LT1210CS [Linear]

1.1A, 35MHz Current Feedback Amplifier; 1.1A , 35MHz时电流反馈放大器
LT1210CS
型号: LT1210CS
厂家: Linear    Linear
描述:

1.1A, 35MHz Current Feedback Amplifier
1.1A , 35MHz时电流反馈放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1210  
1.1A, 35MHz Current  
Feedback Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
The LT®1210 is a current feedback amplifier with high  
output current and excellent large-signal characteristics.  
The combination of high slew rate, 1.1A output drive and  
±15V operation enables the device to deliver significant  
power at frequencies in the 1MHz to 2MHz range. Short-  
circuit protection and thermal shutdown ensure the  
device’s ruggedness. The LT1210 is stable with large  
capacitive loads, and can easily supply the large currents  
required by the capacitive loading. A shutdown feature  
switches the device into a high impedance and low  
supply current mode, reducing dissipation when the  
device is not in use. For lower bandwidth applications,  
the supply current can be reduced with a single external  
resistor.  
1.1A Minimum Output Drive Current  
35MHz Bandwidth, AV = 2, RL = 10  
900V/ s Slew Rate, AV = 2, RL = 10  
High Input Impedance: 10MΩ  
Wide Supply Range: ±5V to ±15V  
(TO-220 and DD Packages)  
Enhanced θJA SO-16 Package for ±5V Operation  
Shutdown Mode: IS < 200µA  
Adjustable Supply Current  
Stable with CL = 10,000pF  
µ
U
APPLICATIONS  
Cable Drivers  
Buffers  
Test Equipment Amplifiers  
Video Amplifiers  
ADSL Drivers  
The LT1210 is available in the TO-220 and DD packages  
for operation with supplies up to ±15V. For ±5V applica-  
tions the device is also available in a low thermal resis-  
tance SO-16 package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO S  
Twisted Pair Driver  
Total Harmonic Distortion vs Frequency  
15V  
–50  
+
V
V
A
= ±15V  
OUT  
= 4  
S
100nF  
4.7µF*  
= 20V  
P-P  
–60  
–70  
V
R
T
11Ω  
V
+
IN  
2.5W  
T1**  
LT1210  
SD  
R
= 12.5Ω  
= 10Ω  
L
R
L
R
100Ω  
L
1
3
–80  
2.5W  
R
= 50Ω  
L
4.7µF*  
100nF  
+
–90  
845Ω  
274Ω  
–15V  
* TANTALUM  
** MIDCOM 671-7783 OR EQUIVALENT  
–100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
1210 TA01  
1210 TA02  
1
LT1210  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage ..................................................... ±18V  
Input Current .................................................... ±15mA  
Output Short-Circuit Duration (Note 1) ....... Continuous  
Specified Temperature Range (Note 2) ...... 0°C to 70°C  
Operating Temperature Range ............... –40°C to 85°C  
Junction Temperature......................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
+
+
+
V
V
1
2
3
4
5
6
7
8
16  
V
15  
14  
13  
12  
11  
10  
9
NC  
FRONT VIEW  
FRONT VIEW  
OUT  
+
V
7
6
5
4
3
2
1
OUT  
7
6
5
4
3
2
1
OUT  
V
V
V
COMP  
SHUTDOWN  
+IN  
COMP  
COMP  
+
+
V
V
NC  
–IN  
NC  
SHUTDOWN  
+IN  
SHUTDOWN  
+IN  
TAB  
TAB  
+
+
IS V  
IS V  
–IN  
–IN  
NC  
+
R PACKAGE  
7-LEAD PLASTIC DD  
T7 PACKAGE  
7-LEAD TO-220  
+
V
V
S PACKAGE  
16-LEAD PLASTIC SO  
θJC = 5°C/W  
θJA 25°C/W  
θJA 40°C/W (Note 3)  
ORDER PART NUMBER  
ORDER PART NUMBER  
LT1210CT7  
ORDER PART NUMBER  
LT1210CS  
LT1210CR  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VCM = 0V, ±5V VS ≤ ±15V, pulse tested, VSD = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
±3  
±15  
±20  
mV  
mV  
A
Input Offset Voltage Drift  
Noninverting Input Current  
10  
µV/°C  
+
I
I
T = 25°C  
A
±2  
±5  
±20  
µA  
µA  
IN  
Inverting Input Current  
T = 25°C  
A
±10  
±60  
±100  
µA  
µA  
IN  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Noise Current Density  
Input Resistance  
f = 10kHz, R = 1k, R = 10, R = 0Ω  
3.0  
2.0  
40  
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
+i  
–i  
f = 10kHz, R = 1k, R = 10, R = 10k  
F G S  
n
f = 10kHz, R = 1k, R = 10, R = 10k  
n
F
G
S
R
V
IN  
V
IN  
= ±12V, V = ±15V  
1.50  
0.25  
10  
5
MΩ  
MΩ  
IN  
S
= ±2V, V = ±5V  
S
C
IN  
Input Capacitance  
V = ±15V  
S
2
pF  
Input Voltage Range  
V = ±15V  
S
±12  
±2  
±13.5  
±3.5  
V
V
S
V = ±5V  
2
LT1210  
ELECTRICAL CHARACTERISTICS  
VCM = 0V, ±5V VS ≤ ±15V, pulse tested, VSD = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V = ±15V, V = ±12V  
MIN  
TYP  
MAX  
UNITS  
CMRR  
Common Mode Rejection Ratio  
55  
50  
62  
60  
dB  
dB  
S
CM  
V = ±5V, V = ±2V  
S
CM  
Inverting Input Current  
Common Mode Rejection  
V = ±15V, V = ±12V  
V = ±5V, V = ±2V  
S CM  
0.1  
0.1  
10  
10  
µA/V  
µA/V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±5V to ±15V  
60  
55  
77  
30  
dB  
S
Noninverting Input Current  
Power Supply Rejection  
V = ±5V to ±15V  
S
500  
5
nA/V  
Inverting Input Current  
Power Supply Rejection  
V = ±5V to ±15V  
S
0.7  
71  
µA/V  
A
V
Large-Signal Voltage Gain  
T = 25°C, V = ±15V, V = ±10V,  
OUT  
dB  
A
S
R = 10(Note 3)  
L
V = ±15V, V  
= ±8.5V, R = 10(Note 3)  
55  
55  
68  
68  
dB  
dB  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 10Ω  
L
S
OUT  
R
OL  
Transresistance, V /I  
T = 25°C, V = ±15V, V  
L
= ±10V,  
OUT IN  
A
S
OUT  
R = 10(Note 3)  
100  
75  
260  
200  
kΩ  
kΩ  
kΩ  
V = ±15V, V  
= ±8.5V, R = 10(Note 3)  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 10Ω  
75  
200  
S
OUT  
L
V
OUT  
Maximum Output Voltage Swing  
T = 25°C, V = ±15V, R = 10(Note 3)  
±10.0  
±8.5  
±11.5  
V
V
A
S
L
T = 25°C, V = ±5V, R = 10Ω  
±2.5  
±2.0  
±3.0  
V
V
A
S
L
I
I
Maximum Output Current (Note 3)  
Supply Current (Note 3)  
V = ±15V, R = 1Ω  
1.1  
2.0  
35  
A
OUT  
S
S
L
T = 25°C, V = ±15V, V = 0V  
50  
65  
mA  
mA  
A
S
SD  
Supply Current, R = 51k (Notes 3, 4)  
T = 25°C, V = ±15V  
15  
30  
200  
10  
mA  
µA  
µA  
SD  
A
S
Positive Supply Current, Shutdown  
Output Leakage Current, Shutdown  
V = ±15V, V = 15V  
S
SD  
V = ±15V, V = 15V  
S
SD  
SR  
BW  
The  
Slew Rate (Note 5)  
Slew Rate (Note 3)  
T = 25°C, A = 2, R = 400Ω  
400  
900  
900  
V/µs  
V/µs  
A
V
L
T = 25°C, A = 2, R = 10Ω  
A
V
L
Differential Gain (Notes 3, 6)  
Differential Phase (Notes 3, 6)  
Small-Signal Bandwidth  
V = ±15V, R = 750, R = 750, R = 15Ω  
0.3  
0.1  
55  
%
DEG  
MHz  
S
F
G
L
V = ±15V, R = 750, R = 750, R = 15Ω  
S
F
G
L
A = 2, V = ±15V, Peaking 1dB,  
V
S
R = R = 680, R = 100Ω  
F
G
L
A = 2, V = ±15V, Peaking 1dB,  
35  
MHz  
V
S
R = R = 576, R = 10Ω  
F
G
L
denotes specifications which apply for 0°C T 70°C.  
supply voltages greater than ±5V, use the TO-220 or DD package. See  
“Thermal Considerations” in the Applications Information section for  
details on calculating junction temperature. If the maximum dissipation of  
the package is exceeded, the device will go into thermal shutdown.  
Note 4: R is connected between the Shutdown pin and ground.  
Note 5: Slew rate is measured at ±5V on a ±10V output signal while  
operating on ±15V supplies with R = 1.5k, R = 1.5k and R = 400.  
A
Note 1: Applies to short circuits to ground only. A short circuit between  
the output and either supply may permanently damage the part when  
operated on supplies greater than ±10V.  
Note 2: Commercial grade parts are designed to operate over the  
SD  
temperature range of 40°C T 85°C, but are neither tested nor  
A
guaranteed beyond 0°C T 70°C. Industrial grade parts tested over  
A
F
G
L
40°C T 85°C are available on special request. Consult factory.  
Note 6: NTSC composite video with an output level of 2V.  
A
Note 3: SO package is recommended for ±5V supplies only, as the power  
dissipation of the SO package limits performance on higher supplies. For  
3
LT1210  
W
U
U
SMALL-SIGNAL BANDWIDTH  
RSD = 0, IS = 30mA, VS = ±5V, Peaking 1dB  
RSD = 0, IS = 35mA, VS = ±15V, Peaking 1dB  
3dB BW  
(MHz)  
3dB BW  
(MHz)  
A
R
L
R
F
R
A
R
L
R
F
R
G
V
G
V
–1  
150  
30  
10  
549  
590  
619  
549  
590  
619  
52.5  
39.7  
26.5  
–1  
150  
30  
10  
604  
649  
665  
604  
649  
665  
66.2  
48.4  
46.5  
1
150  
30  
10  
604  
649  
619  
53.5  
39.7  
27.4  
1
150  
30  
10  
750  
866  
845  
56.8  
35.4  
24.7  
2
150  
30  
10  
562  
590  
576  
562  
590  
576  
51.8  
38.8  
27.4  
2
150  
30  
10  
665  
715  
576  
665  
715  
576  
52.5  
38.9  
35.0  
10  
150  
30  
10  
453  
432  
221  
49.9  
47.5  
24.3  
61.5  
43.1  
45.5  
10  
150  
30  
10  
392  
383  
215  
43.2  
42.2  
23.7  
48.4  
40.3  
36.0  
RSD = 7.5k, IS = 15mA, VS = ±5V, Peaking 1dB  
RSD = 47.5k, IS = 18mA, VS = ±15V, Peaking 1dB  
3dB BW  
(MHz)  
3dB BW  
(MHz)  
A
R
L
R
F
R
A
R
L
R
F
R
G
V
G
V
–1  
150  
30  
10  
562  
619  
604  
562  
619  
604  
39.7  
28.9  
20.5  
–1  
150  
30  
10  
619  
698  
698  
619  
698  
698  
47.8  
32.3  
22.2  
1
150  
30  
10  
634  
681  
649  
41.9  
29.7  
20.7  
1
150  
30  
10  
732  
806  
768  
51.4  
33.9  
22.5  
2
150  
30  
10  
576  
604  
576  
576  
604  
576  
40.2  
29.6  
21.6  
2
150  
30  
10  
634  
698  
681  
634  
698  
681  
48.4  
33.0  
22.5  
10  
150  
30  
10  
324  
324  
210  
35.7  
35.7  
23.2  
39.5  
32.3  
27.7  
10  
150  
30  
10  
348  
357  
205  
38.3  
39.2  
22.6  
46.8  
36.7  
31.3  
RSD = 15k, IS = 7.5mA, VS = ±5V, Peaking 1dB  
RSD = 82.5k, IS = 9mA, VS = ±15V, Peaking 1dB  
3dB BW  
(MHz)  
3dB BW  
(MHz)  
A
R
L
R
F
R
A
R
L
R
F
R
G
V
G
V
–1  
150  
30  
10  
536  
549  
464  
536  
549  
464  
28.2  
20.0  
15.0  
–1  
150  
30  
10  
590  
649  
576  
590  
649  
576  
34.8  
22.5  
16.3  
1
150  
30  
10  
619  
634  
511  
28.6  
19.8  
14.9  
1
150  
30  
10  
715  
768  
649  
35.5  
22.5  
16.1  
2
150  
30  
10  
536  
549  
412  
536  
549  
412  
28.3  
19.9  
15.7  
2
150  
30  
10  
590  
665  
549  
590  
665  
549  
35.3  
22.5  
16.8  
10  
150  
30  
10  
150  
118  
100  
16.5  
13.0  
11.0  
31.5  
27.1  
19.4  
10  
150  
30  
10  
182  
182  
100  
20.0  
20.0  
11.0  
37.2  
28.9  
22.5  
4
LT1210  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Bandwidth and Feedback Resistance  
vs Capacitive Load for Peaking 1dB  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10k  
100  
PEAKING 1dB  
PEAKING 5dB  
A
= 2  
= 10Ω  
A
= 2  
= 100Ω  
PEAKING 1dB  
PEAKING 5dB  
V
L
V
L
BANDWIDTH  
R
R
R
= 470Ω  
R
F
= 560Ω  
F
R
F
= 560Ω  
R
= 750Ω  
F
1k  
10  
R
F
= 750Ω  
R
= 1k  
F
R
F
= 680Ω  
FEEDBACK RESISTANCE  
R
F
= 1k  
A
= 2  
R
F
= 2k  
V
L
R
V
=
R
F
= 1.5k  
16  
= ±15V  
S
C
= 0.01µF  
COMP  
100  
1
4
12  
14  
16  
6
8
10  
18  
4
12  
14  
1
10  
100  
1000  
10000  
6
8
10  
18  
18  
15  
SUPPLY VOLTAGE (±V)  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE (±V)  
1210 G03  
1210 G02  
1210 G01  
Bandwidth and Feedback Resistance  
vs Capacitive Load for Peaking 5dB  
Bandwidth vs Supply Voltage  
Bandwidth vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
10k  
100  
A
R
= 10  
= 100Ω  
A = 10  
V
R = 10Ω  
L
PEAKING 1dB  
PEAKING 5dB  
PEAKING 1dB  
V
L
BANDWIDTH  
R
R
= 330Ω  
R
F
=390Ω  
F
R
F
= 680Ω  
R
F
= 560Ω  
1k  
10  
= 470Ω  
= 680Ω  
FEEDBACK  
RESISTANCE  
F
R
F
= 1k  
R
F
A
= +2  
V
L
S
R
= ∞  
R
F
= 1.5k  
V
C
= ±15V  
R
F
= 1.5k  
14  
= 0.01µF  
COMP  
100  
1
10000  
1
10  
100  
1000  
16  
4
12  
14  
16  
4
12  
6
8
10  
18  
6
8
10  
CAPACITIVE LOAD (pF)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1210 G06  
1210 G05  
1210 G04  
Differential Phase vs  
Supply Voltage  
Differential Gain vs  
Supply Voltage  
Spot Noise Voltage and Current  
vs Frequency  
100  
10  
1
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R
A
= R = 750Ω  
= 2  
F
V
G
R
= 10Ω  
L
–i  
n
R
= 10Ω  
L
R
V
= R = 750Ω  
F
G
A
= 2  
R
= 15Ω  
= 50Ω  
L
R
= 15Ω  
L
R
L
e
n
R
= 50Ω  
L
R
= 30Ω  
L
R
= 30Ω  
+i  
n
L
5
7
9
11  
13  
15  
10  
100  
1k  
10k  
100k  
5
7
9
11  
13  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
1210 G09  
1210 G08  
1210 G07  
5
LT1210  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs  
Ambient Temperature, VS = ±5V  
Supply Current vs  
Ambient Temperature, VS = ±15V  
Supply Current vs Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
R
SD  
= 0Ω  
A
= 1  
V
R
= ∞  
L
R
= 0Ω  
= 7.5k  
= 15k  
T = 25°C  
SD  
R
= 0Ω  
A
SD  
T = 85°C  
A
R
SD  
= 47.5k  
= 82.5k  
R
SD  
T = –40°C  
A
T = 125°C  
A
R
SD  
R
SD  
A
= 1  
V
R
= ∞  
L
0
–50  
0
0
25  
50  
75 100 125  
–50  
–25  
0
25  
50  
75 100 125  
4
12  
14  
16  
–25  
6
8
10  
18  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1210 G11  
1210 G12  
1210 G10  
Supply Current vs  
Shutdown Pin Current  
Input Common Mode Limit vs  
Junction Temperature  
Output Short-Circuit Current vs  
Junction Temperature  
+
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= ±15V  
S
– 0.5  
–1.0  
–1.5  
–2.0  
2.0  
SOURCING  
SINKING  
1.5  
1.0  
0.5  
0
V
25  
50  
TEMPERATURE (°C)  
75  
100 125  
–50 –25  
0
0
100  
200  
300  
400  
500  
–50 –25  
0
100 125  
25  
50  
75  
SHUTDOWN PIN CURRENT (µA)  
TEMPERATURE (°C)  
1210 G15  
1210 G13  
1210 G14  
Power Supply Rejection Ratio  
vs Frequency  
Output Saturation Voltage vs  
Junction Temperature  
Supply Current vs Large-Signal  
Output Frequency (No Load)  
+
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
10  
0
A
= 2  
V
S
= ±15V  
R
= 2k  
V
L
S
R
V
= 50Ω  
L
L
S
F
–1  
–2  
–3  
–4  
R
V
=
= ±15V  
NEGATIVE  
POSITIVE  
= ±15V  
R
= 10Ω  
L
R
= R = 1k  
G
V
= 20V  
OUT  
P-P  
R
= 10Ω  
L
4
3
2
1
R
= 2k  
L
V
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
–50 –25  
0
100 125  
25  
50  
75  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1210 G17  
1210 G18  
1210 G16  
6
LT1210  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Impedance in Shutdown  
vs Frequency  
Large-Signal Voltage Gain vs  
Frequency  
Output Impedance vs Frequency  
100  
10  
10k  
1k  
18  
15  
12  
9
V
O
= ±15V  
S
A
= 4, R = 10Ω  
L
V
F
S
I
= 0mA  
R
= 680, R = 220Ω  
G
V
= ±15V, V = 5V  
IN  
P-P  
R
= 82.5k  
SD  
R
= 0Ω  
SD  
1
100  
10  
1
6
0.1  
3
0
10  
0.01  
100k  
3
4
5
6
7
8
100k  
1M  
10M  
100M  
1M  
10M  
100M  
10  
10  
10  
10  
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1210 G20  
1210 G19  
1210 G21  
3rd Order Intercept vs Frequency  
Test Circuit for 3rd Order Intercept  
56  
54  
52  
50  
48  
46  
44  
42  
40  
V
= ±15V  
= 10Ω  
= 680Ω  
= 220Ω  
S
L
F
R
R
R
+
G
P
LT1210  
O
680Ω  
220Ω  
MEASURE INTERCEPT AT P  
10Ω  
O
1210 TC01  
0
4
6
8
10  
2
FREQUENCY (MHz)  
1210 G22  
7
LT1210  
PPLICATI  
The LT1210 is a current feedback amplifier with high  
output current drive capability. The device is stable with  
large capacitive loads and can easily supply the high  
currents required by capacitive loads. The amplifier will  
drive low impedance loads such as cables with excellent  
linearity at high frequencies.  
O U  
W
U
A
S I FOR ATIO  
14  
12  
10  
8
V
S
C
L
= ±15V  
= 200pF  
R
= 3.4k  
F
NO COMPENSATION  
R
= 1.5k  
F
COMPENSATION  
6
4
2
0
Feedback Resistor Selection  
–2  
–4  
–6  
R
= 3.4k  
F
The optimum value for the feedback resistors is a function  
of the operating conditions of the device, the load imped-  
ance and the desired flatness of response. The Typical AC  
Performance tables give the values which result in less  
than 1dB of peaking for various resistive loads and oper-  
ating conditions. If this level of flatness is not required, a  
higher bandwidth can be obtained by use of a lower  
feedback resistor. The characteristic curves of Bandwidth  
vs Supply Voltage indicate feedback resistors for peaking  
upto5dB.Thesecurvesuseasolidlinewhentheresponse  
has less than 1dB of peaking and a dashed line when the  
response has 1dB to 5dB of peaking. The curves stop  
where the response has more than 5dB of peaking.  
COMPENSATION  
1
10  
100  
FREQUENCY (MHz)  
1210 F01  
Figure 1  
tance. Also shown is the 3dB bandwidth with the sug-  
gested feedback resistor vs the load capacitance.  
Although the optional compensation works well with  
capacitive loads, it simply reduces the bandwidth when it  
is connected with resistive loads. For instance, with a 10Ω  
load, the bandwidth drops from 35MHz to 26MHz when  
thecompensationisconnected. Hence, thecompensation  
wasmadeoptional.Todisconnecttheoptionalcompensa-  
tion, leave the COMP pin open.  
For resistive loads, the COMP pin should be left open (see  
Capacitive Loads section).  
Capacitive Loads  
Shutdown/Current Set  
The LT1210 includes an optional compensation network  
for driving capacitive loads. This network eliminates most  
of the output stage peaking associated with capacitive  
loads, allowing the frequency response to be flattened.  
Figure 1 shows the effect of the network on a 200pF load.  
Without the optional compensation, there is a 6dB peak at  
40MHz caused by the effect of the capacitance on the  
output stage. Adding a 0.01µF bypass capacitor between  
theoutputandtheCOMPpinsconnectsthecompensation  
and greatly reduces the peaking. A lower value feedback  
resistor can now be used, resulting in a response which is  
flat to ±1dB to 40MHz. The network has the greatest effect  
for CL in the range of 0pF to 1000pF. The graphs of  
Bandwidth and Feedback Resistance vs Capacitive Load  
can be used to select the appropriate value of feedback  
resistor. The values shown are for 1dB and 5dB peaking at  
a gain of 2 with no resistive load. This is a worst-case  
condition, as the amplifier is more stable at higher gains  
and with some resistive load in parallel with the capaci-  
If the shutdown feature is not used, the SHUTDOWN pin  
must be connected to ground or V.  
TheShutdownpincanbeusedtoeitherturnoffthebiasing  
for the amplifier, reducing the quiescent current to less  
than 200µA, or to control the quiescent current in normal  
operation.  
The total bias current in the LT1210 is controlled by the  
current flowing out of the Shutdown pin. When the Shut-  
down pin is open or driven to the positive supply, the part  
is shut down. In the shutdown mode, the output looks like  
a 70pF capacitor and the supply current is typically less  
than 100µA. The Shutdown pin is referenced to the posi-  
tivesupplythroughaninternalbiascircuit(seetheSimpli-  
fied Schematic). An easy way to force shutdown is to use  
open-drain (collector) logic. The circuit shown in Figure 2  
usesa74C904buffertointerfacebetween5Vlogicandthe  
LT1210. The switching time between the active and shut-  
down states is about 1µs. A 24k pull-up resistor speeds  
8
LT1210  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
15V  
response. The quiescent current can be reduced to 9mA in  
the inverting configuration without much change in re-  
sponse. In noninverting mode, however, the slew rate is  
reduced as the quiescent current is reduced.  
V
+
IN  
V
LT1210  
OUT  
SD  
R
F
–15V  
5V  
R
G
74C906  
24k  
15V  
ENABLE  
1210 F02  
Figure 2. Shutdown Interface  
up the turn-off time and ensures that the LT1210 is  
completely turned off. Because the pin is referenced to  
the positive supply, the logic used should have a break-  
down voltage of greater than the positive supply voltage.  
No other circuitry is necessary as the internal circuit  
limits the Shutdown pin current to about 500µA. Figure  
3 shows the resulting waveforms.  
1210 F04a  
RF = 750Ω  
L = 10Ω  
IQ = 9mA, 18mA, 36mA  
VS = ±15V  
R
Figure 4a. Large-Signal Response vs IQ, AV = –1  
1210 F04b  
IQ = 9mA, 18mA, 36mA  
S = ±15V  
RF = 750Ω  
L = 10Ω  
V
R
AV = 1  
1210 F03  
RPULL-UP = 24k  
IN = 1VP-P  
VS = ±15V  
Figure 4b. Large-Signal Response vs IQ, AV = 2  
RF = 825Ω  
V
R
L = 50Ω  
Slew Rate  
Figure 3. Shutdown Operation  
Unlike a traditional op amp, the slew rate of a current  
feedback amplifier is not independent of the amplifier gain  
configuration. There are slew rate limitations in both the  
input stage and the output stage. In the inverting mode,  
and for higher gains in the noninverting mode, the signal  
amplitude on the input pins is small and the overall slew  
rate is that of the output stage. The input stage slew rate  
is related to the quiescent current and will be reduced as  
the supply current is reduced. The output slew rate is set  
by the value of the feedback resistors and the internal  
capacitance. Larger feedback resistors will reduce the  
slew rate as will lower supply voltages, similar to the way  
For applications where the full bandwidth of the amplifier  
is not required, the quiescent current of the device may be  
reduced by connecting a resistor from the Shutdown pin  
to ground. The quiescent current will be approximately 65  
times the current in the Shutdown pin. The voltage across  
the resistor in this condition is V+ – 3VBE. For example, a  
82k resistor will set the quiescent supply current to 9mA  
with VS = ±15V.  
The photos in Figures 4a and 4b show the effect of  
reducing the quiescent supply current on the large-signal  
9
LT1210  
PPLICATI  
thebandwidthisreduced.ThephotosinFigures5a,5band  
5c show the large-signal response of the LT1210 for  
various gain configurations. The slew rate varies from  
770V/µs for a gain of 1, to 1100V/µs for a gain of 1.  
O U  
W
U
A
S I FOR ATIO  
When the LT1210 is used to drive capacitive loads, the  
available output current can limit the overall slew rate. In  
the fastest configuration, the LT1210 is capable of a slew  
rateofover1V/ns. Thecurrentrequiredtoslewacapacitor  
at this rate is 1mA per picofarad of capacitance, so  
10,000pF would require 10A! The photo (Figure 6) shows  
the large-signal behavior with CL = 10,000pF. The slew  
rate is about 150V/µs, determined by the current limit of  
1.5A.  
1210 F05a  
RF = 825Ω  
L = 10Ω  
VS = ±15V  
R
Figure 5a. Large-Signal Response, AV = 1  
1210 F06  
RF = RG = 3k  
RL  
VS = ±15V  
=
Figure 6. Large-Signal Response, CL = 10,000pF  
Differential Input Signal Swing  
The differential input swing is limited to about ±6V by an  
ESD protection device connected between the inputs. In  
normal operation, the differential voltage between the  
input pins is small, so this clamp has no effect; however,  
in the shutdown mode the differential swing can be the  
same as the input swing. The clamp voltage will then set  
the maximum allowable input voltage. To allow for some  
margin, it is recommended that the input signal be less  
than ±5V when the device is shut down.  
1210 F05b  
RF = RG = 750Ω  
RL = 10Ω  
VS = ±15V  
Figure 5b. Large-Signal Response, AV = –1  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response), but it  
does not degrade the stability of the amplifier.  
1210 F05c  
RF = RG = 750Ω  
RL = 10Ω  
VS = ±15V  
Figure 5c. Large-Signal Response, AV = 2  
10  
LT1210  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Power Supplies  
For surface mount devices heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Experiments have shown that the  
heat spreading copper layer does not need to be electri-  
cally connected to the tab of the device. The PCB material  
can be very effective at transmitting heat between the pad  
area attached to the tab of the device, and a ground or  
power plane layer either inside or on the opposite side of  
the board. Although the actual thermal resistance of the  
PCB material is high, the length/area ratio of the thermal  
resistance between the layer is small. Copper board stiff-  
eners and plated through holes can also be used to spread  
the heat generated by the device.  
The LT1210 will operate from single or split supplies from  
±5V (10V total) to ±15V (30V total). It is not necessary to  
use equal value split supplies, however the offset voltage  
and inverting input bias current will change. The offset  
voltage changes about 500µV per volt of supply mis-  
match. The inverting bias current can change as much as  
5µA per volt of supply mismatch, though typically the  
change is less than 0.5µA per volt.  
Power Supply Bypassing  
To obtain the maximum output and the minimum distor-  
tion from the LT1210, the power supply rails should be  
wellbypassed. Forexample, withtheoutputstagepouring  
1A current peaks into the load, a 1power supply imped-  
ance will cause a droop of 1V, reducing the available  
outputswingbythatamount.Surfacemounttantalumand  
ceramic capacitors make excellent low ESR bypass ele-  
ments when placed close to the chip. For frequencies  
above 100kHz, use 1µF and 100nF ceramic capacitors.  
If significant power must be delivered below 100kHz,  
capacitive reactance becomes the limiting factor. Larger  
ceramicortantalumcapacitors, suchas4.7µF, arerecom-  
mended in place of the 1µF unit mentioned above.  
Tables1and2listthermalresistanceforeachpackage.For  
the TO-220 package, thermal resistance is given for junc-  
tion-to-case only since this package is usually mounted to  
a heat sink. Measured values of thermal resistance for  
severaldifferentboardsizesandcopperareasarelistedfor  
each surface mount package. All measurements were  
taken in still air on 3/32" FR-4 board with 2 oz copper. This  
data can be used as a rough guideline in estimating  
thermal resistance. The thermal resistance for each appli-  
cation will be affected by thermal interactions with other  
components as well as board size and shape.  
Table 1. R Package, 7-Lead DD  
Inadequate bypassing is evidenced by reduced output  
swing and “distorted” clipping effects when the output is  
driventotherails.Ifthisisobserved,checkthesupplypins  
of the device for ripple directly related to the output  
waveform. Significant supply modulation indicates poor  
bypassing.  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
25°C/W  
27°C/W  
35°C/W  
125 sq. mm  
2500 sq. mm 2500 sq. mm  
*Tab of device attached to topside copper  
Thermal Considerations  
Table 2. Fused 16-Lead SO Package  
COPPER AREA  
The LT1210 contains a thermal shutdown feature which  
protects against excessive internal (junction) tempera-  
ture. If the junction temperature of the device exceeds the  
protection threshold, the device will begin cycling be-  
tween normal operation and an off state. The cycling is not  
harmful to the part. The thermal cycling occurs at a slow  
rate, typically10mstoseveralseconds, whichdependson  
the power dissipation and the thermal time constants of  
the package and heat sinking. Raising the ambient tem-  
perature until the device begins thermal shutdown gives a  
good indication of how much margin there is in the  
thermal design.  
THERMAL RESISTANCE  
TOPSIDE  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq. mm 2500 sq. mm 5000 sq. mm  
1000 sq. mm 2500 sq. mm 3500 sq. mm  
40°C/W  
46°C/W  
48°C/W  
49°C/W  
56°C/W  
58°C/W  
59°C/W  
60°C/W  
61°C/W  
600 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
180 sq. mm  
2500 sq. mm 3100 sq. mm  
2500 sq. mm 2680 sq. mm  
1000 sq. mm 1180 sq. mm  
600 sq. mm  
300 sq. mm  
100 sq. mm  
0 sq. mm  
780 sq. mm  
480 sq. mm  
280 sq. mm  
180 sq. mm  
11  
LT1210  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
5V  
T7 Package, 7-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 5°C/W  
76mA  
SD  
A
Calculating Junction Temperature  
The junction temperature can be calculated from the  
equation:  
+
2V  
0V  
V
O
LT1210  
–2V  
10Ω  
TJ = (PD)(θJA) + TA  
V
= 1.4V  
RMS  
O
where:  
–5V  
TJ = Junction Temperature  
680Ω  
220Ω  
1210 F07  
TA = Ambient Temperature  
PD = Device Dissipation  
Figure 7  
θJA = Thermal Resistance (Junction-to-Ambient)  
then:  
TJ = (0.56W)(46°C/W) + 70°C = 96°C  
As an example, calculate the junction temperature for the  
circuit in Figure 7 for the SO and R packages assuming a  
70°C ambient temperature.  
for the SO package with 1000 sq. mm topside  
heat sinking  
The device dissipation can be found by measuring the  
supplycurrents,calculatingthetotaldissipationandthen  
subtracting the dissipation in the load and feedback  
network.  
TJ = (0.56W)(27°C/W) + 70°C = 85°C  
for the R package with 1000 sq. mm topside heat  
sinking  
Since the maximum junction temperature is 150°C,  
both packages are clearly acceptable.  
PD = (76mA)(10V) – (1.4V)2/ 10 = 0.56W  
U
TYPICAL APPLICATIONS  
CMOS Logic to Shutdown Interface  
Precision ×10 High Current Amplifier  
15V  
V
IN  
+
LT1097  
+
LT1210  
COMP  
SD  
+
OUT  
24k  
LT1210  
SD  
0.01µF  
500pF  
3k  
330Ω  
5V  
–15V  
10k  
2N3904  
9.09k  
1210 TA04  
OUTPUT OFFSET: < 500µV  
SLEW RATE: 2V/µs  
1k  
1210 TA03  
BANDWIDTH: 4MHz  
STABLE WITH C < 10nF  
L
12  
LT1210  
U
TYPICAL APPLICATIONS  
Buffer AV = 1  
Distribution Amplifier  
V
+
IN  
V
+
IN  
75CABLE  
75Ω  
LT1210  
COMP  
SD  
LT1210  
SD  
75Ω  
V
OUT  
*
OPTIONAL, USE WITH CAPACITIVE LOAD  
0.01µF*  
75Ω  
R
R
F
** VALUE OF RDEPENDS ON SUPPLY  
F
75Ω  
75Ω  
VOLTAGE AND LOADING. SELECT  
FROM TYPICAL AC PERFORMANCE  
TABLE OR DETERMINE EMPIRICALLY  
R **  
F
1210 TA06  
G
1210 TA05  
W
W
SI PLIFIED SCHE ATIC  
+
V
TO ALL  
CURRENT  
SOURCES  
Q5  
Q10  
Q2  
D1  
Q11  
Q6  
Q15  
Q18  
Q1  
Q17  
Q9  
V
1.25k  
+IN  
50Ω  
COMP  
V
C
C
–IN  
R
C
OUTPUT  
+
V
SHUTDOWN  
+
V
Q12  
Q3  
Q8  
Q16  
Q14  
D2  
Q4  
Q13  
Q7  
V
1210 SS  
13  
LT1210  
PACKAGE DESCRIPTION  
U
Dimensions in inches (millimeters) unless otherwise noted.  
R Package  
7-Lead Plastic DD Pak  
(LTC DWG # 05-08-1462)  
0.060  
(1.524)  
TYP  
0.390 – 0.415  
(9.906 – 10.541)  
0.060  
(1.524)  
0.165 – 0.180  
(4.191 – 4.572)  
0.256  
(6.502)  
0.045 – 0.055  
(1.143 – 1.397)  
15° TYP  
+0.008  
0.004  
–0.004  
0.060  
(1.524)  
0.059  
(1.499)  
TYP  
0.183  
(4.648)  
0.330 – 0.370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
0.095 – 0.115  
(2.413 – 2.921)  
0.075  
(1.905)  
0.040 – 0.060  
(1.016 – 1.524)  
0.026 – 0.036  
(0.660 – 0.914)  
0.050 ± 0.012  
(1.270 ± 0.305)  
0.300  
(7.620)  
0.013 – 0.023  
(0.330 – 0.584)  
+0.012  
0.143  
–0.020  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
(
)
–0.508  
R (DD7) 0396  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
14  
LT1210  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
T7 Package  
7-Lead Plastic TO-220 (Standard)  
(LTC DWG # 05-08-1422)  
0.165 – 0.180  
(4.293 – 4.572)  
0.147 – 0.155  
(3.734 – 3.937)  
DIA  
0.390 – 0.415  
(9.906 – 10.541)  
0.045 – 0.055  
(1.143 – 1.397)  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
(14.478 – 15.748)  
0.620  
(15.75)  
TYP  
0.460 – 0.500  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.700 – 0.728  
(17.780 – 18.491)  
0.095 – 0.115  
(2.413 – 2.921)  
0.152 – 0.202  
(3.860 – 5.130)  
0.260 – 0.320  
(6.604 – 8.128)  
0.013 – 0.023  
(0.330 – 0.584)  
0.040 – 0.060  
(1.016 – 1.524)  
0.026 – 0.036  
(0.660 – 0.914)  
0.135 – 0.165  
(3.429 – 4.191)  
0.155 – 0.195  
(3.937 – 4.953)  
T7 (TO-220) (FORMED) 0695  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1210  
TYPICAL APPLICATION  
U
Wideband 9W Bridge Amplifier  
15V  
Frequency Response  
INPUT  
5V  
P
O
+
P-P  
9W  
LT1210  
SD  
26  
23  
20  
17  
14  
11  
8
T1*  
R
L
10nF  
50Ω  
1
1
9W  
1
1
680Ω  
100nF  
–15V  
220Ω  
5
15V  
2
1
1
910Ω  
–1  
–4  
+
LT1210  
10k  
100k  
1M  
10M  
100M  
SD  
FREQUENCY (Hz)  
10nF  
1210 TA08  
* COILTRONICS Versa-PacTM CTX-01-13033-X2  
OR EQUIVALENT  
–15V  
1210 TA07  
Versa-Pac is a trademark of Coiltronics, Inc.  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1010  
Fast ±150mA Power Buffer  
20MHz Bandwidth, 75V/µs Slew Rate  
LT1166  
Power Output Stage Automatic Bias System  
Sets Class AB Bias Currents for High Voltage/High Power  
Output Stages  
LT1206  
Single 250mA, 60MHz Current Feedback Amplifier  
Shutdown Function, Stable with CL = 10,000pF, 900V/µs  
Slew Rate  
LT1207  
LT1227  
LT1360  
LT1363  
Dual 250mA, 60MHz Current Feedback Amplifier  
Single 140MHz Current Feedback Amplifier  
Single 50MHz, 800V/µs Op Amp  
Dual Version of LT1206  
Shutdown Function, 1100V/µs Slew Rate  
Voltage Feedback, Stable with CL = 10,000pF  
Voltage Feedback, Stable with CL = 10,000pF  
Single 70MHz, 1000V/µs Op Amp  
LT/GP 0796 7K • PRINTED IN USA  
Linear Technology Corporation  
1630McCarthyBlvd.,Milpitas,CA95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1996  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1210CS#PBF

暂无描述
Linear

LT1210CS#TR

LT1210 - 1.1A, 35MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1210CS#TRPBF

LT1210 - 1.1A, 35MHz Current Feedback Amplifier; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1210CT7

1.1A, 35MHz Current Feedback Amplifier
Linear

LT1210CT7#TR

IC OP-AMP, 20000 uV OFFSET-MAX, 35 MHz BAND WIDTH, PZFM7, PLASTIC, TO-220, 7 PIN, Operational Amplifier
Linear

LT1210X

High Temperature 1.0A, 35MHz Current Feedback Amplifier
ADI

LT1210XDICE

High Temperature 1.0A, 35MHz Current Feedback Amplifier
ADI

LT1210XDWF

High Temperature 1.0A, 35MHz Current Feedback Amplifier
ADI

LT1210_06

1.1A, 35MHz Current Feedback Amplifier
Linear

LT1211

14MHz, 7V/us, Single Supply Dual and Quad Precision Op Amps
Linear

LT1211ACJ8

IC DUAL OP-AMP, 400 uV OFFSET-MAX, 14 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1211ACN8

14MHz, 7V/us, Single Supply Dual and Quad Precision Op Amps
Linear