LT1187_06 [Linear]

Low Power Video Difference Amplifi er; 低功耗视频差分功率放大器儿
LT1187_06
型号: LT1187_06
厂家: Linear    Linear
描述:

Low Power Video Difference Amplifi er
低功耗视频差分功率放大器儿

放大器 功率放大器
文件: 总16页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1187  
Low Power  
Video Difference Amplifier  
FEATURES  
DESCRIPTION  
The LT®1187 is a difference amplifier optimized for op-  
eration on ±±5, or a single ±5 supply and gain ≥2. This  
versatileamplifierfeaturesuncommittedhighinputimped-  
ance (+) and (–) inputs, and can be used in differential  
or single-ended configurations. Additionally, a second  
set of inputs give gain adjustment and DC control to the  
difference amplifier.  
Differential or Single-Ended Gain Block (Adjustable)  
–ꢁdB Bandwidth, A = ±2ꢂ ±0MHz  
5
Slew Rateꢂ 16±5/µs  
Low Supply Currentꢂ 1ꢁmA  
Output Currentꢂ ±20mA  
CMRR at 10MHzꢂ 40dB  
LT119ꢁ Pin Compatible  
Low Cost  
The LT1187’s high slew rate, 16±5/ms, wide bandwidth,  
±0MHz, and ±20mA output current reꢀuire only 1ꢁmA of  
supply current. The shutdown feature reduces the power  
dissipationtoamere1±mWandallowsmultipleamplifiers  
to drive the same cable.  
Single ±5 Operation  
Drives Cables Directly  
Output Shutdown  
Available in 8-Lead PDIP and SO Packages  
APPLICATIONS  
The LT1187 is a low power version of the popular LT119ꢁ,  
and is available in 8-pin miniDIPs and SO packages. For  
applications with gains of 10 or more, see the LT1189  
data sheet.  
Line Receivers  
5ideo Signal Processing  
Cable Drivers  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Tape and Disc Drive Systems  
TYPICAL APPLICATION  
Cable Sense Amplfier for Loop Through Connections with DC Adjust  
Closed-Loop Gain vs Frequency  
40  
V
IN  
V
=
5V  
S
L
R
= 1k  
5V  
30  
20  
10  
0
3
2
+
7
CABLE  
6
V
LT1187  
OUT  
1
8
V
+
DC  
4
–5V  
1k  
1k  
–10  
0.1  
1
10  
100  
LT1187 • TA01  
FREQUENCY (MHz)  
LT1187 • TA02  
1187fa  
1
LT1187  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
+
Total Supply 5oltage (5 to 5 ).................................185  
TOP VIEW  
ORDER PART  
Differential Input 5oltage ..........................................±65  
NUMBER  
+/REF  
–IN  
1
2
3
4
–/FB  
8
7
6
5
Input 5oltage.............................................................±5  
+
S
V
LT1187CN8  
LT1187CS8  
LT1187IN8  
Output Short-Circuit Duration (Note 2) .........Continuous  
+IN  
OUT  
S/D  
Operating Temperature Range  
V
LT1187C .................................................. 0°C to 70°C  
LT1187I ............................................... –40°C to 8±°C  
LT1187M (OBSOLETE) ...................... –±±°C to 1±0°C  
Junction Temperature (Note ꢁ)  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
1187  
T
= 1±0°C, θ = 100°C/W (N8)  
JMAX  
JA  
T
= 1±0°C, θ = 1±0°C/W (S8)  
JA  
JMAX  
J8 PACKAGE 8-LEAD CERDIP  
= 17±°C, θ = 100°C/W  
Plastic Packages (CN8, CS8) ............................ 1±0°C  
Ceramic Packages (CJ8, MJ8) (OBSOLETE)..... 17±°C  
Storage Temperature Range................... –6±°C to 1±0°C  
Lead Temperature (Soldering, 10 sec) .................. ꢁ00°C  
LT1187MJ8  
LT1187CJ8  
T
JMAX  
JA  
OBSOLETE PACKAGE  
Consider the N8 or S8 Packages for Alternate Source  
Order Options Tape and Reelꢂ Add #TR  
Lead Freeꢂ Add #PBF Lead Free Tape and Reelꢂ Add #TRPBF  
Lead Free Part Markingꢂ httpꢂ//www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
±±5 ELECTRICAL CꢀARACTERISTICS T = 25°C (Note 4)  
A
V = 5V, V  
= 0V, R = 900Ω from Pins 6 to 8, R = 100Ω from Pin 8 to ground, R = R + R = 1k, C ≤ 10pF, Pin 5 open.  
S
REF  
FB1  
FB2  
L
FB1  
FB2  
L
LT1187C/I/M  
MAX  
SYMBOL  
PARAMETERS  
CONDITIONS  
MIN  
MAX  
UNITS  
5
Input Offset 5oltage  
Either Input (Note ±)  
S8 Package  
2.0  
2.0  
10  
11  
m5  
OS  
I
I
e
Input Offset Current  
Input Bias Current  
Input Noise 5oltage  
Input Noise Current  
Input Resistance  
Either Input  
Either Input  
0.2  
±0.±  
6±  
1.±  
100  
2.0  
1.0  
±2.0  
µA  
µA  
n5/√Hz  
pA/√Hz  
kΩ  
OS  
B
f = 10kHz  
n
O
i
n
f = 10kHz  
O
R
C
5
Differential  
Either Input  
(Note 6)  
IN  
Input Capacitance  
Input 5oltage Limit  
pF  
m5  
IN  
±ꢁ80  
INLIM  
Input 5oltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output 5oltage Swing  
–2.±  
70  
70  
±ꢁ.8  
±6.7  
±6.4  
ꢁ.±  
5
dB  
dB  
5
5
5
CMRR  
PSRR  
5
= –2.±5 to ꢁ.±5  
100  
8±  
±4.0  
±7.0  
±6.8  
CM  
5 = ±2.ꢁ7±5 to ±85  
S
5
OUT  
5 = ±±5, R = 1k, A = ±0  
S
L
5
5 = ±85, R = 1k, A = ±0  
S
L
5
5 = ±85, R = 00Ω, A = ±0, (Note 4)  
S
L
5
G
SR  
FPBW  
BW  
Gain Error  
Slew Rate  
5 = ±15, A = 10, R = 1k  
0.2  
16±  
±ꢁ  
±.7  
2ꢁ0  
26  
1.0  
%
5/µs  
MHz  
MHz  
ns  
E
O
5
L
(Notes 7, 11)  
5 = 15 (Note 8)  
100  
1±0  
Full Power Bandwidth  
Small-Signal Bandwidth  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
O
P-P  
A = 10  
5
t , t  
A = ±0, 5 = ±1.±5, 20% to 80% (Note 11)  
ꢁ2±  
r
f
5
O
t
R = 1k, 5 = ±12±m5, ±0% to ±0%  
ns  
%
PD  
L
O
5 = ±±0m5  
O
0
t
Settling Time  
Differential Gain  
Differential Phase  
ꢁ5 Step, 0.1% (Note 9)  
100  
0.6  
0.8  
ns  
%
s
Diff A5  
Diff Ph  
R = 1k, A = 4 (Note 10)  
L
5
R = 1k, A = 4 (Note 10)  
DEG  
L
5
P-P  
1187fa  
2
LT1187  
±±5 ELECTRICAL CꢀARACTERISTICS T = 25°C (Note 4)  
A
V = 5V, V  
= 0V, R = 900Ω from Pins 6 to 8, R = 100Ω from Pin 8 to ground, R = R + R = 1k, C ≤ 10pF, Pin 5 open.  
S
REF  
FB1  
FB2  
L
FB1  
FB2  
L
LT1187C/I/M  
MAX  
SYMBOL  
PARAMETERS  
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
Turn-On Time  
CONDITIONS  
MIN  
MAX  
16  
1.±  
2±  
UNITS  
mA  
mA  
µA  
I
1ꢁ  
0.8  
±
±00  
600  
S
Pin ± at 5  
I
t
t
Pin ± at 5  
S/D  
ON  
Pin ± from 5 to Ground, R = 1k  
ns  
ns  
L
Turn-On Time  
Pin ± from Ground to 5 , R = 1k  
OFF  
L
±5 ELECTRICAL CꢀARACTERISTICS T = 25°C (Note 4)  
open.  
A
FB2  
+
V
S
= 5V, V = 0V, V  
= 2.5V, R = 900Ω from Pins 6 to 8, R = 100Ω from Pin 8 to V , R = R + R = 1k, C ≤ 10pF, Pin 5  
S
REF  
FB1  
REF  
L
FB1  
FB2  
L
LT1187C/I/M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
5
Input Offset 5oltage  
Either Input (Note ±)  
SO Package  
2.0  
2.0  
10  
12  
m5  
m5  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input 5oltage Range  
Common Mode Rejection Ratio  
Output 5oltage Swing  
Either Input  
Either Input  
0.2  
±0.±  
1.0  
±2.0  
ꢁ.±  
µA  
µA  
5
dB  
5
OS  
B
2.0  
70  
ꢁ.6  
CMRR  
5
5
CM  
= 2.05 to ꢁ.±5  
100  
4.0  
0.1±  
1ꢁ0  
±.ꢁ  
12  
R = ꢁ00Ω to Ground  
5
5
High  
Low  
OUT  
L
OUT  
(Note 4)  
0.4  
5
OUT  
SR  
BW  
Slew Rate  
Small-Signal Bandwidth  
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
5 = 1.±5 to ꢁ.±5  
5/µs  
MHz  
mA  
mA  
µA  
O
A = 10  
5
I
S
1±  
1.±  
2±  
Pin ± at 5–  
Pin ± at 5–  
0.8  
±
I
S/D  
±±5 ELECTRICAL CꢀARACTERISTICS –55°C ≤ T ≤ 125°C (Note 4)  
A
V = 5V, V  
= 0V, R = 900Ω from Pins 6 to 8, R = 100Ω from Pin 8 to ground, R = R + R = 1k, C ≤ 10pF, Pin 5 open.  
S
REF  
FB1  
FB2  
L
FB1  
FB2  
L
LT1187M  
TYP  
2.0  
8.0  
0.2  
±0.±  
SYMBOL  
PARAMETER  
Input Offset 5oltage  
CONDITIONS  
Either Input (Note ±)  
MIN  
MAX  
1±  
UNITS  
m5  
m5/°C  
µA  
5
OS  
Δ5 /ΔT  
Input 5 Drift  
OS  
OS  
I
OS  
I
B
Input Offset Current  
Input Bias Current  
Input 5oltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output 5oltage Swing  
Either Input  
Either Input  
1.±  
±ꢁ.±  
ꢁ.±  
µA  
5
dB  
dB  
5
5
5
–2.±  
70  
60  
±ꢁ.7  
±6.6  
±6.4  
CMRR  
PSRR  
5
CM  
= –2.±5 to ꢁ.±5  
100  
8±  
±4.0  
±7.0  
±6.8  
5 = ±2.ꢁ7±5 to ±85  
S
5
5 = ±±5, R = 1k, A = ±0  
OUT  
S
L
5
5
5 = ±85, R = 1k, A = ±0  
S
L
5 = ±85, R = 00Ω, A = ±0 (Note 4)  
S
L
5
G
Gain Error  
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
5 = ±15, A = 10, R = 1k  
0.2  
1ꢁ  
0.8  
±
1.2  
17  
1.±  
2±  
%
mA  
mA  
µA  
E
O
5
L
I
S
Pin ± at 5 (Note 12)  
I
Pin ± at 5  
S/D  
1187fa  
3
LT1187  
±±5 ELECTRICAL CꢀARACTERISTICS 0°C ≤ T ≤ 70°C (LT1187C) –40°C ≤ T ≤ 85°C (LT1187I) (Note 4)  
A
A
V = 5V, V  
S
= 0V, R = 900Ω from Pins 6 to 8, R = 100Ω from Pin 8 to ground, R = R + R = 1k, C ≤ 10pF, Pin 5 open.  
REF  
FB1  
FB2  
L
FB1  
FB2  
L
LT1187C/I  
SYMBOL  
PARAMETER  
Input Offset 5oltage  
CONDITIONS  
Either Input (Note ±)  
MIN  
TYP  
2.0  
9.0  
0.2  
±0.±  
MAX  
12  
UNITS  
m5  
m5/°C  
µA  
5
OS  
Δ5 /ΔT  
Input 5 Drift  
OS  
OS  
I
OS  
I
B
Input Offset Current  
Input Bias Current  
Input 5oltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output 5oltage Swing  
Either Input  
Either Input  
1.±  
±ꢁ.±  
ꢁ.±  
µA  
5
dB  
dB  
5
5
5
–2.±  
70  
6±  
±ꢁ.7  
±6.6  
±6.4  
CMRR  
PSRR  
5
CM  
= –2.±5 to ꢁ.±5  
100  
8±  
±4.0  
±7.0  
±6.8  
5 = ±2.ꢁ7±5 to ±85  
S
5
OUT  
5 = ±±5, R = 1k, A = ±0  
S
L
5
5
5 = ±85, R = 1k, A = ±0  
S
L
5 = ±85, R = 00Ω, A = ±0 (Note 4)  
S
L
5
G
Gain Error  
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
5 = ±15, A = 10, R = 1k  
0.2  
1ꢁ  
0.8  
±
1.0  
17  
1.±  
2±  
%
mA  
mA  
µA  
E
O
5
L
I
S
Pin ± at 5 (Note 12)  
I
Pin ± at 5  
S/D  
±5 ELECTRICAL CꢀARACTERISTICS 0°C ≤ T ≤ 70°C (LT1187C) –40°C ≤ T ≤ 85°C (LT1187I) (Note 4)  
A
A
FB1  
+
V
= 5V, V = 0V, V  
= 2.5V, R = 900Ω from Pins 6 to 8, R = 100Ω from Pin 8 to V , R = R + R = 1k, C ≤ 10pF, Pin 5  
S
S
REF  
FB1  
FB2  
REF  
L
FB2  
L
open.  
LT1187C/I  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
5
Input Offset 5oltage  
Either Input (Note ±)  
SO Package  
2.0  
2.0  
12.0  
1ꢁ.0  
m5  
m5  
OS  
Δ5 /ΔT  
Input 5 Drift  
9.0  
0.2  
±0.±  
µ5/°C  
µA  
µA  
5
OS  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input 5oltage Range  
Common Mode Rejection Ratio  
Output 5oltage Swing  
Either Input  
Either Input  
1.±  
±ꢁ.±  
ꢁ.±  
OS  
B
2.0  
70  
ꢁ.±  
CMRR  
5
CM  
= 2.05 to ꢁ.±5  
100  
4.0  
0.1±  
12  
0.8  
±
dB  
5
5
OUT  
R = ꢁ00Ω to Ground  
5
5
High  
Low  
L
OUT  
(Note 4)  
0.4  
16  
1.±  
2±  
5
OUT  
I
I
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
mA  
mA  
µA  
S
Pin ± at 5 (Note 12)  
Pin ± at 5  
S/D  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: A heat sink may be reꢀuired to keep the junction temperature  
below absolute maximum when the output is shorted continuously.  
Note 6: 5  
is the maximum voltage between –5 and +5 (Pin 2 and  
IN IN  
IN LIM  
Pin ꢁ) for which the output can respond.  
Note 7: Slew rate is measured between ±0.±5 on the output, with a 5  
step of ±0.7±5, A = ꢁ and R = 1k.  
Note 8: Full power bandwidth is calculated from the slew rate  
measurementꢂ FPBW = SR/2π5 .  
Note 9: Settling time measurement techniꢀues are shown in “Take the  
Guesswork Out of Settling Time Measurements,” EDN, September 19,  
198±.  
IN  
5
L
P
Note 3: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formulasꢂ  
D
LT1187MJ8, LT1187CJ8ꢂ T = T + (P • 100°C/W)  
J
A
D
LT1187CN8ꢂ  
LT1187CS8ꢂ  
T = T + (P • 100°C/W)  
J A D  
Note 10: NTSC (ꢁ.±8MHz).  
T = T + (P • 1±0°C/W)  
Note 11: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J8 and N8 suffix) and are sample tested on every lot of  
the SO packaged parts (S8 suffix).  
J
A
D
Note 4: When R = 1k is specified, the load resistor is R + R , but  
L
FB1  
FB2  
when R = ꢁ00Ω is specified, then an additional 4ꢁ0Ω is added to the  
L
output such that (R + R ) in parallel with 4ꢁ0Ω is R = ꢁ00Ω.  
Note 12: See Application section for shutdown at elevated temperatures.  
FB1  
FB2  
L
Do not operate shutdown above T > 12±°C.  
Note 5: 5 measured at the output (Pin 6) is the contribution from both  
J
OS  
input pair and is input referred.  
1187fa  
4
LT1187  
TYPICAL PERFORMANCE CꢀARACTERISTICS  
Input Bias Current vs  
Common Mode Voltage vs  
Common Mode Voltage  
Temperature  
Input Bias Current vs Temperature  
+
V
100  
0
3.0  
2.5  
V
= 5V  
S
+
–0.5  
–1.0  
–1.5  
–2.0  
V
= 1.8V TO 9V  
+I  
B
2.0  
1.5  
1.0  
0.5  
–100  
–200  
–300  
400  
–I  
B
I
OS  
–55°C  
2.0  
1.5  
1.0  
0.5  
25°C  
+
V
= –1.8V TO –9V  
0
125°C  
–0.5  
V
–5 –4 –3 –2 –1  
0
1
2
3
4
5
50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
LT1187 • TPC02  
LT1187 • TPC03  
LT1187 • TPC01  
Equivalent Input Noise Current vs  
Frequency  
Equivalent Input Noise Voltage vs  
Frequency  
Supply Current vs Supply Voltage  
600  
500  
400  
300  
200  
100  
0
12  
10  
8
16  
14  
12  
10  
8
V
T
= 5V  
V
T
= 5V  
= 25°C  
= 0Ω  
S
S
= 25°C  
A
A
R
= 100k  
R
S
S
55°C  
25°C  
6
125°C  
4
2
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
LT1187 • TPC04  
LT1187 • TPC05  
LT1187 • TPC06  
Shutdown Supply Current vs  
Temperature  
Gain Error vs Temperature  
Open-Loop Gain vs Temperature  
6
5
4
3
2
1
0
8
6
4
2
0
0
V
V
=
=
5V  
3V  
V
V
A
=
5V  
2V  
S
O
S
OUT  
V
R
V
= 5V  
S
=
= 10  
= 1k  
R
= 1k  
L
L
–0.05  
–0.10  
–0.15  
–0.20  
V
= –V + 0.6V  
EE  
S/D  
V
S/D  
= –V + 0.4V  
EE  
R
= 500Ω  
L
V
= –V + 0.2V  
EE  
S/D  
V
= –V  
EE  
S/D  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1187 • TPC07  
LT1187 • TPC08  
LT1187 • TPC09  
1187fa  
5
LT1187  
TYPICAL PERFORMANCE CꢀARACTERISTICS  
Open-Loop Voltage Gain vs  
Load Resistance  
Gain Bandwidth Product vs  
Supply Voltage  
Gain, Phase vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
16k  
12k  
8k  
60  
50  
A
= 20dB  
V
T
= 5V  
V
V
T
=
=
5V  
3V  
V
S
S
O
A
T
= 55°C  
A
T
= 25°C  
A
PHASE  
R
= 1k  
= 25°C  
L
= 25°C  
A
60  
T
= 125°C  
A
40  
20  
0
GAIN  
40  
30  
4k  
–20  
100k  
–20  
0
1M  
10M  
100M  
100  
1k  
10k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
LT1187 • TPC11  
LT1187 • TPC12  
LT1187 • TPC10  
Gain Bandwidth Product and  
Unity Gain Phase Margin vs  
Temperature  
Common Mode Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
65  
55  
45  
35  
100  
60  
50  
40  
30  
80  
V
T
=
5V  
V
=
5V  
V
T
= 5V  
S
S
A
S
L
= 25°C  
R
= 1k  
= 25°C  
A
R
= 1k  
L
70  
60  
GAIN BANDWIDTH  
PRODUCT  
10  
1.0  
0.1  
50  
40  
30  
A
= 10  
= 2  
V
UNITY GAIN  
PHASE MARGIN  
A
V
1k  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
25  
50  
75 100 125  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1187 • TPC13  
LT1187 • TPC14  
LT1187 • TPC15  
Power Supply Rejection Ratio vs  
Frequency  
Output Short-Circuit Current vs  
Temperature  
Output Swing vs Supply Voltage  
+
V
0.7  
–0.8  
–0.9  
–1.0  
–1.1  
36  
35  
80  
V
= 5V  
S
A
V
= 5V  
S
T
= 25°C  
125°C  
V
=
300mV  
RIPPLE  
60  
40  
20  
0
25°C  
34  
33  
32  
31  
30  
+PSRR  
–PSRR  
–55°C  
R
= 1k  
L
1.8V V  
9V  
S
125°C  
25°C  
0.5  
0.4  
0.3  
–55°C  
0.2  
0.1  
–20  
0
2
4
6
8
10  
50 –25  
0
25  
50  
75  
100 125  
1k  
10k  
100k  
1M  
10M  
100M  
V
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
LT1187 • TPC17  
LT1187 • TPC18  
LT1187 • TPC16  
1187fa  
6
LT1187  
TYPICAL PERFORMANCE CꢀARACTERISTICS  
Output Voltage Swing vs  
Load Resistance  
Output Voltage Step vs  
Settling Time, A = 2  
Slew Rate vs Temperature  
V
4
2
5
3
250  
200  
150  
V
T
= 5V  
V
= 5V  
S
S
L
O
V
V
=
5V  
S
= 25°C  
R
V
= 1k  
A
R
= 1k  
=
= 2  
0.5V  
L
T
A
= –55°C  
10mV  
A
T
= 25°C  
A
–SLEW RATE  
T
= 125°C  
A
1
0
+SLEW RATE  
–1  
–3  
–5  
T
= 25°C  
A
–2  
–4  
10mV  
T
= –55°C  
T
A
= 125°C  
A
40  
50  
60  
70  
80  
90  
100  
10  
100  
LOAD RESISTANCE ()  
1000  
–50 –25  
0
25  
50  
75 100 125  
SETTLING TIME (ns)  
TEMPERATURE (°C)  
LT1187 • TPC19  
LT1187 • TPC21  
LT1187 • TPC20  
Harmonic Distortion vs  
Output Voltage  
Large-Signal Transient Response  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
V
= 5V  
S
A
L
T
= 25°C  
R
= 1k  
f = 1MHz  
HD  
A
= 10  
3
V
HD  
2
4
6
7
0
1
2
3
5
LT1187 • TPC2ꢁ  
OUTPUT VOLTAGE (V  
)
P-P  
INPUT IN LIMITING, A = ꢁ, SR = 1805/µs  
5
LT1187 • TPC22  
Small-Signal Transient Response  
Small-Signal Transient Response  
LT1187 • TPC24  
LT1187 • TPC2±  
A
5
= 2, R = 1k, O5ERSHOOT = 2±%  
A = 2, R = 1k, O5ERSHOOT = 2±%  
5 FB  
FB  
1187fa  
7
LT1187  
APPLICATIONS INFORMATION  
Power Supply Bypassing  
The primary use of the LT1187 is in converting high speed  
differential signals to a single-ended output. The LT1187  
video difference amplifier has two uncommitted high  
input impedance (+) and (–) inputs. The amplifier has  
another set of inputs which can be used for reference and  
feedback. Additionally, this set of inputs give gain adjust  
and DC control to the difference amplifier. The voltage  
gain of the LT1187 is set like a conventional operational  
amplifier. Feedback is applied to Pin 8, and it is optimized  
for gains of 2 or greater. The amplifier can be operated  
single-ended by connecting either the (+) or (–) inputs to  
the +/REF (Pin 1). The voltage gain is set by the resistorsꢂ  
The LT1187 is ꢀuite tolerant of power supply bypassing.  
Insomeapplicationsa0.1µFceramicdisccapacitorplaced  
1/2 inch from the amplifier is all that is reꢀuired. In ap-  
plications reꢀuiring good settling time, it is important to  
use multiple bypass capacitors. A 0.1µF ceramic disc in  
parallel with a 4.7µF tantalum is recommended.  
Calculating the Output Offset Voltage  
Both input stages contribute to the output offset voltage at  
Pin 6. The feedback correction forces balance in the input  
stages by introducing an input 5 at Pin 8. The complete  
expression for the output offset voltage isꢂ  
OS  
(R + R )/R .  
FB  
G
G
Like the single-ended case, the differential voltage gain is  
setbytheexternalresistors(R +R )/R . Themaximum  
5
OUT  
=(5 +I (R )+I (R ))(R +R )/R +I (R )  
OS OS S B REF FB G G B FB  
FB  
G
G
input differential signal for which the output will respond  
is approximately ±0.ꢁ85.  
R represents the input source resistance, typically 7±Ω,  
S
and R represents the finite source impedance from the  
REF  
DC reference voltage, for 5 grounded, R = 0Ω. The  
REF  
REF  
S/D  
S/D  
I
is normally a small contributor and the expression  
OS  
+
+
V
V
5
5
simplifies toꢂ  
3
2
3
2
7
7
V
+
IN  
+
V
IN  
6
6
5
= 5 (R + R )/R + I (R )  
LT1187  
LT1187  
+/REF  
–/FB  
OUT  
OS FB  
G
G
B
FB  
V
V
OUT  
1
8
1
8
OUT  
+/REF  
–/FB  
If R is limited to 1k the last term of the eꢀuation con-  
4
4
FB  
tributes only 2m5, since I is less than 2µA.  
V
V
B
R
FB  
R
FB  
+
7
V
R
+
+
R
G
FB  
R
R
G
FB  
A
= +  
V
R
G
A
V
= –  
R
G
R
G
R
G
6
S/D  
S/D  
+
+
V
V
R
FB  
5
5
3
2
3
2
8
Q1  
Q2  
Q3  
Q4  
7
7
+
+
V
V
IN DIFF  
IN DIFF  
6
6
LT1187  
LT1187  
+/REF  
–/FB  
R
G
V
V
OUT  
1
8
1
8
OUT  
3
2
1
REF  
+
+
V
R
R
E
1.1k  
+/REF  
–/FB  
IN  
E
R
G
1.1k  
V
+
IN  
R
4
4
R
S
R
R
REF  
S
V
R
V
R
345 A  
350 A  
FB  
FB  
4
V
ILT1187 • F01  
R
FB  
R
+R  
G
R
G
FB  
FB  
V
= (V  
+ V  
)
V
O
=
V
V
IN  
O
IN DIFF  
IN  
IN DIFF  
(
(
(
(
R
G
R
R
R
G
G
G
LT1187 • AI01  
Figure 1. Simplified Input Stage Schematic  
1187fa  
8
LT1187  
APPLICATIONS INFORMATION  
Operating with Low Closed-Loop Gains  
Small-Signal Transient Response  
The LT1187 has been optimized for closed-loop gains  
of 2 or greater. For a closed-loop gain of 2 the response  
peaks about 2dB. Peaking can be eliminated by placing a  
capacitor across the feedback resistor, (feedback zero).  
This peaking shows up as time domain overshoot of  
about 2±%.  
Closed-Loop Voltage Gain vs Frequency  
9
8
C
= 0pF  
FB  
LT1187 • AI0±  
7
6
5
A
5
= 2, WITH 8pF FEEDBACK CAPACITOR  
Extending the Input Range  
C
= 5pF  
FB  
4
3
2
Figure 1 shows a simplified schematic of the LT1187. In  
normal operation REF, Pin 1, is grounded or taken to a DC  
offset control voltage and differential signals are applied  
between Pins 2 and ꢁ. The input responds linearly until  
all of the ꢁ4±µA current flows through the 1.1k resistor  
and Q1 (or Q2) turns off. Therefore the maximum input  
C
= 10pF  
FB  
V
T
V
R
R
= 5V  
S
A
= 25°C  
1
0
A
= 2  
= 900Ω  
FB  
G
= 900Ω  
–1  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
LT1187 • AI03  
swing is ꢁ80m5 or 760m5 . The second differential  
P
P-P  
pair, Qꢁ and Q4, is running at slightly larger current so  
that when the first input stage limits, the second stage  
remains biased to maintain the feedback.  
Small-Signal Transient Response  
Occasionally it is necessary to handle signals larger than  
760m5  
at the input. The LT1187 input stage can be  
P-P  
tricked to handle up to 1.±5 . To do this, it is necessary  
P-P  
to ground Pin ꢁ and apply the differential input signal  
between Pins 1 and 2. The input signal is now applied  
across two 1.1k resistors in series. Since the input signal  
is applied to both input pairs, the first pair will run out of  
bias current before the second pair, causing the amplifier  
to go open loop. The results of this techniꢀue are shown  
in the following scope photo.  
LT1187 • AI04  
A
5
= 2, O5ERSHOOT = 2±%, R = R = 1k  
FB G  
1187fa  
9
LT1187  
APPLICATIONS INFORMATION  
LT1187 in Unity Gain  
PerformanceCharacteristicssection.Atveryhighelevated  
temperature it is important to hold the shutdown pin close  
to the negative supply to keep the supply current from  
increasing.  
Send Color Video Over Twisted-Pair  
With an LT1187 it is possible to send and receive color  
compositevideosignalsmorethan1000feetonalowcost  
twisted-pair. A bi-directional “video bus” consists of the  
LT119± op amp and the LT1187 video difference amplifier.  
A pair of LT119±s at Transmit 1 is used to generate dif-  
ferential signals to drive the line which is back-terminated  
in its characteristic impedance. The LT1187 twisted-pair  
receiverconvertssignalsfromdifferentialtosingle-ended.  
Topology of the LT1187 provides for cable compensation  
at the amplifier’s feedback node as shown. In this case,  
1000 feet of twisted-pair is compensated with 1000pF  
and ±0Ω to boost the ꢁdB bandwidth of the system from  
7±0kHz to 4MHz. This bandwidth is adeꢀuate to pass a  
ꢁ.±8MHz chroma subcarrier and the 4.±MHz sound sub-  
carrier. Attenuation in the cable can be compensated by  
LT1187 • AI06  
(A) STANDARD INPUTS, PINS 2 TO ꢁ, 5 = 1.05  
IN  
P-P  
P-P  
P-P  
(B) EXTENDED INPUTS, PINS 2 TO 2, 5 = 1.05  
IN  
(C) EXTENDED INPUTS, PINS 1 TO 2, 5 = 2.05  
IN  
Using the Shutdown Feature  
The LT1187 has a uniꢀue feature that allows the amplifier  
to be shutdown for conserving power, or for multiplexing  
several amplifiers onto a common cable. The amplifier  
will shut down by taking Pin ± to 5 . In shutdown, the  
amplifier dissipates 1±mW while maintaining a true high  
impedanceoutputstateof20kinparallelwiththefeedback  
resistors. For MUX applications, the amplifiers may be  
configured inverting, noninverting or differential. When  
the output is loaded with as little 1k from the amplifier’s  
feedback resistors, the amplifier shuts off in 600ns. This  
shutoff can be under the control of HC CMOS operating  
between 05 and –±5.  
lowering the gain set resistor R . At Transmit 2, another  
G
pair of LT119±s serve the dual function to provide cable  
termination via low output impedance, and generate dif-  
ferential signals for Transmit 2. Cable termination is made  
up of a 1±Ω and ꢁꢁΩ attenuator to reduce the differential  
input signal to the LT1187. Maximum input signal for the  
LT1187 is 760m5  
.
P-P  
The ability to maintain shutoff is shown on the curve  
Shutdown Supply Current vs Temperature in the Typical  
1.5MHz Square Wave Input and Unequalized Response  
Through 1000 Feet of Twisted-Pair  
1MHz Sine Wave Gated Off with Shutdown Pin  
LT1187 • AI07  
LT1187 • AI08  
A
5
= 2, R = R = 1k  
FB G  
1187fa  
10  
LT1187  
APPLICATIONS INFORMATION  
1.5MHz Square Wave Input and Equalized Response  
Through 1000 Feet of Twisted-Pair  
Multiburst Pattern Passed Through  
1000 Feet of Twisted-Pair  
LT1187 • AI09  
LT1187 • AI10  
Bi-Directional Video Bus  
TRANSMIT 1  
TRANSMIT 2  
3
3
+
+
6
6
1k  
1k  
LT1195  
1k  
LT1195  
75Ω  
75Ω  
2
2
1k  
1k  
1k  
1k  
1k  
2
3
2
3
+
+
6
6
LT1195  
LT1195  
33Ω  
15Ω  
33Ω  
15Ω  
33Ω  
15Ω  
33Ω  
S/D  
5
S/D  
5
3
2
1
8
3
+
+
+
+
15Ω  
2
1
8
75Ω  
75Ω  
6
6
LT1187  
LT1187  
1000 FEET  
TWISTED-PAIR  
R
R
FB  
300Ω  
FB  
300Ω  
1000pF  
1000pF  
50Ω  
R
R
300Ω  
G
G
50Ω  
300Ω  
LT1187 • AI11  
RECEIVE 2  
RECEIVE 1  
1187fa  
11  
LT1187  
SIMPLIFIED SCꢀEMATIC  
+
V
7
+
+
V
V
BIAS  
BIAS  
C
M
+
3
C
FF  
2
V
6
+V  
+V  
OUT  
*
V
4
5
S/D  
1
+/REF  
8
–/FB  
* SUBSTRATE DIODE, DO NOT FORWARD BIAS  
LT1187 • SS  
1187fa  
12  
LT1187  
PACKAGE DESCRIPTION  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 0±-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(0.635)  
RAD TYP  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0
°
– 15
°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1187fa  
13  
LT1187  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 0±-08-1±10)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 .015*  
(6.477 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1187fa  
14  
LT1187  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 0±-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1187fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT1187  
RELATED PARTS  
PART NUMBER  
LT1189  
DESCRIPTION  
Low Power 5ideo Difference Amplifier  
Adjustable Gain 5ideo Difference Amplifier  
Gain = 10 5ideo Difference Amplifier  
2±0mA Out, 9005/µs, 60MHz CFA  
1mA, 12MHz 4005/µs Op Amplifier  
ꢁ.ꢁ5 5ideo Difference Amplifier  
LT119ꢁ  
LT1194  
LT1206  
LT1ꢁ±4  
LT6±±2  
LT6±±9  
Low Cost ±5/±±5 Triple 5ideo Amplifier with Shutdown  
1187fa  
LT 1006 REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
16ꢁ0 McCarthy Blvd., Milpitas, CA 9±0ꢁ±-7417  
© LINEAR TECHNOLOGY CORPORATION 1993  
(408) 4ꢁ2-1900 FAXꢂ (408) 4ꢁ4-0±07 www.linear.com  

相关型号:

LT1188

1.5A High Side Switch
Linear

LT1188C

1.5A High Side Switch
Linear

LT1188CK

1.5A High Side Switch
Linear

LT1188CT

1.5A High Side Switch
Linear

LT1188M

1.5A High Side Switch
Linear

LT1188MK

1.5A High Side Switch
Linear

LT1189

Low Power Video Difference Amplifier
Linear

LT1189C

Low Power Video Difference Amplifier
Linear

LT1189CJ8

Low Power Video Difference Amplifier
Linear

LT1189CN8

Low Power Video Difference Amplifier
Linear

LT1189CN8#PBF

LT1189 - Low Power Video Difference Amplifier; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1189CS8

Low Power Video Difference Amplifier
Linear