18  
15  
12  
9
V
IN  
= –15V  
V
= –30V  
IN  
TURN ON THRESHOLD  
POSITIVE CURRENT FLOWS  
INTO THE PIN  
POSITIVE CURRENT FLOWS  
INTO THE PIN  
V
SHDN  
= 15V  
TURN OFF THRESHOLD  
6
3
0
0
125°C  
25°C  
V
= –15V  
SHDN  
–5  
–10  
–3  
–6  
–55°C  
V
= –2.3V  
IN  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
3015 G31  
3015 G32  
3015 G33  
ADJ Pin Bias Current  
ADJ Pin Bias Current  
Line Regulation  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
–20.0  
–17.5  
–15.0  
–12.5  
–10.0  
–7.5  
LT3015  
LT3015-5  
LT3015-12  
LT3015-15  
LT3015-2.5  
LT3015-3  
LT3015-3.3  
0
–50  
–100  
–150  
–200  
–5.0  
V
= –2.3V  
T = 25°C  
J
IN  
–2.5  
POSITIVE CURRENT FLOWS  
INTO THE PIN  
POSITIVE CURRENT FLOWS  
INTO THE PIN  
0.0  
–75 –50 –25  
0
25 50 75 100 125 150 175  
0
–3 –6 –9 –12 –15 –18 –21 –24 –27 –30  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
–0.5V TO –30V  
OUT(NOMINAL)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3015 G34  
3015 G35  
3015 G36  
∆V = V  
IN  
(LT3015-2.5/-3/-3.3/-5/-12/-15)  
∆V = –2.3V TO –30V (LT3015)  
IN  
I = –1mA  
L
3015fb  
10  
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Load Regulation  
Current Limit vs VIN –VOUT  
Current Limit vs Temperature  
–2.2  
–2.0  
–1.8  
–1.6  
–1.4  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0.0  
–2.2  
–2.0  
–1.8  
–1.6  
–1.4  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0.0  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
LT3015  
LT3015-5  
LT3015-12  
LT3015-15  
125°C  
25°C  
LT3015-2.5  
LT3015-3  
LT3015-3.3  
–55°C  
V
V
= –2.3V  
= 0V  
IN  
OUT  
V
= 0V  
–5  
OUT  
0
–10  
–15  
–20  
–25  
–30  
–75 –50 –25  
0
25 50 75 100 125 150 175  
–75 –50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
–1V  
OUT(NOMINAL)  
INPUT/OUTPUT DIFFERENTIAL (V)  
TEMPERATURE (°C)  
3015 G39  
3015 G37  
3015 G38  
V
= V  
IN  
(LT3015-2.5/-3/-3.3/-5/-12/-15)  
V
= –2.3V (LT3015)  
IN  
∆I = –1mA TO –1.5A  
L
LT3015 Input Ripple Rejection  
LT3015 Input Ripple Rejection  
Ripple Rejection vs Temperature  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
C
C
C
= 47µF, C = 10nF  
FF  
OUT  
OUT  
OUT  
= 10µF, C = 10nF  
FF  
C
= 47µF  
OUT  
= 10µF, C = 0  
FF  
C
= 10µF  
OUT  
T = 25°C  
J
T = 25°C  
J
I = –1.5A  
L
I = –1.5A  
I = –1.5A  
L
L
V
V
= –1.22V  
V
OUT  
V
= –1.22V  
V
= –5V  
OUT  
OUT  
IN  
= –2.7V + 0.5V RIPPLE AT f = 120Hz  
= –2.7V + 50V  
RIPPLE  
V
IN  
= –6.5V + 50V  
RIPPLE  
RMS  
P-P  
IN  
RMS  
10  
100  
1k  
10k  
100k  
1M  
10M  
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
3015 G41  
3015 G42  
3015 G40  
RMS Output Noise  
vs Load Current  
Minimum Input Voltage  
Output Noise Spectral Density  
–2.2  
–2.0  
–1.8  
–1.6  
–1.4  
–1.2  
–1.0  
–0.8  
–0.6  
–0.4  
–0.2  
0
10  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
C
= 10µF  
LT3015  
LT3015-2.5  
LT3015-5  
LT3015-12  
LT3015-15  
LT3015-15  
OUT  
f = 10Hz TO 100kHz  
= 100µA  
I
FB-DIVIDER  
I = –1.5A  
L
I = –1mA  
L
LT3015-12  
V
= –5V  
OUT  
1
C
= 0  
FF  
V
C
= –5V  
= 10nF  
OUT  
FF  
LT3015-2.5  
V
= –1.22V  
OUT  
V
= V  
IN  
SHDN  
0.1  
0
–75 –50 –25  
0
25 50 75 100 125 150 175  
10  
100  
= 10µF  
1k  
FREQUENCY (Hz)  
10k  
100k  
–1m  
–10m  
–100m  
–1  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
3015 G43  
3015 G45  
3015 G44  
C
OUT  
NOISE AT V  
NOISE AT V  
NOISE AT V  
NOISE AT V  
NOISE AT V  
= –1.22V  
= –5V, C = 0  
= –5V, C = 100pF  
= –5V, C = 1nF  
OUT  
OUT  
OUT  
OUT  
OUT  
I = –1.5A  
L
FF  
FF  
FF  
FF  
I
= 100µA  
FB-DIVIDER  
= –5V, C = 10nF  
3015fb  
11  
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
RMS Output Noise  
LT3015 10Hz to 100kHz Output  
Noise  
LT3015 10Hz to 100kHz Output  
Noise, CFF = 0  
vs Feedforward Capacitor (CFF)  
250  
225  
200  
175  
150  
125  
100  
75  
I = –1.5A  
L
C
= 10µF  
OUT  
f = 10Hz TO 100kHz  
I
= 100µA  
T = 25°C  
J
FB-DIVIDER  
V
V
OUT  
200µV/DIV  
OUT  
100µV/DIV  
V
= –5V  
OUT  
V
= –1.22V  
100p  
OUT  
50  
25  
0
3015 G48  
3015 G47  
C
V
I
= 10µF  
= –5V  
= –1.5A  
1ms/DIV  
C
V
I
= 10µF  
= –1.22V  
= –1.5A  
1ms/DIV  
10p  
1n  
10n  
100n  
1µ  
OUT  
OUT  
OUT  
OUT  
FEEDFORWARD CAPACITANCE, C (F)  
FF  
L
L
3015 G46  
C
= 0  
FF  
SHDN Transient Response,  
IL = –5mA, CFF = 0  
SHDN Transient Response,  
IL = –1.5A, CFF = 0  
LT3015 10Hz to 100kHz Output  
Noise, CFF = 10nF  
V
V
SHDN  
1V/DIV  
SHDN  
1V/DIV  
V
OUT  
200µV/DIV  
V
OUT  
2V/DIV  
= 3.3Ω  
R
L
V
OUT  
2V/DIV  
R
= 1kΩ  
L
3015 G50  
3015 G51  
3015 G49  
C
V
C
= 10µF  
= –5V  
= 0  
25ms/DIV  
C
V
C
= 10µF  
= –5V  
= 0  
250µs/DIV  
C
V
I
= 10µF  
= –5V  
= –1.5A  
1ms/DIV  
OUT  
OUT  
FF  
OUT  
OUT  
FF  
OUT  
OUT  
L
C
= 10nF  
FF  
SHDN Transient Response,  
IL = –1.5A, CFF = 10nF  
LT3015 Transient Response,  
COUT = 10µF  
Start-Up Time vs CFF  
100  
10  
I = –1.5A  
L
V
= –12V  
OUT  
I
= 100µA  
FB-DIVIDER  
T = 25°C  
J
V
SHDN  
1V/DIV  
V
OUT  
100mV/DIV  
V
= –15V  
OUT  
1.0  
0.1  
V
= –5V  
OUT  
V
OUT  
I
2V/DIV  
= 3.3Ω  
OUT  
V
= –3V  
OUT  
1A/DIV  
R
L
0.01  
V
= –1.22V  
OUT  
0.001  
3015 G52  
3015 G54  
100p  
1n  
10n  
100n  
C
V
C
= 10µF  
= –5V  
= 10nF  
250µs/DIV  
C
V
V
= 10µF  
= –1.22V  
= –3V  
25µs/DIV  
OUT  
OUT  
FF  
OUT  
OUT  
IN  
FEEDFORWARD CAPACITOR, C (F)  
FF  
3015 G53  
∆I  
= –50mA TO –1.5A  
OUT  
3015fb  
12  
LT3015 Series  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LT3015 Transient Response,  
COUT = 47µF  
LT3015 Transient Response,  
CFF = 0, COUT = 10µF  
V
V
OUT  
100mV/DIV  
OUT  
100mV/DIV  
I
OUT  
1A/DIV  
I
OUT  
1A/DIV  
3015 G55  
3015 G56  
C
V
V
= 47µF  
= –1.22V  
= –3V  
25µs/DIV  
C
V
V
C
= 10µF  
= –5V  
25µs/DIV  
OUT  
OUT  
IN  
OUT  
OUT  
IN  
FF  
= –6.5V  
= 0  
∆I  
= –50mA TO –1.5A  
OUT  
I
= 100µA  
FB-DIVIDER  
∆I  
= –50mA TO –1.5A  
OUT  
LT3015 Transient Response,  
CFF = 10nF, COUT = 10µF  
LT3015 Transient Response,  
CFF = 10nF, COUT = 47µF  
V
OUT  
V
100mV/DIV  
OUT  
100mV/DIV  
I
OUT  
I
1A/DIV  
OUT  
1A/DIV  
3015 G57  
C
V
V
C
= 10µF  
= –5V  
25µs/DIV  
OUT  
OUT  
IN  
FF  
3015 G58  
C
V
V
C
= 47µF  
= –5V  
= –6.5V  
= 10nF  
25µs/DIV  
OUT  
OUT  
IN  
FF  
= –6.5V  
= 10nF  
I
= 100µA  
FB-DIVIDER  
I = 100µA  
∆I  
= –50mA TO –1.5A  
FB-DIVIDER  
OUT  
∆I  
= –50mA TO –1.5A  
OUT  
3015fb  
13  
LT3015 Series  
PIN FUNCTIONS (DFN/MSOP/Q/T)  
IN (Pins 1, 2, Exposed Pad Pin 9 / 1, 2, 3, 4, Exposed  
Pad Pin 13 / 3, Tab / 3, Tab ): Input. These pins supply  
powertotheregulator. TheTaboftheDD-Pak, TO-220and  
the exposed backside pad of the DFN and MSOP packages  
is an electrical connection to IN and to the device’s sub-  
strate. For proper electrical and thermal performance, tie  
all IN pins together and tie IN to the exposed backside or  
Tab of the relevant package on the PCB. See the Applica-  
tions Information Section for thermal considerations and  
calculating junction temperature. The LT3015 requires  
a bypass capacitor at IN. In general, a battery’s output  
impedance rises with frequency, so include a bypass ca-  
pacitor in battery powered applications. An input bypass  
capacitor in the range of 1µF to 10µF generally suffices,  
but applications with large load transients may require  
higher input capacitance to prevent input supply droop  
and prevent the regulator from entering dropout.  
It has a typical bias current of 30nA that flows into the  
pin. The ADJ pin reference voltage is –1.22ꢁ referred to  
GND, and the output voltage range is –1.22ꢁ to –29.5. A  
parasitic substrate diode exists between ADJ and IN of the  
LT3015.Therefore,donotdriveADJmorethan0.3below  
IN during normal operation or during a fault condition.  
SENSE (Pin 6 / 8 / 4 / 4): Sense. For the fixed voltage ver-  
sions of the LT3015 (LT3015-2.5/LT3015-3/LT3015-3.3/  
LT3015-5/LT3015-12/LT3015-15),theSENSEpinconnects  
to the non-inverting input of the error amplifier through  
an internal resistor divider network. Optimum regulation  
is obtained when the SENSE pin is connected to the OUT  
pin of the regulator. In critical applications, small voltage  
drops are caused by the resistance (R ) of PCB traces  
P
between the regulator and the load. These drops can be  
eliminated by connecting the SENSE pin to the output at  
the load as shown in Figure 1 (Kelvin Sense Connection).  
Note that the voltage drop across the external PCB traces  
will add to the dropout voltage of the regulator. The SENSE  
pin bias current is 100µA at the nominal output voltage. A  
parasiticdiodeexistsbetweenSENSEandINoftheLT3015.  
Therefore, do not drive SENSE more than 0.3ꢁ below IN  
during normal operation or during a fault condition.  
SHDN (Pin 3 / 5 / 1 / 1): Shutdown. Use the SHDN pin to  
put the LT3015 into a micropower shutdown state. The  
SHDN function is bi-directional, allowing use of either  
positive or negative logic. The SHDN pin threshold volt-  
ages are referenced to GND. The output of the LT3015 is  
OFF if the SHDN pin is pulled typically within 0.ꢀ3ꢁ of  
GND. Driving the SHDN pin typically more than 1.21ꢁ  
turns the LT3015 ON. Drive the SHDN pin with either a  
logicgateorwithopencollector/drainlogicusingapull-up  
resistor. The resistor supplies the pull-up current of the  
opencollector/draingate,typicallyseveralmicroamperes.  
The typical SHDN pin current is 2.8µA out of the pin (for  
negative logic) or 1ꢀµA into the pin (for positive logic). If  
the SHDN function is unused, connect the SHDN pin to  
OUT (Pins 7, 8 / 9, 10, 11, 12 / 5 / 5): Output. These  
pins supply power to the load. Tie all OUT pins together  
for best performance. Use a minimum output capacitor  
of 10µF with an ESR less than 500mΩ to prevent oscil-  
lations. Large load transient applications require larger  
output capacitors to limit peak voltage transients. See  
theApplicationsInformationsectionformoreinformation  
on output capacitance. A parasitic substrate diode exists  
betweenOUTandINoftheLT3015. Therefore, donotdrive  
OUT more than 0.3ꢁ below IN during normal operation or  
during a fault condition.  
ꢁ to turn the device ON. If the SHDN pin is floated, then  
IN  
the LT3015 is OFF. A parasitic diode exists between SHDN  
and IN of the LT3015. Therefore, do not drive the SHDN  
pin more than 0.3ꢁ below IN during normal operation or  
during a fault condition. The SHDN pin can also be used  
to set a programmable undervoltage lockout (UꢁLO)  
threshold for the regulator input supply.  
R
P
GND  
LT3015-XX  
GND (Pins 4, 5 / 6, 7 / 2 / 2): Ground. Tie all GND pin(s)  
together and tie the bottom of the output voltage setting  
resistor divider directly to the GND pin(s) for optimum  
load regulation performance.  
LOAD  
SHDN  
SENSE  
OUT  
V
IN  
R
P
IN  
ADJ (Pin 6 / 8 / 4 / 4): Adjust. For the adjustable voltage  
version,thispinistheerroramplifier’snon-invertinginput.  
3015 F01  
Figure 1. Kelvin Sense Connection  
3015fb  
14  
LT3015 Series  
BLOCK DIAGRAM  
SENSE  
R2*  
OUT  
*SEE TABLE 1 FOR  
NOMINAL VALUES  
OF R1 AND R2  
ADJ  
V
REF  
1.21V  
_
+
ERROR AMP  
+
R1*  
QPOWER  
NPN DRIVER  
SHDN  
BIAS CIRCUITRY  
+
I LIMIT AMP  
+
R
SNS  
V
–1.20V  
TH  
+
ADJ PIN BIAS CURRENT  
COMPENSATION  
I LIMIT FOLDBACK  
GND  
IN  
3015 BD  
APPLICATIONS INFORMATION  
The LT3015 series are 1.5A negative low dropout linear  
regulators featuring precision current limit and precision  
bi-directional shutdown. The device supplies up to 1.5A  
of output load current at a typical dropout voltage of  
310mꢁ. Moreover, the low 1.1mA operating quiescent  
current drops to less than 1µA in shutdown. In addition  
to low quiescent current, the LT3015 incorporates several  
protection features that make it ideal for battery powered  
applications. In dual supply applications where the regu-  
lator’s load is returned to a positive supply, OUT can be  
pulled above GND by 30ꢁ and still allow the LT3015 to  
start up and operate.  
GND  
LT3015  
C
R1  
R2  
IN  
V
C
IN  
OUT  
SHDN  
ADJ  
V
OUT  
IN  
OUT  
3015 F02  
R2  
R1  
( )  
R2  
)
ADJ  
OUT = –1.22ꢁ 1+  
+ I  
(
ADJ = –1.22ꢁ ANDIADJ = 30nA AT 25°C  
OUTPUT RANGE = –1.22 TO 29.5ꢁ  
Figure 2. Adjustable Operation  
Adjustable Operation  
is zero. Curves of ADJ Pin ꢁoltage vs Temperature, ADJ  
Pin Bias Current vs Temperature and ADJ Pin Bias Cur-  
rent vs Input ꢁoltage appear in the Typical Performance  
Characteristics section.  
The LT3015 adjustable version has an output voltage  
range of –1.22ꢁ to –29.3. Output voltage is set by the  
ratio of two external resistors as shown in Figure 2. The  
deviceregulatestheoutputtomaintaintheADJpinvoltage  
to –1.22ꢁ referred to ground. The current in R1 equals  
–1.22ꢁ/R1 and the current in R2 equals the current in R1  
plus the ADJ pin bias current. The ADJ pin bias current,  
30nA at 25°C, flows into the ADJ pin. Calculate the output  
voltage using the formula shown in Figure 1. The value  
of R1 should be less than 50k to minimize errors in the  
output voltage created by the ADJ pin bias current. Note  
that in shutdown, the output is off and the divider current  
The adjustable device is tested and specified with the  
ADJ pin tied to the OUT pin for a –1.22ꢁ output voltage.  
Specifications for output voltages greater than –1.22ꢁ are  
proportional to the ratio of the desired ꢁ  
to –1.22ꢁ  
OUT  
(ꢁ /–1.22ꢁ). For example, load regulation for an out-  
OUT  
put current change of –1mA to –1.5A is typically 2mꢁ at  
OUT  
= –1.22. At ꢁ  
= –5, load regulation equals:  
OUT  
ꢀ (–5V/–1.22V)ꢀ•ꢀ(2mV)ꢀ=ꢀ8.2mV  
3015fb  
15  
LT3015 Series  
APPLICATIONS INFORMATION  
Table 1 shows 1% resistor divider values for some com-  
mon output voltages with a resistor divider current of  
approximately 100µA.  
to –1.22ꢁ output voltage performance regardless of the  
chosen output voltage (see Transient Response and Output  
Noise in the Typical Performance Characteristics section).  
It is important to note that the start-up time is affected by  
theuseofafeedforwardcapacitor. Start-uptimeisdirectly  
proportional to the size of the feedforward capacitor and  
the output voltage, and is inversely proportional to the  
feedback resistor divider current. In particular, it slows  
to 860µs with a 10nF feedforward capacitor and a 10µF  
output capacitor for an output voltage set to –5ꢁ by a  
100µA feedback resistor divider current.  
Table 1. Output Voltage Resistor Divider Values  
VOUT  
(V)  
R1  
(kΩ)  
R2  
(kΩ)  
–2.5  
12.1  
12.1  
12.1  
12.1  
12.1  
12.4  
12.ꢀ  
1ꢀ.8  
20.5  
3ꢀ.4  
10ꢀ  
–3.0  
–3.3  
–5.0  
–12.0  
–15.0  
140  
GND  
Feedforward Capacitance: Output Voltage Noise,  
Transient Performance, and PSRR  
C
C
OUT  
R1  
R2  
IN  
LT3015  
The LT3015 regulators provide low output voltage noise  
over the 10Hz to 100kHz bandwidth while operating at  
full load current. Output voltage noise is approximately  
240nꢁ/√Hzoverthisfrequencywhileoperatinginunity-gain  
configuration. For higher output voltages (using a resistor  
divider), the output voltage noise gains up accordingly. To  
lower the output voltage noise for higher output voltages,  
SHDN  
ADJ  
OUT  
V
C
FF  
IN  
V
IN  
OUT  
3015 F03  
C
I
≥ 10nF/100µA • I  
FB-DIVIDER  
FF  
= V /(R1+R2)  
FB-DIVIDER  
OUT  
Figure 3. Feedforward Capacitor for Fast Transient  
Response, Low Noise, and High PSRR  
include a feedforward capacitor (C ) from ꢁ  
to ꢁ  
.
FF  
OUT  
ADJ  
A good quality, low leakage, capacitor is recommended.  
Thiscapacitorbypassestheresistordividernetworkathigh  
frequencies; and hence, reduces the output noise. With  
the use of a 10nF feedforward capacitor, the output noise  
Output Capacitance and Transient Performance  
The LT3015 regulators are stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. Use a mini-  
mum output capacitor of 10µF with an ESR of 500mΩ or  
less to prevent oscillations. The LT3015’s load transient  
response is a function of output capacitance. Larger val-  
ues of output capacitance decrease the peak deviations  
and provide improved transient response for larger load  
current changes.  
decreases from 220µꢁ  
to ꢀ0µꢁ  
when the output  
RMS  
RMS  
voltage is set to –5ꢁ by a 100µA feedback resistor divider.  
Higher values of output voltage noise are often measured  
if care is not exercised with regard to circuit layout and  
testing. Crosstalk from nearby traces induces unwanted  
noise onto the LT3015’s output. Moreover, power supply  
ripple rejection (PSRR) must also be considered, as the  
LT3015 does not exhibit unlimited PSRR; and thus, a  
small portion of the input noise propagates to the output.  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5, X5R, and XꢀR. The Z5U and  
Y5ꢁ dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
Using a feedforward capacitor (C ) from ꢁ  
to ꢁ has  
ADJ  
FF  
OUT  
theaddedbenefitofimprovingtransientresponseandPSRR  
foroutputvoltagesgreaterthan1.22ꢁ.Withnofeedforward  
capacitor, the response and settling times will increase as  
the output voltage is raised above –1.22ꢁ. Use the equa-  
tion in Figure 3 to determine the minimum value of C to  
FF  
achieve a transient (and noise) performance that is similar  
and temperature coefficients as shown in Figures 4 and 5.  
3015fb  
16  
LT3015 Series  
APPLICATIONS INFORMATION  
When used with a 5ꢁ regulator, a 16ꢁ 10μF Y5ꢁ capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DCbiasvoltageappliedandovertheoperatingtemperature  
range. The X5R and XꢀR dielectrics result in more stable  
characteristics and are more suitable for use as the output  
capacitor. The XꢀR type has better stability across tem-  
perature,whiletheX5Rislessexpensiveandisavailablein  
highervalues.CarestillmustbeexercisedwhenusingX5R  
and XꢀR capacitors; the X5R and XꢀR codes only specify  
operating temperature range and maximum capacitance  
change over temperature. Capacitance change due to DC  
bias with X5R and XꢀR capacitors is better than Y5ꢁ and  
Z5U capacitors, but can still be significant enough to drop  
capacitorvaluesbelowappropriatelevels.CapacitorDCbias  
characteristics tend to improve as component case size  
increases, but expected capacitance at operating voltage  
should be verified in situ for all applications.  
ꢁoltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress,  
similar to the way a piezoelectric microphone works. For  
a ceramic capacitor, the stress can be induced by vibra-  
tions in the system or thermal transients. The resulting  
voltages produced can cause appreciable amounts of  
noise. A ceramic capacitor produced the trace in Figure 6  
inresponsetolighttappingfromapencil.Similarvibration  
induced behavior can masquerade as increased output  
voltage noise.  
V
OUT  
1mV/DIV  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
3015 F06  
V
C
L
= –1.3V  
= 10µF  
1ms/DIV  
OUT  
OUT  
–20  
I = 10µA  
–40  
Figure 6. Noise Resulting from Tapping on a Ceramic Capacitor  
–60  
Y5V  
–80  
Overload Recovery  
–100  
Like many IC power regulators, the LT3015 has safe oper-  
ating area protection. The safe operating area protection  
activates at IN-to-OUT differential voltages greater than  
8. The safe area protection decreases current limit as  
the IN-to-OUT differential voltage increases and keeps  
the power transistor inside a safe operating region for  
all values of forward input-to-output voltage up to the  
LT3015’s Absolute Maximum Ratings.  
0
2
4
6
10  
12 14 16  
8
DC BIAS VOLTAGE (V)  
3015 F04  
Figure 4. Ceramic Capacitor DC Bias Characteristics  
40  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
20  
X5R  
0
–20  
When power is first applied and input voltage rises, the  
outputfollowstheinputandkeepstheIN-to-OUTdifferential  
voltagesmall,allowingtheregulatortosupplylargeoutput  
currents and start-up into high current loads. With a high  
input voltage, a problem can occur wherein removal of  
an output short does not allow the output voltage to fully  
recover. Other LTC negative linear regulators such as the  
LT11ꢀ5 and LT1964 also exhibit this phenomenon, so it  
is not unique to the LT3015.  
–40  
Y5V  
–60  
–80  
–100  
–50 –25  
0
25  
75 100 125  
50  
TEMPERATURE (°C)  
3015 F05  
Figure 5. Ceramic Capacitor Temperature Characteristics  
3015fb  
17  
LT3015 Series  
APPLICATIONS INFORMATION  
The problem occurs with a heavy output load when input  
voltage is high and output voltage is low. Such situations  
occur easily after the removal of a short-circuit or if the  
shutdown pin is pulled high after the input voltage has  
already been turned on. The load line for such a load  
intersects the output current curve at two points. If this  
happens, the regulator has two stable output operating  
points. With this double intersection, the input power  
supply may need to be cycled down to zero and brought  
up again to make the output recover.  
The LT3015 regulators incorporate a thermal shutdown  
circuit designed to protect the device during overload  
conditions. The typical thermal shutdown temperature is  
165°C and the circuit incorporates about 8°C of hyster-  
esis. For continuous normal conditions, do not exceed the  
maximum junction temperature rating of 125°C. Carefully  
consider all sources of thermal resistance from junction  
to ambient, including other heat sources mounted in close  
proximity to the LT3015.  
The undersides of the DFN and MSOP packages have ex-  
posed metal from the lead frame to the die attachment.  
Both packages allow heat to directly transfer from the  
die junction to the printed circuit board metal to control  
maximumoperatingjunctiontemperature.Thedual-in-line  
pin arrangement allows metal to extend beyond the ends  
of the package on the topside (component side) of the  
PCB. Connect this metal to IN on the PCB. The multiple  
IN and OUT pins of the LT3015 also assist in spreading  
heat to the PCB.  
Shutdown/UVLO  
The SHDN pin is used to put the LT3015 into a micropower  
shutdown state. The LT3015 has an accurate –1.20ꢁ  
threshold(duringturn-on)ontheSHDNpin.Thisthreshold  
can be used in conjunction with a resistor divider from the  
system input supply to define an accurate undervoltage  
lockout (UꢁLO) threshold for the regulator. The SHDN pin  
current (at the threshold) needs to be considered when  
determining the resistor divider network.  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
Thermal Considerations  
The LT3015’s maximum rated junction temperature of  
125°Climitsitspowerhandlingcapability.Twocomponents  
comprise the power dissipated by the device:  
Tables 2-4 list thermal resistance as a function of copper  
area in a fixed board size. All measurements were taken  
in still air on a 4 layer FR-4 board with 1oz solid internal  
planesand2oztop/bottomexternaltraceplaneswithatotal  
boardthicknessof1.6mm.Thefourlayerswereelectrically  
isolated with no thermal vias present. PCB layers, copper  
weight, board layout and thermal vias will affect the resul-  
tant thermal resistance. For more information on thermal  
resistance and high thermal conductivity test boards,  
refer to JEDEC standard JESD51, notably JESD51-12 and  
JESD51-ꢀ. Achieving low thermal resistance necessitates  
attention to detail and careful PCB layout.  
1. Output current multiplied by the input-to-output dif-  
ferential voltage: I ꢀ•ꢀ(V - ꢁ ) and  
OUT  
IN  
OUT  
2. GND pin current multiplied by the input voltage:  
ꢀ•ꢀV  
I
GND  
IN  
Determine GND pin current using the GND Pin Current  
curves in the Typical Performance Characteristics sec-  
tion. Total power dissipation is the sum of the above two  
components.  
3015fb  
18  
LT3015 Series  
APPLICATIONS INFORMATION  
Thus:  
Table 2. Measured Thermal Resistance for DFN Package  
COPPER AREA  
ꢀ Pꢀ=ꢀ–500mA(–3.465Vꢀ+ꢀ2.5V)ꢀ+ꢀ–6.5mAꢀ•ꢀ(–3.465V)ꢀ=ꢀ  
BOARD  
AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
40°C/W  
TOP SIDE*  
BACKSIDE  
0.505W  
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
Using a DFN package, the thermal resistance is in the  
rangeof40°C/Wto42°C/Wdependingonthecopperarea.  
Therefore, the junction temperature rise above ambient  
approximately equals:  
2
2
1000mm  
2500mm  
40°C/W  
2
2
225mm  
2500mm  
41°C/W  
2
2
100mm  
2500mm  
42°C/W  
*Device is mounted on topside  
ꢀ 0.505Wꢀ•ꢀ41°C/Wꢀ=ꢀ20.7°C  
The maximum junction temperature equals the maxi-  
mum ambient temperature plus the maximum junction  
temperature rise above ambient or:  
Table 3. Measured Thermal Resistance for MSOP Package  
COPPER AREA  
BOARD  
AREA  
THERMAL RESISTANCE  
TOP SIDE*  
BACKSIDE  
(JUNCTION-TO-AMBIENT)  
2
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
3ꢀ°C/W  
3ꢀ°C/W  
38°C/W  
40°C/W  
T
= 85°C + 20.ꢀ°C = 105.ꢀ°C  
JMAX  
2
2
1000mm  
2500mm  
2
2
Protection Features  
225mm  
2500mm  
2
2
100mm  
2500mm  
The LT3015 incorporates several protection features that  
make it ideal for use in battery-powered applications. In  
addition to the normal protection features associated  
with monolithic regulators, such as current limiting and  
thermal limiting, the device protects itself against reverse  
input voltages and reverse output voltages.  
*Device is mounted on topside  
Table 4. Measured Thermal Resistance for DD-Pak Package  
COPPER AREA  
BOARD  
AREA  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
TOP SIDE*  
BACKSIDE  
2
2
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
14°C/W  
16°C/W  
19°C/W  
Precision current limit and thermal overload protections  
are intended to protect the LT3015 against current over-  
load conditions at the output of the device. For normal  
operation, do not allow the the junction temperature to  
exceed 125°C.  
2
2
1000mm  
2500mm  
2
2
225mm  
2500mm  
*Device is mounted on topside  
T Package, 5-Lead TO-220  
Pulling the LT3015’s output above ground induces no  
damage to the part. If IN is left open circuit or grounded,  
OUTcanbepulledaboveGNDby30.Inaddition,OUTacts  
like an open circuit, i.e. no current flows into the pin. If IN  
is powered by a voltage source, OUT sinks the LT3105’s  
short-circuitcurrentandprotectsitselfbythermallimiting.  
In this case, grounding the SHDN pin turns off the device  
and stops OUT from sinking the short-circuit current.  
Thermal Resistance (Junction-to-Case) = 3°C/W  
Calculating Junction Temperature  
Example:Givenanoutputvoltageof2.5,aninputvoltage  
range of –3.3ꢁ 5%, an output current range of 1mA to  
500mA, and a maximum ambient temperature of 85°C,  
what is the maximum junction temperature?  
The power dissipated by the LT3015 equals:  
I
ꢀ•ꢀ(V  
- ꢁ ) + I ꢀ•ꢀ(V  
)
OUT(MAX)  
IN(MAX)  
OUT  
GND  
IN(MAX)  
where:  
I
= –500mA  
= –3.465ꢁ  
OUT(MAX)  
IN(MAX)  
I
at (I = –500mA, ꢁ = –3.465ꢁ) = –6.5mA  
OUT IN  
GND  
3015fb  
19  
LT3015 Series  
TYPICAL APPLICATIONS  
Adjustable Current Sink  
R1  
2k  
R8  
100k  
GND  
C1  
10µF  
R2  
82.5k  
C2  
LT3015  
10µF  
LT1004-1.2  
SHDN  
ADJ  
OUT  
R3  
2k  
R4  
0.01Ω  
R
LOAD  
IN  
V
< –2.3V  
IN  
R5  
2.2k  
R6  
2.2k  
R7  
475Ω  
C3  
1µF  
2 –  
8
1/2  
1
3 +LT1350  
4
C4  
3.3µF  
3015 TA04  
NOTE: ADJUST R3 FOR 0 TO –1.5A CONSTANT CURRENT  
3015fb  
20  
LT3015 Series  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3015fb  
21  
LT3015 Series  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
12-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev F)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
(.112 ±.004)  
1
6
0.35  
REF  
1.651 ±0.102  
(.065 ±.004)  
5.23  
(.206)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
12  
7
0.65  
(.0256)  
BSC  
0.42 ±0.038  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0165 ±.0015)  
TYP  
0.406 ±0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 ±.003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE12) 0911 REV F  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
3015fb  
22  
LT3015 Series  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Q Package  
5-Lead Plastic DD Pak  
(Reference LTC DWG # 05-08-1461 Rev F)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.165 – .180  
(4.191 – 4.572)  
.256  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
+.008  
.004  
–.004  
.060  
(1.524)  
.059  
(1.499)  
TYP  
.183  
(4.648)  
.330 – .370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
DETAIL A  
.067  
(1.702)  
BSC  
.050 .012  
(1.270 0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
(0.711 – 0.965)  
(
)
–0.508  
TYP  
DETAIL A  
0° – 7° TYP  
0° – 7° TYP  
.420  
.276  
.080  
.420  
.350  
.325  
.585  
.205  
.320  
.585  
.090  
.042  
.090  
.067  
.042  
.067  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
Q(DD5) 0811 REV F  
3015fb  
23  
LT3015 Series  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
T Package  
5-Lead Plastic TO-220 (Standard)  
(Reference LTC DWG # 05-08-1421)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
3015fb  
24  
LT3015 Series  
REVISION HISTORY  
REV  
DATE  
12/11 Revised entire data sheet to include fixed output voltages.  
4/12 Clarified conditions of “RMS Output Noise vs Load Current” graph  
DESCRIPTION  
PAGE NUMBER  
A
1 - 26  
11  
B
3015fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LT3015 Series  
TYPICAL APPLICATION  
Paralleling Regulators For Higher Output Current  
R9  
12.1k  
GND  
C1  
C2  
1%  
SHDN  
ADJ  
OUT  
22µF  
22µF  
R8  
37.4k  
1%  
R1  
0.01Ω  
LT3015  
V
OUT  
–5V  
V
< –5.5V  
IN  
IN  
–3.0A  
R7  
12.1k  
1%  
GND  
SHDN  
ADJ  
R6  
41.2k  
1%  
R5  
50k  
R2  
0.01Ω  
LT3015  
IN  
OUT  
C3  
0.01µF  
R3  
2.2k  
R4  
2.2k  
2
3
8
1
1/2  
LT1366  
+
4
3015 TA03  
RELATED PARTS  
PART NUMBER  
LT1185  
DESCRIPTION  
COMMENTS  
6ꢀ0mꢁ Dropout ꢁoltage, ꢁ = –4.3ꢁ to –35, DD-Pak and TO-220 Packages  
3A, Negative Linear Regulator  
IN  
LT11ꢀ5  
500mA, Negative Low Dropout  
Micropower Regulator  
500mꢁ Dropout ꢁoltage, ꢁ = –4.5ꢁ to –20, S8, N8, SOT-223, DD-Pak and TO-220  
IN  
Packages  
LT1964  
LT1ꢀ64A  
LT1ꢀ63  
LT1963A  
LT1965  
LT3022  
200mA, Negative Low Noise Low Dropout  
Regulator  
340mꢁ Dropout ꢁoltage, Low Noise: 30µꢁ  
ThinSOT Packages  
, ꢁ = –1.9ꢁ to –20, 3mm × 3mm DFN and  
RMS IN  
3A, Fast Transient Response, Low Noise  
LDO Regulator  
340mꢁ Dropout ꢁoltage, Low Noise: 40µꢁ  
, ꢁ = 2.ꢀꢁ to 20, TO-220 and  
RMS IN  
DD-Pak Packages, “A” ꢁersion Stable also with Ceramic Caps  
500mA, Low Noise, LDO Regulator  
300mꢁ Dropout ꢁoltage, Low Noise : 20µꢁ  
Output Capacitors, S8 and 3mm × 4mm DFN Packages  
, ꢁ = 1.6ꢁ to 20, Stable with 3.3µF  
RMS IN  
1.5A Low Noise, Fast Transient Response 340mꢁ Dropout ꢁoltage, Low Noise: 40µꢁ  
LDO Regulator  
, ꢁ = 2.5ꢁ to 20, A” ꢁersion Stable with  
RMS IN  
Ceramic Caps, TO-220, DD-Pak, SOT-223 and SO-8 Packages  
1.1A, Low Noise, LDO Regulator  
310mꢁ Dropout ꢁoltage, Low Noise: 40µꢁ , ꢁ : 1.8ꢁ to 20, ꢁ : 1.2ꢁ to 19.5,  
RMS IN  
OUT  
Stable with Ceramic Caps, TO-220, DD-Pak, MSOP-8E and 3mm × 3mm DFN Packages  
1A, Low ꢁoltage, ꢁery Low Dropout ꢁ  
Linear Regulator  
ꢁ = 0.9ꢁ to 10, Dropout ꢁoltage: 145mꢁ Typical, Adjustable Output (ꢁ = ꢁ  
IN REF OUT(MIN)  
LDO  
= 200mꢁ), Fixed Output ꢁoltages: 1.2, 1.5, 1.8, Stable with Low ESR, Ceramic Output  
Capacitors 16-Pin 3mm × 5mm DFN and MSOP-16E Packages  
LT3080/LT3080-1 1.1A, Parallelable, Low Noise, Low  
Dropout Linear Regulator  
300mꢁ Dropout ꢁoltage (2-Supply Operation), Low Noise: 40µꢁ  
, ꢁ : 1.2ꢁ to 36,  
RMS IN  
: 0ꢁ to 35.ꢀ, Current-Based Reference with 1-Resistor ꢁ  
set; Directly Parallelable  
OUT  
OUT  
(no op amp required), Stable with Ceramic Caps, TO-220, DD-Pak, SOT-223, MSOP-8E and  
3mm × 3mm DFN Packages; “–1” ꢁersion has Integrated Internal Ballast Resistor  
LT3085  
500mA, Parallelable, Low Noise,  
Low Dropout Linear Regulator  
2ꢀ5mꢁ Dropout ꢁoltage (2-Supply Operation), Low Noise: 40µꢁ  
, ꢁ : 1.2ꢁ to 36, ꢁ  
:
RMS IN  
OUT  
0ꢁ to 35.ꢀ, Current-Based Reference with 1-Resistor ꢁ  
set; Directly Parallelable (no op  
OUT  
amp required), Stable with Ceramic Caps, MSOP-8E and 2mm × 3mm DFN Packages  
3015fb  
LT 0412 REV B • PRINTED IN USA  
26 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-ꢀ41ꢀ  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-050ꢀ www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY