LT1248CN [Linear]

Power Factor Controller; 功率因数控制器
LT1248CN
型号: LT1248CN
厂家: Linear    Linear
描述:

Power Factor Controller
功率因数控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总12页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1248  
Power Factor Controller  
U
FEATURES  
DESCRIPTIO  
The LT®1248 provides active power factor correction for  
universal off-line power systems. By using fixed high  
frequency PWM current averaging, without the need for  
slope compensation, the LT1248 achieves far lower line  
current distortion with a smaller magnetic element than  
systems that use either peak-current detection or zero  
current switching approaches in both continuous and  
discontinuous modes of operation.  
High Power Factor Over Wide Load Range  
with Line Current Averaging  
International Operation Without Switches  
Instantaneous Overvoltage Protection  
Minimal Line Current Dead Zone  
Typical 250µA Start-Up Supply Current  
Rejects Line Switching Noise  
Synchronization Capability  
Low Quiescent Current: 9mA  
The LT1248 uses a multiplier containing a square gain  
function from the voltage amplifier to reduce the AC gain  
at light output load and thus maintains low line current  
distortion and high system stability. The LT1248 also  
provides filtering capability to reject line switching noise  
which can cause instability when fed into the multiplier.  
Line current dead zone is minimized with low bias voltage  
at the current input to the multiplier.  
Fast 1.5A Peak Current Gate Driver  
U
APPLICATIO S  
Universal Power Factor Corrected Power Supplies  
Preregulators Up To 1500W  
The LT1248 provides many protection features including  
peak current limiting and overvoltage protection, and can  
be operated at frequencies as high as 300kHz.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
W
BLOCK DIAGRA  
CA  
M
I
GND  
1
V
CC  
15  
V
PK  
LIM  
VA  
OUT  
3
OUT SENSE  
REF  
9
OUT  
4
5
2
7
+
7.5V  
REF  
+
V
V
CC  
16V TO 10V  
RUN  
2.6V/  
+
2.2V  
7.5V  
EN/SYNC  
10  
7µA  
2.2V  
+
M1  
V
SENSE  
11  
I
I
A
+
EA  
I
M
I
2 I  
B
CA  
+
A
I
AC  
I
M
=
32k  
200µA2  
B
R
R
+
6
Q
+
7.9V  
OVP  
8
S
+
RUN  
16  
0.7V  
SYNC  
GTDR  
+
ONE SHOT  
200ns  
OSC  
12µA  
5V  
SS  
13  
1 6V  
14  
12  
1248 BD  
C
SET  
R
SET  
1
LT1248  
W
U
W W W  
U
/O  
PACKAGE RDER I FOR ATIO  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Supply Voltage ....................................................... 27V  
GTDR Current Continuous ..................................... 0.5A  
GTDR Output Energy(Per Cycle) .............................. 5µJ  
IAC, RSET, PKLIM Input Current............................. 20mA  
ORDER PART  
TOP VIEW  
NUMBER  
1
2
3
4
5
6
7
8
GTDR  
16  
15  
14  
13  
12  
11  
10  
9
GND  
V
CC  
PK  
LIM  
C
CA  
I
SET  
OUT  
LT1248CN  
LT1248IN  
LT1248CS  
LT1248IS  
V
SENSE, EN/SYNC, OVP Input Voltage................... VMAX  
SS  
SENSE  
ISENSE, MOUT Input Current.................................. ±5mA  
Operating Junction Temperature Range  
LT1248C................................................ 0°C to 100°C  
LT1248I ........................................... 40°C to 125°C  
Thermal Resistance (Junction-to-Ambient)  
N Package .................................................. 100°C/W  
S Package................................................... 120°C/W  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
R
M
OUT  
SET  
V
I
SENSE  
AC  
EN/SYNC  
VA  
OUT  
V
OVP  
REF  
N PACKAGE  
16-LEAD PDIP  
S PACKAGE  
16-LEAD NARROW PLASTIC SO  
TJMAX = 125°C, θJA = 100°C/W (N)  
TJMAX = 125°C, θJA = 120°C/W (S)  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS The  
denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. Maximum operating voltage (VMAX) = 25V, VCC = 18V, RSET = 15k to GND,  
CSET = 1nF to GND, IAC = 100µA, ISENSE = 0V, CAOUT = 3.5V, VAOUT = 5V, OVP = 7.5V, no load on any outputs, unless otherwise noted.  
PARAMETER  
Overall  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Current (V in Undervoltage Lockout)  
V
= Lockout Voltage – 0.2V  
0.25  
0.5  
0.45  
1.5  
mA  
mA  
mA  
V
CC  
CC  
Supply Current (Inactive)  
Supply Current, On  
EN/SYNC = 0V, V V  
CC MAX  
11.5V V V  
, CA = 1V  
OUT  
8.5  
12.0  
17.5  
11.5  
2.85  
CC  
MAX  
V
V
Turn-On Threshold (Undervoltage Lockout)  
Turn-Off Threshold  
15.5  
9.5  
16.5  
10.5  
2.6  
CC  
CC  
V
EN/SYNC Threshold, Rising  
EN/SYNC Threshold Hysteresis  
EN/SYNC Input Current  
2.2  
V
0.40  
V
EN/SYNC = 0V  
3V EN/SYNC 7V  
–5  
50  
– 1  
– 25  
5
50  
µA  
µA  
Voltage Amplifier  
Voltage Amp Offset Voltage  
Input Bias Current  
VA  
= 3.5V  
–8  
70  
8
mV  
nA  
dB  
MHz  
V
OUT  
V
= 0V to 7V  
25  
100  
3
250  
SENSE  
Voltage Gain  
Voltage Amp Unity-Gain Bandwidth  
Voltage Amp Output High (Internally Clamped)  
Voltage Amp Output Low  
Voltage Amp Short-Circuit Current  
SS Current  
11.3  
13.3  
1.1  
14  
2
V
VA  
OUT  
= 0V  
5
5
30  
30  
mA  
µA  
SS = 2.5V  
12  
Current Amplifier  
Current Amp Offset Voltage  
±1  
25  
110  
3
±4  
mV  
nA  
dB  
MHz  
V
I
Bias Current  
250  
SENSE  
Current Amp Voltage Gain  
Current Amp Unity-Gain Bandwidth  
Current Amp Output High  
Current Amp Output Low  
80  
7.2  
8.5  
1.1  
2
V
2
LT1248  
ELECTRICAL CHARACTERISTICS The  
C
denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. Maximum operating voltage (VMAX) = 25V, VCC = 18V, RSET = 15k to GND,  
SET = 1nF to GND, IAC = 100µA, ISENSE = 0V, CAOUT = 3.5V, VAOUT = 5V, OVP = 7.5V, no load on any outputs, unless otherwise noted.  
PARAMETER  
CONDITIONS  
CA = 0V  
MIN  
TYP  
MAX  
UNITS  
Current Amplifier  
Current Amp Short-Circuit Current  
5
14  
30  
1
mA  
V
OUT  
Input Range, I  
, M  
(Linear Operation)  
0.3  
SENSE  
OUT  
Reference  
Reference Output Voltage  
I
= 0mA, T = 25°C  
7.39  
7.50  
5
7.60  
V
mV  
mV  
mA  
V
REF  
A
V
V
V
V
Load Regulation  
Line Regulation  
Short-Circuit Current  
Worst Case  
5mA < I < 0mA  
REF  
REF  
REF  
REF  
REF  
11.5V < V < V  
20  
12  
5
20  
50  
CC  
MAX  
V
= 0V  
28  
7.5  
REF  
Load, Line, Temperature  
7.32  
7.68  
Current Limit  
PK Offset Voltage  
15  
15  
mV  
µA  
ns  
LIM  
PK Input Current  
LIM  
PK = 0.1V  
50  
400  
100  
LIM  
PK to GTDR Propagation Delay  
LIM  
PK Falling from 50mV to 50mV  
LIM  
Multiplier  
Multiplier Output Current  
Multiplier Output Current Offset  
Multiplier Maximum Output Current  
Multiplier Gain Constant (Note 2)  
I
= 100µA, R  
= 15k  
SET  
35  
µA  
µA  
µA  
AC  
R
= 1M from I to GND  
0.05  
260  
0.035  
32  
0.5  
AC  
AC  
I
I
= 450µA, R  
= 15k, VA  
= 7V, M = 0V  
OUT  
286  
15  
235  
AC  
SET  
OUT  
–2  
V
I
Input Resistance  
from 50µA to 1mA  
50  
kΩ  
AC  
AC  
Oscillator  
Oscillator Frequency  
R
R
= 15k, C = 1000pF  
85  
58  
100  
68  
115  
78  
kHz  
kHz  
SET  
SET  
SET  
= 15k, C = 1500pF  
SET  
C
C
Ramp Peak-to-Peak Amplitude  
Ramp Valley Voltage  
4.35  
1.25  
4.5  
4.7  
1.4  
5.6  
5.0  
1.55  
6.5  
V
V
V
SET  
SET  
Synchronization Pulse Threshold on EN/SYNC Pin  
Synchronization Frequency Range  
Overvoltage Comparator  
Pulse Low = 3.5V, High = 7V, Width > 200ns  
= 15k, C = 1000pF  
R
SET  
SET  
1.2  
1.6  
f
NOM  
Comparator Trip Voltage Ratio (V  
Hysteresis  
/V  
)
1.04  
1.05  
0.35  
50  
100  
1.06  
TRIP REF  
V
nA  
ns  
OVP Bias Current  
OVP = 7.5V  
250  
OVP Propagation Delay  
Gate Driver  
Max GTDR Output Voltage  
GTDR Output High  
0mA Load, 18V < V  
12  
15  
17.5  
1.5  
V
V
V
CC  
200mA Load, 11.5V V 15V  
V
– 3.0  
CC  
CC  
GTDR Output Low (Device Unpowered)  
GTDR Output Low (Device Active)  
V
= 0V, 50mA Load (Sinking)  
0.9  
CC  
200mA Load (Sinking)  
10mA Load  
0.5  
0.2  
1
0.4  
V
V
Peak GTDR Current  
10nF from GTDR to GND  
1nF from GTDR to GND  
2
A
ns  
%
GTDR Rise and Fall Time  
GTDR Max Duty Cycle  
25  
96  
90  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired  
I
M
Note 2: Multiplier Gain Constant: K =  
I
(VA  
– 2)2  
AC  
OUT  
3
LT1248  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Current Amplifier Open-Loop  
Gain and Phase  
Voltage Amplifier Open-Loop  
Gain and Phase  
100  
80  
60  
40  
20  
0
0
100  
80  
60  
40  
20  
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
–80  
–100  
–120  
GAIN  
GAIN  
PHASE  
PHASE  
–20  
–20  
10  
1k  
10k 100k  
1M  
10M  
10  
1k  
10k 100k  
1M  
10M  
100  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1148 G01  
1148 G02  
Reference Voltage vs  
Temperature  
Multiplier Current  
7.536  
7.524  
7.512  
7.500  
7.488  
7.476  
7.464  
7.452  
7.440  
7.428  
300  
150  
0
VA  
= 5.5V  
VA  
= 7V  
OUT  
OUT  
VA  
= 6.5V  
OUT  
VA  
= 6V  
VA  
VA  
= 5V  
OUT  
OUT  
OUT  
= 4.5V  
VA  
VA  
= 4V  
OUT  
= 3.5V  
OUT  
VA  
VA  
= 3V  
= 2.5V  
OUT  
OUT  
0
250  
(µA)  
500  
125  
150  
–75 –50  
0
25 50  
100  
75  
–25  
JUNCTION TEMPERATURE (°C)  
I
AC  
1248 G04  
1248 G03  
Supply Current vs Supply Voltage  
GTDR Source Current  
GTDR Sink Current  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
11  
10  
9
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
CC  
= 18V  
T
= –55°C  
= 125°C  
J
J
8
7
T
T
= 25°C  
J
6
5
T = 125°C  
J
T
= –55°C  
A
4
T = 25°C  
J
3
T = –55°C  
J
2
T
= 25°C  
A
1
T
= 125°C  
A
0
0
–120  
–180  
–240  
–300  
60  
10  
21  
SUPPLY VOLTAGE (V)  
32  
0
120  
180  
240  
300  
60  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
1248 G06  
1248 G05  
1248 G07  
4
LT1248  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Start-Up Supply Current vs  
Supply Voltage  
GTDR Rise and Fall Time  
Frequency vs RSET and CSET  
400  
300  
200  
100  
0
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
R
= 10k  
= 15k  
= 20k  
= 30k  
SET  
R
R
R
SET  
SET  
SET  
FALL TIME  
RISE TIME  
–55°C  
25°C  
125°C  
NOTE: GTDR SLEWS  
BETWEEN 1V AND 16V  
0
0
0
20  
30  
40  
50  
10  
0
8
12 14 16 18 20  
200  
600  
1000  
1800  
2200  
2
4
6
10  
1400  
LOAD CAPACITANCE (nF)  
SUPPLY VOLTAGE (V)  
C
CAPACITANCE (pF)  
SET  
1248 G08  
1248 G09  
1248 G10  
GTDR Maximum Duty Cycle vs  
RSET and CSET  
Shutdown Mode Supply Current  
and Reference Voltage  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
0.91  
0.90  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
EN/SYNC 1.8V  
SUPPLY CURRENT  
–55°C T 25°C  
J
T
= 125°C  
J
R
R
R
R
= 10k  
= 15k  
= 20k  
= 30k  
SET  
SET  
SET  
SET  
REFERENCE VOLTAGE  
T 125°C  
J
0
600  
1000  
1800  
32  
200  
1400  
2200  
0
16  
SUPPLY VOLTAGE (V)  
C
CAPACITANCE (pF)  
SET  
1248 G11  
1248 G12  
Synchronization and Shutdown  
Thresholds at EN/SYNC Pin  
SS Pin Characteristics  
MOUT Pin Characteristics  
–44  
–40  
–36  
–32  
–28  
–24  
–20  
–16  
–12  
–8  
–22  
1.5  
1.0  
T
J
T
J
T
J
= 125°C  
= 25°C  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
SHUTDOWN  
THRESHOLD  
0.5  
= –55°C  
0
T
= –55°C  
J
SYNCHRONIZATION  
THRESHOLD  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
T
= 25°C  
J
T
= 55°C  
= 25°C  
J
J
T
= 125°C  
J
T
T
= 125°C  
J
–6  
–4  
–4  
–2  
0
0
0
4
10  
0
4
8
–1.2  
1.2  
0
VOLTAGE (V)  
1
2
3
5
6
7
8
9
–2.4  
2.4  
EN/SYNC VOLTAGE (V)  
SS VOLTAGE (V)  
M
OUT  
1248 G13  
1248 G14  
1248 G15  
5
LT1248  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RSET Voltage vs Current  
PKLIM Pin Characteristics  
120  
–360  
–300  
–240  
–180  
–120  
60  
0
T = 125°C  
T
T
T
= 125°C  
= 25°C  
= –55°C  
J
J
J
J
100  
80  
T = 25°C  
J
T = –55°C  
J
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
60  
120  
180  
240  
300  
0
–0.4  
–0.8  
–0.4  
PK  
0.4  
–0.2  
–0.6  
–1.0  
–0.8  
0
0.8  
R
CURRENT (mA)  
VOLTAGE (V)  
LIM  
SET  
1248 G16  
1248 G17  
U
U
U
PI FU CTIO S  
Pin 1 (GND).  
Pin 7 (VAOUT): This is the output of the voltage error  
amplifier. The output is clamped at 13.5V. When the  
output goes below 2.5V, the multiplier output current is  
zero.  
Pin 2 (PKLIM): The threshold of the peak current limit  
comparator is GND. To set current limit, a resistor divider  
can be connected from VREF to current sense resistor.  
Pin 8 (OVP): This is the input to the overvoltage compara-  
tor. The threshold is 1.05 times the reference voltage.  
When the comparator trips, the multiplier is quickly inhib-  
ited and outputs no current. Figure 4 in the Applications  
Information section shows how to set overvoltage thresh-  
old with only one additional resistor.  
Pin 3 (CAOUT): This is the output of the current amplifier  
that senses and forces the line current to follow the  
reference signal that comes from the multiplier by com-  
manding the pulse width modulator. When CAOUT is low,  
the modulator has zero duty cycle.  
Pin 4 (ISENSE): This is the inverting input of the current  
amplifier. This pin is clamped at 0.6V by an ESD protec-  
tion diode.  
Pin 9 (VREF): This is the 7.5V reference. When either VCC  
or EN/SYNC goes low, VREF will stay at 0V. VREF biases  
most of the internal circuity and can source up to 5mA  
externally.  
Pin 5 (MOUT): This is the multiplier high impedance  
current output and the noninverting input of the current  
amplifier. This pin is clamped at 0.6V and 2V.  
Pin 10 (EN/SYNC): This pin has two functions. When it  
goes below 2.6V, the chip goes into shutdown mode and  
draws little current. Pulses at this pin that go below the 5V  
threshold will synchronize the chip. The synchronizing  
pulses should have an on-time of at least 200ns for the  
LT1248 resetting circuit to work.  
Pin 6 (IAC): This is the AC line voltage sensing input to the  
multiplier. It is a current input that is biased at 2V to  
minimize the crossover dead zone caused by low line  
voltage. At the pin, a 32k resistor is in series with the  
currentinput, sothatalowpassRCcanbeusedtofilterout  
the switching noise from the high impedance lines.  
Pin 11 (VSENSE): This is the inverting input to the voltage  
amplifier.  
6
LT1248  
U
U
U
PI FU CTIO S  
Pin 12 (RSET): A resistor from RSET to GND sets the  
oscillator charging current and the maximum multiplier  
output current which is used to limit the maximum line  
current.  
Pin 15 (VCC): This is the supply for the chip. The LT1248  
has a very fast gate driver required to fast charge high  
power MOSFET gate capacitance. High current spikes  
occur during charging. For good supply bypass, a 0.1µF  
ceramic capacitor in parallel with a low ESR electrolytic  
capacitor, 56µF or higher is required in close proximity to  
IC GND.  
IM(MAX) = 3.75V/RSET  
Pin13(SS):Soft-Start. WheneitherVCC orEN/SYNCgoes  
low, the SS pin will stay at 0V. With a capacitor from the  
pintoGND,the12µAchargingcurrentslowlybringsupthe  
SS to 8V; below 7.5V SS is the reference input to the  
voltage amplifier. At supply dropout or EN/SYNC low, the  
soft start capacitor will be quickly discharged.  
Pin 16 (GTDR): The MOSFET gate driver is a 1.5A fast  
totem pole output. It is clamped at 15V, but capacitive  
loads like MOSFET gates may cause overshoot. A gate  
series resistor of at least 5will prevent the overshoot.  
Pin 14 (CSET): The capacitor from this pin to GND, and  
RSET, determine oscillator frequency. The oscillator ramp  
is 5V, and the frequency = 1.5/(RSET • CSET).  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Error Amplifier  
Multiplier  
The error amplifier has a 100dB DC gain and 3MHz unity-  
gain frequency. The output is internally clamped at 13.5V.  
The noninverting input is tied to the 7.5V VREF through a  
diode and can be pulled down from the SS (soft-start) pin.  
The multiplier is a current multiplier with high noise  
immunity in a high power switching environment. The  
current gain is: IM=(IAC• IEA2)/(200µA)2,with IEA=(VAOUT  
– 2V)/25k. With a square function, because of the lower  
gainatlightpowerload, systemstabilityismaintainedand  
line current distortion caused by the line frequency AC  
Current Amplifier  
The current amplifier has a 110dB DC gain, 3MHz unity-  
gain frequency, and a 2V/µs slew rate. It is internally  
clamped at 8.5V. Note that in the current averaging opera-  
tion, high gain at twice the line frequency is necessary to  
minimizelinecurrentdistortion. BecauseCAOUT mayneed  
to swing 5V over one line cycle at high line condition,  
14mV AC will be needed at the inputs of the current  
amplifier for a gain of 350 at 120Hz. Especially at light load  
when the current loop reference signal is small, lower gain  
will distort the reference signal and line current. If signal  
gain at switching frequency is too high, the system be-  
haves more like a current mode system and can cause  
subharmonic oscillation. Therefore, the current amplifier  
should be compensated to have a gain of less than 15 at  
the switching frequency, but more than 250 at twice the  
line frequency.  
300  
VA  
= 5.5V  
VA  
= 7V  
OUT  
OUT  
VA  
= 6.5V  
OUT  
VA  
= 6V  
VA  
VA  
= 5V  
OUT  
OUT  
OUT  
150  
= 4.5V  
VA  
VA  
= 4V  
OUT  
= 3.5V  
OUT  
VA  
VA  
500  
= 3V  
= 2.5V  
OUT  
OUT  
0
0
250  
(µA)  
I
AC  
1248 G04  
Figure 1. Multiplier Current IM vs IAC and VAOUT  
7
LT1248  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
ripple fed back to the error amplifier is minimized. Note  
thatswitchingrippleonthehighimpedancelinescouldget  
into the multiplier from the IAC pin and cause instability.  
TheLT1248providesaninternal25kresistorinserieswith  
the low impedance multiplier current input so that only a  
capacitor from the IAC pin to GND is needed to filter out the  
noise. The maximum multiplier output current, which  
limits the system line current, is set by the RSET according  
With ILINE and RS chosen, let R1 = 10k, then R2 =  
(ILINE • RS)/0.8mA.  
Always use RSET to set the primary line current limit. The  
PKLIM comparator is only for secondary protection. The  
secondary limit should be higher than the primary limit;  
6.5A is good (5A for primary limit) for a 300W regulator.  
Whenlinecurrentreachestheprimarylimit, VOUT dropsto  
keep the line current constant, and system stability is still  
maintained by the current loop which is controlled by the  
current amplifier. When line current reaches the second-  
ary limit, the comparator controls the system and loop  
hysteresis may occur and can cause audible noise.  
to the formula: IM(MAX) = 3.75V/RSET  
.
Oscillator Frequency and Maximum Line  
Current Settling  
Oscillator frequency is set by RSET and CSET. Ramp ampli-  
tude is 5V and CSET charging current is set by VREF/RSET  
.
Synchronization  
Typical discharging time for CSET = 1nF is 250ns. RSET  
should always be determined first to set the maximum  
multiplier output current for system line current limit. For  
a300Wpreregulator,withRSET =15k,IM(MAX)=3.75V/15k  
= 250µA. With a 4k resistor RREF from MOUT to the 0.2Ω  
line current sense resistor RS, the line current limit is: (IM  
• 4k)/RS. As a general rule, RS is chosen according to:  
The LT1248 can be synchronized to a frequency that is up  
to 1.6 times the natural frequency. With a 200ns one-shot  
timer on-chip, the LT1248 provides flexibility on the  
synchronizing pulse width. Because the EN/SYNC pin also  
serves the chip shutdown function, the pulses at the pin  
should not go below 3V and must go below 5V with widths  
greater than 200ns. The Figure 3 circuit will synchronize  
the LT1248.  
RS = IM(MAX) • RREF • VLINE(MIN)  
K(1.414)POUT(MAX)  
V
REF  
where POUT(MAX) is the maximum power output and K is  
usually between 1.1 and 1.3 depending on efficiency and  
resistor tolerance. With RSET selected, CSET can then be  
determinedby:CSET =1.5/(FrequencyRSET).For100kHz,  
CSET = 1.5/(100kHz • 15k) = 1nF. For optional double  
protection, the LT1248 provides a current limit compara-  
tor.Whenthecomparatortripsat0V,theGTDRpinquickly  
goes low to shut off the MOS switch. A resistor divider  
from VREF to RS (Figure 2) senses the voltage across the  
line current sense resistor and the current limit is set by:  
30k  
1N4148  
200k  
V
CC  
EN/SYNC  
1N4685  
3.6V  
SYNC PULSE  
AT LEAST 200ns  
VN2222  
1248 F03  
Figure 3  
ILINE = [(7.5V/R1) + 50µA](R2/RS), where 50µA is IPKLIM  
.
Overvoltage Protection  
R2  
1.6k  
R1  
10k  
Because of the slow loop response necessary for power  
factorcorrection,outputovershootcanoccurwithsudden  
load removal or reduction. To protect the power compo-  
nents and output load, the LT1248 provides an overvolt-  
age comparator which senses the output voltage and  
quickly shuts off the current switch. In Figure 4, because  
thereisnoDCcurrentgoingthroughR3, R1andR2setthe  
regulatoroutputDClevel:VOUT =VREF[(R1+R2)/R2],with  
R1 = 1M, R2 = 20k, VOUT is 382V.  
7.5V  
V
REF  
+
I
PKLIM  
R
S
+
PK  
LIM  
0.2  
C1  
1nF  
I
LINE  
C1 IS TO REJECT NOISE, CURRENT  
LIMIT DELAY IS ABOUT 2µs.  
1248 F02  
Figure 2  
8
LT1248  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Note that VSENSE is the summing node and it stays at 7.5V.  
When overshoot occurs on VOUT, the overcurrent from R1  
will go through R2 as well as R3. Amplifier feedback will  
keep VSENSE locked at 7.5V. The equivalent AC resistance,  
seen by the comparator input pin OVP, is R2 in parallel  
with R3, which is 10k. Therefore, with the comparator trip  
levelof1.05VREF andR3of20k,thecomparatortripswhen  
VOUT overshoot exceeds 10%. Overvoltage trip level:  
Undervoltage Lockout  
The LT1248 turns on when VCC is higher than 16V and  
remains on until VCC falls below 10V, whereupon the chip  
enters the lockout state. In the lockout state, the LT1248  
only draws 250µA, the oscillator is off, and the VREF and  
the GTDR pins remain low to keep the power MOSFET off.  
Start-Up and Supply Voltage  
The LT1248 draws only 250µA before the chip starts at  
16V on VCC. To trickle start, a 90k resistor from the power  
linetoVCC suppliesthetricklecurrentandC4holdstheVCC  
up while switching starts. Then the auxiliary winding takes  
over and supplies the operating current. Note that D3 and  
the large value C3, in both Figures 5 and 6, are only  
necessary for systems that have sudden large load varia-  
tion down to minimum load and/or very light load condi-  
tions. Undertheseconditions, theloopmayexhibitastart/  
restart mode because switching remains off long enough  
for C4 to discharge below 10V. The C3 will hold VCC up  
until switching resumes. For less severe load variations,  
D3 is replaced with a short and C3 is omitted. The turns  
ratio between the primary winding and the auxiliary wind-  
ing determines VCC according to:  
R2 +R3  
%VOUT = 5%  
R3  
MOUT is a high impedance current output. In the current  
loop, offset line current is determined by multiplier offset  
current and input offset voltage of the current amplifier.  
A – 4mV current amplifier VOS translates into 20mA line  
current and 5W input power for 250V line if 0.2sense  
resistor is used. Under no load or when the load power is  
less than this offset input power, VOUT would slowly  
charge up to an overvoltage state because the overvoltage  
comparator can only reduce multiplier output current to  
zero. This does not guarantee zero output current if the  
current amplifier has offset. To regulate VOUT under this  
condition,theamplifierM1(seeBlockDiagram),becomes  
active in the current loop when VAOUT goes down to 2.2V.  
The M1 can put out up to 7µA to the resistor at the ISENSE  
pin to cancel any current amplifier negative VOS and keep  
VOUT error to within 2V.  
LINE  
MAIN INDUCTOR  
N
P
N
S
R1  
90k, 1W  
D1  
D3  
V
CC  
+
+
C1  
0.047µF  
2µF  
+
+
C3  
390µF  
C4  
56µF  
D2  
C1  
0.47µF  
C2  
2µF  
REGULATOR OUTPUT  
330k  
VA  
V
= 382V  
OUT  
1248 F05  
R3  
20k  
V
SENSE  
R1  
+
Figure 5  
OUT  
1M  
C2  
MAIN INDUCTOR  
ERROR AMP  
LINE  
1000pF  
V
= 7.5V  
REF  
LT1248  
OVP  
R1  
90k  
1W  
R2  
20k  
+
D2  
D1  
D3  
V
CC  
OVERVOLTAGE  
COMPARATOR  
+
+
C3  
390µF  
1.05V  
C4  
56µF  
REF  
18V  
1248 F04  
1248 F06  
Figure 4  
Figure 6  
9
LT1248  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
The third component is the switching ripple from the load,  
if the load is a switching regulator.  
VOUT/(VCC – 2V) = NP/NS.  
For 382V VOUT and 18V VCC, Np/Ns 19.  
I
3RMS ILOAD(DC)  
In Figure 6, a new technique for supply voltage eliminates  
the need for an extra inductor winding. It uses capacitor  
charge transfer to generate a constant current source  
which feeds a Zener diode. Current to the Zener is equal  
to (VOUT – VZ)(C)(f), where VZ is Zener voltage and f is  
switching frequency. For VOUT = 382V, VZ = 18V, C =  
1000pF, and f = 100kHz, Zener current will be 36mA. This  
is enough to operate the LT1248, including the FET gate  
drive. Normally soft-start is not needed because the  
LT1248 has overcurrent limit and overvoltage protection.  
If soft-start is used with a 0.01µF capacitor on SS pin,  
VOUT ramps up slower during start-up. Then C4 has to  
hold VCC longer, and the circuit may not start. Increasing  
C4 to 100µF ensures start-up, but start-up time will be  
extended if the same 90k trickle charge resistor is used.  
For the United Chemicon KMH 400V capacitor series,  
ripplecurrentmultiplierforcurrentsat100kHzis1.43.The  
equivalent 120Hz ripple current can be then found:  
IRMS  
=
(I1RMS)2 + (I2RMS/1.43)2 + (I3RMS/1.43)2  
For a typical system that runs at an average load of 200W  
and 385V output:  
ILOAD(DC) = 0.52A  
I1RMS 0.71 0.52A = 0.37A  
I2RMS 0.82A at 120VAC  
I3RMS ILOAD(DC) = 0.52A  
IRMS  
=
(0.37A)2+(0.82A/1.43)2+(0.52A/1.43)2 = 0.77A  
The 120Hz ripple current rating at 105°C ambient is 0.95A  
forthe180µFKMH400Vcapacitor.Theexpectedlifeofthe  
output capacitor may be calculated from the thermal  
Output Capacitor  
The peak-to-peak 120Hz output ripple is determined by:  
VP-P = (2) (ILOAD(DC))(Z)  
stress analysis:  
(105°C+∆T ) – (T +∆T )  
K
A
O
L = LO 2  
where:  
L: expected life time  
10  
where ILOAD(DC): DC load current.  
Z: capacitor impedance at 120Hz.  
For 180µF at 300W load, ILOAD(DC) = 300W/385V = 0.78A,  
VP-P = 2 0.78A • 7.4= 11.5V. If less ripple is desired,  
higher capacitance should be used. The selection of the  
output capacitor should also be based on the operating  
ripple current through the capacitor. The ripple current  
can be divided into three major components. The first is at  
120Hz; it’s RMS value is related to the DC load current as  
follows:  
L : hours of load life at rated ripple current and rated  
O
ambient temperature.  
T : Capacitor internal temperature rise at rated condi-  
K
2
tion. T = (I R)/(KA). Where I is the rated current,  
K
R is capacitor ESR, and KA is a volume constant.  
T : Operating ambient temperature.  
A
T : Capacitor internal temperature rise at operating  
O
condition.  
I
1RMS 0.71 ILOAD(DC)  
In our example LO = 2000 hours and TK = 10°C at rated  
0.95A. TO can then be calculated from:  
The second component contains the PF switching fre-  
quency ripple current and its harmonics. Analysis of the  
ripple is complicated because it is modulated with a 120Hz  
signal. However computer numerical integration and Fou-  
rier analysis approximate the RMS value reasonably close  
to the bench measurements. The RMS value is about 0.82A  
at a typical condition of 120VAC, 200W load. This ripple is  
line-voltage dependent, and the worst case is at low line.  
TK = (IRMS/0.95A)2 TK = (0.77A/0.95A)2  
10°C = 6.6°C  
Assuming the operating ambient temperature is 60°C, the  
approximate life time is:  
(105°C+10°C) – (60°+ 6.6°C)  
10  
57,000 hours  
LO 2000 2  
For longer life, a capacitor with a higher ripple current  
rating or parallel capacitors should be used.  
I2RMS = 0.82A at 120VAC, 200W  
10  
LT1248  
U
O
TYPICAL APPLICATI  
300W, 382V Preregulator  
MURH860  
750µH*  
T
+
V
OUT  
90V  
TO  
270V  
EMI  
FILTER  
6A  
+
1M  
1%  
180µF  
IRF840  
20k  
1%  
R
0.047µF  
0.47µF  
S
0.2Ω  
R
REF  
4k  
4k  
100pF  
20k  
20k  
330k  
V
CC  
= 18V**  
+
1nF  
I
56µF  
35V  
0.1µF  
PK  
LIM  
VA  
V
CC  
V
REF  
M
GND  
OUT  
SENSE  
OUT  
9
4
1
5
2
7
3
15  
CA  
OUT  
+
7.5V  
REF  
+
V
V
CC  
16V TO 10V  
2.6V/2.2V  
EN/SYNC  
RUN  
+
7µA  
2.2V  
+
10  
M1  
V
SENSE  
11  
6
I
1M  
A
I
EA  
I
2 I  
B
M
CA  
A
+
I
=
+
M
R
R
200µA2  
I
B
I
AC  
7.5V  
7.9V  
+
Q
GTDR  
16  
32k  
+
S
+
0.7V  
RUN  
OVP  
8
10Ω  
4.7nF  
+
1N5819  
OSC  
ONE SHOT  
200ns  
16V  
12µA  
SS  
SYNC  
5V  
50k  
13  
0.01µF  
C
R
SET  
SET  
14  
12  
1. COILTRONICS CTX02-12236-1 (TYPE 52 CORE)  
*
15k  
1248 TA01  
1000pF  
AIR MOVEMENT NEEDED AT POWER LEVEL GREATER THAN 250W.  
2. COILTRONICS CTX02-12295 (MAGNETICS Kool Mµ® 77930 CORE)  
**  
SEE START-UP AND SUPPLY VOLTAGE SECTION FOR V GENERATOR.  
CC  
THIS SCHOTTKY DIODE IS TO CLAMP GTDR WHEN MOS SWITCH  
TURNS OFF. PARASITIC INDUCTANCE AND GATE CAPACITANCE MAY  
TURN ON CHIP SUBSTRATE DIODE AND CAUSE ERRATIC OPERATIONS  
IF GTDR IS NOT CLAMPED.  
Kool Mµ is a registered trademark of Magnetics, Inc.  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1248  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
15  
13  
11  
16  
0.020  
(0.508)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
2
1
3
4
6
8
5
7
0.325  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
N16 1098  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
(0.254 – 0.508)  
16  
15  
14  
13  
12  
11  
10  
9
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
0.228 – 0.244  
(3.810 – 3.988)  
(5.791 – 6.197)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
0.016 – 0.050  
(0.406 – 1.270)  
S16 1098  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
8
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1103  
Off-Line Switching Regulator  
PFC in SO-8  
Universal Off-Line Inputs with Outputs to 100W  
Simplified PFC Design with Minimal Part Count  
Voltage Mode PWM, Simplified PFC Design  
LT1249  
LT1508  
Power Factor and PWM Controller  
Power Factor and PWM Controller  
LT1509  
Complete Solution for Universal Off-Line Switching Power Supplies  
1248fd LT/GP 0799 2K REV D • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1248CN16

IC POWER FACTOR CONTROLLER, PDIP16, 0.300 INCH, PLASTIC, DIP-16, Switching Regulator or Controller
Linear

LT1248CS

Power Factor Controller
Linear

LT1248CS#TR

LT1248 - Power Factor Controller; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1248CS#TRPBF

LT1248 - Power Factor Controller; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1248CS16

IC POWER FACTOR CONTROLLER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Switching Regulator or Controller
Linear

LT1248I

Power Factor Controller
Linear

LT1248IN

Power Factor Controller
Linear

LT1248IN#PBF

LT1248 - Power Factor Controller; Package: PDIP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1248IS

Power Factor Controller
Linear

LT1249

Power Factor Controller
Linear

LT1249C

Power Factor Controller
Linear

LT1249CN8

Power Factor Controller
Linear