LT1189CS8 [Linear]

Low Power Video Difference Amplifier; 低功耗视频差分放大器器
LT1189CS8
型号: LT1189CS8
厂家: Linear    Linear
描述:

Low Power Video Difference Amplifier
低功耗视频差分放大器器

运算放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1189  
Low Power  
Video Difference Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Differential or Single-Ended Gain Block (Adjustable)  
The LT1189 is a difference amplifier optimized for opera-  
tion on ±5V, or a single 5V supply, and gain 10. This  
versatile amplifier features uncommitted high input im-  
pedance (+) and (–) inputs, and can be used in differential  
or single-ended configurations. Additionally, a second set  
of inputs give gain adjustment and DC control to the  
difference amplifier.  
–3dB Bandwidth, AV = ±10  
Slew Rate  
Low Supply Current  
Output Current  
CMRR at 10MHz  
LT1193 Pin Out  
35MHz  
220V/µs  
13mA  
±20mA  
48dB  
Low Cost  
The LT1189’s high slew rate, 220V/µs, wide bandwidth,  
35MHz, and ±20mA output current require only 13mA of  
supply current. The shutdown feature reduces the power  
dissipation to a mere 15mW, and allows multiple amplifi-  
ers to drive the same cable.  
Single 5V Operation  
Drives Cables Directly  
Output Shutdown  
O U  
PPLICATI  
Line Receivers  
S
A
The LT1189 is a low power, gain of 10 stable version of the  
popular LT1193, and is available in 8-pin miniDIPs and SO  
packages. For lower gain applications see the LT1187  
data sheet.  
Video Signal Processing  
Cable Drivers  
Tape and Disc Drive Systems  
U
O
TYPICAL APPLICATI  
Cable Sense Amplifier for Loop Through Connections  
with DC Adjust  
Closed-Loop Gain vs Frequency  
50  
V
IN  
V
= ±5V  
= 1k  
S
L
R
5V  
40  
30  
20  
10  
0
3
2
+
7
CABLE  
6
V
OUT  
LT1189  
1
8
V
DC  
+
4
–5V  
909Ω  
100Ω  
0.1  
1
10  
100  
FREQUENCY (MHz)  
LT1189 • TA01  
LT1189 • TA02  
1
LT1189  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Total Supply Voltage (V + to V ) ............................. 18V  
Differential Input Voltage ........................................ ±6V  
Input Voltage .......................................................... ±VS  
Output Short Circuit Duration (Note 1) ........ Continuous  
Operating Temperature Range  
LT1189M..................................... – 55°C to 150°C  
LT1189C............................................. 0°C to 70°C  
Junction Temperature (Note 2)  
Plastic Package (CN8,CS8) ......................... 150°C  
Ceramic Package (CJ8,MJ8) ....................... 175°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................ 300°C  
TOP VIEW  
ORDER PART  
+/REF  
–IN  
1
2
3
4
8
7
6
5
–/FB  
NUMBER  
+
V
LT1189MJ8  
LT1189CJ8  
LT1189CN8  
LT1189CS8  
+IN  
OUT  
S/D  
V
J8 PACKAGE  
N8 PACKAGE  
8-LEAD HERMETIC DIP 8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
LT1189 • POI01  
S8 PART MARKING  
1189  
TJMAX = 175°C, θJA = 100°C/W (J8)  
JMAX = 150°C, θJA = 100°C/W (N8)  
JMAX = 150°C, θJA = 150°C/W (S8)  
T
T
+
5V  
TA = 25°C, (Note 3)  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, VREF = 0V, RFB1 = 900from pins 6 to 8, RFB2 = 100from pin 8 to ground, RL = RFB1 + RFB2 = 1k, CL 10pF, pin 5 open.  
LT1189M/C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
Either Input, (Note 4)  
SOIC Package  
1.0  
1.0  
3.0  
4.0  
mV  
mV  
OS  
I
I
Input Offset Current  
Input Bias Current  
Either Input  
Either Input  
0.2  
±0.5  
30  
1.0  
µA  
µA  
OS  
±2.0  
B
e
Input Noise Voltage  
Input Noise Current  
Input Resistance  
f = 10kHz  
O
nV/Hz  
pA/Hz  
kΩ  
n
i
f = 10kHz  
O
1.25  
30  
n
R
Differential  
Either Input  
(Note 5)  
IN  
C
V
Input Capacitance  
2.0  
pF  
IN  
Input Voltage Limit  
±170  
mV  
IN LIM  
Input Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
–2.5  
80  
3.5  
V
CMRR  
PSRR  
V
= –2.5V to 3.5V  
105  
90  
dB  
CM  
V = ±2.375V to ±8V  
75  
dB  
S
V
V = ±5V, R = 1k, A = 50  
±3.8  
±6.7  
±6.4  
±4.0  
±7.0  
±6.8  
1.0  
220  
35  
V
OUT  
S
L
V
V = ±8V, R = 1k, A = 50  
S
L
V
V = ±8V, R = 300, A = 50, (Note 3)  
S
L
V
G
E
Gain Error  
V = ±1.0V, A = 10  
3.5  
75  
%
V/µs  
MHz  
MHz  
ns  
O
V
SR  
Slew Rate  
(Note 6, 10)  
150  
35  
FPBW  
BW  
Full Power Bandwidth  
Small Signal Bandwidth  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
V = 2V , (Note 7)  
O P-P  
A = 10  
35  
V
t , t  
r
A = 50, V = ±1.5V, 20% to 80% (Note 10)  
50  
f
V
O
t
R = 1k, V = ±125mV, 50% to 50%  
12  
ns  
PD  
L
O
V = ±50mV  
10  
%
O
t
Settling Time  
3V Step, 0.1%, (Note 8)  
1
µs  
s
Diff A  
Differential Gain  
Differential Phase  
Supply Current  
R = 1k, A = 10, (Note 9)  
0.6  
0.75  
13  
%
V
L
V
Diff Ph  
R = 1k, A = 10, (Note 9)  
DEG  
P-P  
L
V
I
16  
mA  
mA  
S
Shutdown Supply Current  
Pin 5 at V  
0.8  
1.5  
2
LT1189  
+
5V  
ELECTRICAL CHARACTERISTICS TA = 25°C, (Note 3)  
VS = ±5V, VREF = 0V, RFB1 = 900from pins 6 to 8, RFB2 = 100from pin 8 to ground, RL = RFB1 + RFB2 = 1k, CL 10pF, pin 5 open.  
LT1189M/C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
I
t
t
Shutdown Pin Current  
Turn On Time  
Pin 5 at V  
5
25  
S/D  
on  
Pin 5 from V to Ground, R = 1k  
500  
600  
ns  
L
Turn Off Time  
Pin 5 from Ground to V , R = 1k  
ns  
off  
L
5V  
open.  
TA = 25°C, (Note 3)  
ELECTRICAL CHARACTERISTICS  
VS+ = 5V, VS= 0V, VREF = 2.5V, RFB1 = 900from pins 6 to 8, RFB2 = 100from pin 8 to VREF, RL = RFB1 + RFB2 = 1k, CL 10pF, pin 5  
LT1189M/C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
Either Input, (Note 4)  
SOIC Package  
1.0  
1.0  
3.0  
5.0  
mV  
mV  
I
I
Input Offset Current  
Either Input  
Either Input  
0.2  
1.0  
±2.0  
3.5  
µA  
µA  
V
OS  
Input Bias Current  
±0.5  
B
Input Voltage Range  
Common-Mode Rejection Ratio  
Output Voltage Swing  
2.0  
80  
CMRR  
V
CM  
= 2.0V to 3.5V  
100  
4.0  
0.15  
175  
30  
dB  
V
V
R = 300to Ground  
V
V
High  
Low  
3.6  
OUT  
L
OUT  
OUT  
(Note 3)  
0.4  
SR  
Slew Rate  
V = 1.5V to 3.5V  
O
V/µs  
MHz  
mA  
BW  
Small-Signal Bandwidth  
Supply Current  
A = 10  
V
I
I
12  
15  
1.5  
25  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V  
Pin 5 at V  
0.8  
5
mA  
µA  
S/D  
+
5V LECTR AL CHARACTERIST  
E
IC  
ICS –55°C TA 125°C, (Note 3)  
VS = ±5V, VREF = 0V, RFB1 = 900from pins 6 to 8, RFB2 = 100from pin 8 to ground, RL = RFB1 + RFB2 = 1k, CL 10pF, pin 5 open.  
LT1189M  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mV  
µV/°C  
µA  
V
OS  
Input Offset Voltage  
Either Input, (Note 4)  
1.0  
7.5  
V /T  
OS  
Input V Drift  
10  
OS  
I
I
Input Offset Current  
Either Input  
Either Input  
0.2  
1.5  
±3.5  
3.5  
OS  
B
Input Bias Current  
±0.5  
µA  
Input Voltage Range  
–2.5  
80  
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V
CM  
= –2.5V to 3.5V  
105  
90  
dB  
V = ±2.375V to ±8V  
S
65  
dB  
V
OUT  
V = ±5V, R = 1k, A = 50  
±3.7  
±6.6  
±6.4  
±4.0  
±7.0  
±6.6  
1.0  
13  
V
S
L
V
V = ±8V, R = 1k, A = 50  
S
L
V
V = ±8V, R = 300, A = 50, (Note 3)  
S
L
V
G
E
Gain Error  
V = ±1V, A = 10, R = 1k  
6.0  
17  
%
mA  
mA  
µA  
O
V
L
I
Supply Current  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V , (Note 11)  
0.8  
1.5  
25  
I
Pin 5 at V  
5
S/D  
3
LT1189  
+
5V ELECTRICAL CHARACTERISTICS 0°C TA 70°C, (Note 3)  
VS = ±5V, VREF = 0V, RFB1 = 900from pins 6 to 8, RFB2 = 100from pin 8 to ground, RL = RFB1 + RFB2 = 1k, CL 10pF, pin 5 open.  
LT1189C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
(Note 4)  
Either Input  
SOIC Package  
1.0  
1.0  
3.0  
6.0  
mV  
mV  
V /T  
Input V Drift  
5.0  
0.2  
µV/°C  
µA  
µA  
V
OS  
OS  
I
I
Input Offset Current  
Either Input  
Either Input  
1.5  
±3.5  
3.5  
OS  
B
Input Bias Current  
±0.5  
Input Voltage Range  
–2.5  
80  
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing  
V
CM  
= 2.5V to 3.5V  
105  
90  
dB  
dB  
V
V = ±2.375V to ±8V  
S
70  
V
OUT  
V = ±5V, R = 1k, A = 50  
S
±3.7  
±6.6  
±6.4  
±4.0  
±7.0  
±6.6  
1.0  
13  
L
V
V = ±8V, R = 1k, A = 50  
S
L
V
V = ±8V, R = 300, A = 50, (Note 3)  
S
L
V
G
E
Gain Error  
V = ±1V, A = 10, R = 1k  
O
3.5  
17  
%
mA  
mA  
µA  
V
L
I
Supply Current  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V , (Note 11)  
0.8  
5
1.5  
25  
I
Pin 5 at V  
S/D  
5V ELECTRICAL CHARACTERISTICS  
open.  
0°C TA 70°C, (Note 3)  
VS+ = +5V, VS= 0V, VREF = 2.5V, RFB1 = 900from pins 6 to 8, RFB2 = 100from pin 8 to VREF, RL = RFB1 + RFB2 = 1k, CL 10pF, pin 5  
LT1189C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mV  
µV/°C  
µA  
V
OS  
Input Offset Voltage, (Note 4)  
Either Input  
1.0  
3.0  
V /T  
OS  
Input V Drift  
5.0  
OS  
I
I
Input Offset Current  
Either Input  
Either Input  
0.2  
1.5  
±3.5  
3.5  
OS  
B
Input Bias Current  
±0.5  
µA  
Input Voltage Range  
Common-Mode Rejection Ratio  
Output Voltage Swing  
2.0  
80  
V
CMRR  
V
= 2.0V to 3.5V  
100  
4.0  
0.15  
12  
dB  
CM  
V
OUT  
R = 300to Ground  
V
V
High  
Low  
3.5  
V
L
OUT  
OUT  
(Note 3)  
0.4  
16  
I
I
Supply Current  
mA  
mA  
µA  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V, (Note 11)  
0.8  
5
1.5  
25  
Pin 5 at V  
S/D  
Note 1: A heat sink may be required to keep the junction temperature below  
absolute maximum when the output is shorted continuously.  
Note 6: Slew rate is measured between ±1V on the output, with a V step of  
IN  
±0.5V, A = 10 and R = 1k.  
V L  
Note 2: T is calculated from the ambient temperature T and power dissipation  
Note 7: Full power bandwidth is calculated from the slew rate measurement:  
FPBW = SR/2πVp.  
Note 8: Settling time measurement techniques are shown in “Take the  
Guesswork Out of Settling Time Measurements,” EDN, September 19, 1985.  
J
A
P according to the following formulas:  
D
LT1189MJ8, LT1189CJ8: T = T + (P × 100°C/W)  
J
A
D
LT1189CN8:  
LT1189CS8:  
T = T + (P × 100°C/W)  
J A D  
T = T + (P × 150°C/W)  
J
A
D
Note 9: NTSC (3.58MHz).  
Note 3: When R = 1k is specified, the load resistor is R + R , but when  
L
FB1  
FB2  
Note 10: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J8 and N8 suffix) and are sample tested on every lot of the SO  
packaged parts (S8 suffix).  
R = 300is specified, then an additional 430is added to the output such  
L
that (R + R ) in parallel with 430is R = 300.  
FB1  
FB2  
L
Note 4: V measured at the output (pin 6) is the contribution from both input  
OS  
Note 11: See Application section for shutdown at elevated temperatures. Do  
pair, and is input referred.  
not operate shutdown above T > 125°C.  
J
Note 5: V  
is the maximum voltage between –V and +V (pin 2 and  
IN LIM  
IN IN  
pin 3) for which the output can respond.  
4
LT1189  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current vs  
Common-Mode Voltage vs  
Temperature  
Common-Mode Voltage  
Input Bias Current vs Temperature  
+
V
100  
0
3.0  
2.5  
V
= ±5V  
S
V = ±5V  
S
+
–0.5  
–1.0  
–1.5  
–2.0  
V
= 1.8V TO 9V  
+I  
B
2.0  
1.5  
1.0  
0.5  
–100  
–200  
–300  
–400  
–I  
B
–55°C  
I
OS  
2.0  
1.5  
1.0  
0.5  
25°C  
+
V
= –1.8V TO –9V  
0
125°C  
0.5  
V
–50 –25  
0
25  
50  
75  
100 125  
50 –25  
0
25  
50  
75 100 125  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
LT1189 • TPC02  
LT1189 • TPC01  
LT1189 • TPC03  
Equivalent Input Noise Voltage vs  
Frequency  
Equivalent Input Noise Current vs  
Frequency  
Supply Current vs Supply Voltage  
200  
180  
160  
16  
14  
12  
10  
8
12  
10  
8
V
T
R
= ±5V  
= 25°C  
= 0Ω  
V
T
= ±5V  
= 25°C  
= 100k  
S
A
S
S
A
R
S
–55°C  
25°C  
140  
120  
100  
80  
6
125°C  
4
60  
40  
2
20  
0
0
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
10  
100  
1k  
10k  
100k  
±SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1189 • TPC04  
LT1189 • TPC05  
LT1189 • TPC06  
Shutdown Supply Current vs  
Temperature  
Gain Error vs Temperature  
Open-Loop Gain vs Temperature  
16  
14  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
V
V
= ±5V  
= ±3V  
V
= ±5V  
V
V
A
= ±5V  
S
O
R
= 1k  
S
S
L
= ±1V  
OUT  
= 10  
V
L
12  
10  
8
R = 1k  
V
= –V + 0.6V  
EE  
S/D  
R
= 500Ω  
L
V
= –V + 0.4V  
EE  
S/D  
6
V
= –V + 0.2V  
EE  
S/D  
4
–2.2  
–2.4  
2
V
= –V  
S/D  
EE  
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1189 • TPC09  
LT1189 • TPC07  
LT1189 • TPC08  
5
LT1189  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Open-Loop Voltage Gain vs  
Load Resistance  
Gain Bandwidth Product vs  
Supply Voltage  
Gain, Phase vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
250  
200  
30  
20  
10  
TA = –55°C  
V
= ±5V  
= 25°C  
= 1k  
AV = 20dB  
S
A
L
V
V
= ±5V  
= ±3V  
= 25°C  
S
O
A
T
PHASE  
GAIN  
R
T
TA = 25°C  
60  
40  
20  
0
TA = 125°C  
150  
100  
–20  
100k  
–20  
0
1M  
10M  
100M  
0
2
4
6
8
10  
100  
1k  
LOAD RESISTANCE ()  
10k  
FREQUENCY (Hz)  
±SUPPLY VOLTAGE (V)  
LT1189 • TPC11  
LT1189• TPC10  
LT1189 • TPC12  
Gain Bandwidth Product and  
Phase Margin vs Temperature  
Common-Mode Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
85  
75  
65  
55  
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
250  
200  
150  
100  
V
= ±5V  
V
= ±5V  
S
A
V
V
T
= ±5V  
= 25°C  
= 1k  
S
L
S
T
= 25°C  
R
A
= 1k  
A
A
= 10  
= 20dB  
R
V
L
GAIN BANDWIDTH  
PRODUCT  
PHASE MARGIN  
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
25  
50  
75 100 125  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT1189 • TPC14  
LT1189 • TPC13  
LT1189 • TPC15  
Power Supply Rejection Ratio vs  
Frequency  
Output Short Circuit Current vs  
Temperature  
± Output Swing vs Supply Voltage  
+
V
80  
60  
40  
20  
0
36  
35  
0.7  
–0.8  
–0.9  
–1.0  
–1.1  
V
= ±5V  
V
= ±5V  
S
A
S
T
= 25°C  
125°C  
V
= ±300mV  
RIPPLE  
25°C  
34  
33  
32  
31  
30  
–55°C  
+PSRR  
–PSRR  
R
= 1k  
L
±1.8V V ±9V  
125°C  
25°C  
S
0.5  
0.4  
0.3  
–55°C  
0.2  
0.1  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
V
FREQUENCY (Hz)  
TEMPERATURE (°C)  
±SUPPLY VOLTAGE (V)  
LT1189 • TPC16  
LT1189 • TPC17  
LT1189 • TPC18  
6
LT1189  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Swing vs  
Load Resistance  
Slew Rate vs Temperature  
5
300  
250  
200  
V
= ±5V  
S
–SLEW RATE  
3
1
T = 55°C  
A
T = 25°C  
A
T = 25°C  
A
+SLEW RATE  
T = –55°C  
A
–1  
–3  
–5  
T = 25°C  
A
V
= ±5V  
= 1k  
= ±2V  
= 10  
S
T = 25°C  
A
R
L
O
V
V
A
10  
100  
LOAD RESISTANCE ()  
1000  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
LT1189 • TPC19  
LT1189 • TPC20  
Harmonic Distortion vs  
Output Level  
Output Voltage Step vs  
Settling Time, AV = 10  
4
2
0
–10  
–20  
–30  
–40  
–50  
–60  
V
T
= ±5V  
= 25°C  
= 1k  
V
T
= ±5V  
= 25°C  
= 1k  
S
S
A
A
R
10mV  
R
L
L
f = 10MHz  
= 10  
A
V
HD  
3
0
HD  
2
10mV  
180  
–2  
–4  
3
100 140  
220  
260  
300  
340  
0
1
2
4
SETTLING TIME (ns)  
OUTPUT VOLTAGE (V  
)
P-P  
LT1189 • TPC22  
LT1189 • TPC21  
Large-Signal Transient Reponse  
Small-Signal Transient Reponse  
AV = 10, RL = 1k, +SR = 223V/µs, –SR = 232V/µs  
AV = 10, RL = 1k, tr = 9.40ns  
LT1189 • TPC23  
LT1189 • TPC24  
7
LT1189  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
The primary use of the LT1189 is in converting high speed  
differential signals to a single-ended output. The LT1189  
videodifferenceamplifierhastwouncommittedhighinput  
impedance (+) and (–) inputs. The amplifier has another  
set of inputs which can be used for reference and feed-  
back. Additionally, this set of inputs give gain adjust, and  
DC control to the differential amplifier. The voltage gain of  
the LT1189issetlikeaconventionaloperationalamplifier.  
Feedback is applied to pin 8, and it is optimized for gains  
of 10 or greater. The amplifier can be operated single-  
ended by connecting either the (+) or (–) inputs to the  
+/REF (pin 1). The voltage gain is set by the resistors:  
(RFB + RG)/RG.  
Power Supply Bypassing  
The LT1189 is quite tolerant of power supply bypassing.  
In some applications a 0.1µF ceramic disc capacitor  
placed 1/2 inch from the amplifier is all that is required. In  
applications requiringgood settling time, it isimportant to  
use multiple bypass capacitors. A 0.1µF ceramic disc in  
parallel with a 4.7µF tantalum is recommended.  
Calculating the Output Offset Voltage  
Both input stages contribute to the output offset voltage at  
pin 6. The feedback correction forces balance in the input  
stages by introducing an Input VOS at pin 8. The complete  
expression for the output offset voltage is:  
Like the single-ended case, the differential voltage gain is  
setbytheexternalresistors:(RFB +RG)/RG. Themaximum  
input differential signal for which the output will respond  
is approximately ±170mV.  
VOUT=(VOS +IOS(RS)+IB(RREF)) ×(RFB +RG)/RG +IB(RFB)  
RS represents the input source resistance, typically 75,  
and RREF represents finite source impedance from the  
DC reference voltage, for VREF grounded, RREF = 0the  
IOS is normally a small contributor and the expression  
simplifies to:  
S/D  
S/D  
+
+
V
V
5
5
3
2
3
2
7
7
V
+
+
IN  
V
IN  
6
6
LT1189  
LT1189  
V
V
OUT  
1
8
1
8
OUT  
+/REF  
–/FB  
+/REF  
–/FB  
VOUT = VOS(RFB + RG)/RG + IB(RFB)  
4
4
If RFB is limited to 1k, the last term of the equation  
contributes only 2mV since IB is less than 2µA.  
V
V
R
R
FB  
FB  
R
+
+
R
G
FB  
R
R
G
FB  
A
= +  
V
R
G
A
V
= –  
R
G
+
7
V
R
G
R
G
6
S/D  
S/D  
+
+
V
V
5
5
3
2
3
2
7
7
R
+
+
FB  
V
V
IN DIFF  
IN DIFF  
8
Q1  
Q2  
Q3  
Q4  
6
6
LT1189  
+/REF  
–/FB  
LT1189  
V
V
OUT  
1
8
1
8
OUT  
V
+/REF  
–/FB  
IN  
R
G
R
G
V
+
3
2
1
REF  
+
+
IN  
R
R
R
E
300  
4
4
E
300  
R
R
R
REF  
V
R
V
R
S
S
FB  
FB  
345µA  
350µA  
R
FB  
R
+R  
G
R
G
FB  
FB  
4
V
V
= (V  
IN DIFF  
+ V  
)
V
O
=
V
V
IN  
O
IN  
IN DIFF  
LT1189 • AI02  
(
(
(
(
R
G
R
R
R
G
G
G
LT1189 • AI01  
Figure 1. Simplified Input Stage Schematic  
8
LT1189  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
High Voltage Instrumentation Amplifier Response  
Instrumentation Amplifier Rejects High Voltage  
20  
Instrumentation amplifiers are often used to process  
slowlyvaryingoutputsfromtransducers.WiththeLT1189  
it is easy to make an instrumentation amplifier that can  
respond to rapidly varying signals. Attenuation resistors  
in front of the LT1189 allow very large common-mode  
signals to be rejected while maintaining good frequency  
response.Theinputcommon-modeanddifferential-mode  
signals are reduced by 100:1, while the closed-loop gain  
is set to be 100, thereby maintaining unity-gain input to  
output. The unique topology allows for frequency re-  
sponse boost by adding 150pF to pin 8 as shown.  
DIFFERENTIAL-MODE RESPONSE  
0
–20  
COMMON-MODE RESPONSE  
–40  
60  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
LT1189 • AI05  
3.5MHz Instrumentation Amplifier Rejects 120VP-P  
Operating with Low Closed-Loop Gain  
The LT1189 has been optimized for closed-loop gains of  
10orgreater. Theamplifiercanbeoperatedatmuchlower  
closed-loop gains with the aid of a capacitor CFB across  
the feedback resistor, (feedback zero). This capacitor  
lowers the closed-loop 3dB bandwidth. The bandwidth  
cannot be made arbitrarily low because CFB is a short at  
high frequency and the amplifier will appear configured  
unity-gain. As an approximate guideline, make BW × AVCL  
= 200MHz. This expression expands to:  
5V  
100*  
100*  
10k*  
10k*  
2
1
3
8
+
7
REF  
V
6
IN  
LT1189  
FB  
V
4
CM  
120V  
P-P  
–5V  
10k  
100Ω  
150pF  
* 0.1% RESISTORS  
WORST CASE CMRR = 48dB  
LT1189 • AI03  
A
VCL  
= 200MHz  
2π R  
C
(
)(  
)
FB  
FB  
Output of Instrumentation Amplifier with 1MHz Square Wave  
Riding on 120VP-P at the Input  
or:  
A
VCL  
C
=
FB  
200MHz 2π R  
)( )(  
(
)
FB  
The effect of the feedback zero on the transient and  
frequency response is shown for AV = 4.  
LT1189 • AI04  
9
LT1189  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Closed-Loop Voltage Gain vs Frequency  
Reducing the Closed-Loop Bandwidth  
30  
Although it is possible to reduce the closed-loop band-  
width by using a feedback zero, instability can occur if the  
bandwidth is made too low. An alternate technique is to do  
differential filtering at the input of the amplifier. This  
technique filters the differential input signal, and the  
differentialnoise,butdoesnotfiltercommon-modenoise.  
Common-mode noise is rejected by the LT1189’s CMRR.  
C
C
= 0pF  
= 5pF  
FB  
FB  
20  
10  
0
V
= ±5V  
= 25°C  
= 4  
S
A
T
A
–10  
–20  
V
R
R
= 900Ω  
FB  
= 300Ω  
10MHz Bandwidth Limited Amplifier  
G
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
R1  
5V  
110Ω  
3
LT1189 • AI06  
+
7
2
SIG  
eN  
6
C1  
68pF  
V
LT1189  
OUT  
1
8
Small-Signal Transient Response  
REF  
FB  
D
4
909Ω  
–5V  
R2  
110Ω  
eN  
CM  
AV = 10  
1
2π(R1 + R2)C1  
eN  
100Ω  
f
=
–3dB  
SIG + eN  
CM  
D
V
=
+
OUT  
CMR  
FILTER  
LT1189 • AI09  
Using the Shutdown Feature  
The LT1189 has a unique feature that allows the amplifier  
to be shutdown for conserving power, or for multiplexing  
several amplifiers onto a common cable. The amplifier will  
shutdown by taking pin 5 to V. In shutdown, the amplifier  
dissipates15mWwhilemaintainingatruehighimpedance  
output state of about 20kin parallel with the feedback  
resistors. For MUX applications, the amplifiers may be  
configured inverting, non-inverting, or differential. When  
theoutputisloadedwithaslittleas1kfromtheamplifier’s  
feedback resistors, the amplifier shuts off in 600ns. This  
shutoff can be under the control of HC CMOS operating  
between 0V and 5V.  
AV = 4, RFB = 910, RG = 300Ω  
LT1189 • AI07  
Small-Signal Transient Response  
AV = 4, RFB = 910, RG = 300, CFB = 5pF  
LT1189 • AI08  
10  
LT1189  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
1MHz Sine Wave Gated Off with Shutdown Pin  
The ability to maintain shutoff is shown on the curve Shut  
down Supply Current vs Temperature in the Typical Per-  
formance Characteristics section. At very high elevated  
temperature it is important to hold the shutdown pin close  
to the negative supply to keep the supply current from  
increasing.  
SHUTDOWN  
VOUT  
AV = 10, RFB = 900, RG = 100Ω  
LT1189 • AI10  
U
O
TYPICAL APPLICATI  
Differential Receiver MUX for Power Down Applications  
15k  
1.5k  
CABLE 1  
5V  
3
2
+
15k  
1.5k  
CMOS IN  
7
6
LT1189  
5
1
8
VDC  
REF  
FB  
4
–5V  
1k  
CHANNEL SELECT  
100Ω  
1k  
74HC04  
74HC04  
VOUT  
1k  
–5V  
15k  
1.5k  
15k  
1.5k  
CABLE 2  
5V  
7
3
2
5
+
6
LT1189  
1
8
V
DC  
REF  
FB  
4
–5V  
1% RESISTORS WORST CASE CMRR = 28dB  
TYPICALLY 35dB  
1k  
100Ω  
LT1189 • TA03  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1189  
W
W
SI PLIFIED SCHE ATIC  
+
V
7
V
V
BIAS  
BIAS  
C
M
+
3
2
C
FF  
+V  
V
6
+V  
OUT  
*
V
4
5
S/D  
1 +/REF  
8
–/FB  
* SUBSTRATE DIODE, DO NOT FORWARD BIAS  
LT1189 • SS  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.290 – 0.320  
(7.366 – 8.128)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.023 – 0.045  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
J8 Package  
8-Lead Hermetic DIP  
(0.58 – 1.14)  
HALF LEAD  
OPTION  
0.008 – 0.018  
(0.203 – 0.460)  
0° – 15°  
0.045 – 0.065  
(1.14 – 1.65)  
FULL LEAD  
OPTION  
1
2
3
4
0.045 – 0.065  
(1.14 – 1.65)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
(0.360 – 0.660)  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.320  
(7.620 – 8.128)  
0.045 – 0.065  
(1.143 – 1.651)  
8
7
6
5
4
0.065  
(1.651)  
TYP  
N8 Package  
8-Lead Plastic DIP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.025  
–0.015  
1
2
3
0.045 ± 0.015  
(1.143 ± 0.381)  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.325  
+0.635  
8.255  
(
)
–0.381  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.189 – 0.197  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
S8 Package  
8-Lead Plastic SOIC  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
0°– 8° TYP  
1
2
3
4
BA/LT/GP 0293 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY