LT1201CS8 [Linear]

IC DUAL OP-AMP, 2000 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier;
LT1201CS8
型号: LT1201CS8
厂家: Linear    Linear
描述:

IC DUAL OP-AMP, 2000 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier

放大器 光电二极管
文件: 总12页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1201/LT1202  
Dual and Quad  
1mA, 12MHz, 50V/µs  
Op Amps  
U
DESCRIPTIO  
EATURE  
S
F
1mA Supply Current per Amplifier  
50V/µs Slew Rate  
12MHz Gain-Bandwidth  
Unity-Gain Stable  
330ns Settling Time to 0.1%, 10V Step  
6V/mV DC Gain, RL = 2kΩ  
2mV Maximum Input Offset Voltage  
100nA Maximum Input Offset Current  
1µA Maximum Input Bias Current  
±12V Minimum Output Swing into 2kΩ  
Wide Supply Range: ±2.5V to ±15V  
Drives Capacitive Loads  
The LT1201/LT1202 are dual and quad low power, high  
speed operational amplifiers with excellent DC perfor-  
mance. The LT1201/LT1202 feature much lower supply  
currentthandeviceswithcomparablebandwidthandslew  
rate. Each amplifier is a single gain stage with outstanding  
settling characteristics. The fast settling time makes the  
circuit an ideal choice for data acquisition systems. Each  
output is capable of driving a 2kload to ±12V with ±15V  
supplies and a 500load to ±3V on ±5V supplies. The  
amplifiers are also capable of driving large capacitive  
loads which make them useful in buffer or cable driver  
applications.  
O U  
The LT1201/LT1202 are members of a family of fast, high  
performance amplifiers that employ Linear Technology  
Corporation’s advanced bipolar complementary  
processing.  
PPLICATI  
S
A
Wideband Amplifiers  
Buffers  
Active Filters  
Video and RF Amplification  
Cable Drivers  
Data Acquisition Systems  
U
O
TYPICAL APPLICATI  
100kHz, 4th Order Butterworth Filter  
Inverter Pulse Response  
6.81k  
5.23k  
100pF  
6.81k  
11.3k  
+
V
IN  
47pF  
5.23k  
10.2k  
+
1/2  
LT1201  
1/2  
LT1201  
330pF  
V
OUT  
1000pF  
12001/02 TA01  
1201/02 TA02  
1
LT1201/LT1202  
W W W  
U
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V).............................. 36V  
Differential Input Voltage ........................................ ±6V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 1)........... Indefinite  
Operating Temperature Range  
Specified Temperature Range (Note 5)  
LT1201C/LT1202C ............................... 0°C to 70°C  
Maximum Junction Temperature  
Plastic Package ............................................. 150°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1201C/LT1202C .......................... 40°C to 85°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
+
+
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
V
8
7
6
5
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
A
LT1201CS8  
A
LT1201CN8  
B
B
V
V
S8 PART MARKING  
1201  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
T
JMAX = 150°C, θJA = 100°C/W  
TJMAX = 150°C, θJA = 150°C/W  
TOP VIEW  
ORDER PART  
NUMBER  
TOP VIEW  
ORDER PART  
NUMBER  
OUT A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
OUT D  
–IN D  
+IN D  
14  
13  
12  
11  
10  
9
–IN A  
+IN A  
D
C
A
B
D
C
A
B
14 +IN D  
LT1202CS  
LT1202CN  
+
V
13  
V
+
V
V
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
9
NC  
N PACKAGE  
14-LEAD PLASTIC DIP  
S PACKAGE  
16-LEAD PLASTIC SOIC  
T
JMAX = 150°C, θJA = 70°C/W  
TJMAX = 150°C, θJA = 100°C/W  
VS = ±15V, TA = 25°C, VCM = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V = ±15V (Note 2)  
0°C to 70°C  
0.7  
2.0  
3.0  
mV  
mV  
OS  
S
V = ±5V (Note 2)  
0°C to 70°C  
1.0  
4.0  
4.5  
mV  
mV  
S
Input V Drift  
11  
50  
µV/°C  
OS  
I
I
Input Offset Current  
V = ±5V and V = ±15V  
0°C to 70°C  
100  
150  
nA  
nA  
OS  
S
S
Input Bias Current  
V = ±5V and V = ±15V  
0°C to 70°C  
0.5  
1.0  
1.2  
µA  
µA  
B
S
S
e
Input Noise Voltage  
Input Noise Current  
f = 10kHz  
f = 10kHz  
30  
0.6  
nV/Hz  
pA/Hz  
n
i
n
2
LT1201/LT1202  
VS = ±15V, TA = 25°C, VCM = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
IN  
Input Resistance  
V
= ±12V  
48  
90  
500  
MΩ  
kΩ  
CM  
Differential  
C
Input Capacitance  
2
pF  
IN  
CMRR  
Common-Mode Rejection Ratio  
V = ±15V, V = ±12V; V = ±5V, V = ±2.5V  
0°C to 70°C  
92  
90  
100  
dB  
dB  
S
CM  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±5V to ±15V  
0°C to 70°C  
80  
80  
90  
dB  
dB  
S
+
Input Voltage Range  
V = ±15V  
12.0  
2.5  
14  
4
13  
–3  
V
V
V
V
S
V = ±5V  
S
Input Voltage Range  
V = ±15V  
12.0  
2.5  
S
V = ±5V  
S
A
V
Large-Signal Voltage Gain  
V = ±15V, V  
0°C to 70°C  
= ±10V, R = 5k  
4.0  
3.5  
3.0  
2.5  
8
6
5
4
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
S
OUT  
L
V = ±15V, V  
= ±10V, R = 2k  
S
OUT  
L
0°C to 70°C  
V = ±5V, V  
0°C to 70°C  
= ±2.5V, R = 2k  
2.5  
2.0  
2.0  
1.6  
V/mV  
V/mV  
V/mV  
V/mV  
S
OUT  
OUT  
L
V = ±5V, V  
S
= ±2.5V, R = 1k  
L
0°C to 70°C  
Output Swing  
Output Current  
Slew Rate  
V = ±15V, R = 2k, 0°C to 70°C  
12.0  
3.0  
6
6
13.8  
4.0  
12  
12  
±V  
±V  
mA  
mA  
OUT  
OUT  
S
L
V = ±5V, R = 500, 0°C to 70°C  
S
L
I
V = ±15V, V  
= ±12V, 0°C to 70°C  
= ± 3V, 0°C to 70°C  
S
OUT  
V = ±5V, V  
S
OUT  
SR  
V = ±15V, A  
S
= 2 (Note 3)  
VCL  
30  
27  
50  
V/µs  
V/µs  
0°C to 70°C  
V = ±5V, A  
0°C to 70°C  
= 2 (Note 3)  
20  
18  
33  
V/µs  
V/µs  
S
VCL  
Full Power Bandwidth  
Gain-Bandwidth  
Rise Time, Fall Time  
Overshoot  
V = ±15V, 10V Peak (Note 4)  
V = ±5V, 3V Peak (Note 4)  
S
0.8  
1.7  
MHz  
MHz  
S
GBW  
V = ±15V, f = 0.1MHz  
12  
9
18  
23  
MHz  
MHz  
ns  
ns  
S
V = ±5V, f = 0.1MHz  
S
t , t  
V = ±15V, A = 1, 10% to 90%, 0.1V  
VCL  
r
f
S
V = ± 5V, A  
= 1, 10% to 90%, 0.1V  
S
VCL  
V = ± 15V, A  
= 1, 0.1V  
= 1, 0.1V  
25  
20  
%
%
S
VCL  
V = ± 5V, A  
S
VCL  
Propagation Delay  
Settling Time  
V = ± 15V, 50% V to 50%V  
OUT  
18  
23  
ns  
ns  
S
IN  
V = ± 5V, 50% V to 50%V  
S
IN  
OUT  
t
V = ± 15V, 10V Step, 0.1%, A = 1  
VCL  
330  
300  
ns  
ns  
s
S
V = ± 5V, 5V Step, 0.1%, A  
S
= 1  
VCL  
R
Output Resistance  
Crosstalk  
Supply Current  
A
V
= 1, f = 0.1MHz  
1.1  
–110  
1
O
VCL  
OUT  
= ±10V, R = 2k  
100  
1.4  
1.6  
dB  
mA  
mA  
L
I
Each Amplifier, V = ±5V and V = ±15V  
0°C to 70°C  
S
S
S
Note 1: A heat sink may be required to keep the junction temperature  
Note 4: Full power bandwidth is calculated from the slew rate  
below absolute maximum when the output is shorted indefinitely.  
measurement: FPBW = SR/2πV .  
P
Note 2: Input offset voltage is pulse tested with automated test equipment  
Note 5: Commercial grade parts are designed to operate over the  
and is exclusive of warm-up drift.  
temperature range of –40°C to 85°C but are neither tested nor guaranteed  
beyond 0°C to 70°C. Industrial grade parts specified and tested over  
–40°C to 85°C are available on special request. Consult factory.  
Note 3: Slew rate is measured in a gain of –2. For ±15V supplies measure  
between ±10V on the output with ±6V on the input. For ±5V supplies  
measure between ±2V on the output with ±1.75V on the input.  
3
LT1201/LT1202  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Common-Mode Range vs  
Supply Voltage  
Output Voltage Swing vs  
Supply Voltage  
Supply Current vs Supply Voltage  
20  
15  
10  
5
20  
15  
10  
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
T
= 25°C  
= 2k  
OS  
A
L
EACH AMPLIFIER  
125°C  
T
= 25°C  
OS  
A
R
V < 1mV  
V = 30mV  
+V  
SW  
25°C  
+V  
–V  
CM  
–V  
CM  
SW  
–55°C  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1201/02 G01  
LT1201/02 G03  
1201/02 G02  
Output Voltage Swing vs  
Resistive Load  
Input Bias Current vs Input  
Common-Mode Voltage  
Open-Loop Gain vs  
Resistive Load  
1000  
750  
500  
250  
0
90  
80  
70  
60  
50  
40  
30  
25  
20  
15  
10  
5
T
= 25°C  
T
= 25°C  
A
A
S
V
= ±15V  
+
I
+ I  
2
B
B
I
=
B
V
= ±15V  
S
V
= ±15V  
S
V
= ±5V  
S
V
= ±5V  
S
T
= 25°C  
OS  
A
V = 30mV  
0
–15 –10  
–5  
0
5
10  
15  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
INPUT COMMON-MODE VOLTAGE (V)  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
LT1201/02 G06  
LT1201/02 G05  
LT1201/02 G04  
Output Short-Circuit Current  
vs Temperature  
Input Bias Current vs Temperature  
Input Noise Spectral Density  
35  
30  
25  
20  
15  
10  
5
560  
540  
520  
500  
480  
460  
440  
10  
1000  
100  
10  
V
= ±5V  
V
= ±15V  
T
= 25°C  
S
A
S
V
S
+
I
+ I  
2
V
A
= ±15V  
= 101  
B
B
I
=
B
R
= 100k  
S
SOURCE  
SINK  
1
i
n
e
n
0.1  
100k  
–50 –25  
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1201/02 G08  
LT1201/02 G07  
1201/02 G09  
4
LT1201/LT1202  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
vs Frequency  
Common-Mode Rejection Ratio  
vs Frequency  
Crosstalk vs Frequency  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
–40  
–50  
T
= 25°C  
= ±15V  
S
T
= 25°C  
= ±15V  
A
T
= 25°C  
A
A
S
V
V
V
V
A
= 0dBm  
IN  
= ±15V  
= 1  
S
V
L
–60  
R
= 2k  
+PSRR  
–70  
–PSRR  
–80  
–90  
–100  
–110  
–120  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
10k 100k  
1M  
10M 100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1201/02 G11  
LT1201/02 G12  
1201/02 G10  
Voltage Gain and Phase vs  
Frequency  
Frequency Response vs  
Capacitive Load  
Output Swing vs Settling Time  
80  
60  
40  
20  
0
100  
10  
8
10  
8
T
= 25°C  
= ±15V  
T
V
A
= 25°C  
= ±15V  
= –1  
A
S
A
S
V
V
= ±15V  
S
V
V
= ±5V  
10mV SETTLING  
S
6
80  
60  
40  
20  
0
6
4
4
2
0
A
= +1  
A
= –1  
V
V
V
= ±15V  
S
2
V
= ±5V  
S
0
C = 100pF  
C = 50pF  
–2  
–4  
–2  
–4  
–6  
–8  
–10  
C = 500pF  
A
= –1  
A
= +1  
V
V
–6  
–8  
C = 1000pF  
C = 0  
T
= 25°C  
1k  
A
–20  
–10  
100  
10k 100k  
1M  
10M 100M  
1M  
10M  
100M  
100k  
0
100  
200  
300  
400  
500  
600  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
LT1201/02 G13  
LT1201/02 G15  
LT1201/02 G14  
Closed-Loop Output Impedance  
vs Frequency  
Gain-Bandwidth vs Temperature  
Slew Rate vs Temperature  
90  
80  
70  
60  
50  
40  
30  
1000  
100  
10  
11.3  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
T
V
A
= 25°C  
= ±15V  
= +1  
V
A
= ±15V  
= –1  
A
S
V
V = ±15V  
S
S
V
–SR  
+SR  
1
0.1  
–50 –25  
0
25  
50  
75 100 125  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LT1201/02 G18  
LT1201/02 G16  
LT1201/02 G17  
5
LT1201/LT1202  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain-Bandwidth and Phase Margin  
vs Supply Voltage  
Total Harmonic Distortion  
vs Frequency  
Slew Rate vs Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
0.1  
0.01  
14  
12  
10  
8
60  
58  
56  
54  
52  
50  
48  
46  
T
A
= 25°C  
T
= 25°C  
= –1  
T
V
R
= 25°C  
= 3V  
RMS  
A
V
A
OUT  
L
A
= 2k  
GBW  
–SR  
+SR  
PHASE MARGIN  
A
= –1  
6
V
0.001  
0.0001  
4
A
= 1  
V
2
0
0
5
10  
15  
20  
5
10  
15  
20  
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1201/02 G20  
1201/02 G19  
1201/02 G21  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Layout and Passive Components  
Capacitive Loading  
As with any high speed operational amplifier, care must be  
taken in board layout in order to obtain maximum perfor-  
mance. Key layout issues include: use of a ground plane,  
minimization of stray capacitance at the input pins, short  
lead lengths, RF-quality bypass capacitors located close  
to the device (typically 0.01µF to 0.1µF) and low ESR  
bypass capacitors for high drive current applications  
(typically 1µF to 10µF tantalum). Sockets should be  
avoided when maximum frequency performance is re-  
quired, although low profile sockets can provide reason-  
able performance up to 50MHz. For more details see  
Design Note 50. The parallel combination of the feedback  
resistor and gain setting resistor on the inverting input  
combine with the input capacitance to form a pole which  
can cause peaking. If feedback resistors greater than 5k  
are used, a parallel capacitor of value:  
The LT1201/LT1202 amplifiers are stable with all capaci-  
tive loads. This is accomplished by sensing the load  
induced output pole and adding compensation at the  
amplifier gain node. As the capacitive load increases, both  
the bandwidth and phase margin decrease so there will be  
peaking in the frequency domain and in the transient  
response. The photo of the small-signal response with  
1000pF load shows 40% peaking. The large-signal re-  
sponse with a 10,000pF load shows the output slew rate  
being limited by the short-circuit current. To reduce peak-  
ing with capacitive loads, insert a small decoupling resis-  
tor between the output and the load, and add a capacitor  
between the output and inverting input to provide an AC  
feedback path. Coaxial cable can be driven directly, but for  
best pulse fidelity the cable should be doubly terminated  
with a resistor in series with the output. When driving a  
150load the minimum output current of 6mA limits the  
swing to ±0.9V.  
CF RG × CIN/RF  
should be used to cancel the input pole and optimize  
dynamic performance. For unity-gain applications where  
alargefeedbackresistorisused, CF shouldbegreaterthan  
or equal to CIN.  
6
LT1201/LT1202  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Small-Signal Capacitive Loading  
caused by a second pole beyond the unity-gain crossover.  
This is reflected in the 50° phase margin and shows up as  
overshoot in the unity-gain small-signal transient re-  
sponse. Higher noise gain configurations exhibit less  
overshoot as seen in the inverting gain of one response.  
The large-signal response in both inverting and non-  
inverting gain shows symmetrical slewing characteris-  
tics. Normally the noninverting response has a much  
faster rising edge due to the rapid change in input com-  
mon-mode voltage which affects the tail current of the  
input differential pair. Slew enhancement circuitry has  
been added to the LT1201/LT1202 so that the falling edge  
slew rate is balanced.  
AV = –1  
C
L = 1000pF  
1201/02 AI01  
Large-Signal Capacitive Loading  
Small-Signal Transient Response  
AV = 1  
CL = 10,000pF  
1201/02 AI02  
AV = 1  
1201/02 AI03  
Input Considerations  
Small-Signal Transient Response  
Resistors in series with the inputs are recommended for  
the LT1201/LT1202 in applications where the differential  
input voltage exceeds ±6V continuously or on a transient  
basis. An example would be in noninverting configura-  
tions with high input slew rates or when driving heavy  
capacitive loads. The use of balanced source resistance at  
each input is recommended for applications where DC  
accuracy must be maximized.  
Transient Response  
TheLT1201/LT1202gain-bandwidthis12MHzwhenmea-  
sured at 100kHz. The actual frequency response in unity-  
gain is considerably higher than 12MHz due to peaking  
AV = –1  
1201/02 AI04  
7
LT1201/LT1202  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Large-Signal Transient Response  
DAC Current-to-Voltage Converter  
The wide bandwidth, high slew rate and fast settling time  
of the LT1201/LT1202 make them well suited for current-  
to-voltageconversionaftercurrentoutputD/Aconverters.  
A typical application with a DAC-08 type converter (full-  
scale output of 2mA) uses a 5k feedback resistor. A 12pF  
compensation capacitor across the feedback resistor is  
used to null the pole at the inverting input caused by the  
DAC output capacitance. The combination of the LT1201/  
LT1202 and DAC settles to less than 40mV (1LSB) in  
500ns for a 0V to 10V step or for a 10V to 0V step.  
AV = 1  
1201/02 AI05  
Active Filters  
The LT1201/LT1202 are well suited to active filter applica-  
tions such as the circuit shown on the front page of the  
datasheet. Thisparticularexampleisa4-poleButterworth  
lowpass filter with a cutoff frequency of 100kHz. In choos-  
ing an amplifier for filter applications a good rule of  
thumb is:  
Large-Signal Transient Response  
fO × Q < GBW/20  
For our example the first section has Q = 0.54 and the  
second section has Q = 1.31, so the amplifier easily meets  
thegain-bandwidthrequirementof2.6MHzforfO =100kHz.  
This multiple feedback configuration and the Sallen-Key  
configuration (as shown in the Typical Applications sec-  
tion) are the most commonly used topologies. The mul-  
tiple feedback configuration has an advantage over the  
noninverting Sallen-Key configuration in many cases be-  
cause the amplifier does not see a frequency varying  
common-modevoltageandhighfrequencyoutputimped-  
ance is not critical. The result is better frequency perfor-  
mancebeyondfO (forourparticularexamplethestopband  
performance is dramatically better above 1MHz). Advan-  
tages of the Sallen-Key topology over the multiple feed-  
back topology include: better gain accuracy, better DC  
accuracy, and unity-gain filters can be implemented more  
easily.  
AV = –1  
1201/02 AI06  
Low Voltage Operation  
The LT1201/LT1202 are functional at room temperature  
with only 3V of total supply voltage. Under this condition,  
however, the undistorted output swing is only 0.8VP-P . A  
more realistic condition is operation at ±2.5V supplies (or  
5Vandground). Underthese conditionsat room tempera-  
ture the typical input common-mode range is 2.2V to  
–1.5V, and a 1MHz, 2.5VP-P sine wave can be accurately  
reproduced. With 5V total supply voltage the gain-band-  
width is reduced to 7MHz and the slew rate is reduced to  
20V/µs.  
8
LT1201/LT1202  
U
O
TYPICAL APPLICATI S  
Instrumentation Amplifier  
DAC Current-to-Voltage Converter  
R5  
432Ω  
R4  
20k  
12pF  
R1  
20k  
R2  
2k  
5k  
R3  
2k  
+
DAC-08  
1/2  
LT1201  
TYPE  
1/2  
V
OUT  
LT1201  
1/2  
LT1201  
V
OUT  
+
+
V
+
0.1µF  
5k  
IN  
1 LSB SETTLING = 500ns  
R4  
R3  
1
2
R2 R3  
+
R2 + R3  
R5  
A
=
1 +  
+
= 104  
1201/02 TA03  
V
(
)
R1 R4  
TRIM R5 FOR GAIN  
1201/02 TA05  
TRIM R1 FOR COMMON-MODE REJECTION  
BW = 120kHz  
100kHz 4th Order Butterworth Filter  
(Sallen-Key)  
C4  
1000pF  
C2  
330pF  
1/2  
LT1201  
V
+
OUT  
1/2  
+
LT1201  
R3  
2.43k  
R4  
15.4k  
V
IN  
C3  
68pF  
R1  
2.87k  
R2  
26.7k  
1201/02 TA04  
C1  
100pF  
Full-Wave Rectifier  
1N4148  
3.9k  
V
IN  
1/2  
LT1201  
7.8k  
+
1N4148  
3.9k  
3.9k  
7.8k  
+
1/2  
LT1201  
V
OUT  
1201/02 TA06  
9
LT1201/LT1202  
W
W
One amplifier shown.  
SI PLIFIED SCHE ATIC  
+
V
BIAS 1  
–IN  
BIAS 2  
+IN  
OUT  
V
1201/02 SS  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
2
3
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
0.189 – 0.197  
(4.801 – 5.004)  
S8 Package  
8-Lead Plastic SOIC  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
1
3
4
2
SO8 0493  
10  
LT1201/LT1202  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
14-Lead Plastic DIP  
0.770  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
0.260 ± 0.010  
(6.604 ± 0.254)  
1
2
3
5
6
4
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.380)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
–0.015  
0.325  
0.125  
(3.175)  
MIN  
0.075 ± 0.015  
(1.905 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
N14 0392  
S Package  
16-Lead Plastic SOIC  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
SO16 0392  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1201/LT1202  
U.S. Area Sales Offices  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
International Sales Offices  
FRANCE  
KOREA  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
UNITED KINGDOM  
GERMANY  
SINGAPORE  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Phone: 44-276-677676  
FAX: 44-276-64851  
Linear Techonolgy GMBH  
Untere Hauptstr. 9  
D-8057 Eching  
Germany  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Phone: 65-293-5322  
FAX: 65-292-0398  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
04/15/93  
LT/GP 0893 10K REV 0 • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1202CN

IC QUAD OP-AMP, 3000 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14, Operational Amplifier
Linear

LT1202CS

IC QUAD OP-AMP, 3000 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16, Operational Amplifier
Linear

LT1202CS16

IC QUAD OP-AMP, 2 uV OFFSET-MAX, 12 MHz BAND WIDTH, PDSO16, 0.150 INCH, PLASTIC, SO-16, Operational Amplifier
Linear

LT1203

150MHz Video Multiplexers
Linear

LT1203CN8

150MHz Video Multiplexers
Linear

LT1203CN8#PBF

LT1203 - 150MHz Video Multiplexers; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1203CS8

150MHz Video Multiplexers
Linear

LT1203CS8#PBF

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1203CS8#TR

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1203CS8#TRPBF

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1203_15

150MHz Video Multiplexers
Linear

LT1204

4-Input Video Multiplexer with 75MHz Current Feedback Amplifier
Linear