LT1228_12 [Linear]

100MHz Current Feedback; 100MHz的电流反馈
LT1228_12
型号: LT1228_12
厂家: Linear    Linear
描述:

100MHz Current Feedback
100MHz的电流反馈

文件: 总22页 (文件大小:660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1228  
100MHz Current Feedback  
Amplifier with DC Gain Control  
FEATURES  
DESCRIPTION  
The LT®1228 makes it easy to electronically control the  
gain of signals from DC to video frequencies. The LT1228  
implements gain control with a transconductance ampli-  
fier (voltage to current) whose gain is proportional to an  
externally controlled current. A resistor is typically used  
to convert the output current to a voltage, which is then  
amplified with a current feedback amplifier. The LT1228  
combinesbothamplifiersintoan8-pinpackage, andoper-  
ates on any supply voltage from 4V ( 2V) to 30V ( 1ꢀV).  
A complete differential input, gain controlled amplifier can  
be implemented with the LT1228 and just a few resistors.  
n
Very Fast Transconductance Amplifier  
Bandwidth: 7ꢀMHz  
g = 10 × I  
m
SET  
Low THD: 0.2% at 30mV  
Input  
RMS  
Wide I Range: 1µA to 1mA  
SET  
n
Very Fast Current Feedback Amplifier  
Bandwidth: 100MHz  
Slew Rate: 1000V/µs  
Output Drive Current: 30mA  
Differential Gain: 0.04%  
Differential Phase: 0.1°  
High Input Impedance: 2ꢀMΩ, 6pF  
Wide Supply Range: 2V to 1ꢀV  
Inputs Common Mode to Within 1.ꢀV of Supplies  
Outputs Swing Within 0.8V of Supplies  
Supply Current: 7mA  
TheLT1228transconductanceamplifierhasahighimped-  
ancedifferentialinputandacurrentsourceoutputwithwide  
n
n
n
n
n
output voltage compliance. The transconductance, g , is  
m
setbythecurrentthatflowsintoPin,I .Thesmallsignal  
SET  
g isequaltotentimesthevalueofI andthisrelationship  
m
SET  
Available in 8-Lead PDIP and SO Packages  
holds over several decades of set current. The voltage at  
Pin ꢀ is two diode drops above the negative supply, Pin 4.  
APPLICATIONS  
TheLT1228currentfeedbackamplifierhasveryhighinput  
impedanceandthereforeitisanexcellentbufferfortheout-  
putofthetransconductanceamplifier.Thecurrentfeedback  
amplifiermaintainsitswidebandwidthoverawiderangeof  
voltage gains making it easy to interface the transconduc-  
tance amplifier output to other circuitry. The current feed-  
back amplifier is designed to drive low impedance loads,  
suchascables,withexcellentlinearityathighfrequencies.  
n
Video DC Restore (Clamp) Circuits  
n
Video Differential Input Amplifiers  
n
Video Keyer/Fader Amplifiers  
n
AGC Amplifiers  
n
Tunable Filters  
n
Oscillators  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Frequency Response  
6
Differential Input Variable Gain Amp  
V
=
15V  
S
L
R
= 100Ω  
3
0
15V  
4.7µF  
I
= 1mA  
SET  
+
R3A  
–3  
10k  
7
4
3
2
+
+
–6  
1
8
g
R2A  
10k  
V
m
+
IN  
–9  
6
I
I
= 300µA  
SET  
V
5
CFA  
OUT  
–12  
–15  
–18  
I
SET  
R
F
–15V  
R2  
470Ω  
R4  
1.24k  
R5  
R3  
100Ω  
= 100µA  
1M  
4.7µF  
10k  
SET  
+
100Ω  
R1  
270Ω  
R
G
–21  
–24  
HIGH INPUT RESISTANCE  
EVEN WHEN POWER IS OFF  
–18dB < GAIN < 2dB  
10Ω  
R6  
6.19k  
100k  
10M  
100M  
V
≤ 3V  
IN  
RMS  
LT1228 • TA02  
LT1228 • TA01  
FREQUENCY (Hz)  
1228fd  
1
LT1228  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Supply Voltage....................................................... ± 18V  
Input Current, Pins 1, 2, 3, ꢀ, 8 (Note 8) ..............±1ꢀmA  
Output Short Circuit Duration (Note 2) .........Continuous  
Operating Temperature Range  
LT1228C...................................................0°C to 70°C  
LT1228I................................................–40°C to 8ꢀ°C  
LT1228M (OBSOLETE) ...................... –ꢀꢀ°C to 12ꢀ°C  
Storage Temperature Range ..................–6ꢀ°C to 1ꢀ0°C  
Junction Temperature  
TOP VIEW  
I
1
2
3
4
8
7
6
5
GAIN  
OUT  
+
+
V
–IN  
g
m
+IN  
V
OUT  
V
I
SET  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
T
= 1ꢀ0°C, θ = 100°C/W (N)  
JA  
JMAX  
JMAX  
= 1ꢀ0°C, θ = 1ꢀ0°C/W (N)  
JA  
Plastic Package................................................. 1ꢀ0°C  
Ceramic Package (OBSOLETE)......................... 17ꢀ°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
J8 PACKAGE  
8-LEAD CERDIP  
T
= 17ꢀ°C, θ = 100°C/W (J)  
JMAX  
JA  
OBSOLETE PACKAGE  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1228CN8#PBF  
LT1228IN8#PBF  
LT1228CS8#PBF  
LT1228IS8#PBF  
TAPE AND REEL  
PART MARKING  
LT1228CN8  
LT1228IN8  
1228  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic SO  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
LT1228CN8#TRPBF  
LT1228IN8#TRPBF  
LT1228CS8#TRPBF  
LT1228IS8#TRPBF  
–40°C to 8ꢀ°C  
0°C to 70°C  
1228I  
–40°C to 8ꢀ°C  
OBSOLETE PACKAGE  
LT1228MJ8  
LT1228CJ8  
LT1228MJ8#TRPBF  
LT1228CJ8#TRPBF  
LT1228MJ8  
LT1228CJ8  
8-Lead CERDIP  
8-Lead CERDIP  
–ꢀꢀ°C to 12ꢀ°C  
0°C to 70°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Current Feedback Amplifier, Pins 1, 6, 8. 5V ≤ VS ≤ 15V, ISET = 0µA,  
VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
T = 2ꢀ°C  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
3
10  
1ꢀ  
mV  
mV  
OS  
A
l
l
Input Offset Voltage Drift  
Noninverting Input Current  
10  
µV/°C  
+
I
I
T = 2ꢀ°C  
A
0.3  
3
10  
µA  
µA  
IN  
l
l
Inverting Input Current  
T = 2ꢀ°C  
A
10  
6ꢀ  
100  
µA  
µA  
IN  
e
Input Noise Voltage Density  
Input Noise Current Density  
f = 1kHz, R = 1k, R = 10Ω, R = 0Ω  
6
nV/√Hz  
pV/√Hz  
n
F
G
S
i
f = 1kHz, R = 1k, R = 10Ω, R = 10k  
1.4  
n
F
G
S
1228fd  
2
LT1228  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Current Feedback Amplifier, Pins 1, 6, 8. 5V ≤ VS ≤ 15V, ISET = 0µA,  
VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
R
IN  
Input Resistance  
V
IN  
V
IN  
=
=
13V, V = 1ꢀV  
2
2
2ꢀ  
2ꢀ  
MΩ  
MΩ  
S
3V, V = ꢀV  
S
C
Input Capacitance (Note 3)  
Input Voltage Range  
V = ꢀV  
6
pF  
IN  
S
V = 1ꢀV, T = 2ꢀ°C  
S
13  
12  
13.ꢀ  
V
V
A
l
l
V = ꢀV, T = 2ꢀ°C  
S
3
2
3.ꢀ  
V
V
A
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 1ꢀV, V  
S
=
=
13V, T = 2ꢀ°C  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
69  
69  
dB  
dB  
dB  
dB  
S
CM  
CM  
A
l
l
V = 1ꢀV, V  
12V  
V = ꢀV, V  
S
=
3V, T = 2ꢀ°C  
S
CM  
CM  
A
V = ꢀV, V  
=
2V  
Inverting Input Current Common  
Mode Rejection  
V = 1ꢀV, V  
S
=
=
13V, T = 2ꢀ°C  
2.ꢀ  
2.ꢀ  
10  
10  
10  
10  
µA/V  
µA/V  
µA/V  
µA/V  
S
CM  
CM  
A
l
l
V = 1ꢀV, V  
12V  
V = ꢀV, V  
S
=
=
3V, T = 2ꢀ°C  
S
CM  
CM  
A
V = ꢀV, V  
2V  
Power Supply Rejection Ratio  
V = 2V to 1ꢀV, T = 2ꢀ°C  
60  
60  
80  
10  
dB  
dB  
S
A
l
l
l
V = 3V to 1ꢀV  
S
Noninverting Input Current Power  
Supply Rejection  
V = 2V to 1ꢀV, T = 2ꢀ°C  
ꢀ0  
ꢀ0  
nA/V  
nA/V  
S
A
V = 3V to 1ꢀV  
S
Inverting Input Current Power Supply V = 2V to 1ꢀV, T = 2ꢀ°C  
Rejection  
0.1  
µA/V  
µA/V  
S
A
V = 3V to 1ꢀV  
S
l
l
A
Large-Signal Voltage Gain  
V = 1ꢀV, V  
=
10V, R = 1k  
LOAD  
ꢀꢀ  
ꢀꢀ  
6ꢀ  
6ꢀ  
dB  
dB  
V
S
OUT  
V = ꢀV, V  
=
2V, R  
= 1ꢀ0Ω  
S
OUT  
LOAD  
l
l
R
Transresistance, ∆V /∆I  
V = 1ꢀV, V  
=
10V, R = 1k  
LOAD  
100  
100  
200  
200  
kΩ  
kΩ  
OL  
OUT IN  
S
OUT  
V = ꢀV, V  
=
2V, R  
= 1ꢀ0Ω  
S
OUT  
LOAD  
V
Maximum Output Voltage Swing  
Maximum Output Current  
V = 1ꢀV, R  
= 400Ω, T = 2ꢀ°C  
12  
10  
13.ꢀ  
3.7  
6ꢀ  
V
V
OUT  
S
LOAD  
A
l
l
V = ꢀV, R  
= 1ꢀ0Ω, T = 2ꢀ°C  
3
2.ꢀ  
V
V
S
LOAD  
A
I
I
R
LOAD  
= 0Ω, T = 2ꢀ°C  
30  
2ꢀ  
12ꢀ  
12ꢀ  
mA  
mA  
OUT  
S
A
l
l
Supply Current  
V
OUT  
= 0V, I = 0V  
6
11  
mA  
V/µs  
V/µs  
ns  
SET  
SR  
SR  
Slew Rate (Notes 4 and 6)  
Slew Rate  
T = 2ꢀ°C  
A
300  
ꢀ00  
3ꢀ00  
10  
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 400Ω  
S
F
G
L
t
Rise Time (Notes ꢀ and 6)  
Small-Signal Bandwidth  
Small-Signal Rise Time  
Propagation Delay  
T = 2ꢀ°C  
A
20  
r
BW  
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 100Ω  
100  
3.ꢀ  
MHz  
ns  
S
F
G
L
t
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 100Ω  
S F G L  
r
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 100Ω  
3.ꢀ  
ns  
S
F
G
L
Small-Signal Overshoot  
Settling Time  
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 100Ω  
1ꢀ  
%
S
F
G
L
t
0.1%, V  
= 10V, R =1k, R = 1k, R =1k  
4ꢀ  
ns  
S
OUT  
F
G
L
Differential Gain (Note 7)  
Differential Phase (Note 7)  
Differential Gain (Note 7)  
Differential Phase (Note 7)  
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 1k  
0.01  
0.01  
0.04  
0.1  
%
S
F
G
L
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 1k  
DEG  
%
S
F
G
L
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 1ꢀ0Ω  
S
F
G
L
V = 1ꢀV, R = 7ꢀ0Ω, R = 7ꢀ0Ω, R = 1ꢀ0Ω  
DEG  
S
F
G
L
1228fd  
3
LT1228  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Transconductance Amplifier, Pins 1, 2, 3, 5. 5V ≤ VS ≤ 15V,  
ISET = 100µA, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 1mA, T = 2ꢀ°C  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
I
0.ꢀ  
10  
mV  
mV  
OS  
SET  
A
l
l
Input Offset Voltage Drift  
Input Offset Current  
10  
40  
µV/°C  
I
I
T = 2ꢀ°C  
A
200  
ꢀ00  
nA  
nA  
OS  
l
l
Input Bias Current  
T = 2ꢀ°C  
A
0.4  
1
µA  
µA  
B
e
Input Noise Voltage Density  
f = 1kHz  
20  
nV/√Hz  
n
l
R
IN  
Input Resistance-Differential Mode  
Input Resistance-Common Mode  
V
30mV  
30  
200  
kΩ  
IN  
l
l
V = 1ꢀV, V  
=
CM  
CM  
12V  
2V  
ꢀ0  
ꢀ0  
1000  
1000  
MΩ  
MΩ  
S
V = ꢀV, V  
=
S
C
IN  
Input Capacitance  
3
pF  
Input Voltage Range  
V = 1ꢀV, T = 2ꢀ°C  
S
13  
12  
14  
V
V
S
A
l
l
l
l
l
V = 1ꢀV  
V = ꢀV, T = 2ꢀ°C  
3
2
4
V
V
S
S
A
V = ꢀV  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
V = 1ꢀV, V  
S
=
=
13V, T = 2ꢀ°C  
12V  
60  
60  
100  
100  
100  
dB  
dB  
S
CM  
CM  
A
V = 1ꢀV, V  
V = ꢀV, V  
S
=
=
3V, T = 2ꢀ°C  
2V  
60  
60  
dB  
dB  
S
CM  
CM  
A
V = ꢀV, V  
V = 2V to 1ꢀV, T = 2ꢀ°C  
60  
60  
dB  
dB  
S
S
A
V = 3V to 1ꢀV  
g
Transconductance  
I
= 100µA, I  
=
30µA, T = 2ꢀ°C  
0.7ꢀ  
1.00  
–0.33  
100  
1.2ꢀ  
130  
µA/mV  
%/°C  
µA  
m
SET  
OUT  
A
l
l
Transconductance Drift  
Maximum Output Current  
Output Leakage Current  
I
I
I
I
= 100µA  
70  
OUT  
SET  
= 0µA (+I of CFA), T = 2ꢀ°C  
0.3  
3
10  
µA  
µA  
OL  
SET  
IN  
A
l
l
l
V
Maximum Output Voltage Swing  
Output Resistance  
V = 1ꢀV , R1 = ∞  
S
13  
3
14  
4
V
V
OUT  
S
V = ꢀV , R1 = ∞  
l
l
R
V = 1ꢀV, V =  
OUT  
13V  
3V  
2
2
8
8
MΩ  
MΩ  
O
S
V = ꢀV, V  
=
S
OUT  
Output Capacitance (Note 3)  
Supply Current, Both Amps  
Total Harmonic Distortion  
Small-Signal Bandwidth  
Small-Signal Rise Time  
Propagation Delay  
V = ꢀV  
6
9
pF  
mA  
%
S
l
I
I
= 1mA  
1ꢀ  
S
SET  
THD  
BW  
V
= 30mV  
at 1kHz, R1 = 100k  
0.2  
80  
IN  
RMS  
R1 = ꢀ0Ω, I = ꢀ00µA  
MHz  
ns  
SET  
t
r
R1 = ꢀ0Ω, I = ꢀ00µA, 10% to 90%  
SET  
R1 = ꢀ0Ω, I = ꢀ00µA, ꢀ0% to ꢀ0%  
ns  
SET  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Rise time is measured from 10% to 90% on a ꢀ00mV output signal  
while operating on 1ꢀV supplies with R = 1k, R = 110Ω and R = 100Ω.  
This condition is not the fastest possible, however, it does guarantee the  
internal capacitances are correct and it makes automatic testing practical.  
F
G
L
Note 2: A heat sink may be required depending on the power supply voltage.  
Note 6: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J and N suffix) and are sample tested on every lot of the SO  
packaged parts (S suffix).  
Note 3: This is the total capacitance at Pin 1. It includes the input capacitance  
of the current feedback amplifier and the output capacitance of the  
transconductance amplifier.  
Note 7: NTSC composite video with an output level of 2V.  
Note 4: Slew rate is measured at ꢀV on a 10V output signal while operating  
Note 8: Back to back 6V Zener diodes are connected between Pins 2 and 3  
for ESD protection.  
on 1ꢀV supplies with R = 1k, R = 110Ω and R = 400Ω. The slew rate is  
F
G
L
much higher when the input is overdriven, see the Applications Information  
section.  
1228fd  
4
LT1228  
TYPICAL PERFORMANCE CHARACTERISTICS Transconductance Amplifier, Pins 1, 2, 3, 5  
Small-Signal Bandwidth  
vs Set Current  
Small-Signal Transconductance  
and Set Current vs Bias Voltage  
Small-Signal Transconductance  
vs DC Input Voltage  
100  
10  
1
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
100  
10  
10000  
1000  
100  
10  
R1 = 100Ω  
V
=
2V TO 15V  
V
= 1ꢀV  
S
A
S
V
SET  
=
2V TO 15V  
= 100µA  
S
T
= 25°C  
I
R1 = 1k  
–55°C  
1
R1 = 10k  
25°C  
0.1  
125°C  
0.01  
0.001  
1.0  
R1 = 100k  
0.2  
0
0.1  
1.5  
0.1  
10  
100  
SET CURRENT (µA)  
1000  
–200 –150 –100 –50  
0
50 100 150 200  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
INPUT VOLTAGE (mVDC)  
LT1228 • TPC03  
BIAS VOLTAGE, PIN 5 TO 4, (V)  
LT1228 • TPC01  
LT1228 • TPC02  
Total Harmonic Distortion  
vs Input Voltage  
Spot Output Noise Current  
vs Frequency  
Input Common Mode Limit  
vs Temperature  
+
10  
1
V
1000  
100  
10  
V
= 1ꢀV  
V
= ±2V TO ±15V  
= 25°C  
+
S
S
A
V
= 2V TO 15V  
–0.5  
–1.0  
–1.5  
–2.0  
T
I
I
= 1mA  
SET  
I
= 100µA  
SET  
2.0  
1.5  
1.0  
0.5  
0.1  
0.01  
V
= –2V TO –15V  
= 100µA  
10k  
SET  
I
= 1mA  
10  
SET  
V
1
100  
1000  
–50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
INPUT VOLTAGE (mV  
)
LT1228 • TPC04  
TEMPERATURE (°C)  
P–P  
LT1228 • TPC06  
LT1228 • TPC05  
Small-Signal Control Path  
Bandwidth vs Set Current  
Small-Signal Control Path  
Gain vs Input Voltage  
Output Saturation Voltage  
vs Temperature  
+
100  
10  
1
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
V
= ±±V Tꢀ ±1ꢁV  
= ±00mV  
S
IN  
–0.5  
–1.0  
(PIN 2 TO 3)  
2V ꢀ V  
ꢀ 15V  
R1 = S  
∆I  
∆I  
ꢀUT  
OUT  
∆I  
∆I  
SET  
SET  
+1.0  
+0.5  
V
10  
100  
SET CURRENT (µA)  
1000  
0
40  
80  
120  
160  
200  
–50 –25  
0
25  
50  
75 100 125  
INPUT VOLTAGE, PIN 2 TO 3, (mVDC)  
TEMPERATURE (°C)  
LT1228 • TPC07  
LT1228 • TPC08  
LT1228 • TPC09  
1228fd  
5
LT1228  
Transconductance Amplifier, Pins 1, 6, 8  
–3dB Bandwidth vs Supply –3dB Bandwidth vs Supply  
TYPICAL PERFORMANCE CHARACTERISTICS  
Voltage Gain and Phase  
vs Frequency, Gain = 6dB  
Voltage, Gain = 2, RL = 100Ω  
Voltage, Gain = 2, RL = 1k  
180  
160  
140  
180  
160  
140  
8
7
6
0
PHASE  
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
45  
90  
R = 500Ω  
F
GAIN  
R = 500Ω  
R = 750Ω  
F
F
135  
180  
225  
5
4
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
R = 750Ω  
F
3
2
1
R = 1k  
F
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
V
= 15V  
S
L
F
R
= 100Ω  
0
–1  
–2  
R = 2k  
F
R = 1k  
F
R = 2k  
F
R = 750Ω  
0
2
4
6
8
10 12 14 16 18  
0
0
0
2
4
6
8
10 12 14 16 18  
0.1  
1
10  
100  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE ( Vꢀ  
FREQUENCY (MHz)  
LT1228 • TPC10  
LT1228 • TPC11  
LT1228 • TPC12  
Voltage Gain and Phase  
vs Frequency, Gain = 20dB  
–3dB Bandwidth vs Supply  
Voltage, Gain = 10, RL = 100Ω  
–3dB Bandwidth vs Supply  
Voltage, Gain = 10, RL = 1k  
22  
21  
20  
0
180  
160  
140  
180  
160  
140  
PHASE  
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
PEAKING ≤ 0.5dB  
PEAKING ≤ 5dB  
45  
90  
GAIN  
135  
180  
225  
19  
18  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
R = 250Ω  
R = 500Ω  
F
F
R = 250Ω  
F
17  
16  
15  
R = 500Ω  
F
R = 750Ω  
F
R = 750Ω  
F
R = 1k  
F
V
= 15V  
S
L
R = 1k  
F
R
= 100Ω  
14  
13  
12  
R = 750Ω  
R = 2k  
F
F
R = 2k  
F
0
2
4
6
8
10 12 14 16 18  
0.1  
1
10  
100  
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE ( Vꢀ  
FREQUENCY (MHz)  
SUPPLY VOLTAGE ( Vꢀ  
LT1228 • TPC13  
LT1228 • TPC14  
LT1228 • TPC15  
Voltage Gain and Phase  
vs Frequency, Gain = 40dB  
–3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 100Ω  
–3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 1k  
42  
41  
40  
0
18  
16  
14  
18  
16  
14  
PHASE  
45  
90  
R
= 500Ω  
GAIN  
F
135  
180  
225  
39  
38  
12  
10  
8
12  
10  
8
R
= 500Ω  
F
R
= 1k  
F
37  
36  
35  
R
= 1k  
= 2k  
F
R
= 2k  
F
6
6
R
F
V
= 15V  
S
L
R
= 100Ω  
4
4
34  
33  
32  
R = 750Ω  
F
2
2
0
0
0.1  
1
10  
100  
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
SUPPLY VOLTAGE ( Vꢀ  
SUPPLY VOLTAGE ( Vꢀ  
LT1228 • TPC16  
LT1228 • TPC18  
LT1228 • TPC17  
1228fd  
6
LT1228  
Transconductance Amplifier, Pins 1, 6, 8  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Capacitive Load  
vs Feedback Resistor  
Total Harmonic Distortion  
vs Frequency  
2nd and 3rd Harmonic  
Distortion vs Frequency  
0.10  
–20  
–30  
10k  
1k  
V
V
=
15V  
PP  
S
O
L
V
=
1ꢀV  
S
L
= 2V  
R
= 400Ω  
R
= 100Ω  
V
= ±±V  
R = R = 7ꢀ0Ω  
S
F
G
R = 750Ω  
A
F
= 10dB  
2nd  
V
–40  
–50  
–60  
–70  
V
= ±1±V  
S
100  
10  
1
0.01  
3rd  
V
V
= 7V  
= 1V  
O
O
RMS  
RMS  
R
= 1k  
L
PEAKING ≤ ±dB  
GAIN = 2  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
10  
FREQUENCY (MHz)  
100  
0
1
2
3
FEEDBACK RESISTOR (kΩ)  
LT1228 • TPC20  
LT1228 • TPC19  
LT1228 • TPC21  
Input Common Mode Limit  
vs Temperature  
Output Saturation Voltage  
vs Temperature  
Output Short-Circuit Current  
vs Temperature  
+
+
70  
60  
50  
40  
30  
V
V
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
+
V
V
= 2V TO 15V  
R
= ∞  
L
2V ꢀ V ꢀ 15V  
S
2.0  
1.5  
1.0  
0.5  
= –2V TO –15V  
1.0  
0.5  
V
V
–50 –25  
0
25 50 75 100 125 150 175  
TEMPERATURE (°C)  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1228 • TPC22  
LT1228 • TPC23  
LT1228 • TPC24  
Spot Noise Voltage and Current  
vs Frequency  
Power Supply Rejection  
vs Frequency  
Output Impedance vs Frequency  
80  
100  
100  
10  
V
= 1ꢀV  
S
V
R
R
=
1ꢀV  
S
L
F
= 100Ω  
= R = 7ꢀ0Ω  
G
60  
POSITIVE  
1.0  
–i  
n
R
= R = 2k  
G
F
40  
20  
0
10  
R
= R = 750Ω  
G
F
e
0.1  
0.01  
n
NEGATIVE  
+i  
n
1
0.001  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
LT1228 • TPC26  
LT1228 • TPC25  
LT1228 • TPC27  
1228fd  
7
LT1228  
Current Feedback Amplifier, Pins 1, 6, 8  
TYPICAL PERFORMANCE CHARACTERISTICS  
Setting Time to 10mV  
vs Output Step  
Setting Time to 1mV  
vs Output Step  
Supply Current vs Supply Voltage  
10  
8
10  
8
10  
9
NONINVERTING  
INVERTING  
NONINVERTING  
6
6
8
–55°C  
25°C  
INVERTING  
4
4
7
2
2
6
V
= 1ꢀV  
G
S
F
V
=
1ꢀV  
G
S
F
0
0
5
125°C  
175°C  
R = R = 1k  
R = R = 1k  
–2  
–4  
–2  
–4  
4
3
2
1
0
INVERTING  
–6  
–6  
NONINVERTING  
–8  
–8  
NONINVERTING  
20  
INVERTING  
–10  
–10  
0
40  
60  
80  
100  
0
4
8
12  
16  
20  
0
2
4
6
8
10 12 14 16 18  
SETTLING TIME (ns)  
SETTLING TIME (µs)  
SUPPLY VOLTAGE ( Vꢀ  
LT1228 • TPC28  
LT1228 • TPC29  
LT1228 • TPC30  
SIMPLIFIED SCHEMATIC  
+
V
V
V
7
6
4
BIAS  
+IN  
3
–IN  
I
OUT  
2
8
GAIN  
OUT  
1
I
SET  
5
LT1228 • TA03  
1228fd  
8
LT1228  
APPLICATIONS INFORMATION  
The LT1228 contains two amplifiers, a transconductance  
amplifier(voltage-to-current)andacurrentfeedbackampli-  
fier(voltage-to-voltage).Thegainofthetransconductance  
amplifier is proportional to the current that is externally  
programmed into Pin ꢀ. Both amplifiers are designed to  
operate on almost any available supply voltage from 4V  
( 2V) to 30V ( 1ꢀV). The output of the transconductance  
amplifier is connected to the noninverting input of the  
current feedback amplifier so that both fit into an eight  
pin package.  
Resistance Controlled Gain  
If the set current is to be set or varied with a resistor or  
potentiometeritispossibletousethenegativetemperature  
coefficient at Pin ꢀ (with respect to Pin 4) to compensate  
for the negative temperature coefficient of the transcon-  
ductance. The easiest way is to use an LT1004-2.ꢀ, a 2.ꢀV  
reference diode, as shown below:  
Temperature Compensation of gm with a 2.5V Reference  
R
I
SET  
TRANSCONDUCTANCE AMPLIFIER  
g
m
I
V
V
be  
TheLT1228transconductanceamplifierhasahighimped-  
ance differential input (Pins 2 and 3) and a current source  
output (Pin 1) with wide output voltage compliance. The  
4
2.5V  
2E  
g
5
R
SET  
be  
voltage to current gain or transconductance (g ) is set  
m
LT1004-2.5  
by the current that flows into Pin ꢀ, I . The voltage at  
SET  
V
LT1228 • TA04  
Pin ꢀ is two forward biased diode drops above the nega-  
tive supply, Pin 4. Therefore the voltage at Pin ꢀ (with  
The current flowing into Pin ꢀ has a positive temperature  
coefficient that cancels the negative coefficient of the  
transconductance. The following derivation shows why a  
2.ꢀVreferenceresultsinzerogainchangewithtemperature:  
respect to V ) is about 1.2V and changes with the log of  
the set current (120mV/decade), see the characteristic  
curves.Thetemperaturecoefficientofthisvoltageisabout  
–4mV/°C (–3300ppm/°C) and the temperature coefficient  
oftheloggingcharacteristicis3300ppm/°C.Itisimportant  
that the current into Pin ꢀ be limited to less than 1ꢀmA.  
THE LT1228 WILL BE DESTROYED IF PIN ꢀ IS SHORTED  
TO GROUND OR TO THE POSITIVE SUPPLY. A limiting  
resistor (2k or so) should be used to prevent more than  
1ꢀmA from flowing into Pin ꢀ.  
q
I
SET  
Sinceg =  
×
= 10 I  
SET  
m
kT 3.87  
akT  
n
cT  
andV = E –  
wherea = In  
be  
g
q
Ic  
19.4 at 27°C c = 0.001, n = 3, Ic = 100µA  
(
)
The small-signal transconductance (g ) is given as  
m
E is about 1.2ꢀV so the 2.ꢀV reference is 2E . Solving  
the loop for the set current gives:  
g
g
g = 10 • I , with g in (A/V) and I in (A).This rela-  
m
SET  
m
SET  
tionship holds over many decades of set current (see the  
characteristic curves). The transconductance is inversely  
proportionaltoabsolutetemperature(–3300ppm/°C).The  
input stage of the transconductance amplifier has been  
designed to operate with much larger signals than is pos-  
sible with an ordinary diff-amp. The transconductance of  
the input stage varies much less than 1% for differential  
input signals over a 30 mV range (see the characteristic  
curveSmall-SignalTransconductancevsDCInputVoltage).  
akT  
q
2Eg 2 Eg –  
2akT  
Rq  
ISET  
=
or ISET =  
R
1228fd  
9
LT1228  
APPLICATIONS INFORMATION  
Substitutingintothe equationfortransconductancegives:  
diode drops above the negative supply, a single resistor  
from the control voltage source to Pin ꢀ will suffice in  
many applications. The control voltage is referenced to  
the negative supply and has an offset of about 900mV.  
The conversion will be monotonic, but the linearity is  
determined by the change in the voltage at Pin ꢀ (120mV  
per decade of current). The characteristic is very repeat-  
able since the voltage at Pin ꢀ will vary less than ꢀ%  
from part to part. The voltage at Pin ꢀ also has a negative  
temperature coefficient as described in the previous sec-  
tion. When the gain of several LT1228s are to be varied  
together, the current can be split equally by using equal  
value resistors to each Pin ꢀ.  
a
10  
R
gm =  
=
1.94R  
The temperature variation in the term “a” can be ignored  
since it is much less than that of the term “T” in the equa-  
tion for V . Using a 2.ꢀV source this way will maintain the  
be  
gain constant within 1% over the full temperature range of  
–ꢀꢀ°C to 12ꢀ°C. If the 2.ꢀV source is off by 10%, the gain  
willvaryonlyabout 6%overthesametemperaturerange.  
Wecanalsotemperaturecompensatethetransconductance  
withoutusinga2.ꢀVreferenceifthenegativepowersupply  
is regulated. A Thevenin equivalent of 2.ꢀV is generated  
from two resistors to replace the reference. The two resis-  
tors also determine the maximum set current, approxi-  
Formoreaccurate(andlinear)control,avoltage-to-current  
converter circuit using one op amp can be used. The fol-  
lowing circuit has several advantages. The input no longer  
has to be referenced to the negative supply and the input  
can be either polarity (or differential). This circuit works  
on both single and split supplies since the input voltage  
and the Pin ꢀ voltage are independent of each other. The  
temperature coefficient of the output current is set by Rꢀ.  
mately 1.1V/R . By rearranging the Thevenin equations  
TH  
to solve for R4 and R6 we get the following equations in  
terms of R and the negative supply, V .  
TH  
EE  
RTH  
RTHVEE  
2.5V  
R4=  
and R6=  
2.5V  
VEE  
1–  
R3  
1M  
Temperature Compensation of gm with a Thevenin Voltage  
R1  
1M  
1.03k  
R'  
R5  
1k  
V1  
V2  
+
I
SET  
I
OUT  
R2  
1M  
LT1006  
50pF  
TO PIN 5  
g
OF LT1228  
m
I
V
V
be  
be  
4
R4  
1M  
R6  
V
= 2.5V  
TH  
6.19kΩ  
5
R'  
SET  
R1 = R2  
R3 = R4  
R4  
1.24kΩ  
(V1 – V2) R3  
–15V  
I
=
= 1mA/V  
OUT  
LT1228 • TA05  
R5  
R1  
LT1228 • TA19  
Voltage Controlled Gain  
Digital control of the transconductance amplifier gain is  
done by converting the output of a DAC to a current flow-  
ing into Pin ꢀ. Unfortunately most current output DACs  
sink rather than source current and do not have output  
To useavoltagetocontrolthegainofthetransconductance  
amplifier requires converting the voltage into a current  
that flows into Pin ꢀ. Because the voltage at Pin ꢀ is two  
1228fd  
10  
LT1228  
APPLICATIONS INFORMATION  
Transconductance Amp Small-Signal Response  
compliance compatible with Pin ꢀ of the LT1228. There-  
fore, the easiest way to digitally control the set current  
is to use a voltage output DAC and a voltage-to-current  
circuit. Thepreviousvoltage-to-currentconverterwilltake  
the output of any voltage output DAC and drive Pin ꢀ with  
a proportional current. The R, 2R CMOS multiplying DACs  
operatinginthevoltageswitchingmode workwellonboth  
single and split supplies with the above circuit.  
ISET = 500µA, R1 = 50Ω  
Logarithmic control is often easier to use than linear  
control. A simple circuit that doubles the set current  
for each additional volt of input is shown in the voltage  
controlled state variable filter application near the end of  
this data sheet.  
Transconductance Amplifier Frequency Response  
CURRENT FEEDBACK AMPLIFIER  
The bandwidth of the transconductance amplifier is a  
function of the set current as shown in the characteristic  
curves. At set currents below 100µA, the bandwidth is  
approximately:  
The LT1228 current feedback amplifier has very high  
noninvertinginputimpedanceandisthereforeanexcellent  
buffer for the output of the transconductance amplifier.  
The noninverting input is at Pin 1, the inverting input at  
Pin 8 and the output at Pin 6. The current feedback ampli-  
fier maintains its wide bandwidth for almost all voltage  
gains making it easy to interface the output levels of the  
transconductance amplifier to other circuitry. The cur-  
rent feedback amplifier is designed to drive low imped-  
ance loads such as cables with excellent linearity at high  
frequencies.  
11  
–3dB bandwidth = 3 • 10  
I
SET  
The peak bandwidth is about 80MHz at ꢀ00µA. When a  
resistor is used to convert the output current to a volt-  
age, the capacitance at the output forms a pole with the  
resistor. The best case output capacitance is about ꢀpF  
with 1ꢀV supplies and 6pF with ꢀV supplies. You must  
add any PC board or socket capacitance to these values to  
get the total output capacitance. When using a 1k resistor  
at the output of the transconductance amp, the output  
capacitance limits the bandwidth to about 2ꢀMHz.  
Feedback Resistor Selection  
Thesmall-signalbandwidthoftheLT1228currentfeedback  
amplifier is set by the external feedback resistors and the  
internal junction capacitors. As a result, the bandwidth is  
a function of the supply voltage, the value of the feedback  
resistor, the closed-loop gain and load resistor. The char-  
acteristic curves of bandwidth versus supply voltage are  
done with a heavy load (100Ω) and a light load (1k) to  
The output slew rate of the transconductance amplifier is  
the set current divided by the output capacitance, which  
is 6pF plus board and socket capacitance. For example  
with the set current at 1mA, the slew rate would be over  
100V/µs.  
1228fd  
11  
LT1228  
APPLICATIONS INFORMATION  
Capacitance on the Inverting Input  
show the effect of loading. These graphs also show the  
family of curves that result from various values of the  
feedback resistor. These curves use a solid line when the  
response has less than 0.ꢀdB of peaking and a dashed line  
for the response with 0.ꢀdB to ꢀdB of peaking. The curves  
stop where the response has more than ꢀdB of peaking.  
Current feedback amplifiers want resistive feedback from  
the output to the inverting input for stable operation. Take  
care to minimize the stray capacitance between the output  
and the inverting input. Capacitance on the inverting input  
to ground will cause peaking in the frequency response  
(and overshoot in the transient response), but it does  
not degrade the stability of the amplifier. The amount of  
capacitance that is necessary to cause peaking is a func-  
tion of the closed-loop gain taken. The higher the gain,  
the more capacitance is required to cause peaking. For  
example, in a gain of 100 application, the bandwidth can  
be increased from 10MHz to 17MHz by adding a 2200pF  
Current Feedback Amp Small-Signal Response  
VS = 15V, RF = RG = 750Ω, RL = 100Ω  
capacitor, as shown below. C must have very low series  
G
resistance, such as silver mica.  
1
+
V
IN  
6
CFA  
V
OUT  
8
R
F
510Ω  
At a gain of two, on 1ꢀV supplies with a 7ꢀ0Ω feedback  
resistor, the bandwidth into a light load is over 160MHz  
without peaking, but into a heavy load the bandwidth re-  
ducesto100MHz.Theloadinghassomucheffectbecause  
thereisamildresonanceintheoutputstagethatenhances  
the bandwidth at light loads but has its Q reduced by the  
heavy load. This enhancement is only useful at low gain  
settings, at a gain of ten it does not boost the bandwidth.  
At unity gain, the enhancement is so effective the value of  
thefeedbackresistorhasverylittleeffectonthebandwidth.  
At very high closed-loop gains, the bandwidth is limited  
by the gain-bandwidth product of about 1GHz. The curves  
show that the bandwidth at a closed-loop gain of 100 is  
10MHz, only one tenth what it is at a gain of two.  
R
G
C
G
5.1Ω  
LT1228 • TA08  
Boosting Bandwidth of High Gain Amplifier  
with Capacitance On Inverting Input  
49  
46  
C
= 4700pF  
G
43  
40  
37  
34  
31  
28  
25  
22  
19  
C
= 2200pF  
G
C
= 0  
G
1
10  
FREQUENCY (MHz)  
100  
LT1228 • TA09  
1228fd  
12  
LT1228  
APPLICATIONS INFORMATION  
Capacitive Loads  
The output slew rate is set by the value of the feedback  
resistors and the internal capacitance. At a gain of ten with  
a 1k feedback resistor and 1ꢀV supplies, the output slew  
rate is typically ꢀ00V/µs and –8ꢀ0V/µs. There is no input  
stage enhancement because of the high gain. Larger feed-  
backresistorswillreducetheslewrateaswilllowersupply  
voltages, similar to the way the bandwidth is reduced.  
TheLT1228currentfeedbackamplifiercandrivecapacitive  
loadsdirectlywhenthepropervalueoffeedbackresistoris  
used.ThegraphofMaximumCapacitiveLoadvsFeedback  
Resistor should be used to select the appropriate value.  
The value shown is for ꢀdB peaking when driving a 1k  
load, at a gain of 2. This is a worst case condition, the  
amplifierismorestableathighergains,anddrivingheavier  
loads. Alternatively, a small resistor (10Ω to 20Ω) can be  
put in series with the output to isolate the capacitive load  
from the amplifier output. This has the advantage that the  
amplifier bandwidth is only reduced when the capacitive  
load is present and the disadvantage that the gain is a  
function of the load resistance.  
Current Feedback Amp Large-Signal Response  
VS = 15V, RF = 1k, RG = 110Ω, RL = 400Ω  
Slew Rate  
The slew rate of the current feedback amplifier is not inde-  
pendent of the amplifier gain configuration the way it is in  
a traditional op amp. This is because the input stage and  
the output stage both have slew rate limitations. The input  
stage of the LT1228 current feedback amplifier slews at  
about 100V/µs before it becomes nonlinear. Faster input  
signalswillturnonthenormallyreversebiasedemitterson  
theinputtransistorsandenhancetheslewratesignificantly.  
This enhanced slew rate can be as much as 3ꢀ00V/µs!  
Settling Time  
The characteristic curves show that the LT1228 current  
feedback amplifier settles to within 10mV of final value  
in 40ns to ꢀꢀns for any output step less than 10V. The  
curve of settling to 1mV of final value shows that there  
is a slower thermal contribution up to 20µs. The thermal  
settling component comes from the output and the input  
stage. The output contributes just under 1mV/V of output  
changeandtheinputcontributes300µV/Vofinputchange.  
Fortunately the input thermal tends to cancel the output  
thermal. For this reason the noninverting gain of two  
configuration settles faster than the inverting gain of one.  
Current Feedback Amp Large-Signal Response  
VS = 15V, RF = RG = 750Ω Slew Rate Enhanced  
1228fd  
13  
LT1228  
APPLICATIONS INFORMATION  
Power Supplies  
For example, let’s calculate the worst case power dis-  
sipation in a variable gain video cable driver operating on  
12V supplies that delivers a maximum of 2V into 1ꢀ0Ω.  
The maximum set current is 1mA.  
The LT1228 amplifiers will operate from single or split  
supplies from 2V (4V total) to 18V (36V total). It is  
not necessary to use equal value split supplies, however  
the offset voltage and inverting input bias current of the  
current feedback amplifier will degrade. The offset voltage  
changesabout3ꢀ0µV/Vofsupplymismatch, theinverting  
bias current changes about 2.ꢀµA/V of supply mismatch.  
V
OMAX  
P = 2V I  
+ 3.5I  
+ V – V  
) (  
(
)
D
S
SMAX  
SET  
S
OMAX  
R
L
2V  
P = 2 12V 7mA + 3.5 1mA + 12V – 2V  
(
)
(
)
D
150Ω  
Power Dissipation  
= 0.252+ 0.133 = 0.385W  
The worst case amplifier power dissipation is the total of  
the quiescent current times the total power supply voltage  
plus the power in the IC due to the load. The quiescent  
supplycurrentoftheLT1228transconductanceamplifieris  
equal to 3.ꢀ times the set current at all temperatures. The  
quiescent supply current of the LT1228 current feedback  
amplifier has a strong negative temperature coefficient  
and at 1ꢀ0°C is less than 7mA, typically only 4.ꢀmA. The  
power in the IC due to the load is a function of the output  
voltage, the supply voltage and load resistance. The worst  
case occurs when the output voltage is at half supply, if  
it can go that far, or its maximum value if it cannot reach  
half supply.  
The total power dissipation times the thermal resistance  
of the package gives the temperature rise of the die above  
ambient. The above example in SO-8 surface mount pack-  
age (thermal resistance is 1ꢀ0°C/W) gives:  
Temperature Rise = P  
θ
= 0.38ꢀW • 150°C/W  
D JA  
= ꢀ7.7ꢀ°C  
Therefore the maximum junction temperature is 70°C  
+ꢀ7.7ꢀ°C or 127.7ꢀ°C, well under the absolute maximum  
junction temperature for plastic packages of 1ꢀ0°C.  
TYPICAL APPLICATIONS  
Basic Gain Control  
Lastly the signal is buffered and amplified by the current  
feedback amplifier (CFA). The voltage gain of the current  
feedback amplifier is:  
The basic gain controlled amplifier is shown on the front  
page of the data sheet. The gain is directly proportional  
to the set current. The signal passes through three stages  
from the input to the output.  
RF  
1+  
RG  
First the input signal is attenuated to match the dynamic  
range of the transconductance amplifier. The attenuator  
should reduce the signal down to less than 100mV peak.  
The characteristic curves can be used to estimate how  
much distortion there will be at maximum input signal.  
For single ended inputs eliminate R2A or R3A.  
The overall gain of the gain controlled amplifier is the  
product of all three stages:  
R3  
RF  
A =  
10ISET R11+  
V
R3+ R3A  
R
G   
More than one output can be summed into R1 because  
the output of the transconductance amplifier is a current.  
This is the simplest way to make a video mixer.  
The signal is then amplified by the transconductance  
amplifier (g ) and referred to ground. The voltage gain  
m
of the transconductance amplifier is:  
g R1 = 10 • I R1  
m
SET  
1228fd  
14  
LT1228  
TYPICAL APPLICATIONS  
Video Fader  
Video DC Restore (Clamp) Circuit  
NOT NECESSARY IF THE SOURCE RESISTANCE IS LESS THAN 50Ω  
1k  
3
V
+
IN1  
1
200Ω  
+
g
m
+
V
1000pF  
2
LT1223  
CFA  
V
OUT  
3
7
+
5
1
8
g
+
m
1k  
100Ω  
2
6
V
0.01µF  
CFA  
5
OUT  
4
10k  
10k  
5.1k  
10k  
R
F
V
=
5V  
10k  
5.1k  
V
–5V  
1k  
S
R
G
5V  
1k  
3k  
3k  
3
2
5
VIDEO  
INPUT  
V
+
IN2  
1
g
m
100Ω  
LOGIC  
INPUT  
2N3906  
LT1228 • TA12  
RESTORE  
LT1228 • TA13  
The video fader uses the transconductance amplifiers  
from two LT1228s in the feedback loop of another cur-  
rent feedback amplifier, the LT1223. The amount of signal  
from each input at the output is set by the ratio of the  
set currents of the two LT1228s, not by their absolute  
value. The bandwidth of the current feedback amplifier  
is inversely proportional to the set current in this  
configuration. Therefore, the set currents remain high  
over most of the pot’s range, keeping the bandwidth over  
1ꢀMHz even when the signal is attenuated 20dB. The pot  
is set up to completely turn off one LT1228 at each end  
of the rotation.  
The video restore (clamp) circuit restores the black level  
of the composite video to zero volts at the beginning of  
every line. This is necessary because AC coupled video  
changes DC level as a function of the average brightness  
of the picture. DC restoration also rejects low frequency  
noise such as hum.  
The circuit has two inputs: composite video and a logic  
signal. The logic signal is high except during the back  
porch time right after the horizontal sync pulse. While  
the logic is high, the PNP is off and I is zero. With I  
SET  
SET  
equal to zero the feedback to Pin 2 has no affect. The  
video input drives the noninverting input of the current  
feedback amplifier whose gain is set by R and R . When  
F
G
the logic signal is low, the PNP turns on and I goes to  
SET  
about 1mA. Then the transconductance amplifier charges  
the capacitor to force the output to match the voltage at  
Pin 3, in this case zero volts.  
ThiscircuitcanbemodifiedsothatthevideoisDCcoupled  
by operating the amplifier in an inverting configuration.  
Just ground the video input shown and connect R to the  
G
video input instead of to ground.  
1228fd  
15  
LT1228  
TYPICAL APPLICATIONS  
Single Supply Wien Bridge Oscillator  
3 at resonance; therefore the attenuation of the 1.8k resis-  
tor and the transconductance amplifier must be about 11,  
resulting in a set current of about 600µA at oscillation. At  
start-upthereisnosetcurrentandthereforenoattenuation  
for a net gain of about 11 around the loop. As the output  
oscillation builds up it turns on the PNP transistor which  
generates the set current to regulate the output voltage.  
100Ω  
2N3906  
+
V
6V TO 30V  
+
V
+
470Ω  
10µF  
1
10kΩ  
10kΩ  
7
3
+
5
12MHz Negative Resistance LC Oscillator  
g
+
m
0.1µF  
51Ω  
2
6
CFA  
+
V
8
4
9.1k  
3
2
7
R
680Ω  
+
F
1
8
V
g
O
+
m
1k  
V
51Ω  
O
6
R
5
G
CFA  
1.8k  
20Ω  
4
+
160Ω  
1000pF  
10µF  
1000pF  
V
750Ω  
+
1k  
50Ω  
10µF  
160Ω  
50Ω  
4.7µH  
30pF  
4.3k  
330Ω  
10k  
2N3906  
f = 1MHz  
= 6dBm (450mV  
V
)
RMS  
O
2N3904  
2nd HARMONIC = –38dBc  
3rd HARMONIC = 54dBc  
FOR 5V OPERATION SHORT OUT 100Ω RESISTOR  
0.1µF  
LT1228 • TA14  
In this application the LT1228 is biased for operation from  
a single supply. An artificial signal ground at half supply  
voltage is generated with two 10k resistors and bypassed  
V
V
= 10dB  
O
AT V = ±5V ALL HARMONICS 40dB DOWN  
AT V = ±12V ALL HARMONICS 50dB DOWN  
S
S
LT1228 • TA15  
with a capacitor. A capacitor is used in series with R to  
G
This oscillator uses the transconductance amplifier as a  
negative resistor to cause oscillation. A negative resistor  
results when the positive input of the transconductance  
amplifier is driven and the output is returned to it. In  
this example a voltage divider is used to lower the signal  
level at the positive input for less distortion. The negative  
resistor will not DC bias correctly unless the output of the  
transconductance amplifier drives a very low resistance.  
Here it sees an inductor to ground so the gain at DC is  
zero. The oscillator needs negative resistance to start  
and that is provided by the 4.3k resistor to Pin ꢀ. As the  
output level rises it turns on the PNP transistor and in turn  
the NPN which steals current from the transconductance  
amplifier bias input.  
set the DC gain of the current feedback amplifier to unity.  
The transconductance amplifier is used as a variable  
resistor to control gain. A variable resistor is formed by  
driving the inverting input and connecting the output back  
to it. The equivalent resistor value is the inverse of the  
gm. This works with the 1.8k resistor to make a variable  
attenuator. The 1MHz oscillation frequency is set by the  
Wien bridge network made up of two 1000pF capacitors  
and two 160Ω resistors.  
For clean sine wave oscillation, the circuit needs a net gain  
ofonearoundtheloop. Thecurrentfeedbackamplifierhas  
a gain of 34 to keep the voltage at the transconductance  
amplifier input low. The Wien bridge has an attenuation of  
1228fd  
16  
LT1228  
TYPICAL APPLICATIONS  
Filters  
Single Pole Low/High/Allpass Filter  
R3A  
V
1k  
IN  
3
LOWPASS  
+
INPUT  
1
g
+
m
R3  
120Ω  
2
C
6
V
CFA  
OUT  
330pF  
5
8
I
SET  
R
R
G
F
V
1k  
1k  
IN  
HIGHPASS  
INPUT  
R2A  
1k  
10  
2π  
9
I
R + 1  
R2  
R2 + R2A  
R2  
120Ω  
SET  
C
F
f
=
×
×
×
C
R
G
LT1228 • TA16  
f
= 10 I FOR THE VALUES SHOWN  
C
SET  
Allpass Filter Phase Response  
0
–45  
1mA SET CURRENT  
–90  
–135  
–180  
100µA SET CURRENT  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
LT1228 • TA17  
Using the variable transconductance of the LT1228 to  
make variable filters is easy and predictable. The most  
straight forward way is to make an integrator by putting a  
capacitor at the output of the transconductance amp and  
buffering it with the current feedback amplifier. Because  
the input bias current of the current feedback amplifier  
must be supplied by the transconductance amplifier, the  
setcurrentshouldnotbeoperatedbelow10µA. Thislimits  
the filters to about a 100:1 tuning range.  
values shown give a 100kHz corner frequency for 100µA  
set current. The circuit has two inputs, a lowpass filter  
input and a highpass filter input. To make a lowpass filter,  
ground the highpass input and drive the lowpass input.  
Conversely for a highpass filter, ground the lowpass input  
and drive the highpass input. If both inputs are driven, the  
result is an allpass filter or phase shifter. The allpass has  
flat amplitude response and 0° phase shift at low frequen-  
cies, going to –180° at high frequencies. The allpass filter  
has –90° phase shift at the corner frequency.  
The Single Pole circuit realizes a single pole filter with a  
corner frequency (f ) proportional to the set current. The  
C
1228fd  
17  
LT1228  
TYPICAL APPLICATIONS  
Voltage Controlled State Variable Filter  
+
1k  
LT1006  
10k  
2N3906  
V
C
100pF  
180Ω  
51k  
5V  
3k  
–5V  
3k  
7
3.3k  
100Ω  
3
2
+
V
5
IN  
1
8
g
+
m
6
BANDPASS  
OUTPUT  
CFA  
4
18pF  
–5V  
1k  
3.3k  
3.3k  
5
100Ω  
5V  
7
3
2
+
1
8
g
100Ω  
+
m
LOWPASS  
OUTPUT  
6
CFA  
4
18pF  
3.3k  
–5V  
1k  
f
f
f
f
f
= 100kHz AT V = 0V  
C
O
O
O
O
O
= 200kHz AT V = 1V  
C
= 400kHz AT V = 2V  
C
= 800kHz AT V = 3V  
C
= 1.6MHz AT V = 4V  
LT1228 • TA18  
C
The state variable filter has both lowpass and bandpass  
outputs.EachLT1228isconfiguredasavariableintegrator  
whose frequency is set by the attenuators, the capacitors  
and the set current. Because the integrators have both  
positive and negative inputs, the additional op amp nor-  
mally required is not needed. The input attenuators set  
for best accuracy. If discrete transistors are used, the  
51k resistor should be trimmed to give proper frequency  
response with V equal zero. The circuit generates 100µA  
C
for V equal zero volts and doubles the current for every  
C
additional volt. The two 3k resistors divide the current  
between the two LT1228s. Therefore the set current of  
each amplifier goes from 50µA to 800µA for a control  
the circuit up to handle 3V  
signals.  
P–P  
voltage of 0V to 4V. The resulting filter is at 100kHz for V  
C
The set current is generated with a simple circuit that  
gives logarithmic voltage to current control. The two PNP  
transistors should be a matched pair in the same package  
equal zero, and changes it one octave/V of control input.  
1228fd  
18  
LT1228  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
J8 Package  
3-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
2
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
3
.200  
.300 BSC  
(5.080)  
MAX  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1228fd  
19  
LT1228  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
.130 ±.005  
.300 – .325  
.045 – .065  
(3.302 ±0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.255 ±.015*  
(6.477 ±0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
3
.325  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
1228fd  
20  
LT1228  
REVISION HISTORY (Revision history begins at Rev D)  
REV  
DATE  
06/12 Updated Order Information table to new format  
Clarified units used in g = 10 • I relationship  
DESCRIPTION  
PAGE NUMBER  
D
2
9
m
SET  
1228fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT1228  
TYPICAL APPLICATIONS  
RF AGC Amplifier (Leveling Loop)  
15V  
7
10k  
RF INPUT  
to 1.3V  
3
2
+
0.6V  
RMS  
RMS  
25MHz  
1
g
+
100Ω  
m
OUTPUT  
P–P  
300Ω  
CFA  
2V  
5
8
4
470Ω  
0.01µF  
10k  
–15V  
10k  
4pF  
10  
Ω
0.01µF  
15V  
10k  
10k  
100k  
4.7k  
–15V  
A3  
LT1006  
AMPLITUDE  
ADJUST  
1N4148’s  
COUPLE THERMALLY  
LT1004  
1.2V  
+
LT1228 • TA20  
–15V  
Inverting Amplifier with DC Output Less Than 5mV  
Amplitude Modulator  
5V  
4.7µF  
+
+
V
2
3
7
+
3
2
7
1
8
+
g
+
m
1
+
6
g
+
5
m
CFA  
V
O
V
OUT  
100µF  
6
5
CFA  
4
0dBm(230mV) AT  
R5  
CARRIER  
INPUT  
30mV  
MODULATION = 0V  
8
4
10k  
1k  
V
R
1k  
F
R
750Ω  
F
V
V
V
=
=
5Vꢀ R5 = 3ꢁ6k  
15Vꢀ R5 = 13ꢁ6k  
MUST BE LESS THAN  
4.7µF  
S
S
+
R
G
R
1k  
–5V  
G
OUT  
200mV  
750Ω  
FOR LOW OUTPUT OFFSET  
P–P  
BW = 30Hz TO 20MHz  
MODULATION  
INPUT ≤ 8V  
V
LT1228 • TA22  
IN  
INCLUDES DC  
LT1228 • TA21  
PP  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1227  
140MHz Current Feedback Amplifier  
40MHz Video Fader  
1100V/µs Slew Rate, 0.01% Differential Gain, 0.03% Differential Phase  
Accurate Linear Gain Control: 1% Typ, 3% Max  
800V/µs Slew Rate, 80mA Output Current  
LT1251/LT1256  
LT1399  
400MHz Current Feedback Amplifier  
1228fd  
LT 0612 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1229

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229C

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229CJ8

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229CN8

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229CN8#PBF

LT1229 - Dual 100MHz Current Feedback Amplifiers; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1229CS8

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229CS8#PBF

LT1229 - Dual 100MHz Current Feedback Amplifiers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1229CS8#TRPBF

LT1229 - Dual 100MHz Current Feedback Amplifiers; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1229M

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229MJ8

Dual and Quad 100MHz Current Feedback Amplifiers
Linear

LT1229MJ8/883B

IC DUAL OP-AMP, 15000 uV OFFSET-MAX, CDIP8, CERDIP-8, Operational Amplifier
Linear

LT1229MS8

IC DUAL OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear