LT1304CS8-5#PBF [Linear]

LT1304 - Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1304CS8-5#PBF
型号: LT1304CS8-5#PBF
厂家: Linear    Linear
描述:

LT1304 - Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

电池 开关 光电二极管
文件: 总16页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1304/LT1304-3.3/LT1304-5  
Micropower  
DC/DC Converters with  
Low-Battery Detector  
Active in Shutdown  
U
DESCRIPTION  
FEATURES  
The LT®1304 is a micropower step-up DC/DC converter  
ideal for use in small, low voltage, battery-operated sys-  
tems. The devices operate from a wide input supply range  
of 1.5V to 8V. The LT1304-3.3 and LT1304-5 generate  
regulated outputs of 3.3V and 5V and the adjustable  
LT1304 can deliver output voltages up to 25V. Quiescent  
current, 120µA in active mode, decreases to just 10µA in  
shutdown with the low-battery detector still active. Peak  
switch current, internally set at 1A, can be reduced by  
adding a single resistor from the ILIM pin to ground. The  
high speed operation of the LT1304 allows the use of  
small, surface-mountable inductors and capacitors. The  
LT1304 is available in an 8-lead SO package.  
5V at 200mA from Two Cells  
10µA Quiescent Current in Shutdown  
Operates with VIN as Low as 1.5V  
Low-Battery Detector Active in Shutdown  
Low Switch VCESAT: 370mV at 1A Typical  
120µA Quiescent Current in Active Mode  
Switching Frequency Up to 300kHz  
Programmable Peak Current with One Resistor  
8-Lead SO Package  
U
APPLICATIONS  
2-, 3-, or 4-Cell to 5V or 3.3V Step-Up  
Portable Instruments  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Bar Code Scanners  
Palmtop Computers  
Diagnostic Medical Instrumentation  
Personal Data Communicators/Computers  
U
TYPICAL APPLICATION  
2-Cell to 5V Step-Up Converter with Low-Battery Detect  
Efficiency  
D1**  
22µH*  
90  
80  
3
4
499k  
V
SW  
SENSE  
LT1304-5  
IN  
8
2
1
6
5V  
LBI  
200mA  
+
+
100k  
100µF  
70  
60  
50  
40  
100µF  
2 CELLS  
604k  
NC  
LBO  
I
LBO  
GND  
5
LIM  
LOW WHEN  
SHDN  
7
V
BAT  
< 2.2V  
V
IN  
V
IN  
V
IN  
= 3.3V  
= 2.5V  
= 1.8V  
SHUTDOWN  
*SUMIDA CD54-220  
**1N5817  
1304 TA01  
0.1  
1
10  
100  
500  
LOAD CURRENT (mA)  
1304 TA02  
1
LT1304/LT1304-3.3/LT1304-5  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
VIN Voltage ................................................................ 8V  
SW Voltage ............................................... 0.4V to 25V  
FB Voltage (LT1304)...................................... VIN + 0.3V  
Sense Voltage (LT1304-3.3/LT1304-5) ..................... 8V  
ORDER PART  
NUMBER  
TOP VIEW  
LT1304CS8  
LT1304CS8-3.3  
LT1304CS8-5  
LBI  
1
2
3
4
FB (SENSE)*  
SHDN  
8
7
6
5
ILIM Voltage .............................................................. 5V  
LBO  
SHDN Voltage ............................................................ 6V  
LBI Voltage ............................................................... VIN  
LBO Voltage............................................................... 8V  
Maximum Power Dissipation ............................. 500mW  
Junction Temperature.......................................... 125°C  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V
IN  
I
LIM  
SW  
GND  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
*FIXED OUTPUT VERSION  
1304  
13043  
13045  
TJMAX = 125°C, θJA = 150°C/W  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VIN = 2V, VSHDN = 2V unless otherwise noted.  
MIN  
PARAMETER  
CONDITIONS  
TYP  
MAX  
1.65  
8
UNITS  
Minimum Operating Voltage  
Operating Voltage Range  
Quiescent Current  
1.5  
V
V
V
SHDN  
= 2V, Not Switching  
120  
200  
µA  
Quiescent Current in Shutdown  
V
SHDN  
V
SHDN  
= 0V, V = 2V  
7
27  
15  
50  
µA  
µA  
IN  
= 0V, V = 5V  
IN  
Comparator Trip Point  
FB Pin Bias Current  
LT1304  
LT1304  
1.22  
1.24  
10  
1.26  
25  
1
V
nA  
µA  
Sense Pin Leakage in Shutdown  
Output Sense Voltage  
V
SHDN  
= 0V, Fixed Output Versions  
0.002  
LT1304-3.3  
LT1304-5  
3.17  
4.80  
3.3  
5.05  
3.43  
5.25  
V
V
Line Regulation  
1.8V V 8V  
0.04  
1.17  
6
0.15  
1.25  
20  
%/V  
V
IN  
LBI Input Threshold  
LBI Bias Current  
Falling Edge  
1.10  
nA  
mV  
V
LBI Input Hysteresis  
LBO Output Voltage Low  
LBO Output Leakage Current  
35  
65  
I
= 500µA  
0.2  
0.01  
0.4  
0.1  
SINK  
LBI = 1.5V, LBO = 5V  
µA  
SHDN Input Voltage High  
SHDN Input Voltage Low  
1.4  
V
V
0.4  
8
SHDN Pin Bias Current  
V
V
= 5V  
= 0V  
5
µA  
µA  
SHDN  
SHDN  
–5  
1
–2  
Switch OFF Time  
1.5  
6
2
8
µs  
µs  
%
Switch ON Time  
Current Limit Not Asserted  
Current Limit Not Asserted  
4
Maximum Duty Cycle  
Peak Switch Current  
76  
0.8  
80  
88  
1.2  
I
Pin Open, V = 5V  
1
500  
A
mA  
LIM  
IN  
20k from I to GND  
LIM  
2
LT1304/LT1304-3.3/LT1304-5  
ELECTRICAL CHARACTERISTICS VIN = 2V, VSHDN = 2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switch Saturation Voltage  
I
I
= 1A  
0.37  
0.26  
V
V
SW  
SW  
= 700mA  
0.35  
7
Switch Leakage  
Switch Off, V = 5V  
0.01  
µA  
SW  
The  
denotes specifications which apply over the 0°C to 70°C operating  
temperature range.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Saturation Voltage  
Peak Switch Current Limit  
On- and Off-Times  
500  
400  
300  
200  
100  
0
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
MAXIMUM ON-TIME  
OFF-TIME  
75  
0
0.4  
0.6  
0.8  
1.0  
1.2  
–50  
–25  
0
25  
50  
100  
0.2  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
TEMPERATURE (°C)  
1304 G01  
1304 G02  
1304 G03  
Supply Current  
Feedback Pin Bias Current  
Feedback Voltage  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
300  
250  
200  
150  
100  
50  
20  
18  
T
A
= 25°C  
16  
14  
12  
V
SHDN  
= V  
IN  
NOT SWITCHING  
10  
8
6
4
2
0
V
= 0V  
4
SHDN  
0
–50  
0
25  
50  
75  
100  
0
1
2
3
5
6
7
8
–25  
–50 –25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1304 G04  
1304 G06  
1304 G05  
3
LT1304/LT1304-3.3/LT1304-5  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Burst ModeTM Operation  
Load Transient Response  
VOUT  
100mV/DIV  
VOUT  
100mV/DIV  
AC COUPLED  
AC COUPLED  
VSW  
5V/DIV  
ILOAD  
200mA  
0
IL  
500mA/DIV  
100µs/DIV  
1304 G07  
20µs/DIV  
1304 G08  
VIN = 2.5V  
OUT = 5V  
LOAD = 185mA  
L = 22µH  
V
I
Burst Mode is a trademark of Linear Technology Corporation.  
U
U
U
PIN FUNCTIONS  
ILIM (Pin6):CurrentLimitSetPin. Floatfor1Apeakswitch  
current; a resistor to ground will lower peak current.  
LBI (Pin 1): Low-Battery Detector Input. When voltage on  
this pin is less than 1.17V, detector output is low.  
SHDN (Pin 7): Shutdown Input. When low, switching  
regulator is turned off. The low-battery detector remains  
active. The SHDNinput should not be left floating. IfSHDN  
is not used, tie the pin to VIN.  
LBO (Pin 2): Low-Battery Detector Output. Open collector  
cansinkupto500µA. Low-batterydetectorremainsactive  
when device is shut down.  
VIN (Pin 3): Input Supply. Must be bypassed close (<0.2")  
FB/SENSE (Pin 8): On the LT1304 (adjustable) this pin  
goes to the comparator input. On the fixed-output ver-  
sions, the pin connects to the resistor divider which sets  
output voltage. The divider is disconnected from the pin  
during shutdown.  
to the pin. See required layout in the Typical Applications.  
SW(Pin4):CollectorofPowerNPN.Keepcoppertraceson  
this pin short and direct to minimize RFI.  
GND (Pin 5): Device Ground. Must be low impedance;  
solder directly to ground plane.  
4
LT1304/LT1304-3.3/LT1304-5  
W
BLOCK DIAGRA S  
V
IN  
V
OUT  
L1  
+
+
D1  
C1  
C2  
V
IN  
LB0  
SW  
2
3
4
1.5V  
UNDERVOLTAGE  
LOCKOUT  
36mV  
LBI  
1
+
+
R1  
7.2Ω  
R2  
1k  
A2  
A3  
1.17V  
BIAS  
~1V  
Q3  
OFF  
R3  
R4  
FB  
1k  
8
TIMERS  
ENABLE  
Q1  
×200  
6µs ON  
A1  
Q2  
×1  
1.5µs OFF  
+
DRIVER  
1.24V  
V
REF  
SHUTDOWN  
SHDN  
7
I
GND  
LIM  
6
5
1304 F01  
Figure 1. LT1304 Block Diagram. Independent Low-Battery Detector A3 Remains Alive When Device Is in Shutdown  
V
IN  
3
LBI  
1
LB0  
2
SW  
4
1.5V  
UNDERVOLTAGE  
LOCKOUT  
36mV  
SENSE  
8
+
+
R1  
7.2Ω  
R2  
1k  
A2  
A3  
1.17V  
BIAS  
~1V  
Q3  
OFF  
590k  
R1  
1k  
TIMERS  
ENABLE  
Q1  
×200  
6µs ON  
A1  
Q2  
×1  
1.5µs OFF  
+
DRIVER  
1.24V  
V
REF  
SHUTDOWN  
SHDN  
7
I
GND  
LIM  
6
5
1304 F02  
R1 = 355k (LT1304-3.3), 195k (LT1304-5)  
Figure 2. LT1304-3.3/LT1304-5 Block Diagram  
5
LT1304/LT1304-3.3/LT1304-5  
U
OPERATIO  
tion in efficiency. For the majority of 2-cell or 3-cell input  
LT1304 applications, a 22µH or 20µH inductor such as the  
SumidaCD54-220(drum)orCoiltronicsCTX20-1(toroid)  
will suffice. If switch current is reduced using the ILIM pin,  
smaller inductors such as the Sumida CD43 series or  
Coilcraft DO1608 series can be used. Minimizing DCR is  
important for best efficiency. Ideally, the inductor DCR  
should be less than 0.05, although the physical size of  
such an inductor makes its use prohibitive in many space  
conscious applications. If EMI is a concern, such as when  
sensitive analog circuitry is present, a toroidal inductor  
such as the Coiltronics CTX20-1 is suggested.  
The LT1304’s operation can best be understood by exam-  
ining the block diagram in Figure 1. Comparator A1  
monitors the output voltage via resistor divider string  
R3/R4 at the FB pin. When VFB is higher than the 1.24V  
reference, A2 and the timers are turned off. Only the  
reference, A1 and A3 consume current, typically 120µA.  
As VFB drops below 1.24V plus A1’s hysteresis (about  
6mV), A1 enables the rest of the circuit. Power switch Q1  
is then cycled on for 6µs, or until current comparator A2  
turns off the ON timer, whichever comes first. Off-time is  
fixed at approximately 1.5µs. Q1’s switching causes cur-  
rent to alternately build up in inductor L1 and discharge  
into output capacitor C2 via D1, increasing the output  
voltage. As VFB increases enough to overcome C1’s hys-  
teresis, switching action ceases. C2 is left to supply  
current to the load until VOUT decreases enough to force  
A1’s output high, and the entire cycle repeats.  
A special case exists where the VOUT/VIN differential is  
high, such as a 2V to 12V boost converter. If the required  
duty cycle for continuous mode operation is higher than  
the LT1304 can provide, the converter must be designed  
for discontinuous operation. This means that the inductor  
current decreases to zero during the switch OFF time. For  
a simple step-up (boost) converter, duty cycle can be  
calculated by the following formula:  
If switch current reaches 1A, causing A2 to trip, switch  
ON time is reduced. This allows continuous mode opera-  
tion during bursts. A2 monitors the voltage across 7.2Ω  
resistor R1, which is directly related to the switch current.  
Q2’s collector current is set by the emitter-area ratio to  
0.5% of Q1’s collector current. R1’s voltage drop exceeds  
36mV, corresponding to 1A switch current, A2’s output  
goes high, truncating the ON time part of the switch cycle.  
The 1A peak current can be reduced by tying a resistor  
between the ILIM pin and ground, causing a voltage drop  
to appear across R2. The drop offsets some of the 36mV  
reference voltage, lowering peak current. A 22k resistor  
limits current to approximately 550mA. A capacitor con-  
nected between ILIM and ground provides soft start. Shut-  
down is accomplished by grounding the SHDN pin.  
DC = 1 – [(VIN – VSAT)/(VOUT + VD)]  
where,  
VIN = Minimum input voltage  
VSAT = Switch saturation voltage (0.3V)  
VOUT = Output voltage  
VD = Diode forward voltage (0.4V)  
If the calculated duty cycle exceeds the minimum LT1304  
duty cycle of 76%, the converter should be designed for  
discontinuous mode operation. The inductance must be  
low enough so that current in the inductor reaches the  
peak current in a single cycle. Inductor value can be  
calculated by:  
The low-battery detector A3 has its own 1.17V reference  
andisalwayson.Theopencollectoroutputdevicecansink  
up to 500µA. Approximately 35mV of hysteresis is built  
into A3 to reduce “buzzing” as the battery voltage reaches  
the trip level.  
L = (VIN – VSAT)(tON/1A)  
where,  
tON = Minimum on-time of LT1304 (4µs)  
Inductor Selection  
One advantage of discontinuous mode operation is that  
inductor values are usually quite low so very small units  
can be used. Ripple current is higher than with continuous  
mode designs and efficiency will be somewhat less.  
Inductors used with the LT1304 must be capable of  
handling the worst-case peak switch current of 1.2A  
without saturating. Open flux rod or drum core units may  
be biased into saturation by 20% with only a small reduc-  
6
LT1304/LT1304-3.3/LT1304-5  
U
OPERATIO  
Table1listsinductorsuppliersalongwithappropriatepart  
numbers.  
ILIM Function  
The LT1304’s current limit (ILIM) pin can be used for soft  
start. Upon start-up, the LT1304 will draw maximum  
current (about 1A) from the supply to charge the output  
capacitor. Figure 3 shows VOUT and VIN waveforms as the  
device is turned on. The high current flow can create IR  
drops along supply and ground lines or cause the input  
supply to drop out momentarily. By adding R1 and C1 as  
shown in Figure 4, the switch current is initially limited to  
well under 1A as detailed in Figure 5. Current flowing into  
C1 from R1 and the ILIM pin will eventually charge C1 and  
R1 effectively takes C1 out of the circuit. R1 also provides  
a discharge path for C1 when SHUTDOWN is brought low  
for turn-off.  
Table 1. Recommended Inductors  
VENDOR  
Sumida  
Coiltronics  
Dale  
SERIES  
PHONE NUMBER  
(708) 956-0666  
(407) 241-7876  
(605) 665-9301  
(708) 639-6400  
CD54, CD43  
CTX20-1  
LPT4545  
Coilcraft  
DO3316, DO1608, DO3308  
Capacitor Selection  
LowESR(EquivalentSeriesResistance)capacitorsshould  
be used at the output of the LT1304 to minimize output  
ripple voltage. High quality input bypassing is also re-  
quired. For surface mount applications AVX TPS series  
tantalum capacitors are recommended. These have been  
specifically designed for switch mode power supplies and  
have low ESR along with high surge current ratings. A  
100µF, 10V AVX TPS surface mount capacitor typically  
limits output ripple voltage to 70mV when stepping up  
from 2V to 5V at a 200mA load. For through hole applica-  
tions Sanyo OS-CON capacitors offer extremely low ESR  
in a small package size. Again, if peak switch current is  
reduced using the ILIM pin, capacitor requirements can be  
eased and smaller, higher ESR units can be used. Sug-  
gested capacitor sources are listed in Table 2.  
VOUT  
2V/DIV  
IIN  
500mA/DIV  
VSHDN  
10V/DIV  
1ms/DIV  
1304 F03  
Figure 3. Start-Up Response. Input Current Rises Quickly to  
1A. VOUT Reaches 5V in Approximately 1ms. Output Drives  
20mA Load  
MBRS130L  
22µH*  
Table 2. Recommended Capacitors  
VENDOR  
AVX  
SERIES  
TPS  
TYPE  
PHONE NUMBER  
(803) 448-9411  
(619) 661-6835  
(603) 225-1961  
Surface Mount  
Through Hole  
Surface Mount  
V
SW  
IN  
5V  
200mA  
Sanyo  
OS-CON  
595D  
LBI  
SENSE  
+
Sprague  
LT1304-5  
100µF  
2 CELLS  
LB0  
GND  
SHDN  
+
I
LIM  
R1  
1M  
Diode Selection  
100µF  
Best performance is obtained with a Schottky rectifier  
such as the 1N5818. Motorola makes the MBRS130L  
Schottky which is slightly better than the 1N5818 and  
comes in a surface mount package. For lower switch  
currents, the MBR0530 is recommended. It comes in a  
verysmallSOD-123package. Multiple1N4148sinparallel  
can be used in a pinch, although efficiency will suffer.  
+
C1  
1µF  
SHUTDOWN  
*SUMIDA CD54-220  
1304 F04  
Figure 4. 2-Cell to 5V/200mA Boost Converter Takes Four  
External Parts. Components with Dashed Lines Are for  
Soft Start (Optional)  
7
LT1304/LT1304-3.3/LT1304-5  
U
OPERATIO  
If the full power capability of the LT1304 is not required, bypass capacitor is required. If the input supply is close to  
peakswitchcurrentcanbelimitedbyconnectingaresistor the IC, a 1µF ceramic capacitor can be used instead. The  
RLIM from the ILIM pin to ground. With RLIM = 22k, peak LT1304switchescurrentin1Apulses, soalowimpedance  
switchcurrentisreducedtoapproximately500mA.Smaller supplymustbeavailable.Ifthepowersource(forexample,  
power components can then be used. The graph in Figure a 2 AA cell battery) is within 1 or 2 inches of the IC, the  
6 shows switch current vs RLIM resistor value.  
battery itself provides bulk capacitance and the 1µF ce-  
ramic capacitor acts to smooth voltage spikes at switch  
turn-on and turn-off. If the power source is far away from  
theIC,inductanceinthepowersourceleadsresultsinhigh  
impedance at high frequency. A local high capacitance  
bypassisthenrequiredtorestorelowimpedanceattheIC.  
VOUT  
2V/DIV  
IIN  
500mA/DIV  
VSHDN  
10V/DIV  
SHUTDOWN  
1ms/DIV  
1304 F05  
Figure 5. Start-Up Response with 1µF/1MComponents  
in Figure 2 Added. Input Current Is More Controlled. VOUT  
Reaches 5V in 6ms. Output Drives 20mA Load  
1
2
3
4
8
7
6
5
LT1304  
1000  
900  
800  
700  
600  
500  
400  
V
IN  
C
IN  
+
V
OUT  
C
OUT  
+
GND (BATTERY AND LOAD RETURN)  
1304 F07  
10  
100  
(k)  
1000  
R
LIM  
Figure 7. Suggested Layout for Best Performance. Input  
Capacitor Placement as Shown Is Highly Recommended.  
Switch Trace (Pin 4) Copper Area Is Minimized  
1304 F06  
Figure 6. Peak Switch Current vs RLIM Value  
Low-Battery Detector  
Layout/Input Bypassing  
TheLT1304containsanindependentlow-batterydetector  
that remains active when the device is shut down. This  
detector, actually a hysteretic comparator, has an open  
collector output that can sink up to 500µA. The compara-  
tor also operates below the switcher’s undervoltage lock-  
out threshold, operating until VIN reaches approximately  
1.4V. Figure 8 illustrates the input/output characteristic of  
the detector. Hysteresis is clearly evident in the figure.  
The LT1304’s high speed switching mandates careful  
attentiontoPCboardlayout.Suggestedcomponentplace-  
mentisshowninFigure7. Theinputsupplymusthavelow  
impedance at AC and the input capacitor should be placed  
as indicated in the figure. The value of this capacitor  
depends on how close the input supply is to the IC. In  
situations where the input supply is more than a few  
inches away from the IC, a 47µF to 100µF solid tantalum  
8
LT1304/LT1304-3.3/LT1304-5  
U
OPERATIO  
1000  
100  
10  
VLBO  
2V/DIV  
VLBI  
200mV/DIV  
1304 F08  
1
Figure 8. Low-Battery Detector Transfer Function.  
Pull-Up R = 22k, VIN = 2V, Sweep Frequency = 10Hz  
1
10  
100 200  
LOAD CURRENT (mA)  
1304 F10  
Figure 10. Battery Life vs Load Current. Dots Specify  
Actual Measurements  
Battery Life  
How may hours does it work? This is the bottom line  
question that must be asked of any efficiency study. AA  
alkaline cells are not perfect power sources. For efficient  
power transfer, energy must be taken from AA cells at a  
rate that does not induce excessive loss. AA cells internal  
impedance,about0.2freshand0.5end-of-life,results  
insignificantefficiencylossathighdischargerates.Figure  
10 illustrates battery life vs load current of Figure 9’s  
LT1304, 2-cell to 5V DC/DC converter. Note the acceler-  
ated decrease in hours at higher power levels. Figure 11  
plots total watt hours vs load current. Watt hours are  
determined by the following formula:  
6
5
4
3
2
1
0
1
10  
100 200  
LOAD CURRENT (mA)  
1304 F11  
WH = ILOAD(5V)(H)  
Figure 11. Output Watt Hours vs Load Current. Note  
Rapid Fall-Off at Higher Discharge Rates  
L1  
22µH  
D1  
V
SW  
IN  
V
OUT  
Figure 11’s graph varies significantly from electrical effi-  
ciency plot pictured on the first page of this data sheet.  
Why? As more current is drawn from the battery, voltage  
drop across the cells’ internal impedance increases. This  
causes internal power loss (heating), reducing cell termi-  
nal voltage. Since the regulator input acts as a negative  
resistance, more current is drawn from the battery as the  
terminal voltage decreases. This positive feedback action  
compounds the problem.  
SHDN  
SENSE  
5V  
200mA  
B1  
LT1304-5  
2 CELLS  
+
C2  
100µF  
LB1  
LB0  
GND  
+
C1  
100µF  
I
LIM  
B1 = 2× EVEREADY INDUSTRIAL  
ALKALINE AA CELLS #EN91  
C1, C2 = AVX TPSD107M010R0100  
D1 = MOTOROLA MBRS130L  
L1 = SUMIDA CD54-220  
1304 F09  
Figure 9. 2-Cell to 5V Converter Used in Battery Life Study  
9
LT1304/LT1304-3.3/LT1304-5  
U
OPERATIO  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Figure 12 shows overall energy conversion efficiency,  
assuming availability of 6.5WH of battery energy. This  
efficiency approximates the electrical efficiency at load  
current levels from 1mA to 10mA, but drops severely at  
loadcurrentsabove10mA(loadpowerabove50mW).The  
moral of the story is this: if your system needs 5V at more  
than 40mA to 50mA, consider using a NiCd battery (1/10  
the internal impedance) instead of a AA cell alkaline  
battery.  
1
10  
100 200  
LOAD CURRENT (mA)  
1304 F12  
Figure 12. Overall System Efficiency Including Battery Efficiency  
vs Load Current. Internal Impedance of Alkaline AA Cells  
Accounts for Rapid Drop in Efficiency at Higher Load Current  
U
TYPICAL APPLICATIONS  
Super BurstTM Low IQ DC/DC Converter  
Super Burst Efficiency  
MBR0530  
I
Q
10µA  
33µH**  
90  
200k  
47k  
0.01µF  
V
= 3V  
= 2V  
IN  
IN  
2N3906  
80  
70  
60  
50  
40  
V
SW  
IN  
3.83M*  
5V  
LBO  
LBI  
100mA  
+
V
2 CELLS  
100µF  
LT1304  
FB  
I
+
LIM  
1.21M*  
220µF  
SHDN  
GND  
47k  
22k  
0.01  
0.1  
1.0  
10  
100  
*1% METAL FILM  
**SUMIDA CD54-330  
1304 TA03  
LOAD CURRENT (mA)  
1304 TA04  
Super Burst is a trademark of Linear Technology Corporation.  
10  
LT1304/LT1304-3.3/LT1304-5  
U
TYPICAL APPLICATIONS  
2-Cell to 3.3V Converter Efficiency  
2-Cell to 3.3V Boost Converter  
L1*  
MBRS130L  
90  
80  
70  
60  
50  
22µH  
V
SW  
IN  
3.3V  
SENSE  
300mA  
+
C1**  
100µF  
LT1304-3.3  
2 CELLS  
SHDN  
C2**  
100µF  
10V  
+
I
GND  
LIM  
V
IN  
V
IN  
V
IN  
= 3.3V  
= 2.5V  
= 1.8V  
NC  
SHUTDOWN  
40  
*SUMIDA CD54-220  
**AVX TPSD107M010R0100  
30  
1304 TA05  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
1304 TA06  
3.3V SEPIC (Step-Up/Step-Down Converter)  
3.3V SEPIC Efficiency  
C1**  
1µF  
80  
75  
70  
65  
60  
55  
50  
L1A*  
V
IN  
2.5V TO 8V  
1
2
4
3
V
SW  
IN  
C2  
+
47µF  
16V  
L1B*  
MBRS130L  
LT1304-3.3  
3.3V  
300mA  
SENSE  
GND  
SHDN  
SHUTDOWN  
I
LIM  
††  
C3  
+
100µF  
10V  
V
V
V
= 4.5V  
= 3.5V  
= 2.5V  
IN  
IN  
IN  
NC  
*
COILTRONICS CTX20-1  
1
10  
100  
500  
1304 TA07  
** TOKIN 1E105ZY5U-C103-F  
LOAD CURRENT (mA)  
AVX TPSD476M016R0150  
††  
1304 TA08  
AVX TPSD107M010R0100  
5V SEPIC Efficiency  
5V SEPIC (Step-Up/Step-Down Converter)  
C1**  
1µF  
80  
75  
70  
65  
60  
55  
50  
L1A*  
V
IN  
3V TO 8V  
1
2
4
3
V
IN  
SW  
+
47µF  
16V  
L1B*  
MBRS130L  
LT1304-5  
5V  
200mA  
SENSE  
GND  
SHDN  
SHUTDOWN  
I
LIM  
V
V
V
V
= 6V  
= 5V  
= 4V  
= 3V  
+
IN  
IN  
IN  
IN  
††  
100µF  
10V  
NC  
*
COILTRONICS CTX20-1  
1
10  
100  
500  
1304 TA09  
** TOKIN 1E105ZY5U-C103-F  
LOAD CURRENT (mA)  
AVX TPSD476M016R0150  
††  
1304 TA10  
AVX TPSD107M010R0100  
11  
LT1304/LT1304-3.3/LT1304-5  
U
TYPICAL APPLICATIONS  
5V to 12V DC/DC Converter  
5V to 12V Converter Efficiency  
L1*  
D1  
90  
85  
80  
75  
70  
65  
22µH  
5V  
V
SW  
IN  
+
47µF**  
LT1304  
1.07M  
1%  
12V  
FB  
GND  
SHDN  
SHUTDOWN  
200mA  
+
124k  
1%  
47µF**  
16V  
*
SUMIDA CD54-220  
1304 TA11  
300  
1
10  
100  
** AVX TPSD476M016R0150  
MOTOROLA MBRS130L  
LOAD CURRENT (mA)  
1304 TA12  
Single Li-Ion Cell to 5V Converter with Load Disconnect at VIN < 2.7V  
MBRS130LT3  
22µH**  
(2.7V to 4.2V)  
(5V)  
5V  
1µF  
+
+
100µF  
16V  
562k  
1%  
220k  
NC  
V
SW  
V
V
OUT  
IN  
OUT  
I
SENSE  
LT1304CS8-5  
V
V
V
NC  
NC  
LIM  
IN1  
IN2  
IN3  
+
SINGLE  
Li-Ion  
CELL*  
LTC1477  
100µF  
10V  
LBI  
SHDN  
V
INS  
432k  
1%  
LBO  
EN  
GND  
GND  
1304 TA13  
*
PRIMARY Li-Ion BATTERY PROTECTION MUST BE  
PROVIDED BY AN INDEPENDENT CIRCUIT  
** SUMIDA CD54-220  
AVX TPSD107M010R0100  
12  
LT1304/LT1304-3.3/LT1304-5  
U
TYPICAL APPLICATIONS  
Negative LCD Bias Generator  
L1*  
10µH  
1µF  
CERAMIC  
**  
1.69M  
1%  
V
SW  
IN  
–V  
OUT  
–14V TO –22V  
1mA TO 10mA  
FB  
+
**  
LT1304  
1M  
1%  
47µF  
2 CELLS  
90.9k  
1%  
110k  
1%  
10µF  
35V  
1000pF  
**  
I
+
LIM  
GND  
EFFICIENCY = 70% TO 75%  
+
AT I  
2mA  
LOAD  
3.3µF  
22k  
* SUMIDA CD43-100  
** MOTOROLA MBR0530  
VOLTAGE ADJUST  
1kHz PWM INPUT  
0V TO 5V  
1304 TA14  
20nF  
1304 TA15  
Electroluminescent Panel Driver with 200Hz Oscillator  
1µF  
200V  
MUR160  
600V  
1:12*  
V
IN  
2V TO 7V  
3
4
+
47µF  
EL PANEL  
PANEL  
C
1
6
MBR0530  
DANGER!10HMIGH VOLTAGE  
V
SW  
FB  
IN  
(3.3M × 3)  
5V = OPERATE  
0V = SHUTDOWN  
SHDN  
FMMT458  
22k  
22k  
75k  
22k  
51k  
LBO  
LT1304  
2N3906  
1nF  
22k  
22k  
50k  
LBI  
I
INTENSITY  
ADJUST  
LIM  
GND  
3.3k  
0.01µF  
1/2 BAW56  
1/2 BAW56  
NC  
200Hz  
* DALE LPE3325-A205 TRANSFORMER MEASURES 6.5mm × 8.2mm × 5.2mm (H)  
(605) 665-9301  
13  
LT1304/LT1304-3.3/LT1304-5  
U
TYPICAL APPLICATIONS  
2- to 4-Cell to 1kV Step-Up Converter  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
T1*  
4
V
IN  
2V TO 6V  
3
1
+
0.01µF  
0.01µF  
0.01µF  
0.01µF  
47µF  
6
MBR0530  
DANGER! HIGH VOLTAGE  
R1**  
500M  
V
IN  
SW  
FB  
V
OUT  
1kV  
0.1µF  
250µA  
R2  
620k  
LT1304  
R1  
R2  
V
= 1.24V 1+  
OUT  
(
)
SHUTDOWN  
SHDN  
I
LIM  
GND  
* DALE LPE3325-A205 TRANSFORMER MEASURES  
6.5mm × 8.2mm × 5.2mm (H)  
(605) 665-9301  
NC  
** IRC CGX-1/2  
ALL 0.01µF CAPACITORS 250WVDC  
1304 TA16  
BAS21 OR MUR130  
2- to 4-Cell to 5V Converter with Output Disconnect  
2k  
L1**  
22µH  
MBRS130L  
V
IN  
2V TO 6V  
ZTX788B  
V
SW  
IN  
5V  
100mA  
SENSE  
+
LT1304-5  
47µF*  
+
+
SHDN  
22µF*  
220µF*  
I
GND  
LIM  
SHUTDOWN  
NC  
*AVX TPS SERIES TANTALUM  
OR SANYO OS-CON  
**SUMIDA CD54-220  
1304 TA17  
14  
LT1304/LT1304-3.3/LT1304-5  
U
TYPICAL APPLICATIONS  
2-Cell to 5V Converter with Auxiliary 10V Output  
MBR0530  
MBR0530  
10V  
20mA  
+
1µF  
CERAMIC  
10µF  
L1*  
22µH  
MBRS130L  
V
SW  
IN  
5V  
150mA  
SENSE  
+
LT1304-5  
2 CELLS  
100µF  
+
SHDN  
100µF  
I
GND  
LIM  
SHUTDOWN  
NC  
*SUMIDA CD54-220  
1304 TA18  
2-Cell to 5V Converter with Auxiliary 5V Output  
L1*  
22µH  
MBRS130L  
V
SW  
IN  
5V  
150mA  
SENSE  
+
1µF  
CERAMIC  
+
LT1304-5  
2 CELLS  
100µF  
100µF  
SHDN  
MBR0530  
–5V  
20mA  
I
GND  
LIM  
MBR0530  
10µF  
SHUTDOWN  
NC  
+
1304 TA19  
*SUMIDA CD54-220  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
15  
LT1304/LT1304-3.3/LT1304-5  
U
PACKAGE DESCRIPTION Dimension in inches (millimeter) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
LTC®1163  
LT1239  
DESCRIPTION  
COMMENTS  
Triple High Side Driver for 2-Cell Inputs  
Backup Battery Management System  
Fixed 5V/12V Step-Up Micropower DC/DC Converter  
High Output Current Micropower DC/DC Converter  
Micropower DC/DC Converter  
1.8V Minimum Input, Drives N-Channel MOSFETs  
Easy-to-Use, Fail-Safe Backup Protection  
LT1301  
12V/200mA from 5V, 120µA I , 88% Efficiency  
Q
LT1302  
5V/600mA from 2V, 2A Internal Switch, 200µA I  
Q
LT1303  
Low-Battery Detector Inactive in Shutdown  
LTC1477  
LT1521  
Protected Switch  
Ultralow R  
Switch: 0.07Ω  
DS(ON)  
300mA, 12µA I Low Dropout Regulator  
500mV Dropout at Full Load  
Q
LT/GP 1195 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

LT1304CS8-5#TR

LT1304 - Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1304CS8-5#TRPBF

LT1304 - Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1304_15

Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown
Linear

LT1305

Micropower High Power DC/DC Converter with Low-Battery Detector
Linear

LT1305CS8

Micropower High Power DC/DC Converter with Low-Battery Detector
Linear

LT1305CS8-12

2 A SWITCHING REGULATOR, PDSO8
Linear

LT1306

Synchronous, Fixed Frequency Step-Up DC/DC Converter
Linear

LT1306ES8

Synchronous, Fixed Frequency Step-Up DC/DC Converter
Linear

LT1307

Single Cell Micropower 600kHz PWM DC/DC Converters
Linear

LT1307B

Single Cell Micropower 600kHz PWM DC/DC Converters
Linear

LT1307BCMS8

Single Cell Micropower 600kHz PWM DC/DC Converters
Linear

LT1307BCMS8#TR

LT1307 - Single Cell Micropower 600kHz PWM DC/DC Converters; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear