LT1256_15 [Linear]

40MHz Video Fader and DC Gain Controlled Amplifier;
LT1256_15
型号: LT1256_15
厂家: Linear    Linear
描述:

40MHz Video Fader and DC Gain Controlled Amplifier

文件: 总24页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1251/LT1256  
40MHz Video Fader and  
DC Gain Controlled Amplifier  
U
FEATURES  
DESCRIPTION  
The LT®1251/LT1256 are 2-input, 1-output, 40MHz cur-  
rent feedback amplifiers with a linear control circuit that  
sets the amount each input contributes to the output.  
These parts make excellent electronically controlled vari-  
able gain amplifiers, filters, mixers and faders. The only  
external components required are the power supply by-  
pass capacitors and the feedback resistors. Both parts  
operate on supplies from ±2.5V (or single 5V) to ±15V  
(or single 30V).  
Accurate Linear Gain Control: ±1% Typ, ±3% Max  
Constant Gain with Temperature  
Wide Bandwidth: 40MHz  
High Slew Rate: 300V/µs  
Fast Control Path: 10MHz  
Low Control Feedthrough: 2.5mV  
High Output Current: 40mA  
Low Output Noise  
45nV/Hz at AV = 1  
270nV/Hz at AV = 100  
Low Distortion: 0.01%  
Wide Supply Range: ±2.5V to ±15V  
Low Supply Current: 13mA  
Low Differential Gain and Phase: 0.02%, 0.02°  
Absolute gain accuracy is trimmed at wafer sort to mini-  
mize part-to-part variations. The circuit is completely  
temperature compensated.  
The LT1251 includes circuitry that eliminates the need for  
accurate control signals around zero and full scale. For  
control signals of less than 2% or greater than 98%, the  
LT1251 sets one input completely off and the other  
completely on. This is ideal for fader applications because  
it eliminates off-channel feedthrough due to offset or gain  
errors in the control signals.  
U
APPLICATIONS  
Composite Video Gain Control  
RGB, YUV Video Gain Control  
Video Faders, Keyers  
Gamma Correction Amplifiers  
TheLT1256doesnothavethison/offfeatureandoperates  
linearly over the complete control range. The LT1256 is  
recommended for applications requiring more than 20dB  
of linear control range.  
Audio Gain Control, Faders  
Multipliers, Modulators  
Electronically Tunable Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
LT1256  
Two-Input Video Fader  
Gain Accuracy vs Control Voltage  
5
V
V
= ±5V  
FS  
S
4
3
= 2.5V  
LT1251/LT1256  
CONTROL  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
IN1  
IN2  
+
+
1
2
2
1
2.5VDC  
INPUT  
0V TO 2.5V  
CONTROL  
+
+
I
FS  
I
C
FS  
5k  
C
0
I
FS  
I
R
R
F1  
–1  
–2  
–3  
C
F2  
1.5k  
1.5k  
5k  
+
V
2.5  
NULL  
V
C
100  
(
–4 GAIN ACCURACY (%) =  
A
)
VMEAS  
(
)
8
V
–5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
1251/56 TA01  
OUT  
CONTROL VOLTAGE (V)  
1251/56 TA02  
1
LT1251/LT1256  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Total Supply Voltage (V+ to V) .............................. 36V  
Input Current ...................................................... ±15mA  
Input Voltage on Pins 3,4,5,10,11,12 ............... Vto V+  
Output Short-Circuit Duration (Note 1)........ Continuous  
Specified Temperature Range (Note 2)....... 0°C to 70°C  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Junction Temperature (Note 3)............................ 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
ORDER PART  
NUMBER  
IN2  
FB2  
IN1  
FB1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
+
+
1
2
CONTROL  
LT1251CN  
LT1251CS  
LT1256CN  
LT1256CS  
+
+
V
FS  
V
C
C
FS  
I
FS  
I
C
R
R
C
FS  
+
V
NULL  
(Note 2)  
V
V
8
OUT  
N PACKAGE  
14-LEAD PDIP  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 70°C/ W (N)  
JMAX = 150°C, θJA = 100°C/ W (S)  
T
Consult factory for Industrial and Military grade parts.  
U
W
SIG AL A PLIFIER AC CHARACTERISTICS  
0°C TA 70°C, VS = ±5V, VIN = 1VRMS, f = 1kHz, AVMAX = 1, RF1 = RF2 = 1.5k, VFS = 2.5V, IC = IFS = NULL = Open, Pins 5,10 = GND,  
unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V (Pin 3) = 0.05V  
MIN  
TYP  
MAX  
UNITS  
2%IN1  
2% Input 1 Gain  
LT1251  
LT1256  
0
0.1  
0.1  
5.0  
%
%
C
10%IN1  
20%IN1  
30%IN1  
40%IN1  
50%IN1  
60%IN1  
70%IN1  
80%IN1  
90%IN1  
98%IN1  
10% Input 1 Gain  
20% Input 1 Gain  
30% Input 1 Gain  
40% Input 1 Gain  
50% Input 1 Gain  
60% Input 1 Gain  
70% Input 1 Gain  
80% Input 1 Gain  
90% Input 1 Gain  
98% Input 1 Gain  
V (Pin 3) = 0.25V  
7
13  
23  
33  
43  
53  
63  
73  
83  
93  
%
%
%
%
%
%
%
%
%
C
V (Pin 3) = 0.50V  
17  
27  
37  
47  
57  
67  
77  
87  
C
V (Pin 3) = 0.75V  
C
V (Pin 3) = 1.00V  
C
V (Pin 3) = 1.25V  
C
V (Pin 3) = 1.50V  
C
V (Pin 3) = 1.75V  
C
V (Pin 3) = 2.00V  
C
V (Pin 3) = 2.25V  
C
V (Pin 3) = 2.45V  
C
LT1251  
LT1256  
99.9  
95.0  
100.0  
99.9  
%
%
2%IN2  
2% Input 2 Gain  
V (Pin 3) = 2.45V  
C
LT1251  
LT1256  
0
0.1  
0.1  
5.0  
%
%
10%IN2  
20%IN2  
30%IN2  
40%IN2  
50%IN2  
60%IN2  
70%IN2  
80%IN2  
90%IN2  
98%IN2  
10% Input 2 Gain  
20% Input 2 Gain  
30% Input 2 Gain  
40% Input 2 Gain  
50% Input 2 Gain  
60% Input 2 Gain  
70% Input 2 Gain  
80% Input 2 Gain  
90% Input 2 Gain  
98% Input 2 Gain  
V (Pin 3) = 2.25V  
7
13  
23  
33  
43  
53  
63  
73  
83  
93  
%
%
%
%
%
%
%
%
%
C
V (Pin 3) = 2.00V  
17  
27  
37  
47  
57  
67  
77  
87  
C
V (Pin 3) = 1.75V  
C
V (Pin 3) = 1.50V  
C
V (Pin 3) = 1.25V  
C
V (Pin 3) = 1.00V  
C
V (Pin 3) = 0.75V  
C
V (Pin 3) = 0.50V  
C
V (Pin 3) = 0.25V  
C
V (Pin 3) = 0.05V  
C
LT1251  
LT1256  
99.9  
95.0  
100.0  
99.9  
%
%
Gain Drift with Temperature  
(Worst Case at 30% Gain)  
V (Pin 3) = 0.75V  
V (Pin 3) = 0.75V  
C
N Package  
S Package  
50  
400  
ppm/°C  
ppm/°C  
C
2
LT1251/LT1256  
U
W
SIG AL A PLIFIER AC CHARACTERISTICS  
0°C TA 70°C, VS = ±5V, VIN = 1VRMS, f = 1kHz, AVMAX = 1, RF1 = RF2 = 1.5k, VFS = 2.5V, IC = IFS = NULL = Open, Pins 5,10 = GND,  
unless otherwise noted.  
SYMBOL PARAMETER  
Gain Supply Rejection  
CONDITIONS  
V = 1.25V, V = ±5V to ±15V  
MIN  
TYP  
0.03  
MAX  
0.10  
55  
UNITS  
%/V  
%
C
S
External Resistor Gain  
50% Input 1  
Pins 5,10 = Open, External 5k Resistors  
from Pins 4,11 to Ground, V = 1.25V  
45  
C
SR  
Slew Rate  
V
= ±2.5V, V at ±2V, R = 150Ω  
150  
300  
2.5  
20  
30  
40  
V/µs  
mV  
P-P  
MHz  
MHz  
MHz  
IN  
O
L
Control Feedthrough  
Full Power Bandwidth  
Small-Signal Bandwidth  
V = 1.25VDC + 2.5V at 1kHz  
V
V = ±5V  
V = ±15V  
C
O
P-P  
= 1V  
RMS  
BW  
S
S
Differential Gain (Notes 4,5)  
Differential Phase (Notes 4,5)  
Total Harmonic Distortion  
Control = 0% or 100%  
Control = 25% or 75%  
Control = 0% or 100%  
Control = 25% or 75%  
Gain = 100%  
Gain = 50%  
Gain = 10%  
0.02  
0.90  
0.02  
0.55  
0.002  
0.015  
0.4  
%
%
DEG  
DEG  
%
%
%
THD  
t , t  
OS  
Rise Time, Fall Time  
Overshoot  
Propagation Delay  
Settling Time  
10% to 90%, V = 100mV  
11  
3
10  
65  
ns  
%
ns  
ns  
r
f
O
V
V
= 100mV  
= 100mV  
O
t
t
PD  
S
O
0.1%, V = 2V  
O
U
W
SIG AL A PLIFIER DC CHARACTERISTICS  
0°C TA 70°C, VS = ±5V, VCM = 0V, VFS = 2.5V, IC = IFS = NULL = Open, Pins 5,10 = GND, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
Either Input  
Difference Between Inputs  
2
1
5
3
mV  
mV  
–3  
Input Offset Voltage Drift  
Noninverting Input Bias Current  
Inverting Input Bias Current  
10  
0.5  
10  
0.5  
170  
2.7  
1.5  
29  
17  
1.5  
µV/°C  
µA  
+
I
I
Either Input  
Either Input  
Difference Between Inputs  
Null (Pin 6) Open to V  
f = 1kHz  
f = 1kHz  
f = 1kHz  
Either Noninverting Input  
Either Noninverting Input  
2.5  
30  
–1  
2.5  
30  
1
IN  
µA  
µA  
IN  
Inverting Input Bias Current Null Change  
Input Noise Voltage Density  
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Resistance  
280  
60  
µA  
nV/Hz  
pA/Hz  
pA/Hz  
MΩ  
e
+i  
–i  
R
C
n
n
n
IN  
IN  
5
Input Capacitance  
pF  
Input Voltage Range  
V = ±5V  
V = 5V  
S
±3  
2
±3.2  
V
V
S
3
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
= 3V to 3V  
55  
50  
61  
57  
0.07  
0.17  
76  
30  
30  
dB  
dB  
µA/V  
µA/V  
dB  
nA/V  
nA/V  
CM  
V = 5V, V = 2V to 3V, V = 2.5V  
S
CM  
O
Inverting Input Current Common Mode Rejection  
V
= 3V to 3V  
0.25  
0.70  
CM  
V = 5V, V = 2V to 3V, V = 2.5V  
S
CM  
O
Power Supply Rejection Ratio  
Noninverting Input Current Power Supply Rejection  
Inverting Input Current Power Supply Rejection  
V = ±5V to ±15V  
70  
S
V = ±5V to ±15V  
100  
200  
S
V = ±5V to ±15V  
S
3
LT1251/LT1256  
U
W
SIG AL A PLIFIER DC CHARACTERISTICS  
0°C TA 70°C, VS = ±5V, VCM = 0V, VFS = 2.5V, IC = IFS = NULL = Open, Pins 5,10 = GND, unless otherwise noted.  
SYMBOL PARAMETER  
Large-Signal Voltage Gain  
CONDITIONS  
V = 3V to 3V, R = 150Ω  
MIN  
TYP  
MAX  
UNITS  
A
VOL  
83  
83  
0.75  
0.75  
±4.0  
±3.0  
±2.75  
±14.0  
1.2  
93  
dB  
dB  
MΩ  
MΩ  
V
V
V
V
V
O
L
V = 2.75V to 2.75V, R = 150Ω  
O
L
R
OL  
Transresistance, V /I  
V = 3V to 3V, R = 150Ω  
1.8  
OUT  
IN  
O
L
V = 2.75V to 2.75V, R = 150Ω  
O
L
V
OUT  
Maximum Output Voltage Swing  
No Load  
R = 150Ω  
L
±4.2  
±3.5  
V = ±15V, No Load  
±14.2  
S
V = 5V, V = 2.5V, (Note 6)  
3.8  
S
CM  
I
I
Maximum Output Current  
Supply Current  
V = ±5V  
±30  
±20  
±40  
±30  
13.5  
7.5  
1.3  
14.5  
1.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
O
S
V = 5V, V = V = 2.5V  
S
CM  
O
V = V = 2.5V  
17.0  
9.5  
1.8  
18.5  
2.0  
S
C
FS  
V = V = 1.25V  
C
FS  
V = V = 0V  
C
FS  
V = V = 2.5V, V = ±15V  
C
FS  
S
V = V = 0V, V = ±15V  
C
FS  
S
U
U
W
CO TROL A D FULL SCALE A PLIFIER CHARACTERISTICS  
0°C TA 70°C, VS = ±5V, VFS = 2.5V, IC = IFS = NULL = Open, Pins 5,10 = GND, unless otherwise noted.  
SYMBOL PARAMETER  
Control Amplifier Input Offset Voltage  
CONDITIONS  
Pin 4 to Pin 3  
Pin 11 to Pin 12  
MIN  
TYP  
5
5
100  
100  
300  
300  
5
MAX  
15  
15  
UNITS  
mV  
mV  
MΩ  
MΩ  
nA  
Full-Scale Amplifier Input Offset Voltage  
Control Amplifier Input Resistance  
Full-Scale Amplifier Input Resistance  
Control Amplifier Input Bias Current  
Full-Scale Amplifier Input Bias Current  
Internal Control Resistor  
25  
25  
750  
750  
3.75  
4
nA  
kΩ  
kΩ  
R
R
T = 25°C  
6.25  
6
C
A
Internal Full-Scale Resistor  
T = 25°C  
A
5
FS  
Resistor Temperature Coefficient  
Control Path Bandwidth  
Control Path Rise and Fall Time  
Control Path Transition Time  
0.2  
10  
35  
%/°C  
MHz  
ns  
Small Signal, V = 100mV, (Note 7)  
C
Small Signal, V = 100mV, (Note 7)  
C
0% to 100%  
150  
ns  
Control Path Propagation Delay  
Small Signal, V = 100mV  
V from 0% or 100%  
C
50  
90  
ns  
ns  
C
The  
denotes specifications which apply over the specified operating  
Note 4: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
temperature range.  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Five  
identical amplifier stages were cascaded giving an effective resolution of  
0.02% and 0.02°.  
Note 5: Differential gain and phase are best when the control is set at 0%  
or 100%. See the Typical Performance Characteristics curves.  
Note 1: A heat sink may be required depending on the power supply  
voltage.  
Note 2: Commercial grade parts are designed to operate over the  
temperature range of 40°C to 85°C but are neither tested nor guaranteed  
beyond 0°C to 70°C. Industrial grade parts specified and tested over  
40°C to 85°C are available on special request. Consult factory.  
Note 6: Tested with R = 150to 2.5V to simulate an AC coupled load.  
L
Note 3: T is calculated from the ambient temperature T and the power  
Note 7: Small-signal control path response is measured driving R (Pin 5)  
to eliminate peaking caused by stray capacitance on Pin 4.  
J
A
C
dissipation P according to the following formulas:  
D
LT1251CN/LT1256CN:  
LT1251CS/LT1256CS:  
T = T + (P • 70°C/W)  
J A D  
T = T + (P • 100°C/W)  
J
A
D
4
LT1251/LT1256  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1256  
Gain vs Control Voltage  
LT1251  
Gain vs Control Voltage  
Spot Input Noise Voltage and  
Current vs Frequency  
100  
10  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–i  
n
IN2  
IN2  
V
= 2.5V  
V
= 2.5V  
FS  
FS  
IN1  
1.0  
IN1  
e
n
+i  
n
0
0.5  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
CONTROL VOLTAGE (V)  
CONTROL VOLTAGE (V)  
1251/56 G06  
1251/56 G02  
1251/56 G01  
LT1251/LT1256  
Control Path Bandwidth  
Undistorted Output Voltage  
vs Frequency  
LT1251/LT1256  
Control Path Bandwidth  
10  
8
8
7
6
5
4
3
2
1
10  
8
VOLTAGE DRIVE V  
C
S
VOLTAGE DRIVE R  
C
C
S
A
= 10  
V
V
= ±5V  
V
V
= GND  
= ±5V  
6
6
4
4
A
= 1  
V
2
2
0
0
PIN 4 NOT IN SOCKET  
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
V
= ±5V  
= 1k  
S
L
R
R = 1.5k  
F
C
V
= V = 2.5V  
FS  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1251/56 G04  
1251/56 G05  
1251/56 G07  
2nd and 3rd Harmonic Distortion  
vs Frequency  
THD Plus Noise vs Frequency  
3rd Order Intercept vs Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
50  
45  
40  
35  
30  
25  
20  
15  
10  
10  
1
V
A
CC = ±5V  
V
A
CC = ±15V  
= 1  
= 1.5k  
= 100Ω  
S
V
F
L
O
C
S
V
V
S
A
V
CC = ±5V, V = 1V  
IN RMS  
= 1  
= 1, R = 1.5k, V = 2.5V  
F
FS  
R = 1.5k  
R
R
F
L
C
R
V
V
= 1k  
= 2V  
V
C
CC = 10%  
V
= V = 2.5V  
FS  
P-P  
= V = 2.5V  
FS  
0.1  
V
V
CC = 50%  
C
C
3RD  
0.01  
2ND  
CC = 100%  
0.001  
1
10  
100  
25  
0
5
10  
15  
20  
30  
10  
100  
1k  
10k  
100k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
1251/56 G09  
1251/56 G08  
1251/56 G10  
5
LT1251/LT1256  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
Bandwidth vs Feedback  
Bandwidth vs Feedback  
Voltage Gain and Phase  
vs Frequency  
Resistance, AV = 1, RL = 100Ω  
Resistance, AV = 1, RL = 1k  
5
4
45  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
PHASE  
PEAKING 0.5dB  
PEAKING 5.0dB  
PEAKING 0.5dB  
PEAKING 5.0dB  
0
3
–45  
–90  
–135  
–180  
–225  
–270  
2
V
= ±15V  
1
S
V
= ±15V  
S
GAIN  
0
V
= 5V  
V
= 5V  
S
S
–1  
–2  
–3  
–4  
–5  
V
R
R
= ±5V  
= 1.3k  
= 100Ω  
V
S
= ±5V  
S
F
L
V
= ±5V  
1.2  
S
100k  
1M  
10M  
100M  
0.6  
1.0  
1.2  
1.4  
1.6  
1.8  
0.6  
1.0  
1.4  
1.6  
1.8  
0.8  
0.8  
FEEDBACK RESISTANCE (k)  
FEEDBACK RESISTANCE (k)  
FREQUENCY (Hz)  
1251/56 G13  
1251/56 G11  
1251/56 G12  
Bandwidth vs Feedback  
Resistance, AV = 10, RL = 100Ω  
Off-Channel Isolation  
vs Frequency  
Bandwidth vs Feedback  
Resistance, AV = 10, RL = 1k  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
PEAKING 0.5dB  
PEAKING 5.0dB  
PEAKING 0.5dB  
PEAKING 5.0dB  
V
V
V
= ±5V  
S
= 2.5V  
FS  
= 0V  
= 100Ω  
C
R
L
V
= ±15V  
R = 1.5k  
S
F
A
= 10  
V
V
= ±15V  
S
V
= 5V  
S
V
= 5V  
S
A
= 1  
V
V
= ±5V  
S
V
= ±5V  
S
0.4  
0.8  
1.0  
1.2  
1.4  
1.6  
0.4  
0.8  
1.0  
1.2  
1.4  
1.6  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0.6  
0.6  
FEEDBACK RESISTANCE (k)  
FEEDBACK RESISTANCE (k)  
1251/56 G16  
1251/56 G14  
1251/56 G15  
Bandwidth vs Feedback  
Resistance, AV = 100, RL = 100Ω  
Bandwidth vs Feedback  
Resistance, AV = 100, RL = 1k  
–3dB Bandwidth vs  
Control Voltage  
40  
35  
30  
25  
20  
15  
10  
10  
9
10  
9
V
R
V
= ±5V  
NO PEAKING  
NO PEAKING  
S
L
= 100Ω  
= 2.5V  
V
= ±15V  
V
= ±15V  
S
FS  
S
8
8
R
= 1.3k  
F
7
7
V
= ±5V  
= 5V  
S
V
= ±5V  
= 5V  
S
6
6
5
5
V
S
V
S
4
4
3
3
2
2
0
0.5  
1.0  
1.5  
2.0  
2.5  
1.0 1.2 1.4  
1.0 1.2 1.4  
0.2 0.4 0.6 0.8  
1.6 1.8 2.0  
0.2 0.4 0.6 0.8  
1.6 1.8 2.0  
CONTROL VOLTAGE (V)  
FEEDBACK RESISTANCE (k)  
FEEDBACK RESISTANCE (k)  
1251/56 G19  
1251/56 G17  
1251/56 G18  
6
LT1251/LT1256  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs  
Full-Scale Voltage  
Supply Current vs  
Full-Scale Current  
Input Common Mode Range  
vs Temperature  
+
V
14  
12  
10  
8
14  
12  
10  
8
V
= ±5V  
V
S
V
C
= ±5V  
= 0V  
S
INTERNAL RESISTORS  
+
T
= 125°C  
V
– 1  
A
T
= 55°C,  
= 25°C  
A
A
T
+
V
– 2  
+2  
T
= 55°C  
A
T
= 125°C  
A
V
6
6
4
4
V
+1  
2
2
0
0
V
0.5  
1.0  
1.5  
2.0  
2.5  
0
0
300  
400  
500  
100  
200  
–50 –25  
0
25  
50  
125  
75 100  
FULL-SCALE CURRENT, I (µA)  
FS  
FULL-SCALE VOLTAGE, V (V)  
TEMPERATURE (°C)  
FS  
1251/56 G20  
1251/56 G21  
1251/56 G22  
Inverting Input Bias Current  
vs Null Voltage  
Inverting Input Bias Current  
vs Null Voltage  
Control and Full-Scale Amp Input  
Bias Current vs Input Voltage  
200  
150  
100  
50  
400  
300  
–400  
–350  
–300  
–250  
–200  
–150  
–100  
–50  
V
V
= ±5V  
FS  
T = –55°C  
A
V
S
±7.5V  
V
V
= ±5V  
= 2.5V  
T
= 25°C  
S
S
FS  
A
T
= 25°C  
A
= 1.25V  
T
A
= –55°C  
200  
T
= –55°C  
A
T
A
= 125°C  
T
A
= 125°C  
T
= 25°C  
100  
A
0
0
T
A
= 125°C  
–50  
–100  
–150  
–200  
–100  
–200  
–300  
–400  
0
140  
160  
0
20  
40 60 80 100 120  
250  
0
50  
100  
150  
200  
300  
1
2
4
0
5
3
NULL VOLTAGE, REFERENCED TO V (mV)  
NULL VOLTAGE, REFERENCED TO V (mV)  
INPUT VOLTAGE (V)  
1251/56 G24  
1251/56 G23  
1251/56 G25  
Positive Output Saturation  
Voltage vs Load Current  
Negative Output Saturation  
Voltage vs Load Current  
Output Short-Circuit Current  
vs Temperature  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
60  
50  
40  
30  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
S
= ±5V  
V
S
= ±5V  
T
= 25°C  
A
T
= –55°C  
A
T
= –55°C  
A
T
= 25°C  
T
A
= 125°C  
A
T
= 125°C  
20  
A
30  
10  
40  
50  
TEMPERATURE (°C)  
100 125  
0
–30  
LOAD CURRENT (mA)  
–40  
–50 –25  
0
25  
75  
0
–10  
–20  
LOAD CURRENT (mA)  
1251/56 G26  
1251/56 G28  
1251/56 G27  
7
LT1251/LT1256  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Slew Rate vs Full-Scale  
Reference Voltage  
Power Supply Rejection Ratio  
vs Frequency  
Slew Rate vs Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
A
V
= 1  
V
= ±5V  
= 1  
V
A
= ±5V  
= 1  
S
V
S
V
F
350  
300  
250  
200  
A
POSITIVE  
NEGATIVE  
R = 1.5k  
NO LOAD  
V
= ±15V  
S
V
= V = 2.5V  
FS  
C
V
= ±5V  
S
0
0.5  
1.0  
1.5  
2.0  
2.5  
–25  
0
25  
TEMPERATURE (°C)  
50  
75  
125  
0
–50  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FULL-SCALE REFERENCE VOLTAGE (V)  
1251/56 G29  
1251/56 G30  
1251/56 G31  
Settling Time to 10mV  
vs Output Step  
Settling Time to 1mV  
vs Output Step  
Output Impedance vs Frequency  
10  
8
10  
8
100  
10  
V
= ±15V  
S
V
R
V
= ±5V  
= 1.5k  
S
F
R = 1.5k  
F
NONINVERTING  
6
= V = 2.5V  
FS  
6
C
INVERTING  
4
4
INVERTING,  
NONINVERTING  
2
2
V
= ±15V  
S
0
0
1
R = 1.5k  
F
–2  
–4  
–6  
–8  
–10  
A
= 100  
100k  
–2  
–4  
–6  
–8  
–10  
V
INVERTING  
A
= 1, 10  
1M  
NONINVERTING  
V
0.1  
INVERTING  
50  
NONINVERTING  
0.01  
0
100  
150  
200  
0
25  
75  
100  
125  
150  
50  
10k  
10M  
100M  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
FREQUENCY (Hz)  
1251/56 G34  
1251/56 G33  
1251/56 G32  
LT1251  
Switching Transient (Glitch)  
Differential Gain vs  
Controlled Gain  
Differential Phase vs  
Controlled Gain  
1.0  
0.5  
0
2
1
0
50mV  
0
VOUT  
50mV  
2.5  
VC  
0
VFS = 2.5V  
R
V
F1 = RF2 = 1.5k  
S = ±5V  
1251/56 G37  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
CONTROLLED GAIN, V /V (%)  
CONTROLLED GAIN, V /V (%)  
C
FS  
C
FS  
1251/56 G36  
1251/56 G35  
8
LT1251/LT1256  
W
W
SI PLIFIED SCHE ATIC  
V
CC  
Q10  
Q19  
Q11  
Q8  
Q9  
Q20  
+
+
+
+
I
2
I
1
I
4
I
5
Q16  
Q5  
Q6  
Q17  
Q13  
Q1  
Q7  
R2  
Q2  
Q12  
Q18  
R1  
250Ω  
R3  
250Ω  
R4  
250Ω  
250Ω  
V
FS  
Q4  
I
C
I
FS  
V
C
Q3  
Q14  
Q15  
R
C
5k  
R
FS  
+
+
5k  
I
3
I
6
R
R
C
FS  
V
EE  
V
CC  
Q31  
R7  
200Ω  
R5  
200Ω  
R6  
200Ω  
Q30  
Q32  
Q29  
D1  
D2  
Q54  
Q53  
Q52  
Q38  
Q39  
Q36 Q37  
Q21  
Q22  
Q56  
Q41  
Q45  
Q47  
Q55  
Q40  
Q44  
Q46  
OUT  
IN1  
FB1  
IN2  
FB2  
I
7
Q42  
Q57  
Q43  
Q58  
Q25  
Q26  
Q50  
Q51  
Q48 Q49  
D3  
D4  
Q59  
Q60  
R9  
Q61  
Q33  
Q34  
R8  
200Ω  
R11  
200Ω  
R10  
400Ω  
Q23  
Q24  
Q27  
Q28  
Q35  
200Ω  
V
EE  
1251/56 SS  
NULL  
9
LT1251/LT1256  
U
W U U  
APPLICATIONS INFORMATION  
Supply Voltage  
500mVorthecurrenttolessthan10mA. Ifaveryfastedge  
is used to measure settling time with an input step of more  
than 6V, the protection circuits will cause the 1mV settling  
time to become hundreds of microseconds.  
TheLT1251/LT1256arehighspeedamplifiers. Toprevent  
problems, use a ground plane with point-to-point wiring  
and small bypass capacitors (0.01µF to 0.1µF) at each  
supply pin. For good settling characteristics, especially  
drivingheavyloads, a4.7µFtantalumwithinaninchortwo  
of each supply pin is recommended.  
Feedback Resistor Selection  
The feedback resistor value determines the bandwidth of  
the LT1251/LT1256 as in other current feedback amplifi-  
ers. ThecurvesintheTypicalPerformanceCharacteristics  
show the effect of the feedback resistor on small-signal  
bandwidth for various loads, gains and supply voltages.  
The bandwidth is limited at high gains by the 500MHz to  
800MHz gain-bandwidth product as shown in the curves.  
Capacitance on the inverting input will cause peaking and  
increase the bandwidth. Take care to minimize the stray  
capacitance on Pins 2 and 13 during printed circuit board  
layout for flat response.  
The LT1251/LT1256 can be operated on single or split  
supplies. The minimum total supply is 4V (Pins 7 to 9).  
However, the input common mode range is only guaran-  
teed to within 2V of each supply. On a 4V supply the parts  
mustbeoperatedintheinvertingmodewiththenoninvert-  
ing input biased half way between Pin 7 and Pin 9. See the  
Typical Applications section for the proper biasing for  
single supply operation.  
The op amps in the control section operate from V–  
(Pin 7) to within 2V of V+ (Pin 9). For this reason the  
positive supply should be 4.5V or greater in order to use  
2.5V control and full-scale voltages.  
If the two input stages are not operating with equal gain,  
the gain versus control voltage characteristic will be  
nonlinear. This is true even if RF1 equals RF2. This is  
because the open-loop characteristic of a current feed-  
back amplifier is dependent on the Thevenin impedance at  
the inverting input. For linear control of the gain, the loop  
gain of the two stages must be equal. For an extreme  
example, let’s take a gain of 101 on input 1, RF1 = 1.5k and  
RG1 =15,andunity-gainoninput2,RF2 =1.5k.Thecurve  
in Figure 1 shows about 25% error at midscale. To  
eliminate this nonlinearity we must change the value of  
RF2. The correct value is the Thevenin impedance at  
invertinginput1(includingtheinternalresistanceof27)  
times the gain set at input 1. For a linear gain versus  
control voltage characteristic when input 2 is operating at  
unity-gain, the formula is:  
Inputs  
The noninverting inputs (Pins 1 and 14) are easy to drive  
since they look like a 17M resistor in parallel with a 1.5pF  
capacitor at most frequencies. However, the input stage  
canoscillateatveryhighfrequencies(100MHzto200MHz)  
if the source impedance is inductive (like an unterminated  
cable). Several inches of wire look inductive at these high  
frequencies and can cause oscillations. Check for oscilla-  
tions at the inverting inputs (Pins 2 and 13) with a 10×  
probe and a 200MHz oscilloscope. A small capacitor  
(10pF to 50pF) from the input to ground or a small resistor  
(100to 300) in series with the input will stop these  
parasitic oscillations, even when the source is inductive.  
These components must be within an inch of the IC in  
order to be effective.  
RF2 = (AV1)(RF1 R G1 + 27)  
RF2 = (101)(14.85 + 27) = 4227  
All of the inputs to the LT1251/LT1256 have ESD protec-  
tion circuits. During normal operation these circuits have  
no effect. If the voltage between the noninverting and  
inverting inputs exceeds 6V, the protection circuits will  
trigger and attempt to short the inputs together. This  
condition will continue until the voltage drops to less than  
Because the feedback resistor of the unity-gain input is  
increased, the bandwidth will be lower and the output  
noise will be higher. We can improve this situation by  
reducing the values of RF1 and RG1, but at high gains the  
internal 27dominates.  
10  
LT1251/LT1256  
U
W U U  
APPLICATIONS INFORMATION  
100  
millivolts of the negative supply can drive the NULL pin.  
The AM modulator application shows an LT1077 driving  
the NULL pin to eliminate the output DC offset voltage.  
V
= 2.5V  
FS  
Crosstalk  
R
= 4.3k  
F2  
50  
The amount of signal from the off input that appears at the  
output is a function of frequency and the circuit topology.  
The nature of a current feedback input stage is to force the  
voltage at the inverting input to be equal to the voltage at  
the noninverting input. This is independent of feedback  
and forced by a buffer amplifier between the inputs. When  
the LT1251/LT1256 are operating noninverting, the off  
inputsignalispresentattheinvertinginput. Sinceoneend  
of the feedback resistor is connected to this input, the off  
signal is only a feedback resistor away from the output.  
The amount of unwanted signal at the output is deter-  
mined by the size of the feedback resistor and the output  
impedance of the LT1251/LT1256. The output impedance  
riseswithincreasingfrequencyresultinginmorecrosstalk  
at higher frequencies. Additionally, the current that flows  
in the inverting input is diverted to the supplies within the  
chip and some of this signal will also show up at the  
output. With a 1.5k feedback resistor, the crosstalk is  
down about 86dB at low frequencies and rises to 78dB  
at 1MHz and on to 60dB at 6MHz. The curves show the  
details.  
R
= 1.5k  
F2  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
CONTROL VOLTAGE (V)  
1251/56 F01  
Figure 1. Linear Gain Control from 0 to 101  
Capacitive Loads  
Increasing the value of the feedback resistor reduces the  
bandwidth and open-loop gain of the LT1251/LT1256;  
therefore, the pole introduced by a capacitive load can be  
overcome. If there is little or no resistive load in parallel  
with the load capacitance, the output stage will resonate,  
peak and possibly oscillate. With a resistive load of 150,  
any capacitive load can be accommodated by increasing  
the feedback resistor. If the capacitive load cannot be  
paralleled with a DC load of 150, a network of 200pF in  
series with 100should be placed from the output to  
ground. Then the feedback resistor should be selected for  
best response.  
Distortion  
Whenonlyoneinputiscontributingtotheoutput(VC =0%  
or100%)the LT1251/LT1256have very lowdistortion. As  
thecontrolreducestheoutput, thedistortionwillincrease.  
The amount of increase is a function of the current that  
flows in the inverting input. Larger input signals generate  
more distortion. Using a larger feedback resistor will  
reduce the distortion at the expense of higher output  
noise.  
The Null Pin  
Pin 6 can be used to adjust the gain of an internal current  
mirror to change the output offset. The open circuit  
voltage at Pin 6 is set by the full scale current IFS flowing  
through200tothenegativesupply. Therefore, theNULL  
pin sits 100mV above the negative supply with VFS equal  
to 2.5V. Any op amp whose output swings within a few  
11  
LT1251/LT1256  
U
W U U  
APPLICATIONS INFORMATION  
Signal Path Description  
R
R
F1  
G1  
I
1
R
1
2
I
1
1
2
K
1
+
V
1
I
8
O
V
O
+1  
Σ
14  
C
R
OL  
V
2
+
I
2
1 – K  
13  
R
2
I
2
R
F2  
R
G2  
1251/56 BD  
Figure 2. Signal Path Block Diagram  
V
V
O
Figure 2 is the basic block diagram of the LT1251/LT1256  
signal path with external resistors RG1, RF1, RG2 and RF2.  
Both input stages are operating as noninverting amplifiers  
with two input signals V1 and V2.  
2
I =  
2
R
R
R
F2  
(
)(  
)
G2 F2  
R +R  
+1  
F2  
2
R +  
2
R
G
2
R
+R  
G
2
F
2
I = KI + 1K I  
(
)
Each input stage has a unity-gain buffer from the nonin-  
vertinginputtotheinvertinginput.Therefore,theinverting  
input is at the same voltage as the noninverting input. R1  
and R2 represent the internal output resistances of these  
buffers, approximately 27.  
O
1
2
R
OL  
V =I  
O
O
1+ sR C  
(
)
OL  
Substituting and rearranging gives:  
K is a constant determined by the control circuit and can  
be any value between 0 and 1. The control circuit is  
described in a later section.  
1K V  
(
)
2
KV  
1
+
By inspection of the diagram:  
R
(
R
R
R
)(  
)
(
)(  
)
G1 F1  
G2 F2  
R +  
R +  
2
1
R +R  
R
+R  
G1  
F1  
G2  
F2  
V
V
O
V =  
1
O
I =  
1
1K  
(
)
1+ sR C  
K
R
R
R
F1  
OL  
(
)(  
)
G1 F1  
+
+
R +R  
+1  
F1  
1
R +  
1
R
R
R
R
OL  
F1  
F2  
G1  
R +R  
R +R  
+1 R +R  
+1  
G1  
F1  
F1  
1
F2  
2
R
R
G2  
G1  
General Equation for the Noninverting Amplifier Case  
12  
LT1251/LT1256  
U
W U U  
APPLICATIONS INFORMATION  
Similarly for the inverting case where the noninverting  
inputsaregroundedandtheinputvoltagesV1 andV2 drive  
the normally grounded ends of RG1 and RG2, we get:  
In low gain applications, R1 and R2 are small compared to  
the feedback resistors and therefore we can simplify the  
equation to:  
1K V  
(
)
2
KV  
1
+
1K V  
(
)
2
KV  
1
R
R
R
R
F2  
+
G1  
G2  
R +R  
+1  
R
+R  
+1  
G1  
1
G2  
2
R
R
R
R
(
)(  
)
(
)(  
)
G1 F1  
G2 F2  
F1  
V = −  
O
R +R  
R +R  
1K  
(
)
G1  
F1  
G2  
F2  
1+ sR C  
K
OL  
V =  
O
+
+
1K  
R
R
R
R
(
)
1+ sR C  
K
OL  
F1  
F2  
OL  
R +R  
+1 R +R  
+1  
+
+
F1  
1
F2  
2
R
G2  
R
R
R
F2  
G1  
OL  
F1  
General Equation for the Inverting Amplifier Case  
Note that the denominator causes a gain error due to the  
open-loop gain (typically 0.1% for frequencies below  
20kHz) and for mismatches in RF1 and RF2. A 1% mis-  
match in the feedback resistors results in a 0.25% error at  
K = 0.5.  
Note that the denominator is the same as the noninverting  
case. In low gain applications, R1 and R2 are small  
compared to the feedback resistors and therefore we can  
simplify the equation to:  
If we set RF1 = RF2 and assume ROL >> RF1 (a 0.1% error  
at low frequencies) the above equation simplifies to:  
1K V  
(
)
2
KV  
1
+
V =KV A + 1K V A  
R
R
K
(
)
O
1 V1  
2 V2  
G1  
G2  
V = −  
O
1K  
(
)
R
R
R
1+ sR C  
F1  
F2  
OL  
where A = 1+  
and A = 1+  
+
+
V1  
V2  
R
R
R
R
F2  
G1  
G2  
OL  
F1  
This shows that the output fades linearly from input 2,  
times its gain, to input 1, times its gain, as K goes from  
0 to 1.  
Again, if we set RF1 = RF2 and assume ROL >> RF1 (a 0.1%  
error at low frequencies) the above equation simplifies to:  
V = − KV A + 1K V A  
If only one input is used (for example, V1) and Pin 14 is  
grounded, then the gain is proportional to K.  
(
)
O
1 V1  
2 V2  
[
]
R
R
R
F1  
F2  
where A =  
and A  
=
V2  
V1  
R
V
G1  
G2  
O
= KA  
V1  
V
1
The 4-resistor difference amplifier yields the same result  
as the inverting amplifier case, and the common mode  
rejection is independent of K.  
13  
LT1251/LT1256  
U
W U U  
APPLICATIONS INFORMATION  
gain) is ±3% as detailed in the electrical tables. By using  
a 2.5V full-scale voltage and the internal resistors, no  
additional errors need be accounted for.  
Control Circuit Description  
+
V
In the LT1256, K changes linearly with IC. To insure that K  
is zero, VC must be negative 15mV or more to overcome  
the worst-case control op amp offset. Similarly to insure  
that K is 100%, VC must be 3% larger than VFS based on  
the guaranteed gain accuracy.  
I
I
C
FS  
12  
3
+
+
V
I
V
I
C
FS  
C
FS  
To eliminate the overdrive requirement, the LT1251 has  
internal circuitry that senses when the control current is at  
about 5% and sets K to 0%. Similarly, at about 95% it sets  
K to 100%. The LT1251 guarantees that a 2% (50mV)  
input gives zero and 98% (2.45V) gives 100%.  
11  
10  
4
5
C
FS  
R
R
FS  
5k  
C
5k  
R
C
R
FS  
CONTROL V TO I  
FULL SCALE V TO I  
1251/56 F03  
The operating currents of the LT1251/LT1256 are derived  
from IFS and therefore the quiescent current is a function  
of VFS and RFS. The electrical tables show the supply  
current for three values of VFS including zero. An approxi-  
mate formula for the supply current is:  
Figure 3. Control Circuit Block Diagram  
The control section of the LT1251/LT1256 consists of two  
identical voltage-to-current converters (V-to-I); each  
V-to-I contains an op amp, an NPN transistor and a  
resistor. The converter on the right generates a full-scale  
current IFS and the one on the left generates a control  
current IC. The ratio IC/IFS is called K. K goes from a  
minimum of zero (when IC is zero) to a maximum of one  
(when IC is equal to, or greater than, IFS). K determines the  
gain from each signal input to the output.  
IS = 1mA + (24)(IFS) + (VS/20k)  
where VS is the total supply voltage between Pins 9 and 7.  
By reducing IFS the supply current can be reduced, how-  
ever, the slew rate and bandwidth will also be reduced as  
indicated in the characteristic curves. Using the internal  
resistors (5k) with VFS equal to 2.5V results in IFS equal to  
500µA; there is no reason to use a larger value of IFS.  
The op amp in each V-to-I drives the transistor until the  
voltage at the inverting input is the same as the voltage at  
the noninverting input. If the open end of the resistor (Pin  
5 or 10) is grounded, the voltage across the resistor is the  
same as the voltage at the noninverting input. The emitter  
currentisthereforeequaltotheinputvoltageVC dividedby  
the resistor value RC. The collector current is essentially  
the same as the emitter current and it is the ratio of the two  
collector currents that sets the gain.  
The inverting inputs of the V-to-I converters are available  
so that external resistors can be used instead of the  
internal ones. For example, if a 10V full-scale voltage is  
desired, anexternalpairof20kresistorsshouldbeusedto  
set IFS to 500µA. The positive supply voltage must be 2.5V  
greater than the maximum VC and/or VFS to keep the  
transistors from saturating. Do not use the internal resis-  
tors with external resistors because the internal resistors  
have a large positive temperature coefficient (0.2%/°C)  
that will cause gain errors.  
TheLT1251/LT1256aretestedwithPins5and10grounded  
andafull-scalevoltageof2.5VappliedtoVFS (Pin12).This  
sets IFS at approximately 500µA; the control voltage VC is  
applied to Pin 3. When the control voltage is negative or  
zero, IC is zero and K is zero. When VC is 2.5V or greater,  
IC is equal to or greater than IFS and K is one. The gain of  
channel one goes from 0% to 100% as VC goes from zero  
to 2.5V. The gain of channel two goes the opposite way,  
from 100% down to 0%. The worst-case error in K (the  
If the control voltage is applied to the free end of resistor  
RC (Pin5)andtheVC input(Pin3)isgrounded,thepolarity  
of the control voltage must be inverted. Therefore, K will  
be 0% for zero input and 100% for 2.5V input, assuming  
VFS equals 2.5V. With Pin 3 grounded, Pin 4 is a virtual  
ground; this is convenient for summing several negative  
going control signals.  
14  
LT1251/LT1256  
U
TYPICAL APPLICATIONS  
AM Modulator with DC Output Nulling Circuit  
0.1µF  
LT1256  
1
14  
13  
12  
11  
10  
9
1MHz  
CARRIER  
+
+
1
2
50Ω  
2
CONTROL  
220k  
3
2.5VDC  
INPUT  
+
+
I
FS  
I
0.1µF  
C
FS  
5k  
C
4
5
AUDIO  
MODULATION  
R
R
F1  
1.5k  
F2  
1.5k  
5k  
220k  
NULL 6  
+
V
7
8
V
OUT  
V
220k  
+
V
0.1µF  
LT1077  
+
1251/56 TA03  
V
Single Supply Noninverting AC Amplifier  
with Digital Gain Control  
Single Supply Inverting AC Amplifier  
C1  
10µF  
R
R
G1  
F1  
1.5k  
R
G1  
1.5k  
R
F1  
1.5k  
1.5k  
10µF  
+
V1  
+
LT1251/LT1256  
2
1
LT1251/LT1256  
R1  
20k  
+
2
1
1
+
+
V
1
10µF  
8
9
7
+
V1  
R2  
C
V
OUT  
O
8
9
7
+
14  
13  
V
OUT  
20k  
10µF  
+
+
V
V
5V  
10µF  
14  
13  
+
2
+
V
V
5V  
V2  
5V  
+
20k  
2
10k  
10k  
V
C
R
R
V
FS  
C
FS  
V
C
R
C
R
FS  
V
FS  
3
5
10 12  
+
3
5
10 12  
20k  
10µF  
2.5VDC  
INPUT  
CONTROL  
VOLTAGE  
C2  
10µF  
R
R
1.5k  
F2  
10µF  
G2  
1.5k  
+
+
V2  
R
R
1251/56 TA05  
G2  
F2  
1.5k  
1.5k  
V
REF  
D
IN  
CLK  
µP  
LTC1257  
V
OUT  
LOAD  
GND  
V
CC  
1251/56 TA06  
5V  
15  
LT1251/LT1256  
TYPICAL APPLICATIONS  
U
Controlled Gain, Voltage-to-Current Converter  
(Current Source)  
R
F
1k  
R
F
1k  
R
G
100Ω  
LT1256  
× 4  
1
2
+
1
2
R
O
V
IN  
1k  
8
I
OUT  
14  
13  
+
+
LT1363  
V
C
R
R
V
FS  
C
FS  
3
5
10 12  
2.5VDC  
INPUT  
CONTROL  
VOLTAGE  
R
1k  
F
R
F
1k  
1251/56 TA09  
V
R
R
R
V
OUTPUT RESISTANCE DEPENDS  
ON MATCHING OF RESISTORS  
IN  
F
C
I
=
OUT  
(
)
V
O
G
FS  
Variable Lowpass, Highpass and Allpass Filter  
R2  
R1  
R3  
V
IN  
INVERTED  
HIGHPASS  
LT1252  
BASIC VARIABLE INTEGRATOR  
+
R
R
R
C
ALLPASS  
1.5k  
R4  
LT1256  
2
1
+
1
2
R1 R3  
=
8
R2 R4  
LOWPASS  
14  
13  
+
V
C
R
C
R
FS  
V
FS  
3
5
10 12  
1.5k  
V
FS  
V
C
R
C
R
DC  
10k  
1251/56 TA13  
16  
LT1251/LT1256  
U
TYPICAL APPLICATIONS  
Logarithmic Gain Control (Noninverting)  
6k  
15  
V
= 2.5V  
FS  
LT1251/LT1256  
2k  
2
1
+
1
V
IN  
8
V
OUT  
600Ω  
200Ω  
9
7
14  
13  
+
V
V
+
0
2
V
R
C
R
V
FS  
C
FS  
3
5
10 12  
<1dB ERROR  
2.5VDC  
INPUT  
CONTROL  
VOLTAGE  
V
C
1.5k  
A
V
= 24dB  
– 0.5  
(
)
V
FS  
1251/56 TA07a  
–15  
0
1.25  
2.5  
CONTROL VOLTAGE (V)  
1251/56 TA07b  
Logarithmic Gain Control (Inverting)  
6k  
15  
V
= 2.5V  
FS  
LT1251/LT1256  
1.5k  
6k  
2
1
+
1
8
9
7
V
OUT  
V
IN  
14  
13  
+
+
V
V
0
2
V
R
R
V
FS  
C
C
FS  
<1dB ERROR  
3
5
10 12  
V
CONTROL  
VOLTAGE  
2.5VDC  
INPUT  
C
A
= 24dB  
– 0.5  
V
(
)
1.5k  
V
FS  
–15  
1251/56 TA08a  
0
1.25  
2.5  
CONTROL VOLTAGE (V)  
1251/56 TA08b  
1MHz Wien Bridge Oscillator  
Basic Variable Integrator  
C
R
V
IN  
1.5k  
1k  
LT1251/LT1256  
LT1256  
1
2
2
+
200Ω  
1
1
1
+
50Ω  
8
8
V
OUT  
V
OUT  
14  
13  
14  
13  
+
+
200Ω  
100pF  
1.6k  
100pF  
2
2
1.6k  
V
R
R
V
FS  
10 12  
C
C
FS  
V
R
R
V
FS  
10 12  
C
C
FS  
3
5
3
5
2.5VDC  
INPUT  
1.5k  
V
V
5V  
1
FS  
C
1k  
R
C
2
+
10µF  
10k  
7
LT1116  
–1  
R
10k  
+
DC  
T(s) =  
3
V
V
1k  
FS  
(s)(R)(C)  
5, 4, 6  
(
)
C
THE TIME CONSTANT IS INVERSELY PROPORTIONAL TO V .  
C
R
IS REQUIRED TO DEFINE THE DC OUTPUT WHEN  
DC  
1251/56 TA11  
1251/56 TA12  
THE CONTROL IS AT ZERO.  
17  
LT1251/LT1256  
U
TYPICAL APPLICATIONS  
3.58MHz Phase Shifter  
R2  
1k  
R'2  
1k  
C1  
0.001µF  
C'1  
R1  
470Ω  
0.001µF  
R5  
R6  
R'5  
R'6  
V
IN  
430Ω  
430Ω  
430Ω  
430Ω  
1/2  
LT1253  
1/2  
LT1253  
R3  
470Ω  
C5  
50pF  
C'5  
50pF  
R7  
150Ω  
R'7  
R8  
910Ω  
R'8  
C2  
100pF  
C'2  
+
+
150Ω  
R'3  
910Ω  
100pF  
470Ω  
R9  
1.5k  
R'9  
1.5k  
LT1256  
LT1256  
1
2
1
2
+
+
1
2
1
2
8
8
14  
13  
14  
13  
+
+
R4  
1k  
R'4  
1k  
V
C
R
R
V
V
R
R
V
FS  
C
FS  
FS  
C
C
FS  
3
5
10 12  
3
5
10 12  
R10  
1.5k  
R'10  
1.5k  
2.5V  
C3, 100pF  
2.5V  
C'3, 100pF  
V
V
C
C
R11  
150Ω  
R'11  
150Ω  
R12, 10k  
R'12, 10k  
C4  
0.002µF  
C'4  
0.002µF  
R''2  
1k  
C''1  
0.001µF  
R''5  
R''6  
1000pF  
430Ω  
430Ω  
1/2  
LT1253  
+
75Ω  
1/2  
LT1253  
C''5  
R''7  
R''8  
C''2  
10k  
V
OUT  
+
50pF  
150Ω  
R''3  
910Ω  
100pF  
470Ω  
1k  
R''9  
1.5k  
LT1256  
1
2
+
1k  
1
2
8
1.00  
0.98  
0.96  
0.94  
14  
13  
420  
360  
300  
240  
180  
120  
60  
+
R''4  
1k  
GAIN  
V
R
R
V
FS  
10 12  
C
3
C
FS  
5
PHASE  
R''10  
1.5k  
V
2.5V  
C
C''3, 100pF  
R''12, 10k  
R''11  
150Ω  
0
C''4  
0.002µF  
1251/56 TA14a  
0
0.5  
1.0  
1.5  
2.0  
2.5  
CONTROL VOLTAGE, V (V)  
C
1251/56 TA14b  
18  
LT1251/LT1256  
U
TYPICAL APPLICATIONS  
State Variable Filter with Adjustable Frequency and Q  
1k  
1k  
HP  
1k  
OUT  
1k  
V
+
500pF  
IN  
LT1252  
BP  
OUT  
1.5k  
LT1256  
2
1
+
1
2
500pF  
1k  
8
14  
+
1.5k  
LT1256  
13  
2
1
+
500Ω  
1
2
V
R
C
R
V
FS  
10 12  
C
3
FS  
8
5
1.5k  
LP  
OUT  
14  
V
FS  
Vω  
+
1k  
13  
500pF  
V
C
R
C
R
FS  
V
FS  
1.5k  
3
5
10 12  
1.5k  
1.5k  
V
FS  
Vω  
LT1256  
2
500pF  
1
1251/56 TA15a  
1
1k  
+
8
14  
+
2
13  
V
V
R
R
C
V
V
FS  
FS  
C
3
V
FS  
= 2.5V  
12 10  
5
FS  
Q
1.5k  
Center Frequency vs Control Voltage Vω  
Q vs Control Voltage VQ  
6
5
4
3
2
1
0
350  
V
= 2.5V  
V
= 2.5V  
FS  
FS  
300  
250  
200  
150  
100  
50  
0
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
0.5  
1.0  
Vω (V)  
1.5  
2.0  
2.5  
0
V
Q
1251/56 TA15c  
1251/56 TA15b  
19  
LT1251/LT1256  
W
W
ACRO ODEL  
For PSpiceTM  
*
* Linear Technology LT1251/LT1256 VIDEO FADER MACROMODEL  
* Written: 3-11-1994 BY WILLIAM H. GROSS.  
* Corrected: 7-15-1996  
* Connections: as per datasheet pinout  
*1=first noninverting input  
*2=first inverting input  
*3=control voltage input  
*4=control current input  
*5=control resistor, RC  
*6=null input  
*7=negative supply  
*8=output  
*9=positive supply  
*10=full scale resistor, RFS  
*11=full scale current input  
*12=full scale voltage input  
*13=second inverting input  
*14=second noninverting input  
*
.SUBCKT LT1251 1 2 3 4 5 6 7 8 9 10 11 12 13 14  
*
*first input stage  
IB1  
RI1  
C1  
1
1
1
0
0
0
500NA  
17MEG  
1.5PF  
E1  
VOS1  
R1  
2A  
2A  
2B  
2
0
2B  
2
VALUE={LIMIT (V(1), V(8N)+0.4, V(8P)–0.4)+V(EN)/30}  
2.5MV  
27  
C2  
0
1PF  
*
*second input stage  
IB2  
RI2  
C14  
E2  
14  
14  
14  
13A  
13A  
13B  
13  
0
0
0
450NA  
17MEG  
1.5PF  
0
VALUE={LIMIT (V(14), V(8N)+0.4, V(8P)–0.4)+V(EN)/30}  
1.5MV  
27  
VOS2  
R2  
13B  
13  
0
C13  
*
1PF  
*control amp  
IBC  
RIC  
C3  
3
3
3
0
0
0
–300NA  
100MEG  
1PF  
R3  
CBWC  
EC  
VOSC  
C4  
RC  
3
3A  
0
0
4
0
1600  
10PF  
3A  
5MV  
1PF  
5K  
3A  
3B  
3B  
4
0
1.0  
4
5
C5  
5
0
1PF  
*
PSpice is a trademark of MicroSim Corporation  
20  
LT1251/LT1256  
W
W
ACRO ODEL  
*full scale amp  
IBFS  
RIFS  
C12  
12  
12  
12  
12  
0
0
0
–300NA  
100MEG  
1PF  
1600  
10PF  
12A  
–5MV  
1PF  
5K  
R12  
12A  
0
CBWFS 12A  
EFS 12B  
VOSFS 12B  
C11  
RFS  
C10  
*
0
0
1.0  
11  
0
11  
11  
10  
10  
0
1PF  
*generating K  
*** the next two lines are for the LT1251  
EK K 0 TABLE {I(VOSC)/I(VOSFS)}= (–100,0)  
(0.04,0)  
(0.1,0.11)  
+
(0.9,0.907)(0.95,1.0) (100,1.0)  
*** the next two lines are for the LT1256  
*EK K 0 TABLE {I(VOSC)/I(VOSFS)}= (–100,0)  
*+  
(0,0)  
(0.2,0.21)  
(100,1.0)  
(0.9,0.9)  
(1.0,1.0)  
RDUMMY  
RNOISE1 EN  
RNOISE2 EN  
K
0
0
0
1MEG  
200K  
200K  
*generates 40.7nV/rtHz  
*
*null circuit  
GNULL  
RN1  
VNULL  
RN2  
C6  
7
6A  
6A  
6B  
6
6A  
7
6B  
6
VALUE={I(VOSFS)}  
200  
0.0V  
400  
1PF  
7
*
*output stage  
E6 8A  
0
+VALUE={1.8MEG*(I(VOS1)*V(K)+I(VOS2)*(1–V(K))–I(VNULL)+0.10UA+0.0007*V(EN))}  
RG  
CG  
E8  
V8  
R8  
*
8A  
8B  
8C  
8C  
8D  
8B  
0
0
8D  
8
1.8MEG  
3.4PF  
8B  
0.0V  
11  
0
1.0  
*output swing and current limit  
DP  
VDP  
DN  
VDN  
.MODEL  
GCL  
*
8B  
8P  
8N  
8N  
D1  
8B  
8P  
9
8B  
7
D
0
D1  
–1.4V  
D1  
1.4V  
TABLE {I(V8)}=(–1,–1)(–0.04,0)(0.04,0)(1,1)  
*supply current  
GQ  
9
9
7
7
0
0
VALUE={1MA+24*I(VOSFS)+(V(7)–V(9))/20K}  
TABLE {I(V8)}=(–1,0)(0,0)(1,1)  
TABLE {I(V8)}=(–1,–1)(0,0)(1,0)  
GCC  
GEE  
*
.ENDS LT1251  
21  
LT1251/LT1256  
W
W
ACRO ODEL  
LT1251/LT1256 Macro Model for PSpice  
PIN # IN  
NODE # IN  
K GENERATOR  
NOISE GENERATOR  
FIRST INPUT STAGE  
R1  
27Ω  
2
V
OS1  
2A  
K
EN  
1
I
RI  
C1  
1.5pF  
B1  
C2  
1pF  
1
2B  
R
R
R
NOISE2  
200k  
E1  
DUMMY  
NOISE1  
500nA  
E
K
17M  
1M  
200k  
NULL CIRCUIT  
SECOND INPUT STAGE  
R2  
27Ω  
13  
V
OS2  
R
13A  
N2  
V
NULL  
6A  
400Ω  
14  
6
I
RI  
C13  
1pF  
C14  
1.5pF  
B2  
2
13B  
E2  
R
450nA  
N1  
17M  
6B  
C6  
G
NULL  
200Ω  
1pF  
7
CONTROL AMP  
SUPPLY CURRENTS  
R3  
1.6k  
R
C
4
V
OSC  
3A  
3B  
5k  
3
9
7
5
9
7
I
RI  
C
C3  
1pF  
C
BWC  
10pF  
BC  
C4  
1pF  
C5  
1pF  
E
C
G
Q
G
EE  
G
–300nA  
100M  
CC  
1251/56 MM  
FULL SCALE AMP  
R12  
1.6k  
11  
R
FS  
5k  
V
OSFS  
12A  
12B  
12  
10  
I
RI  
FS  
100M  
C12  
1pF  
C
BWFS  
10pF  
BFS  
C11  
1pF  
C10  
1pF  
E
FS  
–300nA  
OUTPUT STAGE AND VOLTAGE SWING/CURRENT LIMIT  
R8  
11Ω  
R
G
V8  
8D  
8B  
8A  
8C  
1.8M  
8
D
D
N
P
C
G
8P  
8N  
3.4pF  
V
DP  
V
DN  
G
E6  
E8  
CL  
9
7
22  
LT1251/LT1256  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
14  
13  
12  
11  
10  
9
8
0.015  
(0.380)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
1
2
3
5
6
7
4
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
(
)
–0.381  
N14 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
14  
13  
12  
11  
10  
9
8
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
0.150 – 0.157**  
(5.791 – 6.197)  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
S14 0695  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1251/LT1256  
U
TYPICAL APPLICATIONS  
4-Quadrant Multiplier as a Double-Sideband Suppressed-Carrier Modulator  
Modulation Gain vs Control Voltage  
1.0  
0.8  
V
V
= ±5V  
FS  
S
= 2.5V  
LT1256  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
0.6  
+
+
R
G1  
1
0.4  
2
1.5k  
MODULATION  
0.2  
CONTROL  
1MHz  
CARRIER  
0
+
+
I
FS  
I
C
FS  
5k  
C
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.1µF  
10k*  
R
R
F1  
1.5k  
F2  
1.5k  
5k  
+
V
10k  
8
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
CONTROL VOLTAGE, PIN 3 (V)  
V
OUT  
2.5VDC  
INPUT  
1251/56 TA04b  
1251/56 TA04a  
0.1µF  
*TRIM FOR SYMMETRY  
Soft Clipper  
1.5k  
VIN  
LT1256  
2
1
+
1
2
8
V
OUT  
9
+
14  
13  
+
V
V
IN  
7
V
VOUT  
V
R
R
V
FS  
C
C
FS  
3
5
10 12  
2.5VDC  
INPUT  
1N914  
1N914  
VFS = 2.5V  
S = ±5V  
f = 1kHz  
V
200pF  
5k 1k  
1251/56 TA10b  
1.5k  
1251/56 TA10a  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1228  
100MHz Current Feedback Amplifier with DC Gain Control  
Low Cost Video Amplifier  
Includes a 75MHz Transconductance Amplifier  
100MHz Bandwidth  
LT1252  
LT1253/LT1254  
LT1259/LT1260  
Low Cost Dual and Quad Video Amplifiers  
90 MHz Bandwidth  
Low Cost Dual and Triple 130MHz Current Feedback  
Amplifiers with Shutdown  
Makes Fast Video MUX  
LT/GP 0896 REV A 5K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1994  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1259

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259CN

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259CN14

IC DUAL OP-AMP, 10000 uV OFFSET-MAX, 130 MHz BAND WIDTH, PDIP14, Operational Amplifier
Linear

LT1259CS

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259CS#PBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1259CS#TRPBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1259CS14

IC DUAL OP-AMP, 10000 uV OFFSET-MAX, 130 MHz BAND WIDTH, PDSO14, Operational Amplifier
Linear

LT1259IN

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259IN#PBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: PDIP; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1259IS

Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown
Linear

LT1259IS#PBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1259IS#TRPBF

LT1259 - Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear