LT1194_01 [Linear]

Video Difference Amplifier; 视频差分放大器器
LT1194_01
型号: LT1194_01
厂家: Linear    Linear
描述:

Video Difference Amplifier
视频差分放大器器

放大器
文件: 总12页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1194  
Video Difference  
Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1194 is a video difference amplifier optimized for  
operationon±5Vandasingle5Vsupply. Theamplifierhas  
a fixed gain of 20dB and features adjustable input limiting  
to control tough overdrive applications. It has uncommit-  
ted high input impedance (+) and (–) inputs, and can be  
used in differential or single-ended configurations.  
Differential or Single-Ended Gain Block:± 10 (20dB)  
3dB Bandwidth: 35MHz  
Slew Rate: 500V/µs  
Low Cost  
Output Current: ±50mA  
Settling Time: 200ns to 0.1%  
CMRR at 10MHz: 45dB  
The LT1194’s high slew rate 500V/µs, wide bandwidth  
35MHz, and ±50mA output current make it ideal for  
driving cables directly. This versatile amplifier is easy to  
use for video or applications requiring speed, accuracy  
and low cost.  
Differential Gain Error: 0.2%  
Differential Phase Error: 0.08°  
Input Amplitude Limiting  
Single 5V Operation  
Drives Cables Directly  
The LT1194 is available in 8-pin PDIP and SO packages.  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Line Receivers  
Video Signal Processing  
Gain Limiting  
Oscillators  
Tape and Disc Drive Systems  
U
TYPICAL APPLICATIO  
Wideband Differential Amplifier  
with Limiting  
Sine Wave Reduced by Limiting  
250  
7pF TO 45pF  
4
5V  
5V  
11  
1µF  
1
3
2
5
8
7
VOUT  
+
+
NE592  
INPUT  
1V/DIV  
6
LT1194  
OUTPUT  
14  
7
4
1µF  
8
–5V  
–5V  
1
1k  
1k  
V
CONTROL  
LT1194 • TA01  
A
= 1000, –3dB BW = 35MHz  
V
LT1193 • TA02  
200kHz SINE WAVE WITH VCONTROL = –5V, –4V, –3V, –2V  
1
LT1194  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) .............................. 18V  
Differential Input Voltage ........................................ ±6V  
Input Voltage .......................................................... ±VS  
Output Short Circuit Duration (Note 2) ........ Continuous  
Operating Temperature Range  
TOP VIEW  
ORDER PART  
NUMBER  
BAL/V  
1
2
3
4
8
7
6
5
BAL/V  
C
C
+
–IN  
+IN  
V
LT1194CN8  
LT1194CS8  
OUT  
REF  
V
LT1194M (OBSOLETE) ............... – 55°C to 125°C  
LT1194C................................................. 0°C to 70°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
S8 PART MARKING  
1194  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 100°C/W (N8)  
T
JMAX = 150°C, θJA = 150°C/W (S8)  
LT1194MJ8  
LT1194CJ8  
J8 PACKAGE 8-LEAD CERDIP  
TJMAX = 150°C, θJA = 100°C/W  
OBSOLETE PACKAGE  
Consider the N8 or S8 Packages for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature  
ranges.  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, VREF = 0V, Null Pins 1 and 8 open circuit, TA = 25°C, CL 10pF, unless otherwise noted.  
LT1194M/C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
6
UNITS  
mV  
µA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
All Packages  
1
0.2  
±0.5  
15  
4
OS  
I
I
3
OS  
±3.5  
µA  
B
e
Input Noise Voltage  
Input Noise Current  
Input Resistance  
f = 10kHz  
O
nV/Hz  
pA/Hz  
kΩ  
pF  
n
i
f = 10kHz  
O
n
R
Either Input  
Either Input  
30  
2
IN  
IN  
C
Input Capacitance  
Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Maximum Output Signal  
Output Voltage Limit  
Output Voltage Swing  
2.5  
65  
3.5  
V
CMRR  
PSRR  
V
= –2.5V to 3.5V  
80  
80  
dB  
CM  
V = ±2.375V to ±8V  
65  
dB  
S
V
V
V
V = ±8V (Note 3)  
±3  
±4.3  
±20  
6.9  
6.7  
7.4  
6.7  
±4  
V
OMAX  
LIM  
S
V = ±0.5V, V = 2V (Note 4)  
±120  
mV  
V
i
C
V = ±8V, V = 4V  
R = 1k  
6.6  
6.3  
OUT  
S
REF  
L
R = 100Ω  
L
V
V = ±8V, V = –4V  
R = 1k  
L
6.7  
6.4  
±3  
V
S
REF  
R = 100Ω  
L
V
V = ±5V, V = 0V, R = 1k  
V
S
REF  
L
G
Gain Error  
V = ±3V  
R = 1k  
0.5  
0.5  
500  
26.5  
35  
3
3
%
E
O
L
R = 100Ω  
L
%
SR  
Slew Rate  
V = ± 1V, R = 1k (Notes 5, 9)  
O
350  
V/µs  
MHz  
MHz  
ns  
L
FPBW  
BW  
Full-Power Bandwidth  
Small-Signal Bandwidth  
Rise Time, Fall Time  
Propagation Delay  
V
= 6V (Note 6)  
18.5  
O
P-P  
t , t  
r
R = 1k, V = ±500mV, 20% to 80% (Note 9)  
L
4
6
8
f
O
t
R = 1k, V = ±125mV, 50% to 50%  
L
6.5  
ns  
PD  
O
2
LT1194  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, VREF = 0V, Null Pins 1 and 8 open circuit, TA = 25°C, CL10pF, unless otherwise noted.  
LT1194M/C  
TYP  
SYMBOL  
PARAMETER  
Overshoot  
CONDITIONS  
= ±125mV  
MIN  
MAX  
UNITS  
%
V
0
O
t
Settling Time  
Differential Gain  
Differential Phase  
Supply Current  
3V Step, 0.1% (Note 7)  
R = 150(Note 8)  
200  
0.2  
0.08  
35  
ns  
s
Diff A  
%
V
L
Diff Ph  
R = 150(Note 8)  
L
Deg  
P-P  
I
43  
mA  
S
+
VS = 5V, VS= 0V, VREF = 2.5V, Null Pins 1 and 8 open circuit, TA = 25°C, CL 10pF, unless otherwise noted.  
LT1194M/C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2
MAX  
8
UNITS  
mV  
µA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
All Packages  
OS  
I
I
0.2  
±0.5  
3
OS  
±3  
3.5  
µA  
B
Input Voltage Range  
Common Mode Rejection Ratio  
Output Voltage Limit  
Output Voltage Swing  
2
V
CMRR  
V
= 2V to 3.5V  
55  
70  
±20  
3.8  
0.25  
250  
32  
dB  
CM  
V
V
V = ±0.5V, V = 2V (Note 4)  
I
±120  
mV  
V
LIM  
C
R = 100to Ground  
L
V
V
High  
Low  
3.6  
OUT  
OUT  
OUT  
0.4  
V
SR  
Slew Rate  
V
= 1V to 3V  
V/µs  
MHz  
mA  
O
BW  
Small-Signal Bandwidth  
Supply Current  
I
32  
40  
S
The denotes specifications which apply over the full operating temperature range of 55°C TA 125°C.  
VS = ±5V, VREF = 0V, Null Pins 1 and 8 open circuit, unless otherwise noted.  
LT1194M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
mV  
mV/°C  
µA  
µA  
V
V
Input Offset Voltage  
N8 Package  
1
6
9
OS  
V /T  
OS  
Input V Drift  
OS  
I
I
Input Offset Current  
0.8  
±1  
5
OS  
B
Input Bias Current  
±5.5  
3.5  
Input Voltage Range  
2.5  
58  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Limit  
V
= – 2.5V to 3.5V  
80  
80  
dB  
dB  
mV  
V
CM  
V = ±2.375V to ±5V  
S
60  
V
V
V = ±0.5V, V = 2V (Note 4)  
I
±20  
6.6  
6.5  
6.7  
6.5  
1
±150  
LIM  
C
Output Voltage Swing  
V = ±8V,  
R = 1k  
6
OUT  
S
L
VREF = 4V  
R = 100Ω  
L
5.9  
6.1  
–6  
V
V = ±8V,  
R = 1k  
L
V
S
VREF = –4V  
R = 100Ω  
L
V
G
E
Gain Error  
V = ±3V, R = 1k  
5
%
O
L
I
Supply Current  
35  
43  
mA  
S
3
LT1194  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range of 0°C TA 70°C. VS = ±5V, VREF = 0V, Null Pins 1 and 8 open circuit, unless otherwise noted.  
LT1194C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
mV  
µV/°C  
µA  
µA  
V
V
Input Offset Voltage  
All Packages  
1
7
OS  
V /T  
OS  
Input V Drift  
6
OS  
I
I
Input Offset Current  
0.2  
±0.5  
3.5  
±4  
3.5  
OS  
B
Input Bias Current  
Input Voltage Range  
2.5  
60  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Limit  
V
= – 2.5V to 3.5V  
80  
80  
dB  
dB  
mV  
V
CM  
V = ±2.375V to ±5V  
S
60  
V
V
V = ±0.5V, V = 2V (Note 4)  
±20  
6.9  
6.7  
7.2  
6.6  
1
±130  
LIM  
I
C
Output Voltage Swing  
V = ±8V,  
R = 1k  
6.2  
6.1  
OUT  
S
L
VREF = 4V  
R = 100Ω  
L
V
V = ±8V,  
R = 1k  
L
6.4  
6.2  
V
S
VREF = 4V  
R = 100Ω  
L
V
G
E
Gain Error  
V = ±3V, R = 1k  
4
%
O
L
I
Supply Current  
35  
43  
mA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the  
life of a device may be impaired.  
Note 5: Slew rate is measured between ±1V on the output, with a ±0.3V  
input step.  
Note 2: A heat sink is required to keep the junction temperature below  
absolute maximum when the output is shorted.  
Note 6: Full-power bandwidth is calculated from the slew rate  
measurement:  
Note 3: There are two limitations on signal swing. Output swing is limited  
FPBW = SR/2πV .  
P
by clipping or saturation in the output stage. Input swing is controlled by  
Note 7: Settling time measurement techniques are shown in “Take the  
Guesswork Out of Settling Time Measurements,” EDN, September 19,  
1985.  
an adjustable input limiting function. On V = ±5V, the overload  
S
characteristic is output limiting, but on ±8V the overload characteristic is  
input limiting. V  
is measured with the null pins open circuit.  
OMAX  
Note 8: NTSC (3.58MHz).  
Note 4: Output amplitude is reduced by the input limiting function. The  
input limiting function occurs when the null pins, 1 and 8, are tied together  
and raised to a potential 0.3V or more above the negative supply.  
Note 9: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J and N suffix) and are sample tested on every lot of the  
SO packaged part (S suffix).  
Optional Offset Nulling Circuit  
Input Limiting Connection  
Input Limiting with Offset Nulling  
5V  
5V  
5V  
3
2
3
2
3
7
7
7
+
+
+
6
6
6
LT1194  
LT1194  
LT1194  
2
4
4
4
8
8
8
–5V  
–5V  
–5V  
V
C
1
1
1
LT1194 • TA03  
V
C
(NOTE 4)  
(NOTE 4)  
INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A ±250mV  
RANGE WITH A 1kTO 10kPOTENTIOMETER  
4
LT1194  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
Common Mode Voltage  
vs Supply Voltage  
4
3
–0.3  
–0.4  
10  
8
V
S
= ±5V  
V
S
= ±5V  
–55°C  
25°C  
6
+V COMMON MODE  
125°C  
4
+I  
B
B
2
1
–0.5  
–0.6  
–0.7  
–0.8  
2
I
OS  
0
25°C  
–2  
–4  
–6  
–8  
–10  
–55°C  
0
–1  
–2  
–55°C  
25°C  
–I  
125°C  
–V COMMON MODE  
125°C  
–4 –3 –2 –1  
0
1
2
3
4
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
±V SUPPLY VOLTAGE (V)  
LT1194 • TPC01  
LT1194 • TPC02  
LT1194 • TPC03  
Equivalent Input Noise Voltage  
vs Frequency  
Equivalent Input Noise Current  
vs Frequency  
Supply Current vs Supply Voltage  
150  
80  
60  
40  
50  
40  
30  
V
T
= ±5V  
V
T
= ±5V  
= 25°C  
= 0Ω  
S
S
= 25°C  
A
A
R
= 100k  
R
S
S
–55°C  
100  
50  
0
25°C  
125°C  
20  
10  
0
20  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
±SUPPLY VOLTAGE (V)  
LT1194 • TPC04  
LT1194 • TPC05  
LT1194 • TPC06  
Gain, Phase vs Frequency  
Gain Error vs Temperature  
3dB Bandwidth vs Supply Voltage  
22  
20  
18  
16  
20  
1.0  
0.8  
0.6  
0.4  
0.2  
0
36  
35  
V
= ±5V  
S
GAIN  
0
–20  
–40  
34  
33  
R
= 1k  
L
PHASE  
T
= –55°C, 25°C, 125°C  
A
14  
12  
–60  
–80  
32  
31  
30  
R
L
= 100Ω  
V
= ±5V  
= 25°C  
= 1k  
S
A
L
10  
8
–100  
–120  
T
R
100k  
1M  
10M  
100M  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
10  
6
8
FREQUENCY (Hz)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
LT1194 • TPC08  
LT1194 • TPC07  
LT1194 • TPC09  
5
LT1194  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency (Output Referred)  
Power Supply Rejection Ratio  
vs Frequency (Output Referred)  
Output Impedance vs Frequency  
100  
10  
1
60  
50  
40  
60  
40  
20  
V
T
= ±5V  
V
T
= ±5V  
V
T
= ±5V  
S
A
= ±300mV  
RIPPLE  
S
A
S
= 25°C  
= 25°C  
= 25°C  
A
R
= 1k  
V
L
30  
20  
10  
0
0.1  
–20  
1k  
1k  
10k  
100k  
FREQUENCY (Hz)  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FREQUENCY (Hz)  
LT1194 • TPC10  
LT1194 • TPC11  
LT1194 • TPC12  
Output Short-Circuit Current  
vs Temperature  
Output Voltage Limiting  
vs Supply Voltage  
Output Voltage  
vs Voltage On Control Pins  
100  
90  
6
4
6
4
T
A
= 125°C  
V
= ±5V  
V
= –5V  
= 25°C  
= 1k  
S
A
L
S
T
T
A
= 25°C  
R
T
= 50°C  
A
+LIMITING  
2
0
2
0
+OUTPUT SWING  
BAL/V PINS 1, 8  
C
FLOATING  
–OUTPUT SWING  
= –50°C  
80  
–2  
–4  
–6  
–2  
–4  
–6  
–LIMITING  
T
A
T
= 25°C  
A
T
= 125°C  
A
70  
–50 –25  
0
25  
50  
75 100 125  
0
–6  
–4  
–3  
–2  
–1  
2
4
10  
–5  
0
6
8
TEMPERATURE (°C)  
±SUPPLY VOLTAGE (V)  
VOLTAGE ON CONTROL PINS (V)  
LT1194 • TPC13  
LT1194 • TPC14  
LT1194 • TPC15  
Voltage Gain  
vs Frequency with Control Voltage  
Output Voltage Swing  
vs Load Resistance  
Slew Rate vs Temperature  
5
3
30  
10  
900  
800  
700  
600  
500  
400  
300  
V
= ±5V  
V
= –5V  
= –3V  
V = ±5V  
S
S
L
C
C
R
V
= 1k  
–SLEW RATE  
T
= –55°C  
V
A
= ±2V  
O
T
= 25°C  
A
–10  
–30  
–50  
–70  
–90  
1
T
= 125°C  
A
V
C
= –1V  
–1  
–3  
–5  
+SLEW RATE  
T
= 125°C  
A
T
= –55°C  
A
T
= 25°C  
A
V
T
= ±5V  
= 25°C  
= 1k  
S
V
= 1V  
A
C
R
L
10  
100  
LOAD RESISTANCE ()  
1000  
–50 –25  
0
25  
50  
75 100 125  
10M  
100k  
1M  
1G  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT1194 • TPC16  
LT1194 • TPC17  
LT1194 • TPC18  
6
LT1194  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Step  
vs Settling Time  
Small-Signal Transient Response  
Large-Signal Transient Response  
4
2
V
= ±5V  
= 25°C  
= 1k  
S
A
L
T
R
10mV  
0
10mV  
–2  
–4  
LT1194 • TPC20  
LT1194 • TPC21  
RISE TIME = 10.8ns, PROPAGATION DELAY = 6ns  
RL = 150, +SR = 430V/µs, –SR = 500V/µs  
40  
60  
80 100 120 140 160 180  
SETTLING TIME (ns)  
LT1194 • TPC19  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Limiting  
TheLT1194isavideodifferenceamplifierwithafixedgain  
of 10 (20dB). The amplifier has two uncommitted high  
input impedance (+) and (–) inputs that can be used either  
differentially or single-ended. The LT1194 includes a  
limiting feature that allows the amplifier to reduce its  
output as a function of DC voltage on the BAL/VC pins. The  
limiting feature uses input differential-pair limiting to  
prevent overload in subsequent stages. This technique  
allows extremely fast limiting action.  
OUTPUT  
INPUT  
Power Supply Bypassing  
LT1194 • TA04  
The LT1194 is quite tolerant of power supply bypassing.  
In some applications a 0.1µF ceramic disc capacitor  
placed 1/2 inch from the amplifier is all that is required.  
20dB INPUT OVERDRIVE, VC = 4.2V  
7
LT1194  
W U U  
U
APPLICATIO S I FOR ATIO  
Settling Time Good Bypass  
A scope photo of the amplifier output with no supply  
bypassing is used to demonstrate this bypassing toler-  
ance, RL = 1k.  
In many applications, and those requiring good settling  
time, it is important to use multiple bypass capacitors. A  
0.1µF ceramic disc in parallel with a 4.7µF tantalum is  
recommended. Two oscilloscope photos with different  
bypass conditions are used to illustrate the settling time  
characteristics of the amplifier. Note that although the  
outputwaveformlooksacceptableat1V/DIV, whenampli-  
fied to 10mV/DIV the settling time to 10mV is 200ns. The  
time drops to 162ns with multiple bypass capacitors, and  
does not exhibit the characteristic power supply ringing.  
LT1194 • TA07  
SETTLING TIME TO 10mV,  
SUPPLY BYPASS CAPACITORS = 0.1µF + 4.7µF TANTALUM  
No Supply Bypass  
Cable Terminations  
The LT1194 video difference amplifier has been optimized  
as a low cost cable driver. The ±50mA guaranteed output  
current enables the LT1194 to easily deliver 7.5VP-P into  
100, while operating on ±5V supplies, or 2.6VP-P on a  
single 5V supply.  
When driving a cable it is important to terminate the cable  
to avoid unwanted reflections. This can be done in one of  
two ways: single termination or double termination. With  
single termination, the cable must be terminated at the  
receiving end (75to ground) to absorb unwanted en-  
ergy. The best performance can be obtained by double  
termination(75inserieswiththeoutputoftheamplifier,  
and 75to ground at the other end of the cable). This  
termination is preferred because reflected energy is ab-  
sorbed at each end of the cable. When using the double  
terminationtechniqueitisimportanttonotethatthesignal  
isattenuatedbyafactorof2,or6dB.Foracabledriverwith  
againof5(LT1194gainof10),the3dBbandwidthisover  
30MHz with no peaking.  
LT1194 • TA05  
IN DEMO BOARD, RL = 1k  
Settling Time Poor Bypass  
A Voltage Controlled Current Source  
The LT1194 can be used to make a fast, precise, voltage  
controlled current source. The LT1194 high speed differ-  
ential amplifier senses the current delivered to the load.  
TheinputsignalVIN, appliedtothe(+)inputoftheLT1191,  
LT1194 • TA06  
SETTLING TIME TO 10mV,  
SUPPLY BYPASS CAPACITORS = 0.1µF  
8
LT1194  
W U U  
APPLICATIO S I FOR ATIO  
U
Voltage Controlled Current Source  
Double Terminated Cable Driver  
5V  
5V  
7
3
5
2
7
3
2
+
±V  
IN  
+
CABLE  
75  
6
6
LT1194  
LT1191  
75Ω  
4
C
C
8
4
1
–5V  
–5V  
5V  
V
C
7
3
5
+
2k  
6
R
LT1194  
5.1Ω  
Voltage Gain vs Frequency  
2
4
I
= ±20mA  
O
16  
14  
12  
10  
8
–5V  
T
= 25°C  
A
R
L
100Ω  
LT1194 • TA09  
Output Current Response  
6
4
2
C
C = 1pF  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
LT1194 • TA08  
CC = 3pF  
will appear at the (–) input if the feedback loop is properly  
closed. In steady state the input signal appears at the  
output of the LT1194, and 1/10 of this signal is applied  
across the sense resistor. Thus the output current is  
simply:  
C
C = 20pF  
LT1194 • TA10  
±20mA CURRENT SOURCE WITH DIFFERENT  
COMPENSATION CAPACITORS  
V
IN  
R • 10  
I =  
O
Differential Video Loop Thru Amplifier  
for Power-Down Applications  
The compensation capacitor CC forces the LT1191 to be  
the dominate pole for the loop, while the LT1194 is fast  
enough to be transparent in the feedback path. The ratio of  
the load resistor to the sense resistor should be approxi-  
mately 10:1 or greater for easy compensation. For the  
example shown the load resistor is 100, the sense  
resistor is 5.1, and various loop compensation capaci-  
tors cause the output to exhibit an underdamped, critically  
and overdamped response.  
V
IN  
5V  
1.5k  
15k  
15k  
7
3
2
5
+
CABLE  
6
OUTPUT  
LT1194  
1.5k  
4
5V  
1% RESISTOR WORST-CASE CMRR = 22dB  
TYPICALLY = 38dB  
LT1194 • TA11  
9
LT1194  
W U U  
U
APPLICATIO S I FOR ATIO  
Murphy Circuits  
Other precautions include:  
There are several precautions the user should take when  
using the LT1194 in order to realize its full capability.  
Although the LT1194 can drive a 50pF capacitive load,  
isolating the capacitance with 10can be helpful. Precau-  
tions primarily have to do with driving large capacitive  
loads.  
1. Use a ground plane (see Design Note 50, High Fre-  
quency Amplifier Evaluation Board).  
2. Do not use high source impedances. The input capaci-  
tance of 2pF, and RS = 10k, for instance, will give an  
8MHz – 3dB bandwidth.  
3. PC board socket may reduce stability.  
Driving Capacitive Load  
Driving Capacitive Load  
LT1194 • TA12  
LT1194 • TA13  
LT1194 IN DEMO BOARD, CL = 50pF  
LT1194 IN DEMO BOARD, CL = 50pF  
WITH 10ISOLATING RESISTOR  
5V  
5V  
3
3
7
7
+
+
COAX  
5
2
5
2
6
6
LT1194  
LT1194  
4
8
–5V  
4
8
–5V  
1X SCOPE  
PROBE  
1
1
LT1194 • TA14  
An Unterminated Cable is  
a Large Capacitive Load  
A 1X Scope Probe is a  
Large Capacitive Load  
10  
LT1194  
W
W
SI PLIFIED SCHE ATIC  
+
7
V
V
V
BIAS  
BIAS  
C
M
+
3
C
FF  
2
6
V
OUT  
+V  
+V  
*
V
4
500Ω  
4.5k  
1
BAL  
8
BAL  
5
REF  
LT1194 • TA15  
* SUBSTRATE DIODE, DO NOT FORWARD BIAS  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
CORNER LEADS OPTION  
(4 PLCS)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.045 – 0.068  
0.300 BSC  
(1.143 – 1.727)  
(0.762 BSC)  
FULL LEAD  
6
5
4
8
7
OPTION  
0.015 – 0.060  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
0° – 15°  
(0.203 – 0.457)  
J8 1298  
1
2
3
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
OBSOLETE PACKAGE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1194  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
N8 1098  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1193  
A = 2 Video Difference Amp  
V
80MHz BW, 500V/µs Slew Rate  
1194fa LT/CP 0801 1.5K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1991  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY