LT1308ACF-PBF [Linear]

High Current, Micropower Single Cell, 600kHz DC/DC Converters; 大电流,微功率单电池, 600kHz的DC / DC转换器
LT1308ACF-PBF
型号: LT1308ACF-PBF
厂家: Linear    Linear
描述:

High Current, Micropower Single Cell, 600kHz DC/DC Converters
大电流,微功率单电池, 600kHz的DC / DC转换器

转换器 电池
文件: 总20页 (文件大小:765K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1308A/LT1308B  
High Current, Micropower  
Single Cell, 600kHz  
DC/DC Converters  
U
DESCRIPTIO  
FEATURES  
The LT®1308A/LT1308B are micropower, fixed frequency  
step-up DC/DC converters that operate over a 1V to 10V  
input voltage range. They are improved versions of the  
LT1308andarerecommendedforuseinnewdesigns.The  
LT1308A features automatic shifting to power saving  
Burst Mode operation at light loads and consumes just  
140μA at no load. The LT1308B features continuous  
switchingatlightloadsandoperatesataquiescentcurrent  
of 2.5mA. Both devices consume less than 1μA in  
shutdown.  
5V at 1A from a Single Li-Ion Cell  
5V at 800mA in SEPIC Mode from Four NiCd Cells  
Fixed Frequency Operation: 600kHz  
Boost Converter Outputs up to 34V  
Starts into Heavy Loads  
Automatic Burst ModeTM Operation at  
Light Load (LT1308A)  
Continuous Switching at Light Loads (LT1308B)  
Low VCESAT Switch: 300mV at 2A  
Pin-for-Pin Upgrade Compatible with LT1308  
Lower Quiescent Current in Shutdown: 1μA (Max)  
Low-battery detector accuracy is significantly tighter than  
the LT1308. The 200mV reference is specified at ± 2% at  
room and ±3% over temperature. The shutdown pin  
enables the device when it is tied to a 1V or higher source  
and does not need to be tied to VIN as on the LT1308. An  
internal VC clamp results in improved transient response  
and the switch voltage rating has been increased to 36V,  
enabling higher output voltage applications.  
Improved Accuracy Low-Battery Detector  
Reference: 200mV ±2%  
Available in 8-Lead SO and 14-Lead TSSOP Packages  
U
APPLICATIO S  
GSM/CDMA Phones  
Digital Cameras  
The LT1308A/LT1308B are available in the 8-lead SO and  
the 14-lead TSSOP packages.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. Burst  
Mode is a registered trademark of Linear Technology Corporation. All other trademarks are  
the property of their respective owners.  
LCD Bias Supplies  
Answer-Back Pagers  
GPS Receivers  
Battery Backup Supplies  
Handheld Computers  
U
TYPICAL APPLICATIO  
Converter Efficiency  
L1  
D1  
4.7μH  
95  
5V  
1A  
V
= 3.6V  
V
= 4.2V  
= 2.5V  
IN  
IN  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
SW  
IN  
+
C1  
47μF  
R1*  
LBO  
LBI  
309k  
V
LT1308B  
IN  
+
Li-Ion  
CELL  
V
= 1.5V  
C2  
220μF  
IN  
SHUTDOWN  
SHDN  
FB  
V
GND  
C
R2  
100k  
47k  
100pF  
C1: AVX TAJC476M010  
C2: AVX TPSD227M006  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
*R1: 887k FOR V = 12V  
OUT  
1308A/B F01a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 1. LT1308B Single Li-Ion Cell to 5V/1A DC/DC Converter  
1308A/B F01b  
1308abfa  
1
LT1308A/LT1308B  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
VIN, SHDN, LBO Voltage ......................................... 10V  
SW Voltage ............................................... 0.4V to 36V  
FB Voltage ....................................................... VIN + 1V  
VC Voltage ................................................................ 2V  
LBI Voltage ................................................. 0.1V to 1V  
Current into FB Pin .............................................. ±1mA  
Operating Temperature Range  
Commercial ............................................ 0°C to 70°C  
Extended Commerial (Note 2) ........... 40°C to 85°C  
Industrial ........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U
U
U
PI CO FIGURATIO  
TOP VIEW  
LBO  
LBI  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C
TOP VIEW  
FB  
SHDN  
GND  
V
1
2
3
4
8
LBO  
LBI  
V
IN  
C
FB  
SHDN  
GND  
7
6
5
V
IN  
SW  
SW  
SW  
V
GND  
IN  
GND  
SW  
GND  
8
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 190°C/W  
F PACKAGE  
14-LEAD PLASTIC TSSOP  
(Note 6)  
TJMAX = 125°C, θJA = 80°C/W  
NOT RECOMMENDED FOR NEW DESIGNS  
Contact Linear Technology for Potential Replacement  
U
W
U
ORDER I FOR ATIO  
LEAD FREE FINISH  
LT1308ACS8#PBF  
LT1308AIS8#PBF  
LT1308BCS8#PBF  
LT1308BIS8#PBF  
LT1308ACF#PBF  
LT1308BCF#PBF  
LEAD BASED FINISH  
LT1308ACS8  
TAPE AND REEL  
LT1308ACS8#TRPBF  
LT1308AIS8#TRPBF  
LT1308BCS8#TRPBF  
LT1308BIS8#TRPBF  
LT1308ACF#TRPBF  
LT1308BCF#TRPBF  
TAPE AND REEL  
LT1308ACS8#TR  
LT1308AIS8#TR  
PART MARKING  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
1308A  
1308AI  
8-Lead Plastic SO  
40°C to 85°C  
0°C to 70°C  
1308B  
8-Lead Plastic SO  
1308BI  
8-Lead Plastic SO  
40°C to 85°C  
0°C to 70°C  
LT1308ACF  
LT1308BCF  
PART MARKING  
1308A  
14-Lead Plastic TSSOP  
14-Lead Plastic TSSOP  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
0°C to 70°C  
TEMPERATURE RANGE  
0°C to 70°C  
LT1308AIS8  
1308AI  
8-Lead Plastic SO  
40°C to 85°C  
0°C to 70°C  
LT1308BCS8  
LT1308BCS8#TR  
LT1308BIS8#TR  
1308B  
8-Lead Plastic SO  
LT1308BIS8  
1308BI  
8-Lead Plastic SO  
40°C to 85°C  
0°C to 70°C  
LT1308ACF  
LT1308ACF#TR  
LT1308ACF  
LT1308BCF  
14-Lead Plastic TSSOP  
14-Lead Plastic TSSOP  
LT1308BCF  
LT1308BCF#TR  
0°C to 70°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1308abfa  
2
LT1308A/LT1308B  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. Commercial Grade 0°C to 70°C. VIN = 1.1V, VSHDN = VIN, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
Not Switching, LT1308A  
Switching, LT1308B  
140  
2.5  
0.01  
240  
4
1
μA  
mA  
μA  
Q
V
= 0V (LT1308A/LT1308B)  
SHDN  
V
Feedback Voltage  
1.20  
1.22  
27  
1.24  
80  
V
FB  
I
FB Pin Bias Current  
Reference Line Regulation  
(Note 3)  
nA  
B
1.1V V 2V  
0.03  
0.01  
0.4  
0.2  
%/V  
%/V  
IN  
2V V 10V  
IN  
Minimum Input Voltage  
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
0.92  
60  
1
V
μmhos  
V/V  
g
ΔI = 5μA  
m
A
100  
600  
90  
V
f
V
= 1.2V  
IN  
500  
82  
2
700  
4.5  
kHz  
OSC  
Maximum Duty Cycle  
Switch Current Limit  
%
Duty Cyle = 30% (Note 4)  
3
A
Switch V  
I
I
= 2A (25°C, 0°C), V = 1.5V  
290  
330  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
IN  
= 2A (70°C), V = 1.5V  
IN  
Burst Mode Operation Switch Current Limit  
(LT1308A)  
V
= 2.5V, Circuit of Figure 1  
400  
mA  
IN  
Shutdown Pin Current  
V
V
V
= 1.1V  
= 6V  
= 0V  
2
20  
0.01  
5
35  
0.1  
μA  
μA  
μA  
SHDN  
SHDN  
SHDN  
LBI Threshold Voltage  
196  
194  
200  
200  
204  
206  
mV  
mV  
LBO Output Low  
I
= 50μA  
0.1  
0.01  
33  
0.25  
0.1  
V
μA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
LBI  
LBI  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
= 150mV  
100  
nA  
3000  
0.01  
V/V  
μA  
V
= 5V  
10  
SW  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
Industrial Grade 40°C to 85°C. VIN = 1.2V, VSHDN = VIN, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
Not Switching, LT1308A  
Switching, LT1308B  
140  
2.5  
0.01  
240  
4
1
μA  
mA  
μA  
Q
V
SHDN  
= 0V (LT1308A/LT1308B)  
V
Feedback Voltage  
1.19  
1.22  
27  
1.25  
80  
V
FB  
I
FB Pin Bias Current  
Reference Line Regulation  
(Note 3)  
nA  
B
1.1V V 2V  
0.05  
0.01  
0.4  
0.2  
%/V  
%/V  
IN  
2V V 10V  
IN  
Minimum Input Voltage  
Error Amp Transconductance  
Error Amp Voltage Gain  
0.92  
60  
1
V
μmhos  
V/V  
g
ΔI = 5μA  
m
A
100  
V
1308abfa  
3
LT1308A/LT1308B  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. Industrial Grade 40°C to 85°C. VIN = 1.2V, VSHDN = VIN, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
500  
82  
TYP  
600  
90  
MAX  
UNITS  
kHz  
%
f
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
750  
OSC  
Duty Cyle = 30% (Note 4)  
2
3
4.5  
A
Switch V  
I
I
= 2A (25°C, 40°C), V = 1.5V  
290  
330  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
IN  
= 2A (85°C), V = 1.5V  
IN  
Burst Mode Operation Switch Current Limit  
(LT1308A)  
V
= 2.5V, Circuit of Figure 1  
400  
mA  
IN  
Shutdown Pin Current  
V
V
V
= 1.1V  
= 6V  
= 0V  
2
20  
0.01  
5
35  
0.1  
μA  
μA  
μA  
SHDN  
SHDN  
SHDN  
LBI Threshold Voltage  
196  
193  
200  
200  
204  
207  
mV  
mV  
LBO Output Low  
I
= 50μA  
0.1  
0.01  
33  
0.25  
0.1  
V
μA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
LBI  
LBI  
LBI Input Bias Current (Note 5)  
Low-Battery Detector Gain  
Switch Leakage Current  
= 150mV  
100  
nA  
3000  
0.01  
V/V  
μA  
V
= 5V  
10  
SW  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT1308ACS8, LT1308ACF, LT1308BCS8 and LT1308BCF are  
designed, characterized and expected to meet the industrial temperature  
limits, but are not tested at 40°C and 85°C. I grade devices are  
guaranteed over the –40°C to 85°C operating temperature range.  
Note 4: Switch current limit guaranteed by design and/or correlation to  
static tests. Duty cycle affects current limit due to ramp generator (see  
Block Diagram).  
Note 5: Bias current flows out of LBI pin.  
Note 6: Connect the four GND pins (Pins 4–7) together at the device.  
Similarly, connect the three SW pins (Pins 8–10) together and the two V  
pins (Pins 11, 12) together at the device.  
IN  
Note 3: Bias current flows into FB pin.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1308B  
3.3V Output Efficiency  
LT1308A  
5V Output Efficiency  
LT1308A  
3.3V Output Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 4.2V  
IN  
V
= 2.5V  
IN  
V
= 1.8V  
V
= 3.6V  
V
= 2.5V  
IN  
IN  
IN  
V
= 1.8V  
IN  
V
= 1.2V  
IN  
V
= 1.5V  
IN  
V
= 1.2V  
IN  
V
= 2.5V  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1308A/B G01  
1308A/B G02  
1308A/B G03  
1308abfa  
4
LT1308A/LT1308B  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT1308B  
12V Output Efficiency  
Switch Saturation Voltage  
vs Current  
Switch Current Limit vs  
Duty Cycle  
4.0  
3.5  
3.0  
2.5  
2.0  
90  
85  
80  
75  
70  
65  
60  
55  
50  
500  
400  
300  
200  
100  
0
V
= 5V  
IN  
V
= 3.3V  
IN  
85°C  
25°C  
–40°C  
0
20  
40  
60  
80  
100  
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
DUTY CYCLE (%)  
SWITCH CURRENT (A)  
1308A/B G04  
1308 • G05  
1308 G06  
FB, LBI Bias Current vs  
Temperature  
Low Battery Detector Reference  
vs Temperature  
SHDN Pin Bias Current vs Voltage  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
203  
202  
201  
200  
199  
198  
197  
196  
195  
40°C  
LBI  
25°C  
85°C  
FB  
75  
–50  
–25  
0
25  
50  
100  
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1308 • G08  
1308 G07  
1308 • G09  
Oscillator Frequency vs  
Temperature  
LT1308A Quiescent Current vs  
Temperature  
Feedback Pin Voltage vs  
Temperature  
180  
170  
160  
150  
140  
130  
120  
110  
100  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
800  
750  
700  
650  
600  
550  
500  
450  
400  
75  
75  
–50  
–25  
0
25  
50  
100  
–50  
–2.5  
0
25  
50  
100  
75  
–50  
–25  
0
25  
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1308 • G11  
1308 • G10  
1308 • G12  
1308abfa  
5
LT1308A/LT1308B  
U
U
U
PIN FUNCTIONS  
(SO/TSSOP)  
SW (Pin 5/Pins 8, 9, 10):Switch Pins. Connect inductor/  
diode here. Minimize trace area at these pins to keep EMI  
down. For the TSSOP package, connect all SW pins  
together at the package.  
VC (Pin 1/Pin 1): Compensation Pin for Error Amplifier.  
Connect a series RC from this pin to ground. Typical  
values are 47kΩ and 100pF. Minimize trace area at VC.  
FB (Pin 2/Pin 2): Feedback Pin. Reference voltage is  
1.22V. Connect resistive divider tap here. Minimize trace  
area at FB. Set VOUT according to:  
VIN (Pin 6/Pins 11, 12): Supply Pins. Must have local  
bypass capacitor right at the pins, connected directly to  
ground. For the TSSOP package, connect both VIN pins  
together at the package.  
V
OUT = 1.22V(1 + R1/R2).  
SHDN (Pin 3/Pin 3): Shutdown. Ground this pin to turn  
off switcher. To enable, tie to 1V or more. SHDN does not  
need to be at VIN to enable the device.  
LBI (Pin 7/Pin 13): Low-Battery Detector Input. 200mV  
reference. Voltage on LBI must stay between –100mV  
and 1V. Low-battery detector does not function with  
SHDN pin grounded. Float LBI pin if not used.  
GND (Pin 4/Pins 4, 5, 6, 7): Ground. Connect directly to  
local ground plane. Ground plane should enclose all  
components associated with the LT1308. PCB copper  
connected to these pins also functions as a heat sink. For  
the TSSOP package, connect all pins to ground copper to  
get the best heat transfer. This keeps chip heating to a  
minimum.  
LBO (Pin 8/Pin 14): Low-Battery Detector Output. Open  
collector, can sink 50μA. A 220kΩ pull-up is recom-  
mended.LBOishighimpedancewhenSHDNisgrounded.  
1308abfa  
6
LT1308A/LT1308B  
W
BLOCK DIAGRA S  
V
IN  
V
IN  
Q4  
2V  
BE  
6
V
IN  
R5  
40k  
R6  
40k  
SHDN  
SHUTDOWN  
3
+
V
C
g
1
m
V
OUT  
LBI  
7
+
+
R1  
LBO  
8
ERROR  
AMPLIFIER  
(EXTERNAL)  
*
FB  
2
ENABLE  
200mV  
Q1  
Q2  
FB  
×10  
BIAS  
A4  
A1  
COMPARATOR  
R2  
R3  
30k  
(EXTERNAL)  
SW  
5
+
DRIVER  
R4  
140k  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
S
A2  
+
+
A = 3  
0.03Ω  
600kHz  
OSCILLATOR  
4
*HYSTERESIS IN LT1308A ONLY  
1308 BD2a  
GND  
Figure 2a. LT1308A/LT1308B Block Diagram (SO-8 Package)  
V
IN  
Q4  
2V  
BE  
V
11  
12  
IN  
V
IN  
R5  
40k  
R6  
40k  
V
SHDN  
3
IN  
SHUTDOWN  
+
V
C
g
1
m
V
OUT  
LBI  
13  
+
+
R1  
LBO  
14  
ERROR  
AMPLIFIER  
(EXTERNAL)  
*
FB  
2
ENABLE  
200mV  
Q1  
Q2  
FB  
×10  
BIAS  
A4  
A1  
COMPARATOR  
R2  
SW SW SW  
8 10  
R3  
30k  
(EXTERNAL)  
9
+
DRIVER  
R4  
140k  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
S
A2  
+
+
A = 3  
0.03Ω  
600kHz  
OSCILLATOR  
4
5
6
7
*HYSTERESIS IN LT1308A ONLY  
1308 BD2b  
GND GND GND GND  
Figure 2b. LT1308A/LT1308B Block Diagram (TSSOP Package)  
1308abfa  
7
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
OPERATION  
Low-battery detector A4’s open-collector output (LBO)  
pulls low when the LBI pin voltage drops below 200mV.  
There is no hysteresis in A4, allowing it to be used as an  
amplifier in some applications. The entire device is dis-  
abled when the SHDN pin is brought low. To enable the  
converter, SHDN must be at 1V or greater. It need not be  
tied to VIN as on the LT1308.  
The LT1308A combines a current mode, fixed frequency  
PWM architecture with Burst Mode micropower operation  
to maintain high efficiency at light loads. Operation can be  
bestunderstoodbyreferringtotheblockdiagraminFigure  
2. Q1 and Q2 form a bandgap reference core whose loop  
is closed around the output of the converter. When VIN is  
1V, the feedback voltage of 1.22V, along with an 80mV  
drop across R5 and R6, forward biases Q1 and Q2’s base  
collector junctions to 300mV. Because this is not enough  
to saturate either transistor, FB can be at a higher voltage  
than VIN. When there is no load, FB rises slightly above  
1.22V, causing VC (the error amplifier’s output) to  
decrease. When VC reaches the bias voltage on hysteretic  
comparator A1, A1’s output goes low, turning off all  
circuitry except the input stage, error amplifier and low-  
battery detector. Total current consumption in this state is  
140μA. As output loading causes the FB voltage to  
decrease, A1’s output goes high, enabling the rest of the  
IC. Switch current is limited to approximately 400mA  
initially after A1’s output goes high. If the load is light, the  
output voltage (and FB voltage) will increase until A1’s  
output goes low, turning off the rest of the LT1308A. Low  
frequency ripple voltage appears at the output. The ripple  
frequency is dependent on load current and output capaci-  
tance. This Burst Mode operation keeps the output regu-  
lated and reduces average current into the IC, resulting in  
high efficiency even at load currents of 1mA or less.  
The LT1308B differs from the LT1308A in that there is no  
hysteresis in comparator A1. Also, the bias point on A1 is  
set lower than on the LT1308B so that switching can occur  
at inductor current less than 100mA. Because A1 has no  
hysteresis, there is no Burst Mode operation at light loads  
and the device continues switching at constant frequency.  
Thisresultsintheabsenceoflowfrequencyoutputvoltage  
ripple at the expense of efficiency.  
The difference between the two devices is clearly illus-  
trated in Figure 3. The top two traces in Figure 3 shows an  
LT1308A/LT1308B circuit, using the components indi-  
cated in Figure 1, set to a 5V output. Input voltage is 3V.  
Load current is stepped from 50mA to 800mA for both  
circuits. Low frequency Burst Mode operation voltage  
ripple is observed on Trace A, while none is observed on  
Trace B.  
At light loads, the LT1308B will begin to skip alternate  
cycles. The load point at which this occurs can be de-  
creased by increasing the inductor value. However, output  
ripplewillcontinuetobesignificantlylessthantheLT1308A  
output ripple. Further, the LT1308B can be forced into  
micropower mode, where IQ falls from 3mA to 200μA by  
sinking 40μA or more out of the VC pin. This stops  
switching by causing A1’s output to go low.  
If the output load increases sufficiently, A1’s output  
remains high, resulting in continuous operation. When the  
LT1308A is running continuously, peak switch current is  
controlled by VC to regulate the output voltage. The switch  
is turned on at the beginning of each switch cycle. When  
the summation of a signal representing switch current and  
a ramp generator (introduced to avoid subharmonic oscil-  
lations at duty factors greater than 50%) exceeds the VC  
signal,comparatorA2changesstate,resettingtheflip-flop  
and turning off the switch. Output voltage increases as  
switch current is increased. The output, attenuated by a  
resistor divider, appears at the FB pin, closing the overall  
loop. Frequency compensation is provided by an external  
series RC network connected between the VC pin and  
ground.  
TRACE A: LT1308A  
VOUT, 100mV/DIV  
AC COUPLED  
TRACE B: LT1308B  
VOUT, 100mV/DIV  
AC COUPLED  
800mA  
ILOAD  
50mA  
V
IN = 3V  
200μs/DIV  
1308 F03  
(CIRCUIT OF FIGURE 1)  
Figure 3. LT1308A Exhibits Burst Mode Operation Output  
Voltage Ripple at 50mA Load, LT1308B Does Not  
1308abfa  
8
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
Waveforms for a LT1308B 5V to 12V boost converter  
using a 10μF ceramic output capacitor are pictured in  
Figures 4 and 5. In Figure 4, the converter is operating in  
continuous mode, delivering a load current of approxi-  
mately 500mA. The top trace is the output. The voltage  
increases as inductor current is dumped into the output  
capacitor during the switch off time, and the voltage  
decreases when the switch is on. Ripple voltage is in this  
case due to capacitance, as the ceramic capacitor has little  
ESR. The middle trace is the switch voltage. This voltage  
alternates between a VCESAT and VOUT plus the diode drop.  
The lower trace is the switch current. At the beginning of  
the switch cycle, the current is 1.2A. At the end of the  
switch on time, the current has increased to 2A, at which  
point the switch turns off and the inductor current flows  
into the output capacitor through the diode. Figure 5  
depicts converter waveforms at a light load. Here the  
converter operates in discontinuous mode. The inductor  
current reaches zero during the switch off time, resulting  
in some ringing at the switch node. The ring frequency is  
set by switch capacitance, diode capacitance and induc-  
tance. This ringing has little energy, and its sinusoidal  
shape suggests it is free from harmonics. Minimizing the  
copper area at the switch node will prevent this from  
causing interference problems.  
LAYOUT HINTS  
The LT1308A/LT1308B switch current at high speed,  
mandating careful attention to layout for proper perfor-  
mance. You will not get advertised performance with  
carelesslayout.Figure6showsrecommendedcomponent  
placementforanSO-8packageboost(step-up)converter.  
Follow this closely in your PC layout. Note the direct path  
of the switching loops. Input capacitor C1 must be placed  
close (<5mm) to the IC package. As little as 10mm of wire  
or PC trace from CIN to VIN will cause problems such as  
inability to regulate or oscillation.  
The negative terminal of output capacitor C2 should tie  
closetothegroundpin(s)oftheLT1308A/LT1308B.Doing  
this reduces dI/dt in the ground copper which keeps high  
frequency spikes to a minimum. The DC/DC converter  
ground should tie to the PC board ground plane at one  
place only, to avoid introducing dI/dt in the ground plane.  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
3
4
8
7
6
5
LT1308A  
LT1308B  
L1  
R2  
VOUT  
100mV/DIV  
SHUTDOWN  
VSW  
10V/DIV  
MULTIPLE  
VIAs  
+
D1  
ISW  
1A/DIV  
C2  
GND  
V
OUT  
500ns/DIV  
Figure 4. 5V to 12V Boost Converter Waveforms in  
Continuous Mode. 10μF Ceramic Capacitor Used at Output  
1308 F04  
Figure 6. Recommended Component Placement for SO-8  
Package Boost Converter. Note Direct High Current Paths  
VOUT  
20mV/DIV  
Using Wide PC Traces. Minimize Trace Area at Pin 1 (VC) and  
Pin 2 (FB). Use Multiple Vias to Tie Pin 4 Copper to Ground  
Plane. Use Vias at One Location Only to Avoid Introducing  
Switching Currents into the Ground Plane  
VSW  
10V/DIV  
ISW  
500mA/DIV  
Figure 7 shows recommended component placement for  
a boost converter using the TSSOP package. Placement is  
500ns/DIV  
similar to the SO-8 package layout.  
Figure 5. Converter Waveforms in Discontinuous Mode  
1308abfa  
9
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
A SEPIC (Single-Ended Primary Inductance Converter)  
schematic is shown in Figure 8. This converter topology  
produces a regulated output over an input voltage range  
that spans (i.e., can be higher or lower than) the output.  
Recommended component placement for an SO-8 pack-  
age SEPIC is shown in Figure 9.  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
3
4
5
6
7
14  
C2  
13  
12  
11  
10  
9
L1  
4.7μF  
CERAMIC  
R2  
L1A  
CTX10-2  
D1  
SHUTDOWN  
V
IN  
3V TO  
10V  
LT1308A  
LT1308B  
V
SW  
IN  
+
MULTIPLE  
VIAs  
L1B  
C1  
47μF  
R1  
309k  
LT1308B  
V
OUT  
8
5V  
SHUTDOWN  
SHDN  
FB  
GND  
500mA  
V
C
+
R2  
100k  
D1  
+
C3  
220μF  
6.3V  
47k  
C2  
GND  
680pF  
V
OUT  
C1: AVX TAJC476M016  
C2: TAIYO YUDEN EMK325BJ475(X5R)  
C3: AVX TPSD227M006  
D1: IR 10BQ015  
L1: COILTRONICS CTX10-2  
1308A/B F08  
1308 F07  
Figure 7. Recommended Component  
Placement for TSSOP Boost Converter.  
Placement is Similar to Figure 4.  
Figure 8. SEPIC (Single-Ended Primary  
Inductance Converter) Converts 3V to 10V  
Input to a 5V/500mA Regulated Output  
LBI  
LBO  
GROUND PLANE  
C1  
+
V
IN  
R1  
1
2
8
7
6
5
LT1308A  
LT1308B  
R2  
SHUTDOWN  
3
4
L1A  
C2  
L1B  
MULTIPLE  
VIAs  
C3  
+
GND  
D1  
V
OUT  
1308 F09  
Figure 9. Recommended Component Placement for SEPIC  
1308abfa  
10  
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
SHDN PIN  
A cross plot of the low-battery detector is shown in  
Figure 12. The LBI pin is swept with an input which varies  
from 195mV to 205mV, and LBO (with a 100k pull-up  
resistor) is displayed.  
The LT1308A/LT1308B SHDN pin is improved over the  
LT1308. The pin does not require tying to VIN to enable the  
device, but needs only a logic level signal. The voltage on  
the SHDN pin can vary from 1V to 10V independent of VIN.  
Further, floatingthispinhasthesameeffectasgrounding,  
which is to shut the device down, reducing current drain  
to 1μA or less.  
VLBO  
1V/DIV  
LOW-BATTERY DETECTOR  
The low-battery detector on the LT1308A/LT1308B fea-  
tures improved accuracy and drive capability compared to  
theLT1308.The200mVreferencehasanaccuracyof±2%  
andtheopen-collectoroutputcansink50μA.TheLT1308A/  
LT1308B low-battery detector is a simple PNP input gain  
stage with an open-collector NPN output. The negative  
input of the gain stage is tied internally to a 200mV  
reference. The positive input is the LBI pin. Arrangement  
as a low-battery detector is straightforward. Figure 10  
details hookup. R1 and R2 need only be low enough in  
value so that the bias current of the LBI pin doesn’t cause  
large errors. For R2, 100k is adequate. The 200mV refer-  
ence can also be accessed as shown in Figure 11.  
195  
200  
205  
VLBI (mV)  
1308 F12  
Figure 12. Low-Battery Detector  
Input/Output Characteristic  
START-UP  
The LT1308A/LT1308B can start up into heavy loads,  
unlike many CMOS DC/DC converters that derive operat-  
ing voltage from the output (a technique known as  
“bootstrapping”). Figure13 detailsstart-upwaveformsof  
Figure1scircuitwitha20ΩloadandVIN of1.5V. Inductor  
current rises to 3.5A as the output capacitor is charged.  
After the output reaches 5V, inductor current is about 1A.  
In Figure 14, the load is 5Ω and input voltage is 3V. Output  
voltage reaches 5V in 500μs after the device is enabled.  
Figure 15 shows start-up behavior of Figure 5’s SEPIC  
circuit, driven from a 9V input with a 10Ω load. The output  
reaches 5V in about 1ms after the device is enabled.  
5V  
R1  
V
LT1308A  
LT1308B  
IN  
100k  
LBI  
+
LBO  
TO PROCESSOR  
R2  
100k  
200mV  
V
– 200mV  
2μA  
LB  
VOUT  
2V/DIV  
R1 =  
INTERNAL  
V
BAT  
REFERENCE  
GND  
1308 F10  
IL1  
1A/DIV  
Figure 10. Setting Low-Battery Detector Trip Point  
VSHDN  
5V/DIV  
1ms/DIV  
1308 F13  
200k  
V
IN  
2N3906  
REF  
LBO  
LBI  
Figure 13. 5V Boost Converter of Figure 1.  
Start-Up from 1.5V Input into 20Ω Load  
V
LT1308A  
LT1308B  
BAT  
V
200mV  
+
GND  
10k  
10μF  
1308 F11  
Figure 11. Accessing 200mV Reference  
1308abfa  
11  
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
when operating from a battery composed of alkaline  
cells. The inrush current may cause sufficiency internal  
voltage drop to trigger a low-battery indicator. A pro-  
grammablesoft-startcanbeimplementedwith4discrete  
components. A 5V to 12V boost converter using the  
VOUT  
1V/DIV  
IL1  
2A/DIV  
LT1308B is detailed in Figure 16. C4 differentiates VOUT  
,
VSHDN  
5V/DIV  
500μs/DIV  
1308 F14  
causing a current to flow into R3 as VOUT increases.  
When this current exceeds 0.7V/33k, or 21μA, current  
flows into the base of Q1. Q1’s collector then pulls  
currentouttheVC pin, creatingafeedbackloopwherethe  
slope of VOUT is limited as follows:  
Figure 14. 5V Boost Converter of Figure 1.  
Start-Up from 3V Input into 5Ω Load  
VOUT  
2V/DIV  
ΔVOUT  
Δt  
0.7V  
33k C4  
=
ISW  
With C4 = 33nF, VOUT/t is limited to 640mV/ms. Start-up  
waveforms for Figure 16’s circuit are pictured in Figure  
17.Withoutthesoft-startcircuitimplemented,theinrush  
current reaches 3A. The circuit reaches final output  
voltage in approximately 250μs. Adding the soft-start  
components reduces inductor current to less than 1A, as  
detailedinFigure18,whilethetimerequiredtoreachfinal  
output voltage increases to about 15ms. C4 can be  
adjusted to achieve any output slew rate desired.  
2A/DIV  
VSHDN  
5V/DIV  
500μs/DIV  
1308 F15  
Figure 15. 5V SEPIC Start-Up from 9V Input into 10Ω Load  
Soft-Start  
In some cases it may be undesirable for the LT1308A/  
LT1308B to operate at current limit during start-up, e.g.,  
L1  
4.7μH  
D1  
V
OUT  
V
IN  
5V  
12V  
500mA  
V
SW  
IN  
+
SHDN  
SHUTDOWN  
C1  
47μF  
LT1308B  
330pF  
11.3k  
100k  
10k  
C2  
10μF  
FB  
GND  
V
C
C4  
33nF  
R4  
33k  
R
C
Q1  
47k  
C
C
R3  
33k  
100pF  
SOFT-START  
COMPONENTS  
C1: AVX TAJ476M010  
1308 F16  
C2: TAIYO YUDEN TMK432BJ106MM  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
Q1: 2N3904  
Figure 16. 5V to 12V Boost Converter with Soft-Start Components Q1, C4, R3 and R4.  
1308abfa  
12  
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
so that copper loss is minimized. Acceptable inductance  
values range between 2μH and 20μH, with 4.7μH best for  
most applications. Lower value inductors are physically  
smaller than higher value inductors for the same current  
capability.  
12V  
VOUT  
5V/DIV  
5V  
IL1  
1A/DIV  
VSHDN  
10V/DIV  
Table1listssomeinductorswehavefoundtoperformwell  
in LT1308A/LT1308B application circuits. This is not an  
exclusive list.  
50μs/DIV  
1308 F17  
Figure 17. Start-Up Waveforms of Figure 16’s Circuit  
without Soft-Start Components  
Table 1  
VENDOR  
Murata  
PART NO.  
LQH6C4R7  
CDRH734R7  
CTX5-1  
VALUE  
4.7μH  
4.7μH  
5μH  
PHONE NO.  
770-436-1300  
847-956-0666  
561-241-7876  
847-639-6400  
12V  
Sumida  
VOUT  
5V  
Coiltronics  
Coilcraft  
LPO2506IB-472  
4.7μH  
IL1  
1A/DIV  
VSHDN  
10V/DIV  
Capacitors  
5ms/DIV  
1308 F18  
Equivalent Series Resistance (ESR) is the main issue  
regarding selection of capacitors, especially the output  
capacitors.  
Figure 18. Start-Up Waveforms of Figure 16’s Circuit  
with Soft-Start Components Added  
The output capacitors specified for use with the LT1308A/  
LT1308B circuits have low ESR and are specifically  
designed for power supply applications. Output voltage  
ripple of a boost converter is equal to ESR multiplied by  
switchcurrent.TheperformanceoftheAVXTPSD227M006  
220μF tantalum can be evaluated by referring to Figure 3.  
When the load is 800mA, the peak switch current is  
approximately 2A. Output voltage ripple is about 60mVP-  
P,sotheESRoftheoutputcapacitoris60mV/2Aor0.03Ω.  
Ripplecanbefurtherreducedbyparallelingceramicunits.  
COMPONENT SELECTION  
Diodes  
WehavefoundONSemiconductorMBRS130andInterna-  
tional Rectifier 10BQ015 to perform well. For applications  
where VOUT exceeds 30V, use 40V diodes such as  
MBRS140 or 10BQ040.  
Heightlimitedapplicationsmaybenefitfromtheuseofthe  
MBRM120. This component is only 1mm tall and offers  
performance similar to the MBRS130.  
Table 2 lists some capacitors we have found to perform  
well in the LT1308A/LT1308B application circuits. This is  
not an exclusive list.  
Inductors  
Table 2  
Suitable inductors for use with the LT1308A/LT1308B  
must fulfill two requirements. First, the inductor must be  
able to handle current of 2A steady-state, as well as  
support transient and start-up current over 3A without  
inductancedecreasingbymorethan50%to60%.Second,  
theDCRoftheinductorshouldhavelowDCR,under0.05Ω  
VENDOR  
AVX  
SERIES  
TPS  
PART NO.  
VALUE  
PHONE NO.  
TPSD227M006 220μF, 6V 803-448-9411  
TPSD107M010 100μF, 10V 803-448-9411  
LMK432BJ226 22μF, 10V 408-573-4150  
TMK432BJ106 10μF, 25V 408-573-4150  
AVX  
TPS  
Taiyo Yuden  
Taiyo Yuden  
X5R  
X5R  
1308abfa  
13  
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
Ceramic Capacitors  
Without CPL, load step response is pictured in Figure 22.  
Although the output settles faster than the tantalum case,  
there is appreciable ringing, again suggesting phase mar-  
gin is low. Figure 23 depicts load step response using the  
10μFceramicoutputcapacitorandCPL. Responseisclean  
and no ringing is evident. Ceramic capacitors have the  
addedbenefitofloweringrippleattheswitchingfrequency  
due to their very low ESR. By applying CPL in tandem with  
the series RC at the VC pin, loop response can be tailored  
to optimize response using ceramic output capacitors.  
Multilayer ceramic capacitors have become popular, due  
to their small size, low cost, and near-zero ESR. Ceramic  
capacitorscanbeusedsuccessfullyinLT1308A/LT1308B  
designs provided loop stability is considered. A tantalum  
capacitor has some ESR and this causes an "ESR zero" in  
the regulator loop. This zero is beneficial to loop stability.  
Ceramics do not have appreciable ESR, so the zero is lost  
when they are used. However, the LT1308A/LT1308B  
have external compensation pin (VC) so component val-  
ues can be adjusted to achieve stability. A phase lead  
capacitor can also be used to tune up load step response  
tooptimumlevels, asdetailedinthefollowingparagraphs.  
VOUT  
500mV/DIV  
Figure 19 details a 5V to 12V boost converter using either  
a tantalum or ceramic capacitor for C2. The input capaci-  
tor has little effect on loop stability, as long as minimum  
capacitance requirements are met. The phase lead capaci-  
tor CPL parallels feedback resistor R1. Figure 20 shows  
load step response of a 50mA to 500mA load step using a  
47μF tantalum capacitor at the output. Without the phase  
lead capacitor, there is some ringing, suggesting the  
phase margin is low. CPL is then added, and response to  
the same load step is pictured in Figure 21. Some phase  
margin is restored, improving the response. Next, C2 is  
replaced by a 10μF, X5R dielectric, ceramic capacitor.  
IL1  
1A/DIV  
500mA  
LOAD  
CURRENT  
50mA  
200μs/DIV  
1308 F20  
Figure 20. Load Step Response of LT1308B 5V to 12V  
Boost Converter with 47μF Tantalum Output Capacitor  
VOUT  
500mV/DIV  
L1  
4.7μH  
IL1  
D1  
V
1A/DIV  
OUT  
V
IN  
12V  
5V  
500mA  
500mA  
LOAD  
CURRENT  
50mA  
V
SW  
200μs/DIV  
IN  
1308 F21  
SHDN  
Figure 21. Load Step Response with 47μF Tantalum  
Output Capacitor and Phase Lead Capacitor CPL  
C
R1  
100k  
PL  
LT1308B  
R3  
10k  
330pF  
FB  
GND  
C2  
V
C
VOUT  
1V/DIV  
+
C1  
47μF  
R2  
11.3k  
47k  
IL1  
1A/DIV  
100pF  
500mA  
LOAD  
C1: AVX TAJC476M010  
CURRENT  
C2: AVX TPSD476M016 (47μF) OR  
50mA  
1308 F19  
TAIYO YUDEN TMK432BJ106MM (10μF)  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
200μs/DIV  
1308 F22  
Figure 22. Load Step Response with 10μF X5R  
Figure 19. 5V to 12V Boost Converter  
Ceramic Output Capacitor  
1308abfa  
14  
LT1308A/LT1308B  
U
W U U  
APPLICATIONS INFORMATION  
VOUT  
VOUT  
VIN = 4.2V  
500mV/DIV  
VOUT  
VIN = 3.6V  
IL1  
1A/DIV  
VOUT  
VIN = 3V  
ILOAD  
500mA  
LOAD  
1A  
CURRENT  
10mA  
50mA  
200μs/DIV  
V
OUT TRACES =  
200μs/DIV  
1308 F23  
200mV/DIV  
1308 F25  
Figure 23. Load Step Response with 10μF X5R  
Ceramic Output Capacitor and CPL  
Figure 25. LT1308A Li-Ion to 5V Boost Converter  
Transient Response to 1A Load Step  
GSM AND CDMA PHONES  
TheLT1308A/LT1308Baresuitableforconvertingasingle  
Li-Ion cell to 5V for powering RF power stages in GSM or  
CDMA phones. Improvements in the LT1308A/LT1308B  
error amplifiers allow external compensation values to be  
reduced, resulting in faster transient response compared  
to the LT1308. The circuit of Figure 24 (same as Figure 1,  
printed again for convenience) provides a 5V, 1A output  
from a Li-Ion cell. Figure 25 details transient response at  
the LT1308A operating at a VIN of 4.2V, 3.6V and 3V.  
Ripple voltage in Burst Mode operation can be seen at  
10mA load. Figure 26 shows transient response of the  
LT1308B under the same conditions. Note the lack of  
Burst Mode ripple at 10mA load.  
VOUT  
VIN = 4.2V  
VOUT  
VIN = 3.6V  
VOUT  
VIN = 3V  
ILOAD  
1A  
10mA  
VOUT TRACES =  
200mV/DIV  
100μs/DIV  
1308 F26  
Figure 26. LT1308B Li-Ion to 5V Boost  
Converter Transient Response to 1A Load Step  
L1  
4.7μH  
D1  
5V  
1A  
V
IN  
SW  
+
C1  
47μF  
R1  
LT1308B  
309k  
+
Li-Ion  
CELL  
C2  
220μF  
SHUTDOWN  
SHDN  
FB  
GND  
V
C
R2  
100k  
47k  
100pF  
C1: AVX TAJC476M010  
C2: AVX TPSD227M006  
D1: IR 10BQ015  
L1: MURATA LQH6N4R7  
1308A/B F24  
Figure 24. Li-Ion to 5V Boost Converter Delivers 1A  
1308abfa  
15  
LT1308A/LT1308B  
TYPICAL APPLICATIO S  
U
Triple Output TFTLCD Bias Supply  
D2  
V
OFF  
–9V  
C4  
10mA  
1μF  
D3  
V
ON  
27V  
C5  
1μF  
0.22μF  
0.22μF  
15mA  
D4  
C6  
1μF  
0.22μF  
L1  
4.7μH  
D1  
V
IN  
5V  
AV  
DD  
6
5
10V  
V
SW  
IN  
500mA  
3
1
SHDN  
76.8k  
10.7k  
C2, C3  
10μF  
×2  
C1  
LT1308B  
4.7μF  
2
FB  
V
C
GND  
4
220k  
100pF  
C1:TAIYO-YUDEN JMK212BJ475MG  
C2, C3:TAIYO-YUDEN LMK325BJ106MN  
1308 TA02  
C4, C5, C6:TAIYO-YUDEN EMK212BJ105MG  
D1: MBRM120  
D2,D3,D4: BAT54S  
L1: TOKO 817FY-4R7M  
TFTLCD Bias Supply Transient Response  
AV  
DD  
500mV/DIV  
V
ON  
500mV/DIV  
V
OFF  
500mV/DIV  
800mA  
I
LOAD  
200mA  
100μs/DIV  
1308abfa  
16  
LT1308A/LT1308B  
U
TYPICAL APPLICATIO S  
40nF EL Panel Driver  
T1  
1:12  
D2  
D3  
V
BAT  
3V TO 6V  
4
+
3
C1  
47μF  
1
6
D1  
3.3V  
REGULATED  
1μF  
100k  
V
SW  
IN  
4.3M  
Q1  
LBO  
FB  
47k  
LT1308A  
2M  
17k  
C2  
1μF  
200V  
324k  
150k  
3.3k  
LBI  
V
SHUTDOWN  
SHDN  
GND  
C
Q2  
400V  
EL PANEL  
40nF  
100pF  
47pF  
22nF  
49.9k  
10k  
1308 TA03  
Q1: MMBT3906  
C1: AVX TAJC476M010  
Q2: ZETEX FCX458  
C2: VITRAMON VJ225Y105KXCAT  
D1: BAT54  
T1: MIDCOM 31105  
D2, D3: BAV21  
SEPIC Converts 3V to 10V Input to a 5V/500mA Regulated Output  
High Voltage Supply 350V at 1.2mA  
10nF  
250V  
D3  
V
OUT  
350V  
1.2mA  
10nF  
250V  
T1  
D2  
D1  
C2  
1:12  
V
IN  
2.7V TO 6V  
4.7μF  
L1A  
+
3
4
CERAMIC  
C1  
47μF  
D1  
CTX10-2  
LT1308B  
V
IN  
10nF  
250V  
3V TO  
10V  
1
6
V
SW  
IN  
+
D4  
L1B  
C1  
47μF  
R1  
309k  
V
OUT  
5V  
SHUTDOWN  
SHDN  
FB  
GND  
V
SW  
IN  
500mA  
V
C
SHUTDOWN  
SHDN  
R2  
100k  
LT1308A  
+
C3  
47k  
220μF  
10M  
6.3V  
FB  
V
680pF  
C
GND  
47k  
10nF  
100pF  
34.8k  
C1: AVX TAJC476M016  
C2: TAIYO YUDEN EMK325BJ475(X5R)  
C3: AVX TPSD227M006  
D1: IR 10BQ015  
L1: COILTRONICS CTX10-2  
1308A/B TA05  
D1, D2, D3: BAV21 200mA, 250V  
D4: MBR0540  
1308 TA04  
T1: MIDCOM 31105R L = 1.5μH  
P
1308abfa  
17  
LT1308A/LT1308B  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1308abfa  
18  
LT1308A/LT1308B  
U
PACKAGE DESCRIPTION  
F Package  
14-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1650)  
4.90 – 5.10*  
(.193 – .201)  
14 13 12 11 10  
9
8
1.05 ± 0.10  
4.50 ±0.10  
6.40  
(.252)  
BSC  
6.60 ±0.10  
0.45 ± 0.05  
0.65 BSC  
5
6
7
1
2
3
4
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50**  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
F14 TSSOP 0204  
0.19 – 0.30  
(.0075 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
1308abfa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1308A/LT1308B  
U
TYPICAL APPLICATIO  
Li-Ion to 12V/300mA Step-Up DC/DC Converter  
L1  
4.7μH  
D1  
2.7V TO 4.2V  
12V  
300mA  
V
SW  
IN  
+
C1  
47μF  
R1  
887k  
LT1308B  
+
Li-Ion  
CELL  
C2  
100μF  
SHUTDOWN  
SHDN  
FB  
GND  
V
C
R2  
100k  
47k  
330pF  
C1: AVX TAJC476M010  
C2: AVX TPSD107M016  
D1: IR 10BQ015  
L1: MURATA LQH6C4R7  
1308A/B TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
5V/600mA from 2V, 2A Internal Switch, 200μA I  
LT1302  
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
Q
LT1304  
5V/200mA, Low-Battery Detector Active in Shutdown  
3.3V at 75mA from One Cell, MSOP Package  
LT1307/LT1307B Single Cell, Micropower, 600kHz PWM DC/DC Converters  
LT1316 Burst ModeOperation DC/DC with Programmable Current Limit  
LT1317/LT1317B Micropower, 600kHz PWM DC/DC Converters  
1.5V Minimum, Precise Control of Peak Current Limit  
100μA I , Operate with V as Low as 1.5V  
Q
IN  
LTC®1474  
LTC1516  
LTC1522  
LT1610  
Micropower Step-Down DC/DC Converter  
2-Cell to 5V Regulated Charge Pump  
94% Efficiency, 10μA I , 9V to 5V at 250mA  
Q
12μA I , No Inudctors, 5V at 50mA from 3V Input  
Q
Micropower, 5V Charge Pump DC/DC Converter  
Single-Cell Micropower DC/DC Converter  
Inverting 1.4MHz Switching Regulator in 5-Lead SOT-23  
1.4MHz Switching Regulator in 5-Lead SOT-23  
Micropower Step-Up DC/DC in 5-Lead SOT-23  
Micropower Inverting DC/DC Converter in SOT-23  
Doubler Charge Pump with Low Noise LDO  
600kHz, 1A Switch PWM DC/DC Converter  
1.1MHz, 1A Switch DC/DC Converter  
Regulated 5V ± 4% Output, 20mA from 3V Input  
3V at 30mA from 1V, 1.7MHz Fixed Frequency  
5V at 150mA from 5V Input, Tiny SOT-23 package  
5V at 200mA from 4.4V Input, Tiny SOT-23 package  
LT1611  
LT1613  
LT1615  
20μA I , 36V, 350mA Switch  
Q
LT1617  
V
= 1V to 15V; V  
to –34V  
IN  
OUT  
LTC1682  
LT1949  
Adjustable or Fixed 3.3V, 5V Outputs, 60μV  
Output Noise  
RMS  
1.1A, 0.5Ω, 30V Internal Switch, V as Low as 1.5V  
IN  
LT1949-1  
1.1MHz Version of LT1949  
1308abfa  
LT 0807 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
© LINEAR TECHNOLOGY CORPORATION 1999  

相关型号:

LT1308ACF-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACF-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8#TR

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1308ACS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8#PBF

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1308AIS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear