LT1300CS8#TR [Linear]

LT1300 - Micropower High Efficiency 3.3/5V Step-Up DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1300CS8#TR
型号: LT1300CS8#TR
厂家: Linear    Linear
描述:

LT1300 - Micropower High Efficiency 3.3/5V Step-Up DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总8页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1300  
Micropower High Efficiency  
3.3/5V Step-Up DC/DC Converter  
U
DESCRIPTION  
FEATURES  
Up to 220mA Output Current at 5V from 2V Supply  
Supply Voltage as Low as 1.8V  
Up to 88% Efficiency  
TheLT1300isamicropowerstep-upDC/DCconverterthat  
utilizes Burst Mode™ operation. The device can deliver 5V  
or 3.3V from a two-cell battery input. It features program-  
mable 5V or 3.3V output via a logic-controlled input, no-  
loadquiescentcurrentof120µAandashutdownpinwhich  
reducessupplycurrentto10µA.Theon-chippowerswitch  
has a low 170mV saturation voltage at a switch current of  
1A, a four-fold reduction over prior designs. A 155kHz  
internal oscillator allows the use of extremely small sur-  
facemountinductorsandcapacitors.Operationisguaran-  
teedat1.8Vinput. Thisallowsmoreenergytobeextracted  
from the battery increasing operating life. The ILIM pin can  
be used to program peak switch current with a single  
resistor allowing the use of less expensive and smaller  
inductors and capacitors in lighter load applications. The  
LT1300isavailableinan8-leadSOICpackage, minimizing  
board space requirements. For a 5V/12V Selectable Out-  
put Converter see the LT1301. For increased output cur-  
rent see the LT1302.  
Small Inductor –10µH  
120µA Quiescent Current  
Shutdown to 10µA  
Programmable 3.3V or 5V Output  
ILIM Pin Programs Peak Switch Current  
Low VCESAT Switch: 170mV at 1A Typical  
Uses Inexpensive Surface Mount Inductors  
8-Lead DIP or SOIC Package  
U
APPLICATIONS  
Palmtop Computers  
Portable Instruments  
Bar-Code Scanners  
DC/DC Converter Module Replacements  
Battery Backup Supplies  
Personal Digital Assistants  
Burst Mode is a trademark of Linear Technology Corporation.  
PCMCIA Cards  
U
TYPICAL APPLICATIONS N  
Two-Cell to 3.3V/5V Step-Up Converter  
5V Output Efficiency  
L1  
10µH  
D1  
5V/3.3V  
OUTPUT  
90  
88  
6
7
SW  
V
IN  
V
= 4.0V  
IN  
4
5
2
3
5V/3.3V  
SELECT  
C1  
100µF  
SELECT  
SENSE  
86  
84  
82  
80  
78  
76  
74  
2×  
AA  
CELL  
+
V
V
= 3.0V  
= 2.5V  
IN  
IN  
LT1300  
+
C1  
100µF  
SHDN  
N/C  
SHUTDOWN  
I
LIM  
V
= 2.0V  
PGND  
8
GND  
1
IN  
LT1300 TA1  
L1 = COILCRAFT DO1608-103  
OR SUMIDA CD54-100  
1
10  
100  
500  
C1 = AVX TPSD107M010R0100  
OR SANYO OS-CON 16SA100M  
LOAD CURRENT (mA)  
LT1300 TA2  
D1 =MBRS130LT3  
OR 1N5817  
1
LT1300  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
VIN Voltage .............................................................. 10V  
SW1 Voltage ............................................................ 20V  
Sense Voltage .......................................................... 10V  
SHUTDOWN Voltage................................................ 10V  
SELECT Voltage ....................................................... 10V  
ORDER PART  
TOP VIEW  
NUMBER  
GND  
SEL  
1
2
3
4
PGND  
SW  
8
7
6
5
LT1300CN8  
LT1300CS8  
SHDN  
SENSE  
V
IN  
I
LIM  
I
LIM Voltage ............................................................ 0.5V  
N8 PACKAGE  
S8 PACKAGE  
Maximum Power Dissipation ............................. 500mW  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
8-LEAD PLASTIC DIP  
S8 PART MARKING  
1300  
8-LEAD PLASTIC SOIC  
TJMAX = 100°C, θJA = 150°C/ W  
Consult factory for Industrial grade parts.  
ELECTRICAL CHARACTERISTICS TA = 25°C, VIN = 2V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
V
V
= 0.5V, V = 5V, V = 5.5V  
SENSE  
= 1.8V  
120  
7
200  
15  
µA  
µA  
Q
SHDN  
SHDN  
SEL  
V
V
Input Voltage Range  
Output Sense Voltage  
1.8  
2.0  
4.80  
3.15  
V
V
V
V
IN  
V
V
= 5V  
= 0V  
5.0  
3.3  
5.20  
3.45  
OUT  
SEL  
SEL  
Output Referred  
Comparator Hysteresis  
V
V
= 5V (Note 1)  
= 0V (Note 1)  
22  
14  
50  
35  
mV  
mV  
SEL  
SEL  
Oscillator Frequency  
Oscillator TC  
Maximum Duty Cycle  
Switch On Time  
Current Limit not Asserted. See Test Circuit.  
120  
75  
155  
0.2  
86  
185  
kHz  
%/°C  
%
DC  
95  
t
Current Limit not Asserted.  
5.6  
µs  
ON  
Output Line Regulation  
Switch Saturation Voltage  
Switch Leakage Current  
1.8V < V < 6V  
0.06  
130  
0.1  
0.15  
200  
10  
%/V  
mV  
µA  
IN  
V
I
= 700mA  
SW  
CESAT  
V
= 5V, Switch Off  
SW  
Peak Switch Current  
(Internal Trip Point)  
Shutdown Pin High  
Shutdown Pin Low  
Select Pin High  
I
I
Floating (See Typical Application)  
Grounded  
0.75  
1.8  
1.0  
0.4  
1.25  
A
A
V
V
V
V
µA  
µA  
µA  
LIM  
LIM  
V
V
V
V
SHDNH  
SHDNL  
SELH  
0.5  
1.5  
Select Pin Low  
Shutdown Pin Bias Current  
0.8  
20  
SELL  
I
V
V
V
= 5V  
= 2V  
= 0V  
9
3
0.1  
SHDN  
SHDN  
SHDN  
SHDN  
1
3
I
Select Pin Bias Current  
0V < V  
< 5V  
1
µA  
SEL  
SEL  
The  
denotes specifications which apply over the 0°C to 70°C  
Note 1: Hysteresis specified is DC. Output ripple may be higher if  
output capacitance is insufficient or capacitor ESR is excessive. See  
applications section.  
temperature range.  
2
LT1300  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Total Quiescent Current  
in Shutdown  
Efficiency  
No-Load Battery Current  
88  
86  
170  
165  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
OUT  
L = 10µH  
V
= 5V  
OUT  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
160  
155  
V
= 3V  
IN  
V
= 2.5V  
IN  
150  
145  
V
= 2V  
IN  
V
= 3.3V  
OUT  
140  
135  
130  
125  
120  
1
10  
100  
1000  
4
5
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4  
0
1
2
3
6
7
8
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1300 G1  
LT1300 G2  
LT1300 G3  
Maximum Output Current  
vs Input Voltage  
Shutdown Pin Bias Current  
VCESAT vs ISW  
20  
18  
16  
14  
12  
10  
8
700  
600  
250  
V
LIM  
= 5V,  
OUT  
T
= 25°C  
A
225  
I
FLOATING  
200  
175  
L = 22µH  
500  
COILCRAFT  
DO3316-223  
150  
125  
L = 10µH  
400  
300  
200  
COILCRAFT  
DO1608-103  
100  
75  
6
4
50  
25  
0
100  
0
2
0
0
4
6
7
2
3.5  
4.5  
1
2
3
5
8
1.5  
2.5  
3
4
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
SWITCH CURRENT (A)  
1
SHUTDOWN VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1300 G4  
LT1300 G6  
LT1300 G5  
Maximum Output Current  
vs Input Voltage  
Transient Response  
VIN = 2V, VOUT = 5V  
Startup Response  
900  
800  
700  
600  
500  
400  
300  
200  
100  
V
I
= 3.3V  
OUT  
FLOATING  
VOUT  
100mV/DIV  
LIM  
VOUT  
1V/DIV  
AC COUPLED  
L = 10µH  
200mA  
ILOAD  
VSHDN  
10V/DIV  
0
500µs/DIV  
200µs/DIV  
LT1300 G9  
LT1300 G8  
VOUT = 5V  
RLOAD = 20Ω  
0
1.5  
3
3.5  
2
2.5  
INPUT VOLTAGE (V)  
LT1300 G7  
3
LT1300  
U
U
U
PIN FUNCTIONS  
GND (Pin 1): Signal Ground.  
VIN (Pin 6): Supply Pin. Must be bypassed with a large  
value electrolytic to ground. A 0.1µF ceramic capacitor  
close to the pin may be needed in some cases.  
Sel (Pin 2): Output Select. When tied to VIN or VOUT  
converter regulates at 5V. When grounded converter  
regulates at 3.3V.  
SW (Pin 7): Switch Pin. Connect inductor and diode here.  
Keep layout short and direct to minimize electronic radia-  
tion.  
SHDN(Pin3):Shutdown. Pullhightoeffectshutdown.Tie  
to ground for normal operation.  
PGND (Pin 8): Power Ground. Tie to signal ground (pin 1)  
under the package. Bypass capacitor from VIN should be  
tied directly to the pin.  
Sense (Pin 4): “Output” Pin.  
ILIM (Pin5):Floatfor1Aswitchcurrentlimit. Tietoground  
for approximately 400mA. A resistor between ILIM and  
ground sets peak current to some intermediate value (see  
Figure 5).  
W
BLOCK DIAGRAM  
D1  
V
IN  
L1  
V
OUT  
+
+
C2  
C1  
SENSE  
V
IN  
SW  
4
2
7
18mV  
A2 CURRENT  
COMPARATOR  
R1  
3Ω  
+
R2  
730Ω  
500k  
A1  
OFF  
COMPARATOR  
+
1.25V  
REFERENCE  
ENABLE OSCILLATOR  
155kHZ  
A3 DRIVER  
BIAS  
Q1  
160x  
Q2  
1x  
144k  
161k  
Q3  
8.5k  
SHUTDOWN  
3
GND  
SELECT  
PGND  
8
I
LIM  
1
2
5
LT1300 F1  
Figure 1.  
4
LT1300  
TEST CIRCUITS  
Oscillator Test Circuit  
5V  
2V  
100Ω  
V
IN  
I
L
SEL  
SW  
f
OUT  
100µF  
LT1300  
SHDN  
PGND  
SENSE  
GND  
U
OPERATION  
OperationoftheLT1300isbestunderstoodbyreferringto  
the Block Diagram in Figure 1. When A1’s negative input,  
related to the Sense pin voltage by the appropriate resis-  
tor-dividerratio,ishigherthatthe1.25Vreferencevoltage,  
A1’s output is low. A2, A3 and the oscillator are turned off,  
drawing no current. Only the reference and A1 consume  
current, typically 120µA. When the voltage at A1’s nega-  
tive input decreases below 1.25V, overcoming A1’s 6mV  
hysteresis, A1’s output goes high, enabling the oscillator,  
current comparator A2, and driver A3. Quiescent current  
increases to 2mA as the device prepares for high current  
switching. Q1 then turns on in a controlled saturation for  
(nominally) 5.3µs or until current comparator A2 trips,  
whichevercomesfirst.Afterafixedoff-timeof(nominally)  
1.2µs, Q1 turns on again. The LT1300’s switching causes  
current to alternately build up in L1 and dump into capaci-  
tor C2 via D1, increasing the output voltage. When the  
output is high enough to cause A1’s output to go to low,  
switching action ceases. C2 is left to supply current to the  
load until VOUT decreases enough to force A1’s output  
high, and the entire cycle repeats.  
TRACE A  
500mA/DIV  
ILIM PIN  
OPEN  
TRACE B  
500mA/DIV  
ILIM PIN  
GROUNDED  
20µs/DIV  
LT1300 F2  
Figure 2. Switch Pin Current With ILIM Floating or Grounded  
reduced by tying the ILIM pin to ground, causing 15µA to  
flow through R2 into Q3’s collector. Q3’s current causes  
a 10.4mV drop in R2 so that only an additional 7.6mV is  
required across R1 to turn off the switch. This corre-  
sponds to a 400mA switch current as shown in Figure 2,  
trace B. The reduced peak switch current reduces I2R  
loses in Q1, L1, C1 and D1. Efficiency can be increased by  
doing this provided that the accompanying reduction in  
fullloadoutputcurrentisacceptable. Lowerpeakcurrents  
also extend alkaline battery life due to the alkaline cell’s  
highinternalimpedance. Typicaloperatingwaveformsare  
shown in Figure 3.  
Ifswitchcurrentreaches1A, causingA2totrip, switchon-  
timeisreducedandoff-timeincreasesslightly.Thisallows  
continuous mode operation during bursts. Current com-  
parator A2 monitors the voltage across 3resistor R1  
which is directly related to inductor L1’s current. Q2’s  
collector current is set by the emitter-area ratio to 0.6%  
of Q1’s collector current. When R1’svoltage drop exceeds  
18mV, corresponding to 1A inductor current, A2’s output  
goes high, truncating the on-time portion of the oscillator  
cycle and increasing off-time to about 2µs as shown in  
Figure 2, trace A. This programmed peak current can be  
VOUT  
20mV/DIV  
AC COUPLED  
VSW  
5V/DIV  
ISW  
IA/DIV  
20µS/DIV  
LT1300 F2  
Figure 3. Burst Mode Operation in Action  
5
LT1300  
U
W U U  
APPLICATIONS INFORMATION  
Output Voltage Selection  
L1  
10µH  
D1  
The LT1300 can be selected to 3.3V or 5V under logic  
control or fixed at either by tying SELECT to ground or VIN  
respectively. It is permissible to tie SELECT to a voltage  
higher than VIN as long as it does not exceed 10V.  
Efficiencyin3.3Vmodewillbeslightlylessthatin5Vmode  
due to the fact that the diode drop is a greater percentage  
of 3.3V than 5V. Since the bipolar switch in the LT1300  
gets its base drive from VIN, no reduction in switch  
efficiency occurs when in 3.3V mode. When VIN exceeds  
the programmed output voltage the output will follow the  
input. This is characteristic of the simple step-up or  
“boost” converter topology. A circuit example that pro-  
vides a regulated output with an input voltage above or  
below the output (called a buck-boost or SEPIC) is shown  
in the Typical Applications section.  
SW  
V
IN  
5V/3.3V  
OUTPUT  
SELECT  
SENSE  
+
C1  
100µF  
LT1300  
+
C2  
100µF  
SHDN  
PGND  
I
LIM  
GND  
C3  
0.1µF  
R1  
1M  
Figure 4. Addition of R1 and C3 Limit Input Current at Startup  
VOUT  
2VDIV  
Shutdown  
IBATTERY  
500mA/DIV  
The converter can be turned off by pulling SHDN (pin 3)  
high. Quiescent current drops to 10µA in this condition.  
Bias current of 3µA to 5µA flows into the pin (at 2.5V input).  
It is recommended that SHDN not be left floating. Tie the  
pin to ground if the feature is not used.  
VSHDN  
10V/DIV  
500µs/DIV  
REP RATE = 1Hz  
LT1300 F5  
Figure 5. Startup Waveforms using Soft-Start Circuitry  
ILOAD = 100mA, VOUT = 5V  
ILIM Function  
The LT1300’s current limit (ILIM) pin can be used for soft  
start. Upon start-up, switching regulators require maxi-  
mum current from the supply. The high currents flowing  
can create IR drops along supply and ground lines and  
are especially demanding on alkaline batteries. By in-  
stalling an R1 and C3 as shown in Figure 4, the switch  
current in the LT1300 is limited to 400mA until the 15µA  
flowing out of the ILIM pin charges up the 0.1µF capaci-  
tor. Input current is held to under 500mA while the  
output voltage ramps up to 5V as shown in Figure 5. The  
1Meg resistor provides a discharge path for the capacitor  
withoutappreciablydecreasingpeakswitchcurrent.When  
the full capability of the LT1300 is not required, peak  
current can be reduced by changing the value of R3 as  
shown in Figure 6. With R3 = 0, switch current is limited  
to approximately 400mA.  
1100  
1.6V V 5V  
IN  
1000  
900  
800  
700  
600  
500  
400  
300  
100  
1k  
10k  
()  
100k  
1M  
R
LIM  
LT1300 F1B  
Figure 6. Peak Switch Current vs. RLIM  
6
LT1300  
U
W U U  
APPLICATIONS INFORMATION  
Table 1. Recommended Inductors  
EFFICIENCY 2.5V , 5V  
IN  
OUT  
COMPONENT  
HEIGHT (mm)  
PART NUMBER  
DO1608-103  
DO3316-223  
DO1608-223  
CTX10-1  
CTX20-1  
LQH3C2204K0M00 Murata-Frie  
CD54-100M  
VENDOR  
Coilcraft  
Coilcraft  
Coilcraft  
Coiltronics  
Coiltronics  
L (  
µ
H)  
DCR ()  
0.11  
0.050  
0.31  
0.038  
0.175  
0.7  
0.11  
0.38  
0.17  
0.038  
I
PIN  
50mA LOAD  
200mA LOAD  
PHONE NUMBER  
LIM  
10  
22  
22  
10  
20  
22  
10  
22  
10  
10  
Float  
Float  
83  
85  
85  
85  
86  
81  
85  
84  
81  
85  
83  
85  
85  
85  
82  
86  
3.5  
5.5  
3.5  
4.2  
4.2  
2.0  
4.5  
3.0  
(708) 639–6400  
Ground  
Float  
Ground  
Ground  
Float  
Ground  
Float  
Float  
(407) 241–7876  
(404) 436–1300  
(708) 956–0666  
Sumida  
Sumida  
Sumida  
Gowanda  
CDRH62-220M  
CDRH62-100M  
GA10-102K  
3.0  
6.6 Through-Hole  
(716) 532–2234  
Table 2. Recommended Capacitors  
Inductor Selection  
VENDOR  
AVX  
Sanyo  
SERIES  
TPS  
OS-CON  
HFQ  
TYPE  
PHONE#  
For full output power, the inductor should have a satura-  
tion current rating of 1.25A for worst-case current limit,  
although it is acceptable to bias an inductor 20% or more  
into saturation. Smaller inductors can be used in conjunc-  
tion with the ILIM pin. Efficiency is significantly affected by  
inductor DCR. For best efficiency limit the DCR to 0.03Ω  
or less. Toroidal types are preferred in some cases due to  
their closed design and inherent EMI/RFI superiority.  
Recommended inductors are listed in Table 1.  
Surface Mount  
Through-Hole  
Through-Hole  
(803)448–9411  
(619) 661–6835  
(201) 348–5200  
Panasonic  
Diode Selection  
Best performance is obtained with a Schottky rectifier  
diode such as the 1N5817. Phillips Components makes  
this in surface mount as the PRLL5817. Motorola makes  
the MBRS130LT3 which is slightly better and also in  
surface mount. For lower output power a 1N4148 can be  
used although efficiency will suffer substantially.  
Capacitor Selection  
LowESRcapacitorsarerequiredforbothinputandoutput  
of the LT1300. ESR directly affects ripple voltage and  
efficiency. ForsurfacemountapplicationsAVXTPSseries  
tantalum capacitors are recommended. These have been  
specially designed for SMPS and have low ESR along with  
high surge current ratings. For through-hole application  
Sanyo OS-CON capacitors offer extremely low ESR in a  
small size. Again, if peak switch current is reduced using  
the ILIM pin, capacitor requirements can be relaxed and  
smaller, higher ESR units can be used. Low frequency  
output ripple can be reduced by adding multiple output  
capacitors. If capacitance is reduced, output ripple will  
increase. Suggested capacitor sources are listed in Table 2.  
Layout Considerations  
The LT1300 is a high speed, high current device. The input  
capacitor must be no more than 0.2" from VIN (pin 6) and  
ground. Connect the PGND and GND (pins 8 and 1)  
together under the package. Place the inductor adjacent to  
SW (pin 7) and make the switch pin trace as short as  
possible. This keeps radiated noise to a minimum.  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1300  
U
TYPICAL APPLICATIONS N  
Four-Cell to 5V/3.3V Up-Down Converter  
LCD Contrast Supply  
CONTRAST  
–4V TO –29V 12mA  
MAXIMUM FROM 1.8V SUPPLY  
(77% EFFICIENT)  
20mA MAXIMUM FROM  
3V SUPPLY (83% EFFICIENT)  
C2**  
L1*  
27µH  
V
100µF  
OUT  
2.5V V 8V  
IN  
V
IN  
1.8V TO 6V  
T1  
4
+
N/C  
7
3
1
L2*  
27µH  
22µF  
35V  
I
V
LIM  
IN  
1N5817  
150K  
4×  
5V/3.3V  
SELECT  
SW  
AA  
CELL  
+
8
2
10  
+
C1**  
100µF  
LT1300  
5V/3.3V  
9
1N5819  
220mA  
SHDN  
GND  
SENSE  
PGND  
SHUTDOWN  
80% EFFICIENT  
+
C3**  
100µF  
V
SW  
IN  
N/C SENSE  
SHUTDOWN  
SHDN  
+
*L1, L2 = GOWANDA GA20-272K  
COILCRAFT DO3316-273K  
SUMIDA CD73-270K  
LT1300  
100µF  
N/C  
I
SELECT  
PGND  
LIM  
**C1, C2, C3 = SANYO OS-CON 16SA100M  
LT1300 TA3  
GND  
12K  
12K  
+
Step-Up Converter with Automatic Output Disconnect  
T1 = DALE LPE-5047-AO45 (605) 665-9301  
2.2µF  
470Ω  
PWM IN  
0% TO 100%  
CMOS DRIVE 0V TO 5V  
L1*  
10µH  
2N4403  
1N5817  
LT1300 TA6  
5V, 200mA  
+
SELECT  
SHDN  
V
IN  
2×  
100µF  
AA  
SHUTDOWN  
100µF  
SW  
CELL  
+
LT1300  
I
NC  
SENSE  
PGND  
LIM  
GND  
0.1µF  
*SUMIDA CD54-100LC  
COILCRAFT DO3316-223  
LT1300 TA5  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
0.045 – 0.065  
0.300 – 0.320  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
8
7
6
5
4
N8 Package  
8-Lead Plastic DIP  
0.065  
(1.651)  
TYP  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
1
2
3
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
S8 Package  
8-Lead Plastic S0IC  
0.150 – 0.  
(3.810 – 3.  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
1
2
3
4
LT/GP 0394 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1300CS8#TRPBF

LT1300 - Micropower High Efficiency 3.3/5V Step-Up DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1300CS8-3.3

1 A SWITCHING REGULATOR, PDSO8
Linear

LT1301

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301C

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301CN8

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301CN8#PBF

暂无描述
Linear

LT1301CN8-12

IC 1 A SWITCHING REGULATOR, PDIP8, PLASTIC, DIP-8, Switching Regulator or Controller
Linear

LT1301CN8-5

IC 1 A SWITCHING REGULATOR, PDIP8, PLASTIC, DIP-8, Switching Regulator or Controller
Linear

LT1301CS8

Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory
Linear

LT1301CS8#PBF

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1301CS8#TR

LT1301 - Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1301CS8-12

IC 1 A SWITCHING REGULATOR, PDSO8, 0.150 INCH, PLASTIC, SO-8, Switching Regulator or Controller
Linear