LT1307CS8#TRPBF [Linear]

LT1307 - Single Cell Micropower 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1307CS8#TRPBF
型号: LT1307CS8#TRPBF
厂家: Linear    Linear
描述:

LT1307 - Single Cell Micropower 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

转换器
文件: 总20页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1307/ LT1307B  
Sing le Ce ll Mic ro p o we r  
600kHz PWM DC/ DC Co nve rte rs  
U
DESCRIPTION  
FEATURES  
The LT®1307/LT1307B are micropower, fixed frequency  
DC/DC converters that operate from an input voltage as  
low as 1V. First in the industry to achieve true current  
mode PWM performance from a single cell supply, the  
LT1307 features automatic shifting to power saving Burst  
Mode operation at light loads. High efficiency is main-  
tained over a broad 100µA to 100mA load range. The  
LT1307B does not shift into Burst Mode operation at light  
loads, eliminating low frequency output ripple at the  
expenseoflightloadefficiency. Thedevices containalow-  
battery detector with a 200mV reference and shut down to  
less than 5µA. No load quiescent current of the LT1307 is  
50µAandtheinternalNPNpowerswitchhandles a500mA  
current with a voltage drop of just 295mV.  
Uses Small Ceramic Capacitors  
50µA Quiescent Current (LT1307)  
1mA Quiescent Current (LT1307B)  
Operates with V as Low as 1V  
IN  
600kHz Fixed Frequency Operation  
Starts into Full Load  
Low Shutdown Current: 3µA  
Low-Battery Detector  
3.3V at 75mA from a Single Cell  
Automatic Burst ModeTM Operation at  
Light Load (LT1307)  
Continuous Switching at Light Load (LT1307B)  
Low VCESAT Switch: 295mV at 500mA  
U
Unlike competitive devices, large electrolytic capacitors  
are not required with the LT1307/LT1307B in single cell  
applications. The high frequency (600kHz) switching al-  
lows the use of tiny surface mount multilayer ceramic  
(MLC) capacitors along with small surface mount induc-  
tors. The devices work with just 10µF of output capaci-  
tance and require only 1µF of input bypassing.  
APPLICATIONS  
Pagers  
Cordless Telephones  
GPS Receivers  
Battery Backup  
Portable Electronic Equipment  
Glucose Meters  
Diagnostic Medical Instrumentation  
The LT1307/LT1307B are available in 8-lead MSOP, PDIP  
and SO packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Single Cell to 3.3V Converter Efficiency  
L1  
10µH  
D1  
90  
C1: MURATA-ERIE GRM235Y5V105Z01  
MARCON THCS50E1E105Z  
V
SW  
FB  
IN  
TOKIN 1E105ZY5U-C103-F  
C2: MURATA-ERIE GRM235Y5V106Z01  
C1  
1µF  
3.3V  
75mA  
80  
LBI  
V
IN  
= 1.5V  
V
MARCON THCS50E1E105Z  
TOKIN 1E106ZY5U-C304-F  
R1  
1.02M  
1%  
LT1307  
1.5V  
CELL  
SHUTDOWN SHDN  
LBO  
GND  
= 1V  
D1: MOTOROLA MBR0520L  
L1: COILCRAFT D01608C-103  
SUMIDA CD43-100  
IN  
V
C
C2  
10µF  
70  
60  
50  
V
IN  
= 1.25V  
R2  
604k  
1%  
100k  
680pF  
MURATA ERIE LQH3C100  
FOR 5V OUTPUT: R1 = 1M, R2 = 329k  
1307 F01  
0.1  
1
10  
100  
Figure 1. Single Cell to 3.3V Boost Converter  
LOAD CURRENT (mA)  
1307 TA01  
1
LT1307/ LT1307B  
W W W  
U
ABSOLUTE AXI U RATI GS  
V , SHDN, LBO Voltage ......................................... 12V  
SW Voltage ............................................................. 30V  
Junction Temperature...........................................125°C  
Operating Temperature Range  
IN  
FB Voltage ....................................................... V + 1V  
Commercial (Note 1) ......................... 20°C to 70°C  
Industrial ........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
IN  
VC Voltage ................................................................ 2V  
LBI Voltage ............................................ 0V VLBI 1V  
Current into FB Pin .............................................. ±1mA  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
V
1
2
3
4
8
7
6
5
LBO  
LBI  
LT1307CN8  
LT1307CS8  
LT1307IS8  
LT1307BCS8  
LT1307BIS8  
TOP VIEW  
C
LT1307CMS8  
LT1307BCMS8  
V
1
8 LBO  
7 LBI  
FB  
SHDN  
GND  
C
FB 2  
SHDN 3  
GND 4  
V
IN  
6 V  
IN  
5 SW  
SW  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX = 125°C, θJA = 160°C/W  
T
JMAX = 125°C, θJA = 100°C/W (N8)  
MS8 PART MARKING  
S8 PART MARKING  
TJMAX = 125°C, θJA = 120°C/W (S8)  
BU  
BF  
1307  
1307B  
1307I  
1307BI  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
Commercial Grade 0°C to 70°C. V = 1.1V, VSHDN = V , TA = 25°C, LT1307/LT1307B unless otherwise noted.  
IN  
IN  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Q
Quiescent Current  
Not Switching (LT1307)  
Not Switching (LT1307B)  
50  
1.0  
1
90  
1.5  
3
µA  
mA  
µA  
V
= 0V  
SHDN  
V
Feedback Voltage  
1.20  
1.22  
27  
1.24  
60  
V
FB  
I
B
FB Pin Bias Current (Note 2)  
Reference Line Regulation  
V
= V  
REF  
nA  
FB  
1V V 2V (25°C, 0°C)  
1V V 2V (70°C)  
2V V 5V  
0.6  
1.1  
1.5  
0.8  
%/V  
%/V  
%/V  
IN  
IN  
0.3  
IN  
Minimum Input Voltage  
Input Voltage Range  
0.92  
1
5
V
V
1
g
m
Error Amp Transconductance  
Error Amp Voltage Gain  
I = 5µA  
25  
35  
65  
µmhos  
A
V
25°C, 0°C  
70°C  
35  
30  
100  
V/V  
V/V  
f
Switching Frequency  
550  
600  
750  
kHz  
OSC  
2
LT1307/ LT1307B  
ELECTRICAL CHARACTERISTICS  
Commercial Grade 0°C to 70°C. V = 1.1V, VSHDN = V , TA = 25°C unless otherwise noted.  
IN  
IN  
SYMBOL PARAMETER  
Maximum Duty Cycle  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
25°C, 0°C  
70°C  
80  
76  
84  
%
%
Switch Current Limit (Note 3)  
Switch V  
DC = 40%  
DC = 75%  
0.6  
0.5  
1.25  
A
A
I
SW  
= 500mA (25°C, 0°C)  
= 500mA (70°C)  
295  
350  
400  
mV  
mV  
CESAT  
I
SW  
Burst Mode Operation Switch Current Limit  
(LT1307 Only)  
L = 10µH  
L = 22µH  
100  
50  
mA  
mA  
Shutdown Pin Current  
V
V
SHDN  
= V  
= 0V  
2.5  
1.5  
4.0  
2.5  
µA  
µA  
SHDN  
IN  
LBI Threshold Voltage  
LBO Output Low  
190  
200  
0.1  
210  
0.25  
0.1  
mV  
V
I
= 10µA  
SINK  
LBO Leakage Current  
V
= 250mV, V = 5V  
0.01  
5
µA  
nA  
LBI  
LBO  
LBI Input Bias Current (Note 4)  
Low-Battery Detector Gain  
V
= 150mV  
25  
LBI  
1MLoad (25°C, 0°C)  
1MLoad (70°C)  
1000  
500  
3000  
V/V  
V/V  
Switch Leakage Current  
Reverse Battery Current  
V
= 5V  
0.01  
750  
3
µA  
SW  
(Note 5)  
mA  
Commercial Grade TA = 20°C, V = 1.1V, VSHDN = V , unless otherwise noted (Note 1).  
IN  
IN  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Q
Quiescent Current  
V
= 1.3V, Not Switching (LT1307)  
= 1.3V, Not Switching (LT1307B)  
= 0V  
50  
1.1  
1
100  
1.6  
3
µA  
mA  
µA  
FB  
V
FB  
V
SHDN  
V
Feedback Voltage  
1.195  
25  
1.22  
35  
1.245  
65  
V
µmhos  
V/V  
FB  
g
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
I = 5µA  
m
A
V
35  
100  
600  
84  
f
500  
80  
750  
350  
kHz  
OSC  
Maximum Duty Cycle  
%
Switch V  
I
SW  
= 500mA, V = 1.2V  
250  
mV  
CESAT  
IN  
Shutdown Pin Current  
V
V
SHDN  
= V  
= 0V  
2.5  
1.5  
4.0  
2.5  
µA  
µA  
SHDN  
IN  
LBI Threshold Voltage  
186  
200  
210  
mV  
3
LT1307/ LT1307B  
ELECTRICAL CHARACTERISTICS  
Industrial Grade 40°C to 85°C. V = 1.1V, VSHDN = V , LT1307/LT1307B unless otherwise noted.  
IN  
IN  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Q
Quiescent Current  
V
= 1.3V, Not Switching (LT1307)  
= 1.3V, Not Switching (LT1307B)  
= 0V  
50  
1
1
100  
1.8  
3
µA  
mA  
µA  
FB  
V
FB  
V
SHDN  
V
Feedback Voltage  
1.195  
10  
1.22  
27  
1.245  
100  
V
FB  
I
B
FB Pin Bias Current (Note 2)  
Reference Line Regulation  
V
= V  
REF  
nA  
FB  
1V V 2V (40°C)  
1V V 2V (85°C)  
2V V 5V  
0.6  
1.1  
3.2  
0.8  
%/V  
%/V  
%/V  
IN  
IN  
0.3  
IN  
Minimum Input Voltage  
40°C  
85°C  
1.1  
0.8  
1.2  
1.0  
V
V
Input Voltage Range  
5
V
g
Error Amp Transconductance  
Error Amp Voltage Gain  
I = 5µA  
25  
35  
65  
µmhos  
m
A
V
40°C  
85°C  
35  
30  
V/V  
V/V  
f
Switching Frequency  
Maximum Duty Cycle  
500  
600  
750  
kHz  
OSC  
40°C  
85°C  
80  
75  
84  
80  
%
%
Switch Current Limit (Note 3)  
DC = 40%  
DC = 75%  
0.6  
0.5  
1.25  
A
A
Switch V  
I
= 500mA, V = 1.2V (40°C)  
= 500mA (85°C)  
250  
330  
350  
400  
mV  
mV  
CESAT  
SW  
IN  
I
SW  
Burst Mode Operation Switch Current Limit  
(LT1307 Only)  
L = 10µH  
L = 22µH  
100  
50  
mA  
mA  
Shutdown Pin Current  
V
V
SHDN  
= V  
= 0V  
2.5  
1.5  
4.0  
2.5  
µA  
µA  
SHDN  
IN  
LBI Threshold Voltage  
LBO Output Low  
186  
200  
0.1  
0.1  
5
210  
0.25  
0.3  
mV  
V
I
= 10µA  
SINK  
LBO Leakage Current  
V
= 250mV, V = 5V  
µA  
nA  
LBI  
LBO  
LBI Input Bias Current (Note 4)  
Low-Battery Detector Gain  
V
= 150mV  
30  
LBI  
1MLoad (40°C)  
1MLoad (85°C)  
1000  
400  
6000  
V/V  
V/V  
Switch Leakage Current  
V
SW  
= 5V  
0.01  
3
µA  
The  
denotes specifications which apply over the full operating  
Note 2: Bias current flows into FB pin.  
temperature range.  
Note 3: Switch current limit guaranteed by design and/or correlation to  
Note 1: Specifications for commercial (C) grade devices are guaranteed  
but not tested at 20°C. MS8 package devices are designed for and  
intended to meet commercial temperature range specifications but are not  
static tests. Duty cycle affects current limit due to ramp generator.  
Note 4: Bias current flows out of LBI pin.  
Note 5: The LT1307 will withstand continuous application of 1.6V applied  
tested at – 20°C or 0°C.  
to the GND pin while V and SW are grounded.  
IN  
4
LT1307/ LT1307B  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
3.3V Output Efficiency, Circuit of  
Figure 1 (LT1307B)  
5V Output Efficiency, Circuit of  
Figure 1 (LT1307B)  
5V Output Efficiency, Circuit of  
Figure 1 (LT1307)  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
IN  
= 1.5V  
V
IN  
= 1V  
V
IN  
= 1.25V  
V
IN  
= 1.25V  
V
IN  
= 1V  
V
IN  
= 1.00V  
V
IN  
= 1.25V  
V
IN  
= 1.5V  
V
IN  
= 1.5V  
10  
1
LOAD CURRENT (mA)  
100  
200  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LT1307 • G01  
1307 G02  
LT1307 • TPC03  
Feedback Bias Current vs  
Temperature  
LBI Bias Current vs Temperature  
Quiescent Current vs Temperature  
50  
40  
30  
20  
80  
16  
14  
12  
10  
8
V
IN  
= 1.1V  
70  
60  
50  
40  
30  
20  
10  
0
6
4
10  
0
2
0
–25  
0
50  
–50  
0
25  
50  
75  
100  
–25  
0
50  
–50  
75  
100  
–50  
75  
100  
25  
–25  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1307 • TPC04  
LTC1307 • TPC05  
LT1307 • TPC06  
Shutdown Pin Bias Current vs  
Input Voltage  
Switch VCESAT vs Current  
Quiescent Current in Shutdown  
10  
8
10  
16  
12  
8
500  
400  
300  
200  
T
= 25°C  
A
6
4
2
4
100  
0
0
0
0
1
2
3
4
5
0
1
2
3
4
5
0
200  
300  
400  
500  
600  
100  
SWITCH CURRENT (mA)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1307 • TPC07  
LT1307 • TPC08  
LT1307 • TPC09  
5
LT1307/ LT1307B  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Oscillator Frequency vs  
Input Voltage  
Feedback Voltage vs  
Temperature  
LBI Reference vs Temperature  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
900  
800  
700  
600  
500  
400  
210  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
25°C  
85°C  
–40°C  
–50  
0
25  
50  
75  
100  
–25  
3
1
2
4
5
–50  
–25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
LT1307 • TPC10  
LT1307 • TPC12  
LT1307 • TPC11  
Transient Response (LT1307)  
Transient Response (LT1307B)  
Load Regulation (LT1307)  
VOUT  
200mV/DIV  
AC COUPLED  
V
OUT  
200mV/DIV  
AC COUPLED  
VOUT  
50mV/DIV  
DC  
COUPLED  
OFFSET  
ADDED  
IL  
IL  
200mA/DIV  
200mA/DIV  
55mA  
ILOAD  
55mA  
ILOAD  
5mA  
5mA  
V
IN = 1.25V  
500µs/DIV  
1307 G13  
V
IN = 1.25V  
500µs/DIV  
1307 G14  
V
IN = 0.92V  
ILOAD 10mA/DIV  
1307 G15  
VOUT = 3.3V  
VOUT = 3.3V  
VOUT = 3.3V  
Load Regulation (LT1307)  
Load Regulation (LT1307)  
Load Regulation (LT1307)  
V
OUT  
V
OUT  
V
OUT  
50mV/DIV  
50mV/DIV  
DC  
50mV/DIV  
DC  
DC  
COUPLED  
OFFSET  
ADDED  
COUPLED  
OFFSET  
ADDED  
COUPLED  
OFFSET  
ADDED  
VIN = 1.15V  
ILOAD 20mA/DIV  
1307 G17  
VIN = 1V  
ILOAD 10mA/DIV  
1307 G18  
VIN = 1V  
ILOAD 20mA/DIV  
1307 G16  
VOUT = 3.3V  
VOUT = 5V  
VOUT = 3.3V  
Circuit Operation, L = 10µH  
(LT1307)  
Circuit Operation, L = 22µH  
(LT1307)  
Load Regulation (LT1307)  
VOUT  
50mV/DIV  
AC COUPLED  
VOUT  
50mV/DIV  
AC COUPLED  
V
OUT  
50mV/DIV  
DC  
COUPLED  
OFFSET  
ADDED  
V
SW  
V
5V/DIV  
SW  
5V/DIV  
IL  
IL  
100mA/DIV  
100mA/DIV  
V
IN = 1.25V  
VOUT = 5V  
LOAD = 1.5mA  
100µs/DIV  
1307 G20  
V
IN = 1.25V  
VOUT = 5V  
ILOAD = 1.5mA  
100µs/DIV  
1307 G21  
V
IN = 1.15V  
ILOAD 10mA/DIV  
1307 G19  
VOUT = 5V  
I
6
LT1307/ LT1307B  
U
U
U
PIN FUNCTIONS  
V (Pin 1): Compensation Pin for Error Amplifier. Con-  
C
SW (Pin 5): Switch Pin. Connect inductor/diode here.  
nect a series RC from this pin to ground. Typical values  
Minimize trace area at this pin to keep EMI down.  
are 100kand 680pF. Minimize trace area at V .  
C
V (Pin 6): Supply Pin. Must have 1µF ceramic bypass  
IN  
FB (Pin 2): Feedback Pin. Reference voltage is 1.22V.  
Connect resistor divider tap here. Minimize trace area at  
FB. Set VOUT according to: VOUT = 1.22V(1 + R1/R2).  
capacitor right at the pin, connected directly to ground.  
LBI (Pin 7): Low-Battery Detector Input. 200mV refer-  
ence. Voltage on LBI must stay between ground and  
SHDN (Pin 3): Shutdown. Ground this pin to turn off 700mV.  
switcher. MustbetiedtoV (orhighervoltage)toenable  
switcher. Do not float the SHDN pin.  
IN  
LBO (Pin 8): Low-Battery Detector Output. Open collec-  
tor, can sink 10µA. A 1Mpull-up is recommended.  
GND (Pin 4): Ground. Connect directly to local ground  
plane.  
W
BLOCK DIAGRAM  
V
IN  
6
V
IN  
R5  
R6  
40k  
40k  
SHDN  
+
V
C
SHUTDOWN  
3
g
1
m
V
OUT  
LBI  
7
R1  
ERROR  
AMPLIFIER  
+
+
(EXTERNAL)  
FB  
2
LBO  
8
Q1  
Q2  
×10  
*
FB  
ENABLE  
200mV  
R2  
BIAS  
R3  
30k  
A4  
A1  
(EXTERNAL)  
R4  
140k  
SW  
5
COMPARATOR  
DRIVER  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
+
+
S
A2  
+
A = 3  
0.15Ω  
600kHz  
OSCILLATOR  
4
GND  
1307 F02  
*HYSTERESIS IN LT1307 ONLY  
Figure 2. LT1307/LT1307B Block Diagram  
7
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
OPERATION  
200mV. There is no hysteresis in A4, allowing it to be used  
as an amplifier in some applications. The entire device is  
disabled when the SHDN pin is brought low. To enable the  
The LT1307 combines a current mode, fixed frequency  
PWMarchitecturewithBurstModemicropoweroperation  
to maintain high efficiency at light loads. Operation can  
best be understood by referring to the block diagram in  
Figure 2. Q1 and Q2 form a bandgap reference core whose  
loop is closed around the output of the converter. When  
converter, SHDN must be at V or at a higher voltage.  
IN  
The LT1307B differs from the LT1307 in that there is no  
hysteresis in comparator A1. Also, the bias point on A1 is  
set lower than on the LT1307 so that switching can occur  
at inductor current less than 100mA. Because A1 has no  
hysteresis, there is no Burst Mode operation at light loads  
and the device continues switching at constant frequency.  
This results intheabsenceoflowfrequencyoutputvoltage  
ripple at the expense of efficiency.  
V is 1V, the feedback voltage of 1.22V, along with an  
IN  
80mV drop across R5 and R6, forward biases Q1 and Q2s  
base collector junctions to 300mV. Because this is not  
enough to saturate either transistor, FB can be at a higher  
voltage than V . When there is no load, FB rises slightly  
IN  
above 1.22V, causing V (the error amplifiers output) to  
C
The difference between the two devices is clearly illus-  
trated in Figures 3 and 4. The top two traces in Figure 3  
show an LT1307/LT1307B circuit, using the components  
indicated in Figure 1, set to a 5V output. Input voltage is  
1.25V.Loadcurrentis steppedfrom1mAto41mAforboth  
circuits. Low frequency Burst Mode operation voltage  
ripple is observed on Trace A, while none is observed on  
decrease. When V reaches the bias voltage on hysteretic  
C
comparator A1, A1s output goes low, turning off all  
circuitry except the input stage, error amplifier and low-  
battery detector. Total current consumption in this state is  
50µA. As output loading causes the FB voltage to de-  
crease, A1s output goes high, enabling the rest of the IC.  
Switch current is limited to approximately 100mA initially  
after A1s output goes high. If the load is light, the output  
voltage (and FB voltage) will increase until A1s output  
goes low, turning off the rest of the LT1307. Low fre-  
quency ripple voltage appears at the output. The ripple  
frequencyis dependentonloadcurrentandoutputcapaci-  
tance. This Burst Mode operation keeps the output regu-  
lated and reduces average current into the IC, resulting in  
high efficiency even at load currents of 100µA or less.  
LT1307  
V
OUT  
TRACE A  
500mV/DIV  
AC COUPLED  
LT1307B  
V
OUT  
TRACE B  
500mV/DIV  
AC COUPLED  
41mA  
IL  
1mA  
VIN = 1.25V  
1ms/DIV  
1307 F03  
V
OUT = 5V  
If the output load increases sufficiently, A1s output re-  
mains high, resulting in continuous operation. When the  
LT1307 is running continuously, peak switch current is  
Figure 3. LT1307 Exhibits Burst Mode Operation Ripple at  
1mA Load, LT1307B Does Not  
controlled by V to regulate the output voltage. The switch  
C
is turned on at the beginning of each switch cycle. When  
thesummationofasignalrepresentingswitchcurrentand  
a ramp generator (introduced to avoid subharmonic oscil-  
LT1307  
V
OUT  
TRACE A  
200mV/DIV  
AC COUPLED  
lations at duty factors greater than 50%) exceeds the V  
C
LT1307B  
V
OUT  
signal, comparator A2 changes state, resetting the flip-  
flopandturningofftheswitch.Outputvoltageincreases as  
switch current is increased. The output, attenuated by a  
resistor divider, appears at the FB pin, closing the overall  
loop. Frequency compensation is provided by an external  
TRACE B  
200mV/DIV  
AC COUPLED  
45mA  
IL  
5mA  
VIN = 1.5V  
500µs/DIV  
1307 F04  
VOUT = 5V  
Figure 4. At Higher Loading and a 1.5V Supply, LT1307  
Again Exhibits Burst Mode Operation Ripple at 5mA Load,  
LT1307B Does Not  
series RC network connected between the V pin and  
ground. Low-battery detector A4s open collector output  
(LBO) pulls low when the LBI pin voltage drops below  
C
8
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
Trace B. Similarly, Figure 4 details the two circuits with a  
load step from 5mA to 45mA with a 1.5V input.  
quite evident, as is this particular devices 575kHz switch-  
ing frequency (nominal switching frequency is 600kHz).  
Note,however,theabsenceofsignificantenergyat455kHz.  
Figure7s plotreduces thefrequencyspanfrom255kHzto  
655kHz with a 455kHz center. Burst Mode low frequency  
ripple creates sidebands around the 575kHz switching  
fundamental. These sidebands have low signal amplitude  
at 455kHz, measuring 55dBmVRMS. As load current is  
further reduced, the Burst Mode frequency decreases.  
This spaces the sidebands around the switching fre-  
quency closer together, moving spectral energy further  
The LT1307B also can be used in lower current applica-  
tions where a clean, low ripple output is needed. Figure 5  
details transient response of a single cell to 3.3V con-  
verter, using an inductor value of 100µH. This high induc-  
tance minimizes ripple current, allowing the LT1307B to  
regulate without skipping cycles. As the load current is  
stepped from 5mA to 10mA, the output voltage responds  
cleanly. Note that the V pin loop compensation has been  
C
made more conservative (increased C, decreased R).  
40  
RBW = 100Hz  
30  
V
OUT  
100mV/DIV  
AC COUPLED  
20  
10  
0
IL  
–10  
–20  
–30  
–40  
–50  
–60  
20mA/DIV  
10mA  
IL  
5mA  
V
IN = 1.25V  
1ms/DIV  
1307 F05  
VOUT = 3.3V  
Figure 5. Increasing L to 100µH, Along with RC = 36k,  
CC = 20nF and COUT = 10µF, Low Noise Performance of  
LT1307B Can Be Realized at Light Loads of 5mA to 10mA  
1
10  
100  
1000  
FREQUENCY (kHz)  
1307 F06  
Figure 6. Spectral Noise Plot of 3.3V Converter Delivering  
5mA Load. Burst Mode Fundamental at 5.1kHz is 23dBmV  
At light loads, the LT1307B will begin to skip alternate  
cycles. The load point at which this occurs can be de-  
creasedbyincreasingtheinductorvalue. However, output  
ripplewillcontinuetobesignificantlyless thantheLT1307  
output ripple. Further, the LT1307B can be forced into  
micropower mode, where IQ falls from 1mA to 50µA by  
RMS  
or 14mV  
RMS  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
RBW = 100Hz  
pulling down V to 0.3V or less externally.  
C
DC/DC CONVERTER NOISE CONSIDERATIONS  
Switching regulator noise is a significant concern in many  
communications systems. The LT1307 is designed to  
keep noise energy out of the sensitive 455kHz band at all  
load levels while consuming only 60µW to 100µW at no  
load. At light load levels, the device is in Burst Mode,  
causing low frequency ripple to appear at the output.  
Figure 6 details spectral noise directly at the output of  
Figure 1’s circuit in a 1kHz to 1MHz bandwidth. The  
converter supplies a 5mA load from a 1.25V input. The  
Burst Mode fundamental at 5.1kHz and its harmonics are  
255  
455  
FREQUENCY (kHz)  
655  
1307 F07  
Figure 7. Span Centered at 455kHz Shows 55dBmV  
RMS  
(1.8µVRMS) at 455kHz. Burst Mode Creates Sidebands 5.1kHz  
Apart Around the Switching Frequency Fundamental of 575kHz  
9
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
away from 455kHz. Figure 8 shows the noise spectrum of To eliminate the low frequency noise of Figure 6, the  
the converter with the load increased to 20mA. The  
LT1307 can be replaced with the LT1307B. Figure 9  
LT1307 shifts out of Burst Mode operation, eliminating details thespectralnoiseattheoutputofFigure1s circuit  
low frequency ripple. Spectral energy is present only at  
the switching fundamental and its harmonics. Noise  
usinganLT1307Bat5mAload. Althoughspectralenergy  
is present at 333kHz due to alternate pulse skipping, all  
Burst Mode operation spectral components are gone.  
Alternate pulse skipping can be eliminated by increasing  
voltage measures 5dBmV  
or 560µV  
at the  
RMS  
RMS  
575kHzswitchingfrequency,andis below60dBmV  
RMS  
for all other frequencies in the range. By combining Burst inductance.  
Mode with fixed frequency operation, the LT1307 keeps  
noise away from 455kHz.  
FREQUENCY COMPENSATION  
Obtaining proper values for the frequency compensation  
network is largely an empirical, iterative procedure, since  
variations in input and output voltage, topology, capacitor  
value and ESR, and inductance make a simple formula  
elusive. As an example, consider the case of a 1.25V to  
3.3V boost converter supplying 50mA. To determine  
optimum compensation, the circuit is built and a transient  
load is applied to the circuit. Figure 10 shows the setup.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RBW = 100Hz  
MBR0520L  
10µH  
V
OUT  
255  
455  
FREQUENCY (kHz)  
655  
V
SW  
FB  
IN  
66  
1M  
1307 F08  
SHDN  
LT1307  
1µF  
Figure 8. With Converter Delivering 20mA, Low Frequency  
Sidebands Disappear. Noise is Present Only at the 575kHz  
Switching Frequency  
V
C
3300Ω  
10µF*  
1.25V  
GND  
R
590k  
C
50Ω  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1307 • F10  
*CERAMIC  
Figure 10. Boost Converter with Simulated Load  
Figure 11a details transient response without compensa-  
tion components. Although the output ripple voltage at a  
1mA load is low, allowing the error amplifier to operate  
widebandresults inexcessiverippleata50mAload. Some  
kind of loop stabilizing network is obviously required. A  
100k/22nF series RC is connected to the VC pin, resulting  
in the response pictured in Figure 11b. The output settles  
in about 7ms to 8ms. This may be acceptable, but we can  
do better. Reducing C to 2nF gives Figure 11c’s response.  
This is clearly in the right direction. After another order of  
magnitude reduction, Figure 11d’s response shows some  
205  
455  
705  
FREQUENCY (kHz)  
LT1307 • F09  
Figure 9. LT1307B at 5mA Load Shows No Audio Components  
or Sidebands About Switching Frequency, 333kHz  
Fundamental Amplitude is –10dBmV, or 316µV  
RMS  
10  
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
V
OUT  
V
OUT  
200mV/DIV  
AC COUPLED  
200mV/DIV  
AC COUPLED  
51mA  
IL  
51mA  
IL  
1mA  
1mA  
5ms/DIV  
1307 F11a  
5ms/DIV  
1307 F11b  
Figure 11a. V Pin Left Unconnected. Output Ripple  
Voltage is 300mVP-P Under Load  
Figure 11b. Inclusion of a 100k/22nF Series RC on VC  
Pin Results in Overdamped Stable Response  
C
V
OUT  
V
OUT  
200mV/DIV  
AC COUPLED  
200mV/DIV  
AC COUPLED  
51mA  
IL  
51mA  
IL  
1mA  
1mA  
1ms/DIV  
1307 F11a  
500µs/DIV  
1307 F11b  
Figure 11c. Reducing C to 2nF Speeds Up Response,  
Although Still Overdamped  
Figure 11d. A 100k/200pF Series RC Shows Some  
Underdamping  
VOUT  
200mV/DIV  
AC COUPLED  
51mA  
IL  
1mA  
1ms/DIV  
1307 F11b  
Figure 11e. A 100k/680pF RC Provides Optimum  
Settling Time with No Ringing  
underdamping.Nowsettlingtimeis about300µs.Increas-  
pole, requiring added C at the VC pin network to prevent  
ingCto680pFresults intheresponseshowninFigure11e.  
This response has minimum settling time with no over-  
shoot or underdamping.  
loop oscillation.  
Observant readers will notice R has been set to 100k for all  
the photos in Figure 11. Usable R values can be found in  
the 10k to 500k range, but after too many trips to the  
resistor bins, 100k wins.  
Converters using a 2-cell input need more capacitance at  
the output. This added capacitance moves in the output  
11  
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
Inductors  
LAYOUT HINTS  
The LT1307 switches current at high speed, mandating  
carefulattentiontolayoutforproperperformance.Youwill  
not get advertised performance with careless layouts.  
Figure 12 shows recommended component placement.  
Follow this closely in your PC layout. Note the direct path  
of the switching loops. Input capacitor C must be placed  
close (<5mm) to the IC package. As little as 10mm of wire  
or PC trace from C to V will cause problems such as  
inability to regulate or oscillation. A 1µF ceramic bypass  
capacitor is the only input capacitance required provided  
the battery has a low inductance path to the circuit. The  
battery itself provides the bulk capacitance the device  
requires forproperoperation.Ifthebatteryis locatedsome  
distancefromthecircuit, anadditionalinputcapacitormay  
berequired. A100µFaluminumelectrolyticunitworks well  
in these cases. This capacitor need not have low ESR.  
Inductors appropriate for use with the LT1307 must pos-  
sess three attributes. First, they must have low core loss at  
600kHz. Most ferrite core units have acceptable losses at  
this switching frequency. Inexpensive iron powder cores  
should be viewed suspiciously, as core losses can cause  
significant efficiency penalties at 600kHz. Second, the  
inductor must handle current of 500mA without saturat-  
ing.This places alowerlimitonthephysicalsizeoftheunit.  
Molded chokes or chip inductors usually do not have  
enough core to support 500mA current and are unsuitable  
for the application. Lastly, the inductor should have low  
DCR (copper wire resistance) to prevent efficiency-killing  
I2Rlosses.LinearTechnologyhas identifiedseveralinduc-  
tors suitable for use with the LT1307. This is not an  
exclusive list. There are many magnetics vendors whose  
components are suitable for use. A few vendors compo-  
nents are listed in Table 1.  
IN  
IN  
IN  
C
C
R
C
KEEP TRACES  
OR LEADS SHORT!  
LT1307  
1
2
3
4
8
7
6
5
Table 1. Inductors Suitable for Use with the LT1307  
MAX  
HEIGHT  
(mm)  
R1 R2  
PART  
VALUE DCR  
MFR  
COMMENT  
L
C
IN  
LQH3C100  
DO1608-103  
CD43-100  
CD54-100  
10µH  
10µH  
10µH  
10µH  
0.57 Murata-Erie  
2.0  
3.0  
3.2  
4.5  
2.2  
Smallest Size  
0.16  
0.18  
0.10  
Coilcraft  
Sumida  
Sumida  
D
C
OUT  
Best Efficiency  
1210 Footprint  
1306 F12  
CTX32CT-100 10µH  
0.50 Coiltronics  
V
OUT  
GROUND  
Figure 12. Recommended Component Placement. Traces  
Carrying High Current Are Direct. Trace Area at FB Pin and V  
Capacitors  
C
Pin is Kept Low. Lead Length to Battery Should Be Kept Short  
For single cell applications, a 10µF ceramic output capaci-  
tor is generally all that is required. Ripple voltage in Burst  
Mode can be reduced by increasing output capacitance.  
For 2- and 3-cell applications, more than 10µF is needed.  
For a typical 2-cell to 5V application, a 47µF to 100µF low  
ESRtantalumcapacitorworks well.AVXTPSseries (100%  
surgetested)orSprague(dontbevague—askforSprague)  
594Dseries arebothgoodchoices forlowESRcapacitors.  
Alternatively, a 10µF ceramic in parallel with a low cost  
(read high ESR) electrolytic capacitor, either tantalum or  
aluminum, can be used instead. For through hole applica-  
OPERATION FROM A LABORATORY POWER SUPPLY  
If a lab supply is used, the leads used to connect the circuit  
to the supply can have significant inductance at the  
LT1307s switching frequency. As in the previous situa-  
tion, anelectrolyticcapacitormayberequiredatthecircuit  
in order to reduce the AC impedance of the input suffi-  
ciently. An alternative solution would be to attach the  
circuitdirectlytothepowersupplyatthesupplyterminals,  
without the use of leads. The power supplys output  
capacitance will then provide the bulk capacitance the  
LT1307 circuit requires.  
12  
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
V
tions wheresmallsizeis notcritical, PanasonicHFQseries  
aluminum electrolytic capacitors have been found to per-  
form well.  
IN  
Q3  
R2  
400k  
SHUTDOWN  
CURRENT  
SHDN  
Table 2. Vendor Telephone Numbers  
200k  
VENDOR  
Coilcraft  
Marcon  
Murata-Erie  
Sumida  
Tokin  
COMPONENTS  
Inductors  
TELEPHONE  
(708) 639-6400  
(708) 913-9980  
(404) 436-1300  
(847) 956-0666  
(408) 432-8020  
(207) 282-5111  
(603) 224-1961  
(407) 241-7876  
START-UP  
CURRENT  
Capacitors  
Q2  
Q1  
Inductors, Capacitors  
Inductors  
1307 F13  
Capacitors  
Figure 13. Shutdown Circuit  
AVX  
Capacitors  
Sprague  
Coiltronics  
Capacitors  
LOW-BATTERY DETECTOR  
Inductors  
The LT1307s low-battery detector is a simple PNP input  
gain stage with an open collector NPN output. The nega-  
tive input of the gain stage is tied internally to a 200mV  
±5% reference. The positive input is the LBI pin. Arrange-  
ment as a low-battery detector is straightforward. Figure  
14 details hookup. R1 and R2 need only be low enough in  
value so that the bias current of the LBI pin doesnt cause  
large errors. For R2, 100k is adequate. The 200mV refer-  
ence can also be accessed as shown in Figure 15.  
Diodes  
Most of the application circuits on this data sheet specify  
the Motorola MBR0520L surface mount Schottky diode.  
This 0.5A, low drop diode complements the LT1307 quite  
well. In lower current applications, a 1N4148 can be used,  
although efficiency will suffer due to the higher forward  
drop. This effect is particularly noticeable at low output  
voltages. For higher voltage output applications, such as  
LCD bias generators, the extra drop is a small percentage  
of the output voltage so the efficiency penalty is small. The  
low cost of the 1N4148 makes it attractive wherever it can  
be used. In through hole applications the 1N5818 is the all  
around best choice.  
3.3V  
R1  
V
IN  
LT1307  
LBO  
1M  
LBI  
+
TO PROCESSOR  
R2  
100k  
200mV  
INTERNAL  
REFERENCE  
V
LB  
– 200mV  
R1 =  
SHUTDOWN PIN  
2µA  
GND  
The LT1307 has a Shutdown pin (SHDN) that must be  
groundedtoshutthedevicedownortiedtoavoltageequal  
1307 F14  
or greater than V to operate. The shutdown circuit is  
shown in Figure 13.  
IN  
Figure 14. Setting Low-Battery Detector Trip Point  
Note that allowing SHDN to float turns on both the start-  
up current (Q2) and the shutdown current (Q3) for V >  
200k  
IN  
V
IN  
2V .TheLT1307doesntknowwhattodointhis situation  
2N3906  
LBO  
LBI  
BE  
LT1307  
and behaves erratically. SHDN voltage above V is al-  
IN  
V
REF  
200mV  
+
lowed. This merely reverse-biases Q3s base emitter junc-  
tion, a benign condition.  
GND  
10k  
10µF  
1307 F15  
Figure 15. Accessing 200mV Reference  
13  
LT1307/ LT1307B  
U
W U U  
APPLICATIONS INFORMATION  
REVERSE BATTERY CONSIDERATIONS  
tion after sustaining polarity reversal for the life of a single  
AA alkaline cell.  
The LT1307 is built ona junction-isolatedbipolar process.  
The p-type substrate is connected to the GND pin of the  
LT1307. Substrate diodes, normally reverse-biased, are  
When using a 2- or 3-cell supply, an external protection  
diode is recommended as shown in Figure 18. When the  
batterypolarityis reversed, the1N4001conducts, limiting  
reverse voltage across the LT1307 to a single diode drop.  
This arrangementwillquicklydepletethecells’energy,but  
it does prevent the LT1307 from excessive power dissipa-  
tion and potential damage.  
present on the SW pin and the V pin as shown in Figure  
IN  
16. When the battery polarity is reversed, these diodes  
conduct, as illustrated in Figure 17. With a single AA or  
AAA cell, several hundred milliamperes flow in the circuit.  
TheLT1307canwithstandthis currentwithoutdamage.In  
laboratory tests, the LT1307 performed without degrada-  
1.5V  
CURRENT  
FLOW  
1.5V  
V
IN  
SW  
V
IN  
SW  
1 CELL  
D1  
D2  
Q1  
1 CELL  
D1  
D2  
Q1  
LT1307  
GND  
LT1307  
GND  
1307 F17  
1307 F16  
Figure 17. When Cell Is Reversed Current Flows through  
D1 and D2  
Figure 16. LT1307 Showing Internal Substrate Diodes D1 and D2.  
In Normal Operation Diodes are Reverse-Biased  
V
IN  
SW  
2 OR 3  
1N4001  
CELLS  
LT1307  
GND  
1307 F18  
Figure 18. 1N4001 Diode Protects LT1307 from Excessive Power  
Dissipation When a 2- or 3-Cell Battery is Used  
14  
LT1307/ LT1307B  
U
TYPICAL APPLICATIONS N  
Externally Controlled Burst Mode Operation  
L1  
10µH  
MBR0520  
V
OUT  
1µF  
CERAMIC  
R4  
1M  
300k  
V
SW  
IN  
V
C
FB  
100k  
R5  
590k  
2
LT1307B  
R3  
698k  
CELLS  
V
3.3V  
OUT  
M1  
LBO  
LBI  
2N7002  
200mA  
SHDN  
GND  
C2*  
10µF  
CERAMIC  
3.0V IN LOW-POWER  
Burst Mode OPERATION  
C1 = AVX TPSC107K006R0150  
L1 = COILCRAFT DO1608-103  
SUMIDA CD43-100  
1nF  
+
R2  
499k  
C1  
R1  
100µF  
10M  
* C2 OPTIONAL: REDUCES OUTPUT  
RIPPLE CAUSED BY C1'S ESR  
GROUND = HIGH POWER/LOW NOISE  
FLOAT = Burst Mode OPERATION  
1307 F19  
SHUTDOWN  
detector now drives the V pin. R3 and R2 set the output  
This circuit overcomes the limitation of load-based  
transitioning between Burst Mode operation and constant  
switching mode by adding external control. If M1s gate is  
grounded by an external open-drain signal, the converter  
functions normallyinconstantswitchingmode,delivering  
3.3V. Output noise is low, however efficiency at loads less  
than 1mA is poor due to the 1mA supply current of the  
LT1307B. If M1s gate is allowed to float, the low-battery  
C
to 3V by allowing M1’s gate to go to VOUT until the output  
voltage drops below 3V. R1 adds hysteresis, resulting in  
low-frequency Burst Mode operation ripple voltage at the  
output. By pulling the VC pin below a V , quiescent  
BE  
currentoftheLT1307Bdrops to60µA, resultinginaccept-  
able efficiency at loads in the 100µA range.  
V
OUT  
V
OUT  
500mV/DIV  
100mV/DIV  
100mA  
IL  
10mA  
IL  
100µA  
10mA  
0.2s/DIV  
1307 F20  
2ms/DIV  
1307 F21  
This photo details output voltage as the circuit is switched  
between the two modes. Load current is 100µA in Burst  
Mode operation; 10mA in constant switching mode.  
This photo shows transient response in constant switch-  
ing mode with a 10mA to 100mA stepped load. Output  
ripple at the switching frequency can be reduced consid-  
erably by adding a 10µF ceramic capacitor in parallel with  
the 100µF tantalum.  
15  
LT1307/ LT1307B  
TYPICAL APPLICATIONS N  
U
Low Cost 2-Cell to 5V  
L1  
V
IN  
1N5818  
10µH  
1.4V TO 3.3V  
5V  
100mA  
C1*  
220µF  
6.3V  
C2  
220µF  
6.3V  
+
+
V
SW  
FB  
IN  
LT1307  
SHDN  
1M  
0.1µF  
0.1µF  
GND  
100k  
4700pF  
323k  
1307 TA02  
C1, C2: PANASONIC ECA0JFQ221  
(DIGI-KEY P5604-ND)  
L1: SUMIDA CD43-100  
Step-Up/Step-Down Converter  
2.2µF  
CERAMIC  
L1  
10µH  
V
IN  
MBR0520  
2.1V TO 4.8V  
3.3V  
100mA  
V
IN  
SW  
10µF  
1µF  
CERAMIC  
CERAMIC  
LT1307  
1.02M  
608k  
3
CELLS  
V
FB  
GND  
C
L1*  
SHDN  
100k  
1000pF  
SHDN  
1307 TA03  
L1: COILTRONICS CTX10-1 OR 2 MURATA ERIE LQH3C100  
EFFICIENCY 70% TO 73%  
Constant Current NiCd Battery Charger with Overvoltage Protection  
for Acknowledge-Back Pagers  
2.2µF  
CERAMIC  
L1  
10µH  
V
IN  
MBR0520L  
15mA  
1.8V TO 1V  
3
2
1µF  
V
SW  
FB  
IN  
1M  
1
V
C
1µF  
CERAMIC  
OVERVOLTAGE  
PROTECTION  
323k  
1 CELL  
AA OR  
AAA  
3 CELLS  
NiCd  
LT1307  
4
30k  
200mV  
1nF  
–100mV  
LBO  
LBI  
SHDN  
GND  
47k  
2200pF  
280k  
6.7Ω  
1 = CHARGE  
0 = SHUTDOWN  
3V  
1307 TA04  
L1: COILTRONICS CTX10-1  
16  
LT1307/ LT1307B  
U
TYPICAL APPLICATIONS N  
Single Cell Powered Constant Current LED Driver  
L1  
D1  
10µH  
V
IN  
100k  
D2  
V
SW  
FB  
IN  
Q1  
2N3906  
LBO  
NC  
LT1307B  
C1  
1µF  
CERAMIC  
AA  
CELL  
V
C
LBI  
SHDN  
GND  
+
C2  
1µF  
40mA  
C3  
22µF  
CERAMIC  
R2  
22k  
R1  
5.1Ω  
100k  
1307 TA05  
ON/OFF  
L1: MURATA-ERIE LQH3C100K04  
D1: 1N4148  
C1, C2: CERAMIC  
V
IN  
D2, D3: LUMEX SSL-X100133SRC/4 "MEGA-BRITE" RED LED  
OR PANASONIC LNG992CF9 HIGH BRIGHTNESS BLUE LED  
Flash Memory VPP Supply  
L1  
10µH  
D1  
12V/30mA FROM 3V  
12V/60mA FROM 5V  
V
IN  
3V TO 5.5V  
+
~250mV RIPPLE  
0.33µF  
1µF  
P-P  
TANTALUM  
10pF  
V
SW  
FB  
IN  
SHUTDOWN  
SHDN  
LT1307  
0.33µF  
CERAMIC  
×2  
2M  
1%  
1N4148  
47k  
V
C
GND  
232k  
1%  
2000pF  
D1: MOTOROLA MBR0520L  
L1: MURATA-ERIE LQH3C100K04  
1307 TA09  
High Voltage Flyback Converter  
OPTIONAL  
DOUBLER  
2V  
OUT  
0.01µF  
0.1µF  
T1  
1:12  
1N4148  
V
IN  
T1: DALE LPE3325-A190, n = 12 (605) 665-9301  
R1  
1V TO 5V  
1µF  
CERAMIC  
3
1
4
6
V
OUT  
= 1.22V 1 +  
(
)
R2  
MAXIMUM DUTY CYCLE: 80%  
DC  
1 – DC  
FOR FLYBACK, V  
=
n(V – V  
)
SW  
OUT  
IN  
V
SW  
FB  
IN  
R1  
0.8  
FOR 1V , MAXIMUM V  
=
OUT  
12(1 – 0.2) 37V  
IN  
SHUTDOWN  
SHDN  
LT1307  
V
OUT  
1 – 0.8  
85V.  
OUT  
FOR 2V , MAXIMUM V  
IN  
HIGHER VOLTAGES ACHIEVED WITH CAPACITIVE DOUBLER OR TRIPLER  
V
C
R2  
240k  
1%  
NO SNUBBER REQUIRED WITH SPECIFIED TRANSFORMER AND V < 5V  
IN  
GND  
0.1µF  
100k  
1000pF  
1307 TA06  
17  
LT1307/ LT1307B  
TYPICAL APPLICATIONS N  
U
Single Cell CCFL Power Supply  
6
3
10  
1
47pF  
3kV  
T1  
4
5
2
1.5V  
100Ω  
C1  
0.1µF  
CCFL  
Q1  
Q2  
1.5V  
L1  
33µH  
D1  
1.5V  
V
IN  
SW  
LT1307B  
1N4148  
1µF  
CERAMIC  
10k  
1
SHDN  
GND  
FB  
CELL  
1N4148  
V
C
1k  
0.1µF  
0.1µF  
10k  
DIMMING  
1307 TA08  
1 = OPERATE  
0 = SHUTDOWN  
C1: WIMA MKP-20  
D1: MOTOROLA MBR0520L  
L1: SUMIDA CD54-330  
T1: COILTRONICS CTX110611  
Q1, Q2: ZETEX FZT-849  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
0.040 ± 0.006  
(1.02 ± 0.15)  
0.006 ± 0.004  
(0.15 ± 0.10)  
(3.00 ± 0.10)  
8
7
6
5
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
0.118 ± 0.004**  
(3.00 ± 0.10)  
0.192 ± 0.004  
(4.88 ± 0.10)  
0.021 ± 0.004  
(0.53 ± 0.01)  
0.025  
(0.65)  
TYP  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
1
2
3
4
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
MSOP08 0596  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
18  
LT1307/ LT1307B  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(1.143 – 1.651)  
(10.160)  
MAX  
(3.302 ± 0.127)  
(7.620 – 8.255)  
8
7
6
5
0.065  
(1.651)  
TYP  
0.009 – 0.015  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.125  
(0.229 – 0.381)  
0.005  
0.015  
(3.175)  
MIN  
(0.127)  
MIN  
+0.025  
–0.015  
(0.380)  
MIN  
0.325  
+0.635  
–0.381  
1
2
4
3
8.255  
(
)
0.100 ± 0.010  
0.018 ± 0.003  
(2.540 ± 0.254)  
(0.457 ± 0.076)  
N8 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1307/ LT1307B  
U
TYPICAL APPLICATION  
LCD Bias Generator  
D1  
–V  
OUT  
0.1µF  
1µF  
D2  
D3  
L1  
V
OUT  
16V TO 24V  
5mA FROM 1 CELL  
15mA FROM 2 CELLS  
35mA FROM 3 CELLS  
V
IN  
SW  
1µF  
10pF  
LT1307  
3.3M  
1, 2 OR 3  
CELLS  
V
C1  
FB  
C
SHDN  
GND  
100k  
4700pF  
1M  
215k  
1307 TA07  
3.3µF  
SHUTDOWN  
+
L1: 3.3µH (1 CELL)  
4.µ7H (2 CELLS)  
1µ0H (3 CELLS)  
SUMIDA CD43  
100k  
MURATA-ERIE LQH3C  
COILCRAFT D01608  
PWM IN 3.3V, 0% TO 100%  
C1: µ1F FOR +OUTPUT  
0.0µ1F FOR OUTPUT  
D1 TO D3: MBR0530 OR 1N4148  
RELATED PARTS  
PART NUMBER  
LTC®1163  
LTC1174  
DESCRIPTION  
COMMENTS  
Triple High Side Driver for 2-Cell Inputs  
1.8V Minimum Input, Drives N-Channel MOSFETs  
94% Efficiency, 130µA I , 9V to 5V at 300mA  
Micropower Step-Down DC/DC Converter  
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
Q
LT1302  
5V/600mA from 2V, 2A Internal Switch, 200µA I  
Q
LT1304  
Low-Battery Detector Active in Shutdown  
2.8µA I , Adjustable Hysteresis  
LTC1440/1/2  
LTC1516  
Ultralow Power Single/Dual Comparators with Reference  
2-Cell to 5V Regulated Charge Pump  
Q
12µA I , No Inductors, 5V at 50mA from 3V Input  
Q
LT1521  
Micropower Low Dropout Linear Regulator  
500mV Dropout, 300mA Current, 12µA I  
Q
LT/GP 1196 7K • PRINTED IN THE USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY