LT1229CN8 [Linear]

Dual and Quad 100MHz Current Feedback Amplifiers; 双路和四路100MHz的电流反馈放大器
LT1229CN8
型号: LT1229CN8
厂家: Linear    Linear
描述:

Dual and Quad 100MHz Current Feedback Amplifiers
双路和四路100MHz的电流反馈放大器

运算放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1229/LT1230  
Dual and Quad 100MHz  
Current Feedback Amplifiers  
U
DESCRIPTIO  
EATURE  
S
F
100MHz Bandwidth  
1000V/µs Slew Rate  
Low Cost  
The LT1229/LT1230 dual and quad 100MHz current feed-  
back amplifiers are designed for maximum performance  
in small packages. Using industry standard pinouts, the  
dual is available in the 8-pin miniDIP and the 8-pin SO  
package while the quad is in the 14-pin DIP and 14-pin SO.  
The amplifiers are designed to operate on almost any  
available supply voltage from 4V (±2V) to 30V (±15V).  
30mA Output Drive Current  
0.04% Differential Gain  
0.1° Differential Phase  
High Input Impedance: 25M, 3pF  
Wide Supply Range: ±2V to ±15V  
Low Supply Current: 6mA Per Amplifier  
Inputs Common Mode to Within 1.5V of Supplies  
Outputs Swing Within 0.8V of Supplies  
These current feedback amplifiers have very high input  
impedance and make excellent buffer amplifiers. They  
maintain their wide bandwidth for almost all closed-loop  
voltage gains. The amplifiers drive over 30mA of output  
current and are optimized to drive low impedance loads,  
such as cables, with excellent linearity at high frequencies.  
O U  
PPLICATI  
S
A
Video Instrumentation Amplifiers  
Cable Drivers  
The LT1229/LT1230 are manufactured on Linear  
Technology’sproprietarycomplementarybipolarprocess.  
For a single amplifier like these see the LT1227 and for  
better DC accuracy see the LT1223.  
RGB Amplifiers  
Test Equipment Amplifiers  
U
O
TYPICAL APPLICATI  
Loop Through Amplifier Frequency  
Response  
Video Loop Through Amplifier  
10  
R
187Ω  
R
3.01k  
R
750Ω  
R
F2  
750Ω  
G2  
G1  
F1  
0
NORMAL SIGNAL  
–10  
–20  
–30  
1/2  
LT1229  
1/2  
LT1229  
V
OUT  
V
+
IN  
V
3.01k  
3.01k  
IN  
+
+
–40  
1% RESISTORS  
WORST CASE CMRR = 22dB  
TYPICALLY = 38dB  
COMMON-MODE SIGNAL  
12.1k  
12.1k  
–50  
–60  
V
R
= G (V  
+
– V  
F2  
)
IN  
OUT  
IN  
10 100  
1k 10k 100k 1M 10M 100M  
= R  
F1  
F2  
BNC INPUTS  
R
= (G – 1) R  
FREQUENCY (Hz)  
G1  
LT1229 • TA02  
R
G – 1  
HIGH INPUT RESISTANCE DOES NOT LOAD CABLE EVEN  
WHEN POWER IS OFF  
F2  
R
=
G2  
TRIM CMRR WITH R  
G1  
LT1229 • TA01  
1
LT1229/LT1230  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage ...................................................... ±18V  
Input Current ...................................................... ±15mA  
Output Short Circuit Duration (Note 1) .........Continuous  
Operating Temperature Range  
Storage Temperature Range ................. –65°C to 150°C  
Junction Temperature  
Plastic Package .............................................. 150°C  
Ceramic Package ............................................ 175°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
LT1229C, LT1230C ............................... 0°C to 70°C  
LT1229M, LT1230M....................... –55°C to 125°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
NUMBER  
TOP VIEW  
+
D
C
A
B
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
12  
11  
10  
9
+IN D  
LT1229MJ8  
LT1229CJ8  
LT1229CN8  
LT1229CS8  
LT1230MJ  
LT1230CJ  
LT1230CN  
LT1230CS  
OUT B  
+
V
V
A
–IN B  
+IN B  
+IN B  
–IN B  
+IN C  
–IN C  
OUT C  
B
V
J8 PACKAGE  
N8 PACKAGE  
OUT B  
8
8-LEAD CERAMIC DIP 8-LEAD PLASTIC DIP  
S8 PACKAGE  
S8 PART MARKING  
1229  
J PACKAGE  
N PACKAGE  
8-LEAD PLASTIC SOIC  
LT1124 • POI01  
14-LEAD CERAMIC DIP 14-LEAD PLASTIC DIP  
S PACKAGE  
TJ MAX = 175°C, θJA = 100°C/W (J8)  
14-LEAD PLASTIC SOIC LT1229 • POI02  
TJ MAX = 175°C, θJA = 80°C/W (J)  
T
J MAX = 150°C, θJA = 100°C/W (N8)  
TJ MAX = 150°C, θJA = 150°C/W (S8)  
T
T
J MAX = 150°C, θJA = 70°C/W (N)  
J MAX = 150°C, θJA = 110°C/W (S)  
ELECTRICAL CHARACTERISTICS  
Each Amplifier, VCM = 0V, ±5V VS = ±15V, pulse tested unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
T = 25°C  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
±3  
±10  
±15  
mV  
mV  
A
Input Offset Voltage Drift  
Noninverting Input Current  
10  
µV/°C  
+
I
I
T = 25°C  
A
±0.3  
±3  
±10  
µA  
µA  
IN  
Inverting Input Current  
T = 25°C  
A
±10  
±50  
±100  
µA  
µA  
IN  
e
Input Noise Voltage Density  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
3.2  
1.4  
32  
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
+i  
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Resistance  
f = 1kHz, R = 1k, R = 10, R = 10k  
F G S  
n
–in  
f = 1kHz  
R
V
V
= ±13V, V = ±15V  
2
2
25  
25  
MΩ  
MΩ  
IN  
IN  
IN  
S
= ±3V, V = ±5V  
S
C
IN  
Input Capacitance  
3
pF  
Input Voltage Range  
V = ±15V, T = 25°C  
±13  
±12  
±3  
±13.5  
V
V
V
V
S
A
V = ±5V, T = 25°C  
±3.5  
S
A
±2  
CMRR  
Common-Mode Rejection Ratio  
V = ±15V, V = ±13V, T = 25°C  
55  
55  
55  
55  
69  
69  
dB  
dB  
dB  
dB  
S
CM  
A
V = ±15V, V = ±12V  
S
CM  
V = ±5V, V = ±3V, T = 25°C  
S
CM  
A
V = ±5V, V = ±2V  
S
CM  
2
LT1229/LT1230  
ELECTRICAL CHARACTERISTICS  
Each Amplifier, VCM = 0V, ±5V VS = ±15V, pulse tested unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±15V, V = ±13V, T = 25°C  
MIN  
TYP  
MAX  
UNITS  
Inverting Input Current  
Common-Mode Rejection  
2.5  
10  
10  
10  
10  
µA/V  
µA/V  
µA/V  
µA/V  
S
CM  
A
V = ±15V, V = ±12V  
S
CM  
V = ±5V, V = ±3V, T = 25°C  
2.5  
80  
S
CM  
A
V = ±5V, V = ±2V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±15V, T = 25°C  
60  
60  
dB  
dB  
S
A
V = ±3V to ±15V  
S
Noninverting Input Current  
Power Supply Rejection  
V = ±2V to ±15V, T = 25°C  
10  
50  
50  
nA/V  
nA/V  
S
A
V = ±3V to ±15V  
S
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±15V, T = 25°C  
0.1  
5
5
µA/V  
µA/V  
S
A
V = ±3V to ±15V  
S
A
V
Large-Signal Voltage Gain, (Note 2)  
V = ±15V, V  
= ±10V, R = 1k  
55  
55  
65  
65  
dB  
dB  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 150Ω  
S
OUT  
L
R
OL  
Transresistance, V /I , (Note 2)  
V = ±15V, V  
= ±10V, R = 1k  
100  
100  
200  
200  
kΩ  
kΩ  
OUT IN–  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 150Ω  
S
OUT  
L
V
OUT  
Maximum Output Voltage Swing, (Note 2) V = ±15V, R = 400, T = 25°C  
±12  
±10  
±3  
±13.5  
V
V
V
V
S
L
A
V = ±5V, R = 150, T = 25°C  
±3.7  
S
L
A
±2.5  
I
I
Maximum Output Current  
Supply Current, (Note 3)  
R = 0, T = 25°C  
30  
65  
6
125  
mA  
OUT  
S
L
A
V
= 0V, Each Amplifier, T = 25°C  
9.5  
11  
mA  
mA  
OUT  
A
SR  
SR  
Slew Rate, (Notes 4 and 6)  
Slew Rate  
T = 25°C  
300  
700  
2500  
10  
V/µs  
V/µs  
ns  
A
V = ±15V, R = 750, R = 750, R = 400Ω  
S
F
G
L
t
Rise Time, (Notes 5 and 6)  
Small-Signal Bandwidth  
Small-Signal Rise Time  
Propagation Delay  
T = 25°C  
A
20  
r
BW  
V = ±15V, R = 750, R = 750, R = 100Ω  
S
100  
3.5  
MHz  
ns  
F
G
L
t
V = ±15V, R = 750, R = 750, R = 100Ω  
S F G L  
r
V = ±15V, R = 750, R = 750, R = 100Ω  
S
3.5  
ns  
F
G
L
Small-Signal Overshoot  
Settling Time  
V = ±15V, R = 750, R = 750, R = 100Ω  
15  
%
S
F
G
L
t
0.1%, V  
= 10V, R =1k, R = 1k, R =1k  
45  
ns  
s
OUT  
F
G
L
Differential Gain, (Note 7)  
Differential Phase, (Note 7)  
Differential Gain, (Note 7)  
Differential Phase, (Note 7)  
V = ±15V, R = 750, R = 750, R = 1k  
0.01  
0.01  
0.04  
0.1  
%
S
F
G
L
V = ±15V, R = 750, R = 750, R = 1k  
Deg  
%
S
F
G
L
V = ±15V, R = 750, R = 750, R = 150Ω  
S
F
G
L
V = ±15V, R = 750, R = 750, R = 150Ω  
Deg  
S
F
G
L
The  
range.  
denotes specifications which apply over the operating temperature  
slew rate is much higher when the input is overdriven and when the  
amplifier is operated inverting, see the applications section.  
Note 1: A heat sink may be required depending on the power supply  
voltage and how many amplifiers are shorted.  
Note 5: Rise time is measured from 10% to 90% on a ±500mV output  
signal while operating on ±15V supplies with R = 1k, R = 110and R =  
F
G
L
100. This condition is not the fastest possible, however, it does  
guarantee the internal capacitances are correct and it makes automatic  
testing practical.  
Note 2: The power tests done on ±15V supplies are done on only one  
amplifier at a time to prevent excessive junction temperatures when testing  
at maximum operating temperature.  
Note 6: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J and N suffix) and are sample tested on every lot of the  
SO packaged parts (S suffix).  
Note 3: The supply current of the LT1229/LT1230 has a negative  
temperature coefficient. For more information see the application  
information section.  
Note 7: NTSC composite video with an output level of 2V .  
Note 4: Slew rate is measured at ±5V on a ±10V output signal while  
P
operating on ±15V supplies with R = 1k, R = 110and R = 400. The  
F
G
L
3
LT1229/LT1230  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Voltage Gain and Phase vs  
Frequency, Gain = 6dB  
3dB Bandwidth vs Supply  
3dB Bandwidth vs Supply  
Voltage, Gain = 2, RL = 1k  
Voltage, Gain = 2, RL = 100Ω  
8
7
6
0
180  
160  
140  
180  
160  
140  
PHASE  
PEAKING 0.5dB  
PEAKING 5dB  
45  
90  
R
= 500Ω  
F
GAIN  
R = 500Ω  
R
= 750Ω  
F
F
5
4
135  
180  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
R = 750Ω  
F
3
2
1
225  
R = 1k  
F
PEAKING 0.5dB  
PEAKING 5dB  
V
= ±15V  
S
L
F
0
–1  
–2  
R
= 2k  
R
= 1k  
F
R = 2k  
F
F
R
= 100Ω  
R = 750Ω  
0
2
4
6
8
10 12 14 16 18  
0.1  
1
10  
100  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (±V)  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
LT1229 • TPC01  
LT1229 • TPC02  
LT1229 • TPC03  
Voltage Gain and Phase vs  
Frequency, Gain = 20dB  
3dB Bandwidth vs Supply  
Voltage, Gain = 10, RL = 100Ω  
3dB Bandwidth vs Supply  
Voltage, Gain = 10, RL = 1k  
22  
21  
20  
0
180  
160  
140  
180  
160  
140  
PHASE  
PEAKING 0.5dB  
PEAKING 5dB  
PEAKING 0.5dB  
PEAKING 5dB  
45  
90  
GAIN  
19  
18  
135  
180  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
R
= 250Ω  
R = 500Ω  
F
F
R = 250Ω  
F
17  
16  
15  
225  
R = 500Ω  
F
R
= 750Ω  
F
R = 750Ω  
F
R = 1k  
F
R = 1k  
F
V
= ±15V  
S
L
F
14  
13  
12  
R
= 100Ω  
R = 2k  
F
R = 2k  
F
R = 750Ω  
0.1  
1
10  
100  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1229 • TPC04  
LT1229 • TPC05  
LT1229 • TPC06  
Voltage Gain and Phase vs  
Frequency, Gain = 40dB  
3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 100Ω  
3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 1kΩ  
42  
41  
40  
0
18  
16  
14  
18  
16  
14  
PHASE  
45  
90  
R
= 500Ω  
GAIN  
F
39  
38  
135  
180  
12  
10  
8
12  
10  
8
R = 500Ω  
F
R
= 1k  
F
37  
36  
35  
225  
R = 1k  
F
R
= 2k  
F
6
6
R = 2k  
F
4
4
V
= ±15V  
34  
33  
32  
S
L
F
R
= 100Ω  
2
2
R = 750Ω  
0
0
0.1  
1
10  
100  
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
LT1229 • TPC07  
LT1229 • TPC08  
LT1229 • TPC09  
4
LT1229/LT1230  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Capacitance Load vs  
Feedback Resistor  
Total Harmonic Distortion vs  
Frequency  
2nd and 3rd Harmonic  
Distortion vs Frequency  
0.10  
10000  
1000  
–20  
–30  
V
V
= ±15V  
P-P  
= 100Ω  
S
O
L
V
R
R
= ±15V  
= 400Ω  
S
L
F
= 2V  
R
V
= ±5V  
= R = 750Ω  
S
G
R = 750Ω  
A
F
= 10dB  
2ND  
V
–40  
–50  
–60  
–70  
V
= ±15V  
S
0.01  
100  
10  
1
V
V
= 7V  
RMS  
3RD  
O
O
= 1V  
RMS  
R
= 1k  
L
PEAKING 5dB  
GAIN = 2  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1
2
3
1
10  
FREQUENCY (MHz)  
100  
FEEDBACK RESISTOR (k)  
LT1229 • TPC11  
LT1229 • TPC10  
LT1229 • TPC12  
Input Common-Mode Limit vs  
Temperature  
Output Saturation Voltage vs  
Temperature  
Output Short-Circuit Current vs  
Junction Temperature  
+
+
70  
60  
50  
40  
30  
V
V
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
+
V
V
= 2V TO 18V  
R
= ∞  
L
±2V V ±18V  
S
2.0  
1.5  
1.0  
0.5  
= –2V TO –18V  
1.0  
0.5  
V
V
–50 –25  
0
25 50 75 100 125 150 175  
50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1229 • TPC15  
LT1229 • TPC13  
LT1229 • TPC14  
Spot Noise Voltage and Current vs  
Frequency  
Power Supply Rejection vs  
Frequency  
Output Impedance vs  
Frequency  
100  
10  
1
80  
60  
100  
10  
V
= ±15V  
S
V
R
R
= ±15V  
S
L
F
= 100Ω  
–i  
n
= R = 750Ω  
G
POSITIVE  
1.0  
R
= R = 2k  
G
F
40  
20  
0
R
= R = 750Ω  
G
F
0.1  
0.01  
NEGATIVE  
e
n
+i  
n
0.001  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
LT1229 • TPC16  
LT1229 • TPC17  
LT1229 • TPC18  
5
LT1229/LT1230  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Settling Time to 10mV vs  
Output Step  
Settling Time to 1mV vs  
Output Step  
Supply Current vs Supply Voltage  
10  
9
10  
8
10  
8
NONINVERTING  
INVERTING  
NONINVERTING  
8
6
6
–55°C  
INVERTING  
7
4
4
25°C  
6
2
2
V
= ±15V  
G
V
= ±15V  
G
S
F
S
F
5
0
0
125°C  
R
= R = 1k  
R = R = 1k  
4
3
2
1
0
–2  
–4  
–2  
–4  
175°C  
INVERTING  
–6  
–6  
NONINVERTING  
–8  
–8  
NONINVERTING  
20  
INVERTING  
60 80  
–10  
–10  
0
2
4
6
8
10 12 14 16 18  
0
40  
100  
0
4
8
12  
16  
20  
SUPPLY VOLTAGE (±V)  
SETTLING TIME (ns)  
SETTLING TIME (µs)  
LT1229 • TPC21  
LT1229 • TPC19  
LT1229 • TPC20  
W
W
SI PLIFIED SCHE ATIC  
One Amplifier  
+
V
+IN  
–IN  
V
OUT  
V
LT1229 • TA03  
6
LT1229/LT1230  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The LT1229/LT1230 are very fast dual and quad current  
feedback amplifiers. Because they are current feedback  
amplifiers, theymaintaintheirwidebandwidthoverawide  
range of voltage gains. These amplifiers are designed to  
drive low impedance loads such as cables with excellent  
linearity at high frequencies.  
limited by the gain bandwidth product of about 1GHz. The  
curves show that the bandwidth at a closed-loop gain of  
100 is 10MHz, only one tenth what it is at a gain of two.  
Capacitance on the Inverting Input  
Current feedback amplifiers want resistive feedback from  
the output to the inverting input for stable operation. Take  
care to minimize the stray capacitance between the output  
and the inverting input. Capacitance on the inverting input  
to ground will cause peaking in the frequency response  
(and overshoot in the transient response), but it does not  
degrade the stability of the amplifier. The amount of  
capacitance that is necessary to cause peaking is a func-  
tion of the closed-loop gain taken. The higher the gain, the  
more capacitance is required to cause peaking. We can  
add capacitance from the inverting input to ground to  
increase the bandwidth in high gain applications. For  
example,inthisgainof100application,thebandwidthcan  
be increased from 10MHz to 17MHz by adding a 2200pF  
capacitor.  
Feedback Resistor Selection  
The small-signal bandwidth of the LT1229/LT1230 is set  
bytheexternalfeedbackresistorsandtheinternaljunction  
capacitors. As a result, the bandwidth is a function of the  
supply voltage, the value of the feedback resistor, the  
closed-loop gain and load resistor. The characteristic  
curves of Bandwidth versus Supply Voltage are done with  
aheavyload(100)andalightload(1k)toshowtheeffect  
of loading. These graphs also show the family of curves  
that result from various values of the feedback resistor.  
These curves use a solid line when the response has less  
than 0.5dB of peaking and a dashed line when the re-  
sponse has 0.5dB to 5dB of peaking. The curves stop  
where the response has more than 5dB of peaking.  
+
V
IN  
1/2  
Small-Signal Rise Time with  
RF = RG = 750, VS = ±15V, and RL = 100Ω  
V
OUT  
LT1229  
R
F
510Ω  
R
5.1Ω  
G
C
G
LT1229 • TA05  
Boosting Bandwidth of High Gain Amplifier with  
LT1229 • TA04  
Capacitance on Inverting Input  
49  
At a gain of two, on ±15V supplies with a 750feedback  
resistor, the bandwidth into a light load is over 160MHz  
without peaking, but into a heavy load the bandwidth  
reduces to 100MHz. The loading has so much effect  
because there is a mild resonance in the output stage that  
enhances the bandwidth at light loads but has its Q  
reduced by the heavy load. This enhancement is only  
usefulatlowgainsettings;atagainoftenitdoesnot boost  
the bandwidth. At unity gain, the enhancement is so  
effective the value of the feedback resistor has very little  
effect. At very high closed-loop gains, the bandwidth is  
46  
C
= 4700pF  
G
43  
40  
37  
34  
31  
28  
25  
22  
19  
C
= 2200pF  
G
C
= 0  
G
1
10  
FREQUENCY (MHz)  
100  
LT1229 • TA06  
7
LT1229/LT1230  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Capacitive Loads  
amplifier at 150°C is less than 7mA and typically is only  
4.5mA. The power in the IC due to the load is a function of  
the output voltage, the supply voltage and load resistance.  
The worst case occurs when the output voltage is at half  
supply, if it can go that far, or its maximum value if it  
cannot reach half supply.  
The LT1229/LT1230 can drive capacitive loads directly  
when the proper value of feedback resistor is used. The  
graph Maximum Capacitive Load vs Feedback Resistor  
should be used to select the appropriate value. The value  
shown is for 5dB peaking when driving a 1k load at a gain  
of 2. This is a worst case condition; the amplifier is more  
stable at higher gains and driving heavier loads. Alterna-  
tively, a small resistor (10to 20) can be put in series  
with the output to isolate the capacitive load from the  
amplifier output. This has the advantage that the amplifier  
bandwidth is only reduced when the capacitive load is  
present, and the disadvantage that the gain is a function of  
the load resistance.  
For example, let’s calculate the worst case power dissipa-  
tioninavideocabledriveroperatingon±12Vsuppliesthat  
delivers a maximum of 2V into 150.  
V
O MAX  
(
)
P
= 2V I  
+ V – V  
d MAX  
S S MAX  
S
O MAX  
(
)
(
)
)
(
)
(
)
R
L
2V  
P
= 2 × 12V × 7mA + 12V – 2V ×  
(
)
d MAX  
(
150Ω  
= 0.168 + 0.133 = 0.301W per Amp  
Power Supplies  
Now if that is the dual LT1229, the total power in the  
package is twice that, or 0.602W. We now must calcu-  
late how much the die temperature will rise above the  
ambient. The total power dissipation times the thermal  
resistance of the package gives the amount of tempera-  
ture rise. For the above example, if we use the SO8  
surface mount package, the thermal resistance is  
150°C/W junction to ambient in still air.  
The LT1229/LT1230 amplifiers will operate from single or  
split supplies from ±2V (4V total) to ±15V (30V total). It is  
not necessary to use equal value split supplies, however,  
the offset voltage and inverting input bias current will  
change. The offset voltage changes about 350µV per volt  
of supply mismatch, the inverting bias current changes  
about 2.5µA per volt of supply mismatch.  
Temperature Rise = Pd (MAX) RθJA = 0.602W ×  
150°C/W = 90.3°C  
Power Dissipation  
The LT1229/LT1230 amplifiers combine high speed and  
large output current drive into very small packages. Be-  
causetheseamplifiersworkoveraverywidesupplyrange,  
itispossibletoexceedthemaximumjunctiontemperature  
under certain conditions. To ensure that the LT1229 and  
LT1230 remain within their absolute maximum ratings,  
we must calculate the worst case power dissipation,  
define the maximum ambient temperature, select the  
appropriate package and then calculate the maximum  
junction temperature.  
The maximum junction temperature allowed in the plastic  
package is 150°C. Therefore, the maximum ambient al-  
lowed is the maximum junction temperature less the  
temperature rise.  
Maximum Ambient = 150°C – 90.3°C = 59.7°C  
Note that this is less than the maximum of 70°C that is  
specified in the absolute maximum data listing. If we must  
use this package at the maximum ambient we must lower  
the supply voltage or reduce the output swing.  
The worst case amplifier power dissipation is the total of  
the quiescent current times the total power supply voltage  
plus the power in the IC due to the load. The quiescent  
supply current of the LT1229/LT1230 has a strong nega-  
tive temperature coefficient. The supply current of each  
As a guideline to help in the selection of the LT1229/  
LT1230 the following table describes the maximum sup-  
ply voltage that can be used with each part in cable driving  
applications.  
8
LT1229/LT1230  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Large-Signal Response, AV = 2, RF = RG = 750Ω  
Assumptions:  
1. The maximum ambient is 70°C for the commercial  
parts (C suffix) and 125°C for the full temperature  
parts (M suffix).  
2. The load is a double-terminated video cable, 150.  
3. The maximum output voltage is 2V (peak or DC).  
4. The thermal resistance of each package:  
J8 is 100°C/W  
N8 is 100°C/W  
S8 is 150°C/W  
J is 80°/W  
N is 70°/W  
S is 110°/W  
LT1229 • TA07  
Larger feedback resistors will reduce the slew rate as will  
lower supply voltages, similar to the way the bandwidth is  
reduced.  
Maximum Supply Voltage for 75Cable Driving Applications at  
Maximum Ambient Temperature  
PART  
PACKAGE  
MAX POWER AT T  
MAX SUPPLY  
V < ±10.1  
A
Large-Signal Response, AV = 10, RF = 1k, RG = 110Ω  
LT1229MJ8  
LT1229CJ8  
LT1229CN8  
LT1229CS8  
Ceramic DIP  
Ceramic DIP  
Plastic DIP  
Plastic SO8  
0.500W @ 125°C  
1.050W @ 70°C  
0.800W @ 70°C  
0.533W @ 70°C  
S
V < ±18.0  
S
V < ±15.6  
S
V < ±10.6  
S
LT1230MJ  
LT1230CJ  
LT1230CN  
LT1230CS  
Ceramic DIP  
Ceramic DIP  
Plastic DIP  
0.625W @ 125°C  
1.313W @ 70°C  
1.143W @ 70°C  
0.727W @ 70°C  
V < ±6.6  
S
V < ±13.0  
S
V < ±11.4  
S
Plastic SO14  
V < ±7.6  
S
Slew Rate  
The slew rate of a current feedback amplifier is not  
independent of the amplifier gain the way it is in a tradi-  
tional op amp. This is because the input stage and the  
output stage both have slew rate limitations. The input  
stage of the LT1229/LT1230 amplifiers slew at about  
100V/µs before they become nonlinear. Faster input sig-  
nals will turn on the normally reverse-biased emitters on  
the input transistors and enhance the slew rate signifi-  
cantly. This enhanced slew rate can be as much as  
2500V/µs.  
LT1229 • TA08  
Settling Time  
The characteristic curves show that the LT1229/LT1230  
amplifiers settle to within 10mV of final value in 40ns to  
55ns for any output step up to 10V. The curve of settling  
to 1mV of final value shows that there is a slower thermal  
contribution up to 20µs. The thermal settling component  
comes from the output and the input stage. The output  
contributes just under 1mV per volt of output change and  
the input contributes 300µV per volt of input change.  
Fortunately, the input thermal tends to cancel the output  
thermal. For this reason the noninverting gain of two  
configurationssettlesfasterthantheinvertinggainofone.  
The output slew rate is set by the value of the feedback  
resistors and the internal capacitance. At a gain of ten with  
a 1k feedback resistor and ±15V supplies, the output slew  
rate is typically 700V/µs and –1000V/µs. There  
is no input stage enhancement because of the high gain.  
9
LT1229/LT1230  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Crosstalk and Cascaded Amplifiers  
The high frequency crosstalk between amplifiers is  
caused by magnetic coupling between the internal wire  
bonds that connect the IC chip to the package lead frame.  
The amount of crosstalk is inversely proportional to the  
load resistor the amplifier is driving, with no load (just  
the feedback resistor) the crosstalk improves 18dB. The  
curve shows the crosstalk of the LT1229 amplifier B  
output (pin 7) to the input of amplifier A. The crosstalk  
from amplifier A’s output (pin 1) to amplifier B is about  
10dB better. The crosstalk between all of the LT1230  
amplifiers is as shown. The LT1230 amplifiers that are  
separated by the supplies are a few dB better.  
The amplifiers in the LT1229/LT1230 do not share any  
common circuitry. The only thing the amplifiers share is  
the supplies. As a result, the crosstalk between amplifiers  
is very low. In a good breadboard or with a good PC board  
layout the crosstalk from the output of one amplifier to the  
input of another will be over 100dB down, up to 100kHz  
and 65dB down at 10MHz. The following curve shows  
the crosstalk from the output of one amplifier to the  
input of another.  
Amplifier Crosstalk vs Frequency  
When cascading amplifiers the crosstalk will limit the  
amount of high frequency gain that is available because  
the crosstalk signal is out of phase with the input signal.  
This will often show up as unusual frequency response.  
For example: cascading the two amplifiers in the LT1229,  
each set up with 20dB of gain and a –3dB bandwidth of  
65MHz into 100will result in 40dB of gain, BUT the  
responsewillstarttodropatabout10MHzandthenflatten  
out from 20MHz to 30MHz at about 0.5dB down. This is  
due to the crosstalk back to the input of the first amplifier.  
120  
V
A
R
R
= ±15V  
= 10  
= 50Ω  
= 100Ω  
S
V
S
L
110  
100  
90  
80  
70  
60  
50  
10 100  
1k 10k 100k 1M 10M 100M  
ForbestresultswhencascadingamplifiersusetheLT1229  
and drive amplifier B and follow it with amplifier A.  
FREQUENCY (Hz)  
LT1229 • TA12  
U
O
TYPICAL APPLICATI S  
Single 5V Supply Cable Driver for Composite Video  
(the sync pulses). R4, R5 and R6 set the amplifier up with  
a gain of two and bias the output so the bottom of the sync  
pulses are at 1.1V. The maximum input then drives the  
output to 3.9V.  
This circuit amplifies standard 1V peak composite video  
input (1.4VP-P) by two and drives an AC coupled, doubly  
terminated cable. In order for the output to swing  
2.8VP-P on a single 5V supply, it must be biased accu-  
rately. The average DC level of the composite input is a  
function of the luminance signal. This will cause problems  
if we AC couple the input signal into the amplifier because  
a rapid change in luminance will drive the output into the  
rails. To prevent this we must establish the DC level at the  
input and operate the amplifier with DC gain.  
5V  
R1  
3k  
R4  
1.5k  
C3  
47µF  
2N3904  
C2  
1µF  
R2  
2k  
C1  
1µF  
+
V
OUT  
C4  
R7  
75Ω  
+
1000µF  
V
+
IN  
1/2  
LT1229  
R3  
150k  
R6  
510Ω  
R8  
10k  
The transistor’s base is biased by R1 and R2 at 2V. The  
emitter of the transistor clamps the noninverting input of  
the amplifier to 1.4V at the most negative part of the input  
R5  
750Ω  
LT1229 • TA11  
10  
LT1229/LT1230  
U
O
TYPICAL APPLICATI S  
Single Supply AC Coupled Amplifiers  
Noninverting  
Inverting  
5V  
4.7µF  
5V  
+
4.7µF  
+
10kΩ  
10kΩ  
10k  
10k  
0.1µF  
+
1/2  
+
V
IN  
V
OUT  
0.1µF  
LT1229  
1/2  
LT1229  
V
OUT  
4.7µF  
R
51Ω  
510Ω  
S
4.7µF  
V
51Ω  
= 11  
510Ω  
IN  
510Ω  
A
=
10  
V
R
+ 51Ω  
A
S
V
BW = 600Hz TO 50MHz  
LT1229 • TA09  
LT1229 • TA10  
BW = 600Hz TO 50MHz  
U
PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted.  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.290 – 0.320  
(7.366 – 8.128)  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
J8 Package  
8-Lead Ceramic DIP  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
(0.203 – 0.460)  
0° – 15°  
1
2
3
0.055  
(1.397)  
MAX  
0.038 – 0.068  
(0.965 – 1.727)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
(0.360 – 0.660)  
J8 0392  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.320  
(7.620 – 8.128)  
0.045 – 0.065  
(1.143 – 1.651)  
8
7
6
5
4
N8 Package  
8-Lead Plastic DIP  
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
1
2
3
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
0.189 – 0.197  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
S8 Package  
8-Lead Plastic SOIC  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
0°– 8° TYP  
SO8 0392  
1
2
3
4
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1229/LT1230  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
J Package  
14-Lead Ceramic DIP  
0.785  
(19.939)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.290 – 0.320  
(7.366 – 8.128)  
14  
13  
12  
11  
10  
9
8
0.015 – 0.060  
(0.381 – 1.524)  
0.220 – 0.310  
0.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
0.008 – 0.018  
0° – 15°  
(0.203 – 0.460)  
2
3
4
5
6
1
7
0.098  
(2.489)  
MAX  
0.385 ± 0.025  
0.038 – 0.068  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.125  
(3.175)  
MIN  
(9.779 ± 0.635)  
(0.965 – 1.727)  
0.014 – 0.026  
(0.360 – 0.660)  
J14 0392  
N Package  
14-Lead Plastic DIP  
0.770  
(19.558)  
MAX  
0.065  
(1.651)  
TYP  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.015  
(0.380)  
MIN  
14  
13  
12  
11  
10  
9
8
0.130 ± 0.005  
(3.302 ± 0.127)  
0.260 ± 0.010  
(6.604 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
1
2
3
5
6
7
4
0.325  
–0.015  
0.075 ± 0.015  
(1.905 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.125  
(3.175)  
MIN  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
N14 0392  
S Package  
14-Lead Plastic SOIC  
0.337 – 0.344  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.008 – 0.010  
(0.203 – 0.254)  
0.004 – 0.010  
(0.101 – 0.254)  
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.197)  
(3.810 – 3.988)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.016 – 0.050  
0.406 – 1.270  
0.014 – 0.019  
(0.355 – 0.483)  
SO14 0392  
1
2
3
4
5
6
7
LT/GP 1092 5K REV A  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
LINEAR TECHNOLOGY CORPORATION 1992  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY