LT1207CS [Linear]

Dual 250mA/60MHz Current Feedback Amplifier; 双250毫安/ 60MHz的电流反馈放大器
LT1207CS
型号: LT1207CS
厂家: Linear    Linear
描述:

Dual 250mA/60MHz Current Feedback Amplifier
双250毫安/ 60MHz的电流反馈放大器

放大器
文件: 总16页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1207  
Dual 250mA/60MHz  
Current Feedback Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
The LT®1207 is a dual version of the LT1206 high speed  
current feedback amplifier. Like the LT1206, each CFA in  
thedualhasexcellentvideocharacteristics:60MHzband-  
width, 250mA minimum output drive current, 400V/µs  
minimum slew rate, low differential gain (0.02% typ) and  
low differential phase (0.17° typ). The LT1207 includes a  
pin for an optional compensation network which stabi-  
lizes the amplifier for heavy capacitive loads. Both ampli-  
fiershavethermalandcurrentlimitcircuitswhichprotect  
againstfaultconditions.ThesecapabilitiesmaketheLT1207  
well suited for driving difficult loads such as cables in video  
or digital communication systems.  
250mA Minimum Output Drive Current  
60MHz Bandwidth, AV = 2, RL = 100Ω  
900V/µs Slew Rate, AV = 2, RL = 50Ω  
0.02% Differential Gain, AV = 2, RL = 30Ω  
0.17° Differential Phase, AV = 2, RL = 30Ω  
High Input Impedance: 10MΩ  
Shutdown Mode: IS < 200µA per Amplifier  
Stable with CL = 10,000pF  
U
APPLICATIO S  
ADSL/HDSL Drivers  
Video Amplifiers  
Cable Drivers  
Operation is fully specified from ±5V to ±15V supplies.  
Supply current is typically 20mA per amplifier. Two  
micropower shutdown controls place each amplifier in a  
high impedance low current mode, dropping supply  
current to 200µA per amplifier. For reduced bandwidth  
applications, supply current can be lowered by adding a  
resistor in series with the Shutdown pin.  
RGB Amplifiers  
Test Equipment Amplifiers  
Buffers  
The LT1207 is manufactured on Linear Technology's  
complementary bipolar process and is available in a low  
thermal resistance 16-lead SO package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
HDSL Driver  
5V  
+
0.1µF*  
2.2µF**  
+
V
IN  
SHDN A  
1/2 LT1207  
62Ω  
L1  
720Ω  
720Ω  
720Ω  
15k  
15k  
240Ω  
*CERAMIC  
**TANTALUM  
62Ω  
SHDN B  
1/2 LT1207  
L1 = TRANSPOWER SMPT–308  
OR SIMILAR DEVICE  
+
+
2.2µF**  
0.1µF*  
–5V  
1207 • TA01  
1
LT1207  
W W W  
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
Supply Voltage ..................................................... ±18V  
Input Current per Amplifier ............................... ±15mA  
Output Short-Circuit Duration (Note 1)....... Continuous  
Specified Temperature Range (Note 2)...... 0°C to 70°C  
Operating Temperature Range ............... 40°C to 85°C  
Junction Temperature......................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
ORDER PART  
+
+
NUMBER  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
–IN A  
+IN A  
OUT A  
LT1207CS  
V
A
SHDN A  
–IN B  
COMP A  
OUT B  
+IN B  
V
B
SHDN B  
COMP B  
+
+
V
V
S PACKAGE  
16-LEAD PLASTIC SO  
θJA = 40°C/W (NOTE 3)  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VCM = 0, ±5V VS ≤ ±15V, pulse tested, VSHDN A = 0V, VSHDN B = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
±3  
±10  
±15  
mV  
mV  
A
Input Offset Voltage Drift  
Noninverting Input Current  
10  
µV/°C  
+
I
I
T = 25°C  
A
±2  
±5  
±20  
µA  
µA  
IN  
Inverting Input Current  
T = 25°C  
A
±10  
±60  
±100  
µA  
µA  
IN  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz, R = 1k, R = 10, R = 0Ω  
3.6  
2
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
+i  
–i  
f = 10kHz, R = 1k, R = 10, R = 10k  
F G S  
n
f = 10kHz, R = 1k, R = 10, R = 10k  
30  
n
F
G
S
R
V
IN  
V
IN  
= ±12V, V = ±15V  
1.5  
0.5  
10  
5
MΩ  
MΩ  
IN  
S
= ±2V, V = ±5V  
S
C
IN  
Input Capacitance  
V = ±15V  
S
2
pF  
Input Voltage Range  
V = ±15V  
S
±12  
±2  
±13.5  
±3.5  
V
V
S
V = ±5V  
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = ±15V, V = ±12V  
55  
50  
62  
60  
dB  
dB  
S
CM  
V = ±5V, V = ±2V  
S
CM  
Inverting Input Current  
Common Mode Rejection  
V = ±15V, V = ±12V  
0.1  
0.1  
10  
10  
µA/V  
µA/V  
S
CM  
V = ±5V, V = ±2V  
S CM  
Power Supply Rejection Ratio  
V = ±5V to ±15V  
S
60  
77  
dB  
2
LT1207  
ELECTRICAL CHARACTERISTICS  
VCM = 0, ±5V VS ≤ ±15V, pulse tested, VSHDN A = 0V, VSHDN B = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±5V to ±15V  
MIN  
TYP  
MAX  
UNITS  
Noninverting Input Current  
Power Supply Rejection  
30  
500  
nA/V  
S
Inverting Input Current  
Power Supply Rejection  
V = ±5V to ±15V  
S
0.7  
5
µA/V  
A
Large-Signal Voltage Gain  
V = ±15V, V  
= ±10V, R = 50Ω  
55  
55  
71  
68  
dB  
dB  
V
S
OUT  
L
V = ±5V, V  
= ±2V, R = 25Ω  
L
S
OUT  
R
Transresistance, V /I  
V = ±15V, V  
= ±10V, R = 50Ω  
100  
75  
260  
200  
kΩ  
kΩ  
OL  
OUT IN  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 25Ω  
S
OUT  
L
V
Maximum Output Voltage Swing  
V = ±15V, R = 50, T = 25°C  
±11.5  
±10.0  
±2.5  
±12.5  
V
V
V
V
OUT  
S
L
A
V = ±5V, R = 25, T = 25°C  
±3.0  
S
L
A
±2.0  
I
I
Maximum Output Current  
R = 1Ω  
L
250  
500  
20  
1200  
mA  
OUT  
S
Supply Current per Amplifier  
V = ±15V, V  
= 0V, T = 25°C  
30  
35  
mA  
mA  
S
SHDN  
A
Supply Current per Amplifier,  
SHDN  
V = ±15V, T = 25°C  
12  
17  
200  
10  
mA  
S
A
R
= 51k (Note 4)  
Positive Supply Current  
per Amplifier, Shutdown  
V = ±15V, V  
= 15V, V = 15V  
SHDN B  
µA  
S
SHDN A  
Output Leakage Current, Shutdown  
Slew Rate (Note 5)  
V = ±15V, V  
= 15V, V = 0V  
OUT  
µA  
V/µs  
%
S
SHDN  
SR  
A = 2, T = 25°C  
400  
900  
0.02  
0.17  
60  
V
A
Differential Gain (Note 6)  
Differential Phase (Note 6)  
Small-Signal Bandwidth  
V = ±15V, R = 560, R = 560, R = 30Ω  
S F G L  
V = ±15V, R = 560, R = 560, R = 30Ω  
DEG  
MHz  
S
F
G
L
BW  
V = ±15V, Peaking 0.5dB  
S
R = R = 620, R = 100Ω  
F
G
L
V = ±15V, Peaking 0.5dB  
52  
43  
27  
MHz  
MHz  
MHz  
S
R = R = 649, R = 50Ω  
F
G
L
V = ±15V, Peaking 0.5dB  
S
R = R = 698, R = 30Ω  
F
G
L
V = ±15V, Peaking 0.5dB  
S
R = R = 825, R = 10Ω  
F
G
L
The  
denotes specifications which apply for 0°C T 70°C.  
Note 3: Thermal resistance θ varies from 40°C/W to 60°C/W depending  
A
JA  
upon the amount of PC board metal attached to the device. θ is specified  
Note 1: Applies to short circuits to ground only. A short circuit between  
the output and either supply may permanently damage the part when  
operated on supplies greater than ±10V.  
JA  
2
for a 2500mm test board covered with 2oz copper on both sides.  
Note 4: R  
is connected between the Shutdown pin and ground.  
SHDN  
Note 2: Commercial grade parts are designed to operate over the  
temperature range of 40°C to 85°C but are neither tested nor guaranteed  
beyond 0°C to 70°C. Industrial grade parts tested over 40°C to 85°C are  
available on special request. Consult factory.  
Note 5: Slew rate is measured at ±5V on a ±10V output signal while  
operating on ±15V supplies with R = 1.5k, R = 1.5k and R = 400.  
F
G
L
Note 6: NTSC composite video with an output level of 2V.  
3
LT1207  
W
U
U
-
S ALL SIG AL BA DWIDTH  
IS = 20mA per Amplifier Typical, Peaking 0.1dB  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
A
R
L
R
R
G
A
R
L
R
R
V
F
G
V
F
V = ±15V, R  
S
= 0Ω  
V = ±5V, R  
S
= 0Ω  
SHDN  
SHDN  
–1  
1
150  
681  
768  
887  
768  
909  
1k  
681  
768  
887  
50  
35  
24  
66  
37  
23  
19.2  
17  
–1  
1
150  
30  
562  
649  
732  
619  
715  
806  
562  
649  
732  
48  
34  
22  
54  
36  
22.4  
21.4  
17  
30  
10  
12.3  
10  
12.5  
150  
30  
10  
22.3  
17.5  
11.5  
150  
30  
10  
22.4  
17.5  
12  
2
150  
30  
10  
576  
649  
750  
576  
649  
750  
48  
35  
22.4  
20.7  
18.1  
11.7  
2
150  
30  
10  
665  
787  
931  
665  
787  
931  
55  
36  
22.5  
23  
18.5  
11.8  
10  
150  
30  
10  
442  
511  
649  
48.7  
56.2  
71.5  
40  
31  
20  
19.2  
16.5  
10.2  
10  
150  
30  
10  
487  
590  
768  
536  
64.9  
84.5  
44  
33  
20.7  
20.7  
17.5  
10.8  
IS = 10mA per Amplifier Typical, Peaking 0.1dB  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
A
R
L
R
R
G
A
R
L
R
R
V
F
V
F
G
V = ±5V, R  
= 10.2k  
V = ±15V, R  
S
= 60.4k  
S
SHDN  
SHDN  
–1  
1
150  
30  
576  
681  
750  
665  
768  
845  
576  
681  
750  
35  
25  
17  
12.5  
8.7  
17.5  
12.6  
8.2  
–1  
1
150  
634  
768  
866  
768  
909  
1k  
634  
768  
866  
41  
26.5  
17  
44  
28  
16.8  
19.1  
14  
30  
10  
10  
16.4  
9.4  
150  
30  
10  
37  
25  
16.5  
150  
30  
10  
18.8  
14.4  
8.3  
2
150  
30  
10  
590  
681  
768  
590  
681  
768  
35  
25  
16.2  
16.8  
13.4  
8.1  
2
150  
30  
10  
649  
787  
931  
649  
787  
931  
40  
27  
16.5  
18.5  
14.1  
8.1  
10  
150  
30  
10  
301  
392  
499  
33.2  
43.2  
54.9  
31  
23  
15  
15.6  
11.9  
7.8  
10  
150  
30  
10  
301  
402  
590  
33.2  
44.2  
64.9  
33  
25  
15.3  
15.6  
13.3  
7.4  
IS = 5mA per Amplifier Typical, Peaking 0.1dB  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
3dB BW  
(MHz)  
0.1dB BW  
(MHz)  
A
R
L
R
R
G
A
R
L
R
R
G
V
F
V
F
V = ±5V, R  
= 22.1k  
V = ±15V, R  
S
= 121k  
S
SHDN  
SHDN  
–1  
1
150  
30  
604  
715  
681  
604  
715  
681  
21  
10.5  
7.4  
–1  
1
150  
619  
787  
825  
619  
787  
825  
25  
12.5  
8.5  
14.6  
10.5  
30  
10  
15.8  
10.5  
10  
6.0  
5.4  
150  
30  
10  
768  
866  
825  
20  
14.1  
9.8  
9.6  
6.7  
5.1  
150  
30  
10  
845  
1k  
1k  
23  
15.3  
10  
10.6  
7.6  
5.2  
2
150  
30  
10  
634  
750  
732  
634  
750  
732  
20  
14.1  
9.6  
9.6  
7.2  
5.1  
2
150  
30  
10  
681  
845  
866  
681  
845  
866  
23  
15  
10  
10.2  
7.7  
5.4  
10  
150  
30  
10  
100  
100  
100  
11.1  
11.1  
11.1  
16.2  
13.4  
9.5  
5.8  
7.0  
4.7  
10  
150  
30  
10  
100  
100  
100  
11.1  
11.1  
11.1  
15.9  
13.6  
9.6  
4.5  
6
4.5  
4
LT1207  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Bandwidth and Feedback Resistance  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
vs Capacitive Load for 0.5dB Peak  
10k  
100  
10  
1
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PEAKING 0.5dB  
PEAKING 5dB  
A
= 2  
= 10Ω  
A
= 2  
= 100Ω  
BANDWIDTH  
PEAKING 0.5dB  
PEAKING 5dB  
V
L
V
L
R
R
R = 560Ω  
F
R = 470Ω  
F
R = 560Ω  
F
R = 750Ω  
F
R = 680Ω  
F
1k  
R = 1k  
F
R = 750Ω  
F
FEEDBACK RESISTOR  
R = 2k  
F
A
= 2  
V
L
S
R = 1k  
F
R
=
V
C
= ±15V  
COMP  
R = 1.5k  
F
= 0.01µF  
100  
1
10  
100  
1000  
10000  
4
12  
14  
16  
4
12  
14  
16  
6
8
10  
18  
6
8
10  
18  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1207 • TPC03  
LT1207 • TPC02  
LT1207 • TPC01  
Bandwidth and Feedback Resistance  
vs Capacitive Load for 5dB Peak  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10k  
100  
A
= 10  
= 10Ω  
PEAKING 0.5dB  
PEAKING 5dB  
A
= 10  
= 100Ω  
PEAKING 0.5dB  
PEAKING 5dB  
V
L
V
L
BANDWIDTH  
R
R
R
=390Ω  
R
F
= 330Ω  
R = 560Ω  
F
F
1k  
10  
R = 680Ω  
F
R
R
= 470Ω  
= 680Ω  
F
R = 1k  
F
A
= +2  
F
V
L
FEEDBACK RESISTOR  
R = 1.5k  
F
R
= ∞  
V
C
= ±15V  
S
R
F
= 1.5k  
= 0.01µF  
COMP  
100  
1
10k  
4
12  
14  
16  
16  
6
8
10  
18  
4
12  
14  
6
8
10  
18  
1
10  
100  
1k  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
CAPACITIVE LOAD (pF)  
LT1207 • TPC05  
LT1207 • TPC04  
LT1207 • TPC06  
Spot Noise Voltage and Current  
vs Frequency  
Differential Phase  
vs Supply Voltage  
Differential Gain  
vs Supply Voltage  
0.50  
0.40  
0.30  
0.10  
0.08  
0.06  
100  
10  
1
R = R = 560Ω  
F
G
A
= 2  
V
R
R
= 15Ω  
= 30Ω  
L
R
= 15Ω  
= 30Ω  
N PACKAGE  
L
L
–i  
n
R
A
= R = 560Ω  
F
V
G
R
= 2  
N PACKAGE  
0.20  
0.10  
0
0.04  
0.02  
0
L
R
= 50Ω  
L
e
n
R
R
= 50Ω  
L
i
n
= 150Ω  
L
R
7
= 150Ω  
L
5
7
9
11  
13  
15  
5
9
11  
13  
15  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1207 • TPC09  
LT1207 • TPC07  
LT1207 • TPC08  
5
LT1207  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs  
Ambient Temperature, VS = ±5V  
Supply Current vs  
Ambient Temperature, VS = ±15V  
Supply Current vs Supply Voltage  
24  
22  
20  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= 0V  
A
= 1  
A = 1  
V
SHDN  
V
L
T = –40˚C  
R
= 0Ω  
J
R
=
R = ∞  
L
SD  
R
= 0Ω  
SD  
T = 25˚C  
J
18  
16  
14  
R
R
= 10.2k  
= 22.1k  
R
R
= 60.4k  
= 121k  
SD  
SD  
T = 85˚C  
J
SD  
SD  
T = 125˚C  
J
12  
10  
0
0
50  
75 100 125  
4
12  
14  
16  
50  
125  
–50  
–25  
0
25  
6
8
10  
18  
–50  
0
25  
75 100  
–25  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1207 • TPC10  
LT1207 • TPC12  
LT1207 • TPC11  
Supply Current  
vs Shutdown Pin Current  
Input Common Mode Limit  
vs Junction Temperature  
Output Short-Circuit Current  
vs Junction Temperature  
+
1.0  
0.9  
20  
18  
16  
14  
12  
10  
8
V
V
= ±15V  
S
– 0.5  
–1.0  
–1.5  
–2.0  
2.0  
0.8  
0.7  
0.6  
0.5  
0.4  
SOURCING  
SINKING  
1.5  
6
1.0  
4
0.5  
2
0.3  
0
V
50  
TEMPERATURE (°C)  
100 125  
0
100  
200  
300  
400  
500  
–50 –25  
0
25  
75  
–50 –25  
0
100 125  
25  
50  
75  
SHUTDOWN PIN CURRENT (µA)  
TEMPERATURE (°C)  
LT1207 • TPC13  
LT1207 • TPC15  
LT1207 • TPC14  
Supply Current vs Large-Signal  
Output Frequency (No Load)  
Output Saturation Voltage  
vs Junction Temperature  
Power Supply Rejection Ratio  
vs Frequency  
+
70  
60  
50  
40  
30  
20  
10  
0
V
60  
50  
40  
30  
20  
10  
A
= 2  
V
S
= ±15V  
R
V
= 50Ω  
V
L
S
R
= 2k  
L
S
F
L
–1  
–2  
–3  
–4  
4
R
V
=
= ±15V  
NEGATIVE  
POSITIVE  
= ±15V  
R
= R = 1k  
G
V
= 20V  
OUT  
P-P  
R
= 50Ω  
L
R
R
= 50Ω  
L
L
3
2
= 2k  
1
V
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
–50 –25  
0
100 125  
25  
50  
75  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT1207 • TPC17  
LT1207 • TPC18  
LT1207 • TPC16  
6
LT1207  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Impedance in Shutdown  
vs Frequency  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Output Impedance vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
100  
10  
100k  
10k  
V
V
= ±15V  
V
I
= ±15V  
= 0mA  
A
= 1  
S
O
S
O
V
F
S
= 2V  
R
= 1k  
P-P  
V
= ±15V  
R
= 121k  
2nd  
SHDN  
R
= 10Ω  
L
3rd  
2nd  
R
= 0Ω  
SHDN  
1
1k  
R
= 30Ω  
L
3rd  
0.1  
100  
0.01  
100k  
10  
100k  
1
2
3
4
5
6 7 8 9 10  
1M  
10M  
100M  
1M  
10M  
100M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1207 • TPC21  
LT1207 • TPC19  
LT1207 • TPC20  
3rd Order Intercept vs Frequency  
Test Circuit for 3rd Order Intercept  
60  
50  
40  
30  
V
= ±15V  
= 50Ω  
S
L
F
+
R
R
R
= 590Ω  
= 64.9Ω  
P
1/2 LT1207  
O
G
590Ω  
50Ω  
65Ω  
MEASURE INTERCEPT AT P  
O
LT1207 • TPC23  
20  
10  
0
10  
15  
20  
25  
30  
5
FREQUENCY (MHz)  
LT1207 • TPC22  
7
LT1207  
W
W
SI PLIFIED SCHE ATIC  
+
V
TO ALL  
CURRENT  
SOURCES  
Q5  
Q10  
Q2  
D1  
Q11  
Q6  
Q15  
Q18  
Q1  
Q17  
Q9  
V
1.25k  
50Ω  
COMP  
V
C
C
+IN  
–IN  
R
C
OUTPUT  
+
V
SHUTDOWN  
+
V
Q12  
Q3  
Q8  
Q16  
Q14  
D2  
Q4  
Q13  
Q7  
V
LT1207 • SS  
1/2 LT1207 CURRENT FEEDBACK AMPLIFIER  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The LT1207 is a dual current feedback amplifier with high  
output current drive capability. The device is stable with  
large capacitive loads and can easily supply the high  
currents required by capacitive loads. The amplifier will  
drive low impedance loads such as cables with excellent  
linearity at high frequencies.  
line when the response has 0.5dB to 5dB of peaking. The  
curves stop where the response has more than 5dB of  
peaking.  
For resistive loads, the COMP pin should be left open (see  
section on capacitive loads).  
Capacitive Loads  
Feedback Resistor Selection  
Each amplifier in the LT1207 includes an optional com-  
pensation network for driving capacitive loads. This net-  
work eliminates most of the output stage peaking associ-  
ated with capacitive loads, allowing the frequency re-  
sponse to be flattened. Figure 1 shows the effect of the  
network on a 200pF load. Without the optional compensa-  
tion, there is a 5dB peak at 40MHz caused by the effect of  
the capacitance on the output stage. Adding a 0.01µF  
bypass capacitor between the output and the COMP pins  
connectsthecompensationandcompletelyeliminatesthe  
peaking. A lower value feedback resistor can now be used,  
resulting in a response which is flat to 0.35dB to 30MHz.  
The optimum value for the feedback resistors is a function  
of the operating conditions of the device, the load imped-  
ance and the desired flatness of response. The Typical AC  
Performance tables give the values which result in the  
highest 0.1dB and 0.5dB bandwidths for various resistive  
loads and operating conditions. If this level of flatness is  
not required, a higher bandwidth can be obtained by use  
of a lower feedback resistor. The characteristic curves of  
Bandwidth vs Supply Voltage indicate feedback resistors  
for peaking up to 5dB. These curves use a solid line when  
the response has less than 0.5dB of peaking and a dashed  
8
LT1207  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
12  
typically 100µA. Each Shutdown pin is referenced to the  
positive supply through an internal bias circuit (see the  
Simplified Schematic). An easy way to force shutdown is  
to use open drain (collector) logic. The circuit shown in  
Figure 2 uses a 74C904 buffer to interface between 5V  
logic and the LT1207. The switching time between the  
active and shutdown states is less than 1µs. A 24k pull-up  
resistor speeds up the turn-off time and insures that the  
amplifier is completely turned off. Because the pin is  
referenced to the positive supply, the logic used should  
have a breakdown voltage of greater than the positive  
supply voltage. No other circuitry is necessary as the  
internal circuit limits the Shutdown pin current to about  
500µA. Figure 3 shows the resulting waveforms.  
V
= ±15V  
S
10  
8
R = 1.2k  
COMPENSATION  
F
6
4
2
R = 2k  
F
NO COMPENSATION  
0
R = 2k  
F
–2  
–4  
–6  
–8  
COMPENSATION  
1
10  
100  
FREQUENCY (MHz)  
LT1207 • F01  
Figure 1.  
The network has the greatest effect for CL in the range of  
0pF to 1000pF. The graph of Maximum Capacitive Load vs  
Feedback Resistor can be used to select the appropriate  
value of the feedback resistor. The values shown are for  
0.5dBand5dBpeakingatagainof2withnoresistiveload.  
This is a worst-case condition, as the amplifier is more stable  
at higher gains and with some resistive load in parallel with  
the capacitance. Also shown is the 3dB bandwidth with the  
suggested feedback resistor vs the load capacitance.  
15V  
V
+
IN  
V
1/2 LT1207  
SHDN  
OUT  
–15V  
R
R
F
15V  
24k  
G
5V  
ENABLE  
LT1207 • F02  
74C906  
Although the optional compensation works well with  
capacitive loads, it simply reduces the bandwidth when it  
is connected with resistive loads. For instance, with a 30Ω  
load, the bandwidth drops from 55MHz to 35MHz when  
thecompensationisconnected. Hence, thecompensation  
wasmadeoptional.Todisconnecttheoptionalcompensa-  
tion, leave the COMP pin open.  
Figure 2. Shutdown Interface  
Shutdown/Current Set  
If the shutdown feature is not used, the Shutdown pins  
must be connected to ground or V.  
Each amplifier has a separate Shutdown pin which can be  
used to either turn off the amplifier, which reduces the  
amplifier supply current to less than 200µA, or to control  
the supply current in normal operation.  
LT1207 • F3  
AV = 1  
RF = 825Ω  
RL = 50Ω  
RPU = 24k  
VIN = 1VP-P  
The supply current in each amplifier is controlled by the  
current flowing out of the Shutdown pin. When the Shut-  
down pin is open or driven to the positive supply, the  
amplifier is shut down. In the shutdown mode, the output  
looks like a 40pF capacitor and the supply current is  
Figure 3. Shutdown Operation  
For applications where the full bandwidth of the amplifier  
is not required, the quiescent current may be reduced by  
connecting a resistor from the Shutdown pin to ground.  
9
LT1207  
PPLICATI  
The amplifier’s supply current will be approximately 40  
times the current in the Shutdown pin. The voltage across  
the resistor in this condition is V+ – 3VBE. For example, a  
60kresistorwillsettheamplifier’ssupplycurrentto10mA  
with VS = ±15V.  
O U  
W
U
A
S I FOR ATIO  
and for higher gains in the noninverting mode, the signal  
amplitude on the input pins is small and the overall slew  
rate is that of the output stage. The input stage slew rate  
is related to the quiescent current and will be reduced as  
the supply current is reduced. The output slew rate is set  
by the value of the feedback resistors and the internal  
capacitance. Larger feedback resistors will reduce the  
slew rate as will lower supply voltages, similar to the way  
the bandwidth is reduced. The photos (Figures 5a, 5b and  
5c) show the large-signal response of the LT1207 or  
various gain configurations. The slew rate varies from  
860V/µs for a gain of 1, to 1400V/µs for a gain of 1.  
Thephotos(Figures4aand4b)showtheeffectofreducing  
thequiescentsupplycurrentonthelarge-signalresponse.  
The quiescent current can be reduced to 5mA in the  
invertingconfigurationwithoutmuchchangeinresponse.  
In noninverting mode, however, the slew rate is reduced  
as the quiescent current is reduced.  
When the LT1207 is used to drive capacitive loads, the  
available output current can limit the overall slew rate. In  
the fastest configuration, the LT1207 is capable of a slew  
rateofover1V/ns. Thecurrentrequiredtoslewacapacitor  
LT1207 • F04a  
RF = 750Ω  
L = 50Ω  
IQ = 5mA, 10mA, 20mA  
VS = ±15V  
R
Figure 4a. Large-Signal Response vs IQ, AV = –1  
LT1207 • F05a  
RF = 825Ω  
L = 50Ω  
VS = ±15V  
R
Figure 5a. Large-Signal Response, AV = 1  
LT1207 • F04b  
RF = 750Ω  
L = 50Ω  
IQ = 5mA, 10mA, 20mA  
VS = ±15V  
R
Figure 4b. Large-Signal Response vs IQ, AV = 2  
Slew Rate  
Unlike a traditional op amp, the slew rate of a current  
feedback amplifier is not independent of the amplifier gain  
configuration. There are slew rate limitations in both the  
input stage and the output stage. In the inverting mode,  
LT1207 • F05b  
RF = RG = 750Ω  
L = 50Ω  
VS = ±15V  
R
Figure 5b. Large-Signal Response, AV = –1  
10  
LT1207  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response), but it  
does not degrade the stability of the amplifier.  
Power Supplies  
LT1207 • F05c  
RF = 750Ω  
RL = 50Ω  
The LT1207 will operate from single or split supplies from  
±5V (10V total) to ±15V (30V total). It is not necessary to  
use equal value split supplies, however the offset voltage  
and inverting input bias current will change. The offset  
voltage changes about 500µV per volt of supply mis-  
match. The inverting bias current can change as much as  
5µA per volt of supply mismatch, though typically the  
change is less than 0.5µA per volt.  
Figure 5c. Large-Signal Response, AV = 2  
at this rate is 1mA per picofarad of capacitance, so  
10,000pF would require 10A! The photo (Figure 6) shows  
the large-signal behavior with CL = 10,000pF. The slew  
rate is about 60V/µs, determined by the current limit of  
600mA.  
Thermal Considerations  
Each amplifier in the LT1207 includes a separate thermal  
shutdown circuit which protects against excessive inter-  
nal (junction) temperature. If the junction temperature  
exceeds the protection threshold, the amplifier will begin  
cycling between normal operation and an off state. The  
cycling is not harmful to the part. The thermal cycling  
occurs at a slow rate, typically 10ms to several seconds,  
which depends on the power dissipation and the thermal  
time constants of the package and heat sinking. Raising  
the ambient temperature until the device begins thermal  
shutdown gives a good indication of how much margin  
there is in the thermal design.  
LT1207 • F06  
VS = ±15V  
RL = ∞  
RF = RG = 3k  
Figure 6. Large-Signal Response, CL = 10,000pF  
Heat flows away from the amplifier through the package’s  
copper lead frame. Heat sinking is accomplished by using  
the heat spreading capabilities of the PC board and its  
copper traces. Experiments have shown that the heat  
spreading copper layer does not need to be electrically  
connected to the tab of the device. The PCB material can  
be very effective at transmitting heat between the pad area  
attached to the tab of the device and a ground or power  
plane layer either inside or on the opposite side of the  
board. Although the actual thermal resistance of the PCB  
material is high, the length/area ratio of the thermal  
Differential Input Signal Swing  
The differential input swing is limited to about ±6V by an  
ESD protection device connected between the inputs. In  
normal operation, the differential voltage between the  
input pins is small, so this clamp has no effect; however,  
in the shutdown mode the differential swing can be the  
same as the input swing. The clamp voltage will then set  
the maximum allowable input voltage. To allow for some  
margin, it is recommended that the input signal be less  
than ±5V when the device is shut down.  
11  
LT1207  
PPLICATI  
resistance between the layer is small. Copper board stiff-  
eners and plated through holes can also be used to spread  
the heat generated by the device.  
O U  
W
U
A
S I FOR ATIO  
where:  
TJ = Junction Temperature  
TA = Ambient Temperature  
Table 1 lists thermal resistance for several different board  
sizes and copper areas. All measurements were taken in  
still air on 3/32" FR-4 board with 2oz copper. This data can  
be used as a rough guideline in estimating thermal resis-  
tance. The thermal resistance for each application will be  
affectedbythermalinteractionswithothercomponentsas  
well as board size and shape.  
PD = Device Dissipation  
θJA = Thermal Resistance (Junction-to-Ambient)  
As an example, calculate the junction temperature for the  
circuit in Figure 8 assuming a 70°C ambient temperature.  
The device dissipation can be found by measuring the  
supplycurrents,calculatingthetotaldissipationandthen  
subtracting the dissipation in the load and feedback  
network.  
Table 1. Fused 16-Lead SO Package  
COPPER AREA (2oz)  
TOTAL  
THERMAL RESISTANCE  
TOPSIDE  
BACKSIDE COPPER AREA (JUNCTION-TO-AMBIENT)  
15V  
2500 sq. mm 2500 sq. mm 5000 sq. mm  
1000 sq. mm 2500 sq. mm 3500 sq. mm  
40°C/W  
46°C/W  
48°C/W  
49°C/W  
56°C/W  
58°C/W  
59°C/W  
60°C/W  
61°C/W  
37.5mA  
I
+
600 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
2500 sq. mm 3100 sq. mm  
2500 sq. mm 2680 sq. mm  
1000 sq. mm 1180 sq. mm  
12V  
1/2 LT1207  
SHDN  
330Ω  
–12V  
f = 2MHz  
0.01µF  
1k  
200pF  
600 sq. mm  
300 sq. mm  
100 sq. mm  
0 sq. mm  
780 sq. mm  
480 sq. mm  
280 sq. mm  
180 sq. mm  
–15V  
1k  
LT1206 • F07  
Figure 8. Thermal Calculation Example  
The dissipation for each amplifier is:  
70  
60  
50  
40  
30  
20  
10  
0
PD = (37.5mA)(30V) – (12V)2/(1k||1k) = 0.837W  
The total dissipation is PD = 1.674W. When a 2500 sq mm  
PC board with 2oz copper on top and bottom is used, the  
thermalresistanceis40°C/W.ThejunctiontemperatureTJ is:  
TJ = (1.674W)(40°C/W) + 70°C = 137°C  
The maximum junction temperature for the LT1207 is  
150°C, so the heat sinking capability of the board is  
adequate for the application.  
If the copper area on the PC board is reduced to 280mm2  
the thermal resistance increases to 60°C/W and the junc-  
tion temperature becomes:  
0
3000  
4000  
5000  
1000  
2000  
2
COPPER AREA (mm )  
LT1207 • F07  
Figure 7. Thermal Resistance vs Total Copper Area  
(Top + Bottom)  
TJ = (1.674W)(60°C/W) + 70°C = 170°C  
Calculating Junction Temperature  
Which is above the maximum junction temperature indi-  
cating that the heat sinking capability of the board is  
inadequate and should be increased.  
The junction temperature can be calculated from the  
equation:  
TJ = (PD)(θJA) + TA  
12  
LT1207  
U
TYPICAL APPLICATIO S  
Gain of Eleven High Current Amplifier  
V
IN  
+
1/2 LT1207  
LT1097  
+
OUT  
COMP  
SHDN  
0.01µF  
500pF  
330Ω  
3k  
10k  
LT1207 • TA02  
OUTPUT OFFSET: < 500µV  
SLEW RATE: 2V/µs  
1k  
BANDWIDTH: 4MHz  
STABLE WITH C < 10nF  
L
Gain of Ten Buffered Line Driver  
15V  
1µF  
15V  
1µF  
+
+
+
LT1115  
+
OUTPUT  
1/2 LT1207  
SHDN  
1µF  
+
0.01µF  
R
L
–15V  
1µF  
68pF  
+
–15V  
560Ω  
909Ω  
560Ω  
LT1207 • TA03  
100Ω  
R
O
= 32Ω  
L
V
= 5V  
RMS  
THD + NOISE = 0.0009% AT 1kHz  
= 0.004% AT 20kHz  
SMALL-SIGNAL 0.1dB BANDWIDTH = 600kHz  
13  
LT1207  
U
TYPICAL APPLICATIO S  
CMOS Logic to Shutdown Interface  
Distribution Amplifier  
15V  
V
+
IN  
75CABLE  
75Ω  
1/2 LT1207  
75Ω  
SHDN  
+
75Ω  
R
R
F
1/2 LT1207  
SHDN  
24k  
75Ω  
75Ω  
LT1207 • TA05  
LT1207 • TA04  
5V  
–15V  
G
10k  
2N3904  
Buffer AV = 1  
Differential Output Driver  
1/2 LT1207  
V
IN  
+
V
+
IN  
+
1/2 LT1207  
COMP  
SHDN  
V
*OPTIONAL, USE WITH CAPACITIVE LOADS  
**VALUE OF R DEPENDS ON SUPPLY  
F
VOLTAGE AND LOADING. SELECT  
FROM TYPICAL AC PERFORMANCE  
TABLE OR DETERMINE EMPIRICALLY  
OUT  
0.01µF  
0.01µF*  
1k  
R **  
F
LT1207 • TA06  
500Ω  
1k  
V
OUT  
1k  
Differential Input—Differential Output Power Amplifier (AV = 4)  
1/2 LT1207  
+
0.01µF  
+
+
LT1207 • TA07  
+
1/2 LT1207  
1k  
1k  
V
V
OUT  
IN  
1k  
1/2 LT1207  
+
LT1207 • TA08  
14  
LT1207  
U
TYPICAL APPLICATIO S  
Paralleling Both CFAs for Guaranteed 500mA Output Drive Current  
V
+
IN  
3Ω  
V
OUT  
1/2 LT1207  
1k  
1k  
+
3Ω  
1/2 LT1207  
1k  
LT1207 • TA09  
1k  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
0.228 – 0.244  
(3.810 – 3.988)  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
15  
LT1207  
TYPICAL APPLICATION  
U
CCD Clock Driver. Two 3rd Order Gaussian Filters Produce Clean CCD Clock Signals  
45pF  
CCD ARRAY LOAD  
20V  
1k  
1k  
1k  
CLOCK  
INPUT  
CLK  
74HC74  
Q
Q
+
10Ω  
1/2 LT1207  
100pF  
91pF  
3300pF  
D
0.01µF  
1k  
510Ω  
45pF  
1k  
1k  
1k  
+
10Ω  
1/2 LT1207  
100pF  
91pF  
5
0
CLOCK  
INPUT  
3300pF  
0.01µF  
–10V  
1k  
15  
0
LT1207 • TA10  
DRIVER  
OUTPUT  
510Ω  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Single Version of LT1207, 900V/µs Slew Rate, 0.02% Differential  
Gain, 0.17° Differential Phase, with A = 2 and R = 30, Stable with  
LT1206  
Single 250mA/60MHz Current Feedback Amplifier  
V
L
C = 10,000pF, Shutdown Control Reduces Supply Current to 200µA  
L
LT1210  
Single 1A/30MHz Current Feedback Amplifier  
Dual/Quad 100MHz Current Feedback Amplifiers  
Higher Output Current Version of LT1206  
LT1229/LT1230  
Low Cost CFA for Video Applications, 1000V/µs Slew Rate, 30mA  
Output Drive Current, 0.04% Differential Gain, 0.1° Differential  
Phase, with A = 2 and R = 150, 9.5mA Max Supply Current per  
V
L
Op Amp, ±2V to ±15V Supply Range  
LT1360/LT1361/LT1362  
Single/Dual/Quad 50MHz, 800V/µs,  
Fast Settling Voltage Feedback Amplifier, 60ns Settling Time to 0.1%,  
10V Step, 5mA Max Supply Current per Op Amp, 9nVHz Input Noise  
C-LoadTM Op Amps  
Voltage, Drives All Capacitive Loads, 1mV Max V , 0.2% Differential  
OS  
Gain, 0.3° Differential Phase with A = 2 and R = 150Ω  
V
L
C-Load is a trademark of Linear Technology Corporation  
LT/GP 0196 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1996  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1207CS#PBF

LT1207 - Dual 250mA/60MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1207CS#TR

暂无描述
Linear

LT1207CS#TRPBF

暂无描述
Linear

LT1207CS16

IC DUAL OP-AMP, 10000 uV OFFSET-MAX, 60 MHz BAND WIDTH, PDSO16, Operational Amplifier
Linear

LT1208

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1208C

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1208CN8

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1208CN8#PBF

暂无描述
Linear

LT1208CS8

Dual and Quad 45MHz, 400V/us Op Amps
Linear

LT1208CS8#PBF

LT1208 - Dual and Quad 45MHz, 400V/&#181;s Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1208CS8#TR

暂无描述
Linear

LT1208CS8#TRPBF

暂无描述
Linear