LT1203CS8#PBF [Linear]

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1203CS8#PBF
型号: LT1203CS8#PBF
厂家: Linear    Linear
描述:

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

复用器 光电二极管
文件: 总16页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1203/LT1205  
150MHz Video Multiplexers  
U
DESCRIPTIO  
EATURE  
S
F
The LT1203 is a wideband 2-input video multiplexer  
designed for pixel switching and broadcast quality rout-  
ing. The LT1205 is a dual version that is configured as a  
4-input, 2-output multiplexer.  
3dB Bandwidth: 150MHz  
0.1dB Gain Flatness: 30MHz  
Channel-to-Channel Switching Time: 25ns  
Turn-On/Turn-Off Time: 25ns  
High Slew Rate: 300V/µs  
These multiplexers act as SPDT video switches with 10ns  
transition times at toggle rates up to 30MHz. The 3dB  
bandwidth is 150MHz and 0.1dB gain flatness is 30MHz.  
Many parts can be tied together at their outputs by using  
the enable feature which reduces the power dissipation  
and raises the output impedance to 10M. Output capaci-  
tancewhendisabledisonly3pFandtheLT1203peaksless  
than 3dB into a 50pF load. Channel crosstalk and disable  
isolation are greater than 90dB up to 10MHz. An on-chip  
buffer interfaces to fast TTL or CMOS logic. Switching  
transients are only 50mV with a 25ns duration. The  
LT1203 and LT1205 outputs are protected against shorts  
to ground.  
Disabled Output Impedance: 10MΩ  
50mV Switching Transient  
Channel Separation at 10MHz: >90dB  
Differential Gain: 0.02%  
Differential Phase: 0.02°  
Wide Supply Range: ±5V to ±15V  
Output Short-Circuit Protected  
Push-Pull Output  
O U  
PPLICATI  
S
A
Broadcast Quality Video Multiplexing  
Picture-in-Picture Switching  
HDTV  
Computer Graphics  
Title Generation  
Video Crosspoint Matrices  
Video Routers  
The LT1203/LT1205 are manufactured using Linear  
Technology’sproprietarycomplementarybipolarprocess.  
The LT1203 is available in both the 8-lead PDIP and SO  
package while the LT1205 is available in the 16-lead  
narrow body SO package.  
U
O
TYPICAL APPLICATI  
Large-Signal Response  
High Speed RGB MUX  
CHANNEL SELECT  
+
V
RED 1  
+1  
+1  
+1  
+1  
V
RED  
OUT  
OUT  
EN  
RED 2  
LOGIC  
LT1205  
V
+
V
GREEN 1  
V
GREEN  
EN  
GREEN 2  
LOGIC  
V
+
V
BLUE 1  
+1  
+1  
LT1203  
V
BLUE  
OUT  
EN  
BLUE 2  
LOGIC  
V
LT1203 • TA01  
1
LT1203/LT1205  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage ...................................................... ±18V  
Signal Input Current (Note 1) ............................ ±20mA  
Logic Input Current (Note 2).............................. ±50mA  
Output Short-Circuit Duration (Note 3)........ Continuous  
Specified Temperature Range (Note 4)....... 0°C to 70°C  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Junction Temperature (Note 5)............................ 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
+
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
NUMBER  
INO  
NUMBER  
TOP VIEW  
GND  
V
OUT1  
+
V
1
2
3
4
V
V
8
7
6
5
IN0  
V
EN1  
IN1  
LT1203CN8*  
LT1203CS8*  
LT1205CS*  
GND  
OUT  
V
LOGIC 1  
+
V
EN  
IN1  
V
V
IN2  
V
LOGIC  
GND  
V
OUT2  
N8 PACKAGE  
S8 PACKAGE  
V
EN2  
IN3  
S8 PART MARKING  
1203  
8-LEAD PLASTIC DIP 8-LEAD PLASTIC SOIC  
V
LOGIC 2  
TJMAX = 150°C, θJA = 100°C/W (N)  
S PACKAGE  
16-LEAD PLASTIC SOIC  
T
JMAX = 150°C, θJA = 150°C/W (S)  
TJMAX = 150°C, θJA = 100°C/W  
*See Note 4  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C, ±5V VS ≤ ±15V, RL = 1k, pulse tested, EN pin open or high, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
10  
MAX  
30  
UNITS  
V
OS  
Output Offset Voltage  
Output Offset Matching  
Output Offset Drift  
Input Current  
Any Input Selected  
Between Outputs  
mV  
mV  
0.3  
40  
5
V /T  
OS  
µV/°C  
µA  
I
0.6  
5
IN  
R
IN  
Input Resistance  
V = ±5V, V = ±2V  
1
2
5
5
MΩ  
MΩ  
S
IN  
V = ±15V, V = ±2V  
S
IN  
C
IN  
Input Capacitance  
Input Selected  
Input Deselected  
2.6  
2.6  
pF  
pF  
C
V
Disabled Output Capacitance  
Input Voltage (Note 1)  
EN Pin Voltage 0.8V  
2.8  
pF  
OUT  
V = ±5V  
±2  
±2  
±2.8  
±3.0  
V
V
IN  
S
V = ±15V  
S
PSRR  
Power Supply Rejection Ratio  
Gain Error  
V = ±4.5 to ±15V  
60  
70  
dB  
S
V = ±15V, V = ±2V, R = 1k  
2
6
3
4
10  
6
%
%
%
S
IN  
L
V = ±15V, V = ±2V, R = 400Ω  
S
IN  
L
V = ±5V, V = ±2V, R = 1k  
S
IN  
L
2
LT1203/LT1205  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C, ±5V VS ≤ ±15V, RL = 1k, pulse tested, EN pin open or high, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V = ±15V, V = ±2V, R = 400Ω  
MIN  
TYP  
MAX  
UNITS  
V
OUT  
Output Voltage  
±1.8  
±1.8  
±1.90  
±1.94  
V
V
S
IN  
L
V = ±5V, V = ±2V, R = 1k  
S
IN  
L
Overload Swing (Note 1)  
Output Current  
V = ±15V, V = ±5V  
±0.9  
±0.9  
±1.5  
±1.5  
V
V
S
IN  
V = ±5V, V = ±5V  
S
IN  
I
V = ±15V, V = ±2V, R = 400Ω  
±4.5  
±1.8  
±4.75  
±2.00  
mA  
mA  
OUT  
S
IN  
L
V = ±5V, V = ±2V, R = 1k  
S
IN  
L
R
OUT  
Enabled Output Resistance  
Disabled Output Resistance  
EN Pin Voltage = 2V, V  
EN Pin Voltage = 0.5V, V  
= ±2V, V = ±15V  
20  
10  
42  
MΩ  
OUT  
S
= ±2V, V = ±15V  
1
OUT  
S
I
Supply Current (LT1203)  
EN Pin Voltage = 2V  
EN Pin Voltage = 0.5V  
10.0  
5.8  
14  
8
mA  
mA  
S
Supply Current (LT1205)  
EN Pin Voltage = 2V  
EN Pin Voltage = 0.5V  
20.0  
11.6  
28  
16  
mA  
mA  
V
V
Logic Low  
Logic Pin  
Logic Pin  
EN Pin  
0.8  
V
V
IL  
Logic High  
2
2
IH  
Enable Low  
0.5  
V
Enable High  
EN Pin  
V
I
I
I
Digital Input Current Low  
Digital Input Current High  
Enable Pin Current  
LT1203 Pin 5, LT1205 Pins 9, 13 = 0V  
LT1203 Pin 5, LT1205 Pins 9, 13 = 5V  
LT1203 Pin 6, LT1205 Pins 10, 14  
1.5  
10  
20  
6.5  
200  
80  
µA  
nA  
µA  
IL  
IH  
EN  
TA = 25°C, VS = ±15V, RL = 1k, EN pin open or high, unless otherwise noted.  
AC CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
180  
TYP  
300  
47.7  
25  
MAX  
UNITS  
V/µs  
MHz  
ns  
SR  
Slew Rate (Note 6)  
FPBW  
Full Power Bandwidth (Note 7)  
V
= 2V  
28.6  
OUT  
P-P  
t
Channel-to-Channel Select Time (Note 8) R = 10k  
35  
35  
35  
SEL  
L
Enable Time (Note 9)  
Disable Time (Note 9)  
Small-Signal Rise and Fall Time  
Propagation Delay  
R = 1k  
25  
ns  
L
R = 1k  
L
20  
ns  
t , t  
r
V
V
V
= 250mV , 10% to 90%  
2.6  
2.9  
5
ns  
f
OUT  
OUT  
OUT  
P-P  
= 250mV  
= 250mV  
ns  
P-P  
P-P  
Overshoot  
%
Crosstalk (Note 10)  
R = 10Ω  
S
90  
dB  
Chip Disabled Crosstalk (Note 10)  
Channel Select Output Transient  
Settling Time  
R = 10, EN Pin Voltage 0.8V  
110  
50  
dB  
L
All V = 0V  
mV  
P-P  
IN  
t
1%, V  
= 1V  
30  
ns  
S
OUT  
Differential Gain (Note 11)  
Differential Phase (Note 11)  
Insertion Loss  
V = ±15V, R = 10k  
0.02  
0.02  
0.02  
%
S
L
V = ±15V, R = 10k  
DEG  
dB  
S
L
R = 100k, C = 30pF, V  
= 500mV , f = 1MHz  
P-P  
L
L
OUT  
The  
denotes specifications which apply over the specified  
For inputs ±2.8V the SCR will not fire. Voltages above 2.8V will fire the  
SCR and the DC current should be limited to 20mA. To turn off the SCR  
the pin voltage must be reduced to less than 1V or the current reduced to  
less than 600µA.  
temperature range.  
Note 1: The analog inputs (pins 1, 3 for the LT1203, pins 1, 3, 5, 7 for the  
LT1205) are protected against ESD and overvoltage with internal SCRs.  
3
LT1203/LT1205  
Note 2: The digital inputs (pins 5, 6 for the LT1203, pins 9, 10, 13, 14 for  
the LT1205) are protected against ESD and overvoltage with internal  
SCRs. For inputs ±6V the SCR will not fire. Voltages above 6V will fire  
the SCR and the DC current should be limited to 50mA. To turn off the  
SCR the pin voltage must be reduced to less than 2V or the current  
reduced to less than 10mA.  
to pin 1 and measure the time for disappearance of 0.5V at pin 7 when  
pin 5 goes from 0V to 5V. Apply 1VDC to pin 3 and measure the time for  
the appearance of 0.5V at pin 7 when pin 5 goes from 0V to 5V. Apply  
1VDC to pin 3 and measure the time for disappearance of 0.5V at pin 7  
when pin 5 goes from 5V to 0V. For the LT1205 the same test is  
performed on both MUXs.  
Note 3: A heat sink may be required depending on the power supply  
voltage.  
Note 4: Commercial grade parts are designed to operate over the  
temperature range of 40°C to 85°C but are neither tested nor guaranteed  
beyond 0°C to 70°C. Industrial grade parts specified and tested over  
40°C to 85°C are available on special request, consult factory.  
Note 9: For the LT1203, apply 1VDC to pin 1 and measure the time for the  
appearance of 0.5V at pin 7 when pin 6 goes from 0V to 5V. Pin 5 voltage  
= 0V. Apply 1VDC to pin 1 and measure the time for disappearance of 0.2V  
at pin 7 when pin 6 goes from 5V to 0V. Pin 5 voltage = 0V. Apply 1VDC  
to pin 3 and measure the time for the appearance of 0.5V at pin 7 when  
pin 6 goes from 0V to 5V. Pin 5 voltage = 5V. Apply 1VDC to pin 3 and  
measure the time for disappearance of 0.2V at pin 7 when pin 5 goes from  
5V to 0V. Pin 5 voltage = 5V. For the LT1205 the same test is performed  
on both MUXs.  
Note 5: T is calculated from the ambient temperature T and the power  
J
A
dissipation P according to the following formulas:  
D
LT1203CN8: T = T + (P × 100°C/W)  
J
A
D
Note 10: V = 0dBm (0.223V  
) at 10MHz on one input with the other  
RMS  
IN  
LT1203CS8: T = T + (P × 150°C/W)  
J
A
D
input selected and R = 10. For disable crosstalk all inputs are driven  
S
LT1205CS: T = T + (P × 100°C/W)  
J
A
D
simultaneously. In disable the output impedance is very high and signal  
couples across the package; the load impedance determines the crosstalk.  
Note 11: Differential gain and phase are measured using a Tektronix  
TSG120 YC/NTSC signal generator and a Tektronix 1780R video  
measurement set. The resolution of this equipment is 0.1% and 0.1°.  
Ten identical MUXs were cascaded giving an effective resolution of  
0.01% and 0.01°.  
Note 6: Slew rate is measured at ±2.0V on a ±2.5V output signal while  
operating on ±15V supplies, R = 1k.  
L
Note 7: Full power bandwidth is calculated from the slew rate  
measurement:  
FPBW = SR/2πV  
PEAK  
Note 8: For the LT1203, apply 1VDC to pin 1 and measure the time for the  
appearance of 0.5V at pin 7 when pin 5 goes from 5V to 0V. Apply 1VDC  
TRUTH TABLE  
LOGIC  
EN  
V
OUT  
0
1
V
V
IN0  
IN1  
1
1
0
0*  
0
HIGH Z  
HIGH Z  
OUT  
OUT  
1
*Must be 0.5V  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
±5V Frequency Response  
±15V Frequency Response  
5
4
3
2
0
5
4
3
2
0
V
T
R
= ±15V  
= 25°C  
V
T
= ±5V  
S
A
S
A
R
–20  
–40  
–60  
–20  
–40  
–60  
= 25°C  
= ∞  
L
= ∞  
L
1
0
–80  
1
0
–80  
–100  
–100  
–1  
–2  
–3  
–4  
–5  
–120  
–140  
–160  
–180  
–200  
–1  
–2  
–3  
–4  
–5  
–120  
–140  
–160  
–180  
–200  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LT1203/05 • TPC02  
LT1203/05 • TPC01  
4
LT1203/LT1205  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
3dB Bandwidth  
vs Supply Voltage  
Frequency Response  
with Capacitive Loads  
Crosstalk Rejection  
vs Frequency  
5
4
–30  
40  
–50  
200  
180  
160  
140  
120  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
T
= 25°C  
= 10k  
S
A
S
A
A
L
R
C
= 20pF  
L
R
= ∞  
L
R
= ∞  
L
PEAKING 0.5dB  
3
C
= 50pF  
C
L
= 10pF  
L
2
C
= 100pF  
L
60  
–70  
1
R
S
= 75Ω  
0
R
S
= 37.5Ω  
–1  
–2  
–3  
–4  
–5  
–80  
R
= 0Ω  
S
R
S
= 10Ω  
–90  
–100  
–110  
6
8
10 12 14 16  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
0
2
4
18  
SUPPLY VOLTAGE (±V)  
LT1203/05 • TPC04  
LT1203/05 • TPC05  
LT1203/05 • TPC03  
Crosstalk Rejection  
vs Frequency  
Disable Rejection  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
–30  
40  
–50  
–20  
–30  
70  
60  
50  
40  
30  
20  
10  
0
T
R
R
= 25°C  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
A
S
L
S
A
S
= 0Ω  
= 25°C  
A
=
R
= ∞  
40  
–50  
L
–PSRR  
R
= 0Ω  
S
R
= ∞  
L
60  
–70  
60  
–70  
+PSRR  
R
= 1k  
L
–80  
–80  
V
= ±5V  
S
V
= ±15V  
–90  
S
90  
–100  
–110  
R
= 100Ω  
L
–100  
–110  
–120  
R
= 10Ω  
L
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
1
100  
10  
FREQUENCY (MHz)  
LT1203/05 • TPC07  
LT1203/05 • TPC06  
LT1203/05 • TPC08  
Supply Current  
vs Supply Voltage (Disabled)  
Output Impedance (Enabled)  
vs Frequency  
Supply Current  
vs Supply Voltage (Enabled)  
5.2  
5.0  
4.8  
4.6  
4.4  
9.6  
9.2  
8.8  
8.4  
8.0  
7.6  
100  
80  
V
= ±15V  
= 25°C  
LT1203  
L
LT1203  
L
S
A
T
R
=
R = ∞  
125°  
25°  
60  
25°  
–55°  
40  
30  
125°  
–55°  
20  
10  
10k  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
100k  
1M  
10M  
100M  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
LT1203/05 • TPC10  
LT1203/05 • TPC11  
LT1203/05 • TPC09  
5
LT1203/LT1205  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain Error vs Temperature  
Input Bias Current vs Input Voltage  
Output Voltage vs Input Voltage  
4
3
8
7
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
T
= ±15V  
= 25°C  
= 1k  
V
= ±15V  
V
V
= ±15V  
IN  
S
S
S
R
= ∞  
L
= –2V TO 2V  
A
R
L
125°C  
25°C  
R
= 400Ω  
L
2
6
5
4
3
2
1
–55°C  
0
–1  
–2  
–3  
–4  
R
= 1k  
25  
L
0.2  
0.4  
1
50  
100 125  
0
1
–50 –25  
0
75  
–4 –3 –2 –1  
2
3
4
–5 –4 –3 –2 –1  
0
1
2
3
4
5
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1203/05 • TPC12  
LT1203/05 • TPC13  
LT1203/05 • TPC14  
Settling Time to 1mV and 10mV  
vs Output Step  
Small-Signal Rise Time  
2.0  
1.5  
1.0  
0.5  
0
V
= ±15V  
= 1k  
S
L
R
10mV 1mV  
–0.5  
–1.0  
–1.5  
–2.0  
1mV  
10mV  
0
100  
200  
300  
400  
500  
SETTLING TIME (ns)  
LT1203/05 • TPC16  
RL = 1k  
LT1203/05 • TPC15  
VIN1 to VIN0 Select Time  
VIN0 to VIN1 Select Time  
LOGIC  
(PIN 5)  
LOGIC  
(PIN 5)  
VOUT  
(PIN 7)  
VOUT  
(PIN 7)  
LT1203/05 • TPC17  
LT1203/05 • TPC18  
VS = ±15V VINO = 1V  
VS = ±15V  
VINO = 1V  
RL = 10k  
VIN1 = 0V  
RL = 10k VIN1 = 0V  
6
LT1203/LT1205  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Channel 1 Enable  
Channel 1 Disable  
EN  
(PIN 6)  
EN  
(PIN 6)  
VOUT  
(PIN 7)  
VOUT  
(PIN 7)  
LT1203/05 • TPC19  
LT1203/05 • TPC20  
VINO = 1V  
VIN1 = 0V  
V
INO = 1V  
VS = ±15V  
L = 1k  
VS = ±15V  
L = 1k  
R
R
VIN1 = 0V  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
with ground plane to ensure high channel separation. For  
minimum peaking, maximum bandwidth and maximum  
gain flatness sockets are not recommended because they  
can add considerable stray inductance and capacitance. If  
a socket must be used, use a low profile, low capacitance  
socket such as the SamTec ISO-308.  
Input Protection  
The logic inputs have ESD protection (2kV) and short-  
ing them to 12V or 15V will cause excessive current to  
flow. Limit the current to less than 50mA when driving  
the logic above 6V. The analog inputs are protected  
against ESD and overvoltage with internal SCRs. For  
inputs ±2.8V the SCRs will fire and the DC current  
should be limited to 20mA.  
Switching Transients  
TheLT1203/LT1205useinputbufferstoensureswitching  
transients do not couple to other video equipment sharing  
the input line. Output switching transients are about  
50mVP-P with a 20ns duration and input transients are  
Power Supplies  
The LT1203/LT1205 will operate from ±5V (10V total) to  
±15V (30V total) and is specified over this range. Charac-  
teristics change very little over this voltage range. It is not  
necessaryto useequalvaluesupplies however, the output  
offset voltage will change. The offset will change about  
300µV per volt of supply mismatch. The LT1203/LT1205  
have a very wide bandwidth yet are tolerant of power  
supply bypassing. The power supplies should be by-  
passedwitha0.1µFor0.01µFceramiccapacitorwithin0.5  
inch of the part.  
LT1203 Channel-to-Channel Switching Transient  
OUTPUT  
50mV/DIV  
INPUT  
20mV/DIV  
Circuit Layout  
LOGIC  
(PIN 5)  
Use a ground plane to ensure a low impedance ground is  
available throughout the PCB layout. Separate the inputs  
LT1203/05 • AI01  
RS = 50Ω  
7
LT1203/LT1205  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
CMOS MUX Channel-to-Channel Switching Transient  
only 10mVP-P. A photo of the switching transients from a  
CMOS MUX shows glitches to be 50 times larger than on  
the LT1203. Also shown is the output of the LT1203  
switching on and off a 2MHz sinewave cleanly and without  
abnormalities.  
OUTPUT  
1V/DIV  
Pixel Switching  
INPUT  
1V/DIV  
The multiplexers are fabricated on LTC's Complementary  
Bipolar Process to attain fast switching speed, high band-  
width, and a wide supply voltage range compatible with  
traditional video systems. Channel-to-channel switching  
time and Enable time are both 25ns, therefore delay is the  
same when switching between channels or between ICs.  
TodemonstratetheswitchingspeedoftheLT1203/LT1205  
the RGB MUX of Figure 1 is used to switch RGB Worksta-  
tion inputs with a 22ns pixel width. Figure 2a is a photo  
showing the Workstation output and RGB MUX output.  
The slight rise time degradation at the RGB MUX output is  
due to the bandwidth of the LT1260 current feedback  
amplifier used to drive the 75cable. In Figure 2b, the  
LT1203 switches to an input at zero at the end of the first  
pixel and removes the following pixels.  
LOGIC  
CONTROL  
LT1203/05 • AI02  
RS = 50Ω  
NOTE: 50 TIMES LARGER THAN LT1203 TRANSIENT  
LT1203 Switching Inputs  
LOGIC  
(PIN 5)  
OUTPUT  
(PIN 7)  
LT1203/05 • AI03  
CHANNEL 1 = 0V  
CHANNEL 2 = 2MHz SINEWAVE  
J8  
ENABLE  
+
V
V
GND  
J7  
LOGIC  
C4  
4.7µF  
+
+
R11  
1.5k  
R10  
1.5k  
C3  
4.7µF  
16  
J1  
R16  
1
+
RED 1  
75Ω  
1
16  
15  
14  
13  
12  
11  
10  
9
15  
14  
13  
J9  
RED  
+1  
+1  
+1  
+1  
R
G
2
3
4
2
3
4
5
6
7
8
J2  
R1  
75Ω  
RED 2  
R7*  
10k  
R12  
1.5k  
J3  
R2  
75Ω  
R17  
75Ω  
+
LT1205  
GREEN 1  
12  
11  
J10  
GREEN  
5
6
7
J4  
R3  
75Ω  
GREEN 2  
R8*  
10k  
R13  
1.5k  
R4  
75Ω  
R18  
75Ω  
+
C2  
0.1µF  
10  
9
R14  
1.5k  
J11  
BLUE  
J5  
BLUE 1  
B
8
1
2
3
4
8
7
6
5
+1  
+1  
R15  
1.5k  
J6  
BLUE 2  
R5  
75Ω  
LT1203  
LT1260  
R9*  
10k  
R6  
75Ω  
LT1203/05 • F01  
*OPTIONAL  
C1  
0.1µF  
Figure 1. RGB MUX  
8
LT1203/LT1205  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
4
3
V
= ±15V  
S
L
F
R
= 150Ω  
R = R = 1.3k  
G
2
1
WORKSTATION  
OUTPUT  
R, B  
0
G
–1  
–2  
–3  
–4  
RGB MUX  
OUTPUT  
1
10  
100  
1000  
FREQUENCY (MHz)  
LT1203/05 • F02a  
LT1203/05 • F04  
Figure 2a. Workstation and RGB MUX Output  
Figure 4. RGB MUX Frequency Response of  
Demonstration Board #041  
Input Expansion  
WORKSTATION  
OUTPUT  
The output impedance of the LT1203/LT1205 is typically  
20when enabled and 10Mwhen disabled or not  
selected. This high disabled output impedance allows the  
output of many LT1205s to be shorted together to form  
large crosspoint arrays. With their outputs shorted to-  
gether, shoot-through current is low because the “on”  
channel is disabled before the “off” channel is activated.  
RGB MUX  
OUTPUT  
Timing and Supply Current Waveforms  
LT1203/05 • F02b  
Figure 2b. RGB MUX Output Switched to Ground  
After One Pixel  
ENABLE  
5V/DIV  
IC #1  
ENABLE  
IC #2  
5V/DIV  
Demonstration Board  
VOUT  
1V/DIV  
A Demonstration Board (#041) of the RGB MUX in Figure  
1
has been fabricated and its layout is shown in Figure 3.  
The small-signal bandwidth of the RGB MUX is set by the  
bandwidth of the LT1260. The stray capacitance of the  
surface mount feedback resistors RF and RG restricts the  
3dB bandwidth to about 95MHz. The bandwidth can be  
improved by about 20% using the through-hole LT1260  
and components. A frequency response plot in Figure 4  
shows that the R, G, and B amplifiers have slightly  
different frequency responses. The difference in the G  
amplifier is due to different output trace routing to  
feedback resistor R13.  
IS  
10mA/DIV  
LT1203/05 • AI04  
Four LT1205s are used in Figure 5 to form a 16-to-1  
multiplexer which is very space efficient and uses only six  
SOpackages. Inthisapplication15switchesareturnedoff  
and only one is active. An attenuator is formed by the 15  
deselected switches and the active device which has an  
9
LT1203/LT1205  
041A  
R1  
+
V
V
GND  
LOGIC  
ENABLE  
R1  
R
R2  
R2  
R10 C3  
U3  
R11  
U1  
U2  
R7  
R12  
R3  
R16  
G
B
R17  
R13  
R14  
G1  
G2  
C1  
C2  
R18  
R8  
C4  
R15  
R9  
R4  
B1  
R5  
(408) 432-1900  
LT1203/LT1205 FAST SWITCHING  
RGB MULTIPLEXER DEMO BOARD  
B2  
R6  
COPYWRITE '93  
MADE IN USA  
LT1205/03 • F03  
Figure 3. Demo Board #041 Layout  
10  
LT1203/LT1205  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
–15V  
15V  
GND  
5V  
C7  
0.1µF  
C1  
0.1µF  
A
16  
8
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
1
2
3
CH0  
+1  
+1  
+1  
+1  
Y0  
A
C2  
0.1µF  
R1  
75Ω  
C
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
B
C
D
U5  
74HCT238  
EN  
6
G1  
5
4
G2B  
G2A  
7
U1  
LT1205  
OPTIONAL  
X
10k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
+1  
+1  
+1  
+1  
+
+
C5  
2
3
7
R
S
+
4.7µF  
75Ω  
U6  
LT1252  
6
OUTPUT  
U2  
LT1205  
4
R
1.6k  
F
C6  
4.7µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+1  
+1  
+1  
+1  
R
G
1.6k  
TRUTH TABLE  
LOGIC  
SELECT  
OUTPUT  
ENABLE  
EN  
D
X
L
L
L
L
L
L
L
C
X
L
L
L
B
X
L
A
X
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
U3  
LT1205  
L
OFF  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
L
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
L
+1  
+1  
+1  
+1  
H
H
H
H
L
L
L
L
H
H
H
H
L
H
H
L
L
H
H
H
H
H
H
H
H
CH8  
CH9  
L
H
H
L
L
H
H
CH10  
CH11  
CH12  
CH13  
CH14  
CH15  
CH15  
R16  
75Ω  
U4  
LT1205  
C3  
0.1µF  
C4  
0.1µF  
H
LT1203/05 • F05  
Figure 5. 16-to-1 Multiplexer and Truth Table  
11  
LT1203/LT1205  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
16-to-1 MUX Response  
output impedance of only 25at 10MHz. This attenuator  
is responsible for the outstanding All Hostile Crosstalk  
Rejection of 90dB at 10MHz with 15 input signals.  
V
R
R
= ±15V  
S
L
F
2
0
= 100Ω  
= R = 1.6k  
G
Several suggestions to attain this high rejection include:  
1. Mount the feedback resistors for the surface mount  
LT1252 on the back side of the PC board.  
–2  
–4  
–6  
2. Keepthefeedbacktrace(pin3)oftheLT1252asshort  
as possible.  
3. Route V+ and Vfor the LT1205s on the component  
(top) side and under the devices (between inputs and  
outputs).  
1
10  
FREQUENCY (MHz)  
100  
LT1203/05 • AI07  
4. Use the backside of the PC board as a solid ground  
plane. Connect the LT1205 device grounds and by-  
pass capacitors grounds as vias to the backside  
ground plane.  
Each “off” switch has 2.8pF of output capacitance and 15  
“off” switches tied together represent a 48pF load to the  
one active switch. In this case the active device will peak  
about 3dB at 50MHz. An attribute of current feedback  
amplifiers is that the bandwidth can easily be adjusted by  
changing the feedback resistors, and in this application  
the LT1252’s bandwidth is reduced to about 60MHz using  
1.6kfeedbackresistors. Thishastheeffectofreducingthe  
peaking in the MUX to 0.25dB and flattening the response  
to 0.05dB at 30MHz.  
16-to-1 MUX, Switching LT1205 Enable Lines  
5V  
SELECT  
LINE C  
0V  
1V  
4 × 4 Crosspoint  
The compact high performance 4 × 4 crosspoint shown in  
Figure 6 uses four LT1205s to route any input to any or all  
outputs. The complete crosspoint uses only six SO pack-  
ages and less than six square inches of PC board space.  
The LT1254 quad current feedback amplifier serves as a  
cabledriverwithagainof2.A±5Vsupplyisusedtoensure  
that the maximum 150°C junction temperature of the  
LT1254 is not exceeded in the SO package. With this  
supply voltage the crosspoint can operate at a 70°C  
ambient temperature and drive 2V (peak or DC) into a  
double-terminated 75video cable. The feedback resis-  
tors of these output amplifiers have been optimized for  
thissupplyvoltage.The 3dBbandwidthofthecrosspoint  
is over 100MHz with only 0.8dB of peaking. All Hostile  
Crosstalk Rejection is 85dB at 10MHz when a shorted  
input is routed to all outputs. To obtain this level of  
performanceitisnecessarytofollowtechniquessimilarto  
0V  
LT1203/05 • AI05  
VIN4 = 0V  
VIN0 = 1V  
RF = RG = 1.6k  
L = 100Ω  
R
16-to-1 Multiplexer All Hostile Crosstalk Rejection  
–20  
V
R
R
= ±15V  
= 10Ω  
= 100Ω  
S
S
L
–40  
–60  
–80  
–100  
–120  
1
10  
100  
FREQUENCY (MHz)  
LT1203/05 • AI06  
12  
LT1203/LT1205  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
–5V  
5V  
GND  
OUTPUT 0  
3
2
R17  
J5  
+
75Ω  
1
U6 A  
LT1254  
C1  
0.1µF  
CH0  
J1  
C2  
0.1µF  
1
2
3
4
5
6
7
8
16  
R9  
820Ω  
+1  
+1  
+1  
+1  
15  
14  
13  
12  
11  
10  
9
R1  
75Ω  
R5  
10k  
R10  
820Ω  
OUTPUT 1  
J6  
5
R18  
75Ω  
+
U1  
LT1205  
7
U6 B  
LT1254  
6
R6  
R11  
820Ω  
10k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+1  
+1  
+1  
+1  
R12  
820Ω  
C5  
4.7µF  
+
CH1  
J2  
OUTPUT 2  
J7  
10  
4
R19  
75Ω  
+
8
U6 C  
LT1254  
R2  
75Ω  
U2  
LT1205  
9
11  
CH2  
J3  
R13  
820Ω  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
U5  
74HC04  
+1  
+1  
+1  
+1  
C6  
4.7µF  
R3  
75Ω  
R7  
10k  
R14  
820Ω  
+
OUTPUT 3  
12  
R20  
75Ω  
+
J8  
14  
U6 D  
LT1254  
U3  
LT1205  
13  
R15  
820Ω  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+1  
+1  
+1  
+1  
R8  
10k  
R16  
820Ω  
TRUTH TABLE  
SELECT LOGIC  
INPUT  
CH3  
J4  
CHANNEL  
A
L
L
H
H
B
L
H
L
CH0  
CH1  
CH2  
CH3  
R4  
75Ω  
U4  
LT1205  
H
C3  
0.1µF  
C4  
0.1µF  
LT1203/05 • F06  
A
B
A
B
A
B
A
B
SELECT LOGIC SELECT LOGIC SELECT LOGIC SELECT LOGIC  
OUTPUT 0 OUTPUT 1 OUTPUT 2 OUTPUT 3  
Figure 6. 4 × 4 Crosspoint and Truth Table  
13  
LT1203/LT1205  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Output 3, the 4th pair of logic inputs labeled Select Logic  
Output 3 is coded A = Low and B = High. To route  
Channel 3 Input to all outputs, set all eight logic inputs  
High. Channel 3 is the default input with all logic inputs  
open. To shut off all channels a pair of LT1259s can be  
substituted for the LT1254. The LT1259 is a dual current  
feedback amplifier with a shutdown pin that reduces the  
supply current to 0µA.  
those used in the 16-to-1 crosspoint with one additional  
suggestion:SurroundtheLT1205outputtracesbyground  
plane and route them away from the (–) inputs of the  
other three LT1254s.  
Each pair of logic inputs labeled Select Logic Output is  
used to select a particular output. The truth table is used  
to select the desired input and is applied to each pair of  
logic inputs. For example, to route Channel 1 Input to  
Response of All Four Inputs for the 4 × 4 Crosspoint  
4 × 4 Crosspoint, All Hostile Rejection  
2
V
= ±5V  
S
–40  
–60  
0
–2  
–4  
–80  
–100  
–120  
–6  
–8  
V
R
R
= ±5V  
S
F
L
= R = 820Ω  
G
= 100Ω  
1
10  
FREQUENCY (MHz)  
100 200  
1
10  
100  
FREQUENCY (MHz)  
LT1203/05 • AI08  
LT1203/05 • AI09  
4 × 4 Crosspoint, Switching Channel 0 to Channel 2  
5V  
INPUT A  
OF SELECT  
LOGIC  
OUTPUT 0  
0V  
LT1203/05 • AI10  
CHANNEL 0 = 1V  
CHANNEL 2 = 0V  
14  
LT1203/LT1205  
W
W
SI PLIFIED SCHE ATIC  
+
V
2V  
V
+
V
V
OFF  
IN 0  
IN 1  
OUT  
ENABLE  
LOGIC  
LOGIC  
+
V
–2V  
GND  
V
LT1203/05 • SS  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
8
7
6
5
4
0.250 ± 0.010  
(6.350 ± 0.254)  
1
2
3
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1203/LT1205  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0294  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
S Package  
16-Lead Plastic SOIC  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
SO16 0893  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
LT/GP 0494 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
16  
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1203CS8#TR

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1203CS8#TRPBF

LT1203 - 150MHz Video Multiplexers; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT1203_15

150MHz Video Multiplexers
Linear

LT1204

4-Input Video Multiplexer with 75MHz Current Feedback Amplifier
Linear

LT1204CN

4-Input Video Multiplexer with 75MHz Current Feedback Amplifier
Linear

LT1204CN#PBF

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: PDIP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT1204CN16

IC OP-AMP, 14000 uV OFFSET-MAX, 75 MHz BAND WIDTH, PDIP16, Operational Amplifier
Linear

LT1204CS

4-Channel Analog Multiplexer
ETC

LT1204CS16

IC OP-AMP, 14000 uV OFFSET-MAX, 75 MHz BAND WIDTH, PDSO16, Operational Amplifier
Linear

LT1204CSW

4-Input Video Multiplexer with 75MHz Current Feedback Amplifier
Linear

LT1204CSW#PBF

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT1204CSW#TR

LT1204 - 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear