LT1317IS8#TRPBF [Linear]

LT1317 - Micropower, 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LT1317IS8#TRPBF
型号: LT1317IS8#TRPBF
厂家: Linear    Linear
描述:

LT1317 - Micropower, 600kHz PWM DC/DC Converters; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1317/LT1317B  
Micropower, 600kHz PWM  
DC/DC Converters  
U
DESCRIPTION  
FEATURES  
The LT®1317/LT1317B are micropower, fixed frequency  
step-up DC/DC converters that operate over a wide input  
voltage range of 1.5V to 12V. The LT1317 features auto-  
matic shifting to power saving Burst ModeTM operation at  
light loads. High efficiency is maintained over a broad  
300µA to 200mA load range. Peak switch current during  
Burst Mode operation is kept below 250mA for most  
operating conditions which results in low output ripple  
voltage, even at high input voltages. The LT1317B does  
notshiftintoBurstModeoperationatlightloads, eliminat-  
ing lowfrequency output rippleatthe expenseof light load  
efficiency.  
100µA Quiescent Current  
Operates with VIN as Low as 1.5V  
600kHz Fixed Frequency Operation  
Starts into Full Load  
Low-Battery Detector Active in Shutdown  
Automatic Burst Mode Operation at  
Light Load (LT1317)  
Continuous Switching at Light Loads (LT1317B)  
Low VCESAT Switch: 300mV at 500mA  
Pin for Pin Compatible with the LT1307/LT1307B  
U
APPLICATIONS  
The LT1317/LT1317B contain an internal low-battery de-  
tector with a 200mV reference that stays alive when the  
device goes into shutdown.  
Cellular Telephones  
Cordless Telephones  
Pagers  
No-load quiescent current of the LT1317 is 100µA and  
shuts down to 30µA. The internal NPN power switch  
handles a 500mA current with a voltage drop of just  
300mV.  
GPS Receivers  
Battery Backup  
Portable Electronic Equipment  
Glucose Meters  
Diagnostic Medical Instrumentation  
The LT1317/LT1317B are available in MS8 and SO-8  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
2-Cell to 3.3V Converter Efficiency  
L1  
10µH  
D1  
90  
2.2V  
3V  
IN  
IN  
+
C1  
V
LBI  
SW  
FB  
80  
70  
60  
50  
40  
IN  
47µF  
3.3V  
1.65V  
IN  
200mA  
LT1317  
R1  
1M  
1%  
2
SHUTDOWN  
SHDN  
V
C
LBO  
GND  
CELLS  
+
C2  
47µF  
R2*  
604k  
1%  
R
C
33k  
C
C
3.3nF  
D1: MBR0520  
L1: SUMIDA CD43-100  
* FOR 5V OUTPUT, R2 = 332k, 1%  
1317 F01  
0.3  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 1. 2-Cell to 3.3V Boost Converter  
1317 TA01  
1
LT1317/LT1317B  
W W W  
U
ABSOLUTE AXI U RATI GS (Note 1)  
Junction Temperature.......................................... 125°C  
VIN, LBO Voltage..................................................... 12V  
SW Voltage ............................................... 0.4V to 30V  
FB Voltage .................................................... VIN + 0.3V  
VC Voltage ................................................................ 2V  
LBI Voltage ............................................ 0V VLBI 1V  
SHDN Voltage ............................................................ 6V  
Operating Temperature Range  
Commercial ........................................... 0°C to 70°C  
Industrial ............................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
TOP VIEW  
V
1
2
3
4
8
7
6
5
LBO  
LBI  
C
V
1
2
3
4
8 LBO  
7 LBI  
C
LT1317CMS8  
LT1317BCMS8  
LT1317CS8  
LT1317BCS8  
LT1317IS8  
LT1317BIS8  
FB  
SHDN  
GND  
FB  
SHDN  
GND  
6 V  
IN  
V
IN  
5 SW  
SW  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 160°C/W  
MS8 PART MARKING  
S8 PART MARKING  
TJMAX = 125°C, θJA = 120°C/W  
1317  
LTHA  
LTHB  
1317B  
1317I  
1317BI  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
Commercial Grade VIN = 2V, VSHDN = 2V, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
Not Switching, V  
= 2V (LT1317)  
100  
25  
4.8  
160  
40  
6.5  
7.5  
µA  
µA  
mA  
mA  
Q
SHDN  
V
V
V
= 0V (LT1317/LT1317B)  
= 2V, Switching (LT1317B)  
= 2V, Switching (LT1317B)  
SHDN  
SHDN  
SHDN  
V
Feedback Voltage  
1.22  
1.20  
1.24  
1.24  
1.26  
1.26  
V
V
FB  
I
FB Pin Bias Current (Note 2)  
Input Voltage Range  
12  
60  
12  
nA  
V
B
1.5  
70  
g
Error Amp Transconductance  
Error Amp Voltage Gain  
Maximum Duty Cycle  
I = 5µA  
140  
700  
85  
240  
µmhos  
V/V  
m
A
V
80  
%
Switch Current Limit (Note 3)  
V
V
= 2.5V, Duty Cycle = 30%  
= 2.5V, Duty Cycle = 30%  
710  
660  
800  
1300  
1350  
mA  
mA  
IN  
IN  
Burst Mode Operation Switch Current Limit  
Switching Frequency  
Duty Cycle = 30% (LT1317)  
275  
620  
mA  
kHz  
f
520  
720  
OSC  
2
LT1317/LT1317B  
ELECTRICAL CHARACTERISTICS  
Commercial Grade VIN = 2V, VSHDN = 2V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
Shutdown Pin Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= V  
= 0V  
0.015  
2.3  
0.06  
–6  
µA  
µA  
SHDN  
SHDN  
IN  
LBI Threshold Voltage  
190  
180  
200  
200  
210  
220  
mV  
mV  
LBO Output Low  
I
= 10µA  
0.15  
0.02  
5
0.25  
0.1  
40  
V
µA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
LBI  
LBI  
LBI Input Bias Current (Note 4)  
Low-Battery Detector Gain  
Switch Leakage Current  
= 150mV  
nA  
1MLoad  
2000  
0.01  
300  
V/V  
µA  
V
= 5V  
3
SW  
Switch V Sat  
I
= 500mA  
SW  
350  
400  
mV  
mV  
CE  
Reference Line Regulation  
SHDN Input Voltage High  
SHDN Input Voltage Low  
1.8V V 12V  
0.08  
0.15  
6
%/V  
V
IN  
1.4  
0.4  
V
Industrial Grade VIN = 2V, VSHDN = 2V, 40°C TA 85°C unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
Not Switching, V  
= 2V (LT1317)  
160  
40  
7.5  
µA  
µA  
mA  
Q
SHDN  
V
SHDN  
V
SHDN  
= 0V (LT1317/LT1317B)  
= 2V, Switching (LT1317B)  
V
Feedback Voltage  
1.20  
1.26  
80  
V
nA  
FB  
I
FB Pin Bias Current (Note 2)  
Input Voltage Range  
B
1.7  
70  
12  
V
g
m
Error Amp Transconductance  
Maximum Duty Cycle  
I = 5µA  
140  
240  
µmhos  
%
80  
Switch Current Limit (Note 3)  
Switching Frequency  
V
IN  
= 2.5V, Duty Cycle = 30%  
550  
500  
1350  
750  
mA  
f
kHz  
OSC  
Shutdown Pin Current  
V
SHDN  
V
SHDN  
= V  
= 0V  
0.1  
–7  
µA  
µA  
IN  
LBI Threshold Voltage  
LBO Output Low  
180  
220  
0.25  
0.1  
60  
mV  
V
I
= 10µA  
= 250mV, V  
= 150mV  
= 5V  
SINK  
LBO Leakage Current  
LBI Input Bias Current (Note 4)  
Switch Leakage Current  
V
V
V
= 5V  
LBO  
µA  
nA  
µA  
mV  
%/V  
V
LBI  
LBI  
SW  
SW  
3
Switch V Sat  
I
= 500mA  
400  
0.15  
6
CE  
Reference Line Regulation  
SHDN Input Voltage High  
SHDN Input Voltage Low  
1.8V V 12V  
IN  
1.4  
0.4  
V
The  
denotes specifications which apply over the full operating  
Note 2: Bias current flows into FB pin.  
temperature range.  
Note 3: Switch current limit guaranteed by design and/or correlation to  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
static tests. Duty cycle affects current limit due to ramp generator.  
of a device may be impaired.  
Note 4: Bias current flows out of LBI pin.  
3
LT1317/LT1317B  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Switch Current Limit,  
Duty Cycle = 30%  
Oscillator Frequency  
Burst Mode Current Limit (LT1317)  
1000  
900  
800  
700  
600  
500  
700  
650  
600  
550  
500  
800  
600  
400  
200  
0
V
= 2V  
IN  
L = 10µH  
–40°C  
85°C  
25°C  
–50  
–25  
0
25  
50  
75  
100  
0
2
4
6
8
10  
12  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
INPUT VOLTAGE  
DUTY CYCLE (%)  
1317 TPC03  
1317 TPC01  
1317 TPC02  
Switch Current Limit  
LBI Input Bias Current  
Switch Voltage Drop (VCESAT)  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
6
5
4
3
2
1
0
85°C  
TYPICAL  
25°C  
–40°C  
600  
MINIMUM (25°C)  
400  
200  
0
20  
40  
60  
80  
100  
0
0.2  
0.4  
0.6  
0.8  
1
–50  
–25  
0
25  
50  
75  
100  
DUTY CYCLE (%)  
SWITCH CURRENT (A)  
TEMPERATURE (°C)  
1317 TPC04  
1317 TPC06  
1317 TPC05  
Feedback Voltage  
LBI Reference Voltage  
Quiescent Current, SHDN = 2V  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
110  
100  
90  
203  
202  
201  
200  
199  
198  
197  
196  
195  
80  
70  
60  
50  
40  
30  
–50  
–50  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1317 TPC07  
1317 TPC09  
1317 TPC08  
4
LT1317/LT1317B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin Current  
Quiescent Current, SHDN = 0V  
FB Pin Bias Current  
26  
25  
24  
23  
22  
21  
20  
40  
36  
32  
28  
24  
20  
16  
12  
8
2
1
0
–1  
–2  
–3  
4
0
–50  
–25  
0
25  
50  
75  
100  
1
2
4
0
5
6
3
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1317 TPC10  
1317 TPC12  
1317 TPC11  
2-Cell to 3.3V Converter  
Efficiency (LT1317B)  
2-Cell to 5V Converter Efficiency  
(LT1317B)  
5V Output Efficiency, Circuit of  
Figure 1 (LT1317)  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
V
IN  
V
IN  
V
IN  
= 1.65V  
= 2.2V  
= 3V  
V
= 1.65V  
= 2.2V  
= 3V  
V
V
V
= 1.65V  
= 2.2V  
= 3V  
IN  
IN  
IN  
IN  
IN  
IN  
V
V
0.3  
1
10  
100  
1000  
1
10  
LOAD CURRENT (mA)  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1317 TPC14  
1317 TPC15  
1317 TPC13  
Transient Response (LT1317)  
Transient Response (LT1317B)  
Burst Mode Operation (LT1317)  
VOUT  
100mV/DIV  
VOUT  
100mV/DIV  
VOUT  
50mV/DIV  
AC COUPLED  
AC COUPLED  
AC COUPLED  
IL  
IL  
IL  
200mA/DIV  
200mA/DIV  
200mA/DIV  
VSW  
5V/DIV  
165mA  
ILOAD  
165mA  
ILOAD  
5mA  
5mA  
V
IN = 2V  
VOUT = 3.3V  
CIRCUIT OF FIGURE 1  
1ms/DIV  
1317 TPC16  
V
IN = 2V  
1ms/DIV  
1317 TPC17  
V
IN = 2V  
20µs/DIV  
1317 TPC18  
VOUT = 3.3V  
CIRCUIT OF FIGURE 1  
WITH LT1317B  
VOUT = 3.3V  
ILOAD = 30mA  
CIRCUIT OF FIGURE 1  
5
LT1317/LT1317B  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Load Regulation (LT1317)  
Load Regulation (LT1317)  
Load Regulation (LT1317)  
VOUT  
50mV/DIV  
DC COUPLED  
OFFSET  
VOUT  
50mV/DIV  
DC COUPLED  
OFFSET  
VOUT  
50mV/DIV  
DC COUPLED  
OFFSET  
ADDED  
ADDED  
ADDED  
VIN = 1.5V  
VOUT = 5V  
ILOAD 25mA/DIV  
1317 TPC19  
VIN = 2V  
VOUT = 5V  
ILOAD 25mA/DIV  
1317 TPC20  
VIN = 2.5V  
VOUT = 5V  
ILOAD 50mA/DIV  
1317 TPC21  
Load Regulation (LT1317)  
Load Regulation (LT1317)  
Load Regulation (LT1317)  
VOUT  
50mV/DIV  
DC COUPLED  
OFFSET  
VOUT  
50mV/DIV  
DC COUPLED  
OFFSET  
VOUT  
50mV/DIV  
DC COUPLED  
OFFSET  
ADDED  
ADDED  
ADDED  
VIN = 1.5V  
ILOAD 25mA/DIV  
1317 TPC22  
VIN = 2V  
ILOAD 50mA/DIV  
1317 TPC23  
VIN = 2.5V  
ILOAD 50mA/DIV  
1317 TPC24  
VOUT = 3.3V  
VOUT = 3.3V  
VOUT = 3.3V  
Note: For load regulation pictures, double lines are due to  
output capacitor ESR.  
U
U
U
PIN FUNCTIONS  
VC (Pin 1): Compensation Pin for Error Amplifier. Con-  
nect a series RC network from this pin to ground. Typical  
values for compensation are a 33k/3.3nF combination. A  
100pFcapacitorfromtheVC pintogroundisoptionaland  
improves noise immunity. Minimize trace area at VC.  
GND (Pin 4): Ground. Connect directly to local ground  
plane.  
SW (Pin 5): Switch Pin. Connect inductor/diode here.  
Minimize trace area at this pin to keep EMI down.  
VIN (Pin 6): Supply Pin. Must be bypassed close to the  
pin.  
FB (Pin 2): Feedback Pin. Reference voltage is 1.24V.  
Connect resistor divider tap here. Minimize trace area at  
FB. Set VOUT according to: VOUT = 1.24V(1 + R1/R2).  
LBI (Pin 7): Low-Battery Detector Input. 200mV refer-  
ence. Voltage on LBI must stay between ground and  
700mV. Low-battery detector remains active in shutdown  
mode.  
SHDN (Pin 3): Shutdown. Pull this pin low for shutdown  
mode (only the low-battery detector remains active).  
Leavethispinfloatingortietoavoltagebetween1.4Vand  
6V to enable the device. SHDN pin is logic level and need  
only meet the logic specification (1.4V for high, 0.4V for  
low).  
LBO (Pin 8): Low-Battery Detector Output. Open collec-  
tor, can sink 10µA. A 1Mpull-up is recommended.  
6
LT1317/LT1317B  
W
BLOCK DIAGRAM  
LBI  
7
1.24V  
+
+
V
LBO  
8
C
REFERENCE  
g
1
m
FB  
2
A4  
200mV  
ENABLE  
ERROR  
AMPLIFIER  
+
SHDN  
V
OUT  
SHUTDOWN  
3
BIAS  
A1  
COMPARATOR  
R1  
(EXTERNAL)  
SW  
5
FB  
R2  
+
FF  
S
(EXTERNAL)  
DRIVER  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
A2  
COMPARATOR  
+
+
A = 2  
0.08Ω  
600kHz  
OSCILLATOR  
4
GND 1317 BD  
U
W U U  
APPLICATIONS INFORMATION  
OPERATION  
Iftheoutputloadincreasessufficiently,A1’soutputremains  
high, resulting in continuous operation. When the LT1317  
is running continuously, peak switch current is controlled  
by VC to regulate the output voltage. The switch is turned  
on at the beginning of each switch cycle. When the sum-  
mation of a signal representing switch current and a ramp  
generator(introducedtoavoidsubharmonicoscillationsat  
duty factors greater than 50%) exceeds the VC signal,  
comparator A2 changes state, resetting the flip-flop and  
turning off the switch. Output voltage increases as switch  
current is increased. The output, attenuated by a resistor  
divider, appears at the FB pin, closing the overall loop.  
Frequency compensation is provided by an external series  
RC network and an optional capacitor connected between  
the VC pin and ground.  
The LT1317 combines a current mode, fixed frequency  
PWMarchitecturewithBurstModemicropoweroperation  
to maintain high efficiency at light loads. Operation can  
best be understood by referring to the Block Diagram.  
The error amplifier compares voltage at the FB pin with the  
internal 1.24V bandgap reference and generates an error  
signal VC. When VC decreases below the bias voltage on  
hysteretic comparator A1, A1’s output goes low, turning  
off all circuitry except the 1.24V reference, error amplifier  
and low-battery detector. Total current consumption in  
this state is 100µA. As output loading causes the FB  
voltage to decrease, VC increases causing A1’s output to  
go high, in turn enabling the rest of the IC. Switch current  
is limited to approximately 250mA initially after A1’s  
output goes high. If the load is light, the output voltage  
(and FB voltage) will increase until A1’s output goes low,  
turning off the rest of the LT1317. Low frequency ripple  
voltage appears at the output. The ripple frequency is  
dependent on load current and output capacitance. This  
Burst Mode operation keeps the output regulated and  
reduces average current into the IC, resulting in high  
efficiency even at load currents of 300µA or less.  
Low-batterydetectorA4’sopencollectoroutput(LBO)pulls  
low when the LBI pin voltage drops below 200mV. There  
isnohysteresisinA4, allowingittobeusedasanamplifier  
in some applications. The low-battery detector remains  
active in shutdown. To enable the converter, SHDN must  
be left floating or tied to a voltage between 1.4V and 6V.  
7
LT1317/LT1317B  
U
W U U  
APPLICATIONS INFORMATION  
GROUND PLANE  
TheLT1317BdiffersfromtheLT1317inthatthebiaspoint  
on A1 is set lower than on the LT1317 so that minimum  
switch current can drop below 50mA. Because A1’s bias  
point is set lower, there is no Burst Mode operation at light  
loads and the device continues switching at constant  
frequency. This results in the absence of low frequency  
outputvoltagerippleattheexpenseoflightloadefficiency.  
1
8
7
6
5
LT1317  
2
3
4
V
IN  
L
D
C
IN  
MULTIPLE  
VIAs  
The difference between the two devices is clearly illus-  
trated in Figure 2. The top two traces in Figure 2 show an  
LT1317/LT1317Bcircuit, usingthecomponentsindicated  
in Figure 1, set to a 3.3V output. Input voltage is 2V. Load  
current is stepped from 2mA to 200mA for both circuits.  
Low frequency Burst Mode operation voltage ripple is  
observed on Trace A, while none is observed on Trace B.  
C
OUT  
GND  
V
1317 F03  
OUT  
Figure 3. Recommended Component Placement. Traces Carrying  
High Current Are Direct. Trace Area at FB Pin and VC Pin is Kept  
Low. Lead Length to Battery Should be Kept Short.  
COMPONENT SELECTION  
Inductors  
LT1317  
VOUT  
TRACE A  
100mV/DIV  
AC COUPLED  
LT1317B  
VOUT  
TRACE B  
Inductors appropriate for use with the LT1317 must  
possess three attributes. First, they must have low core  
loss at 600kHz. Most ferrite core units have acceptable  
losses at this switching frequency. Inexpensive iron pow-  
der cores should be viewed suspiciously, as core losses  
can cause significant efficiency penalties at 600kHz. Sec-  
ond, the inductor must be able to handle peak switch  
current of the LT1317 without saturating. This places a  
lower limit on the physical size of the unit. Molded chokes  
or chip inductors usually do not have enough core to  
supporttheLT1317maximumpeakswitchcurrentandare  
unsuitable for the application. Lastly, the inductor should  
have low DCR (copper wire resistance) to prevent effi-  
ciency-killing I2R losses. Linear Technology has identified  
several inductors suitable for use with the LT1317. This is  
not an exclusive list. There are many magnetics vendors  
whose components are suitable for use. A few vendor’s  
components are listed in Table 1.  
100mV/DIV  
AC COUPLED  
200mA  
2mA  
ILOAD  
1ms/DIV  
1317 F02  
Figure 2. LT1317 Exhibits Ripple at 2mA Load  
During Burst Mode Operation, the LT1317B Does Not  
LAYOUT HINTS  
The LT1317 switches current at high speed, mandating  
careful attention to layout for proper performance. You  
will not get advertised performance with careless layouts.  
Figure 3 shows recommended component placement.  
Follow this closely in your PC layout. Note the direct path  
of the switching loops. Input capacitor CIN must be placed  
close (<5mm) to the IC package. As little as 10mm of wire  
or PC trace from CIN to VIN will cause problems such as  
inability to regulate or oscillation.  
8
LT1317/LT1317B  
U
W U U  
APPLICATIONS INFORMATION  
Table 1. Inductors Suitable for Use with the LT1317  
tobeadjustedtoensureastablesystemfortheentireinput  
voltage range. Figure 4 shows a 2V to 3.3V converter with  
new values for RC and CC. Figure 5 details transient  
response for this circuit. Also, ceramic caps are prone to  
temperature effects and the designer must check loop  
stabilityovertheoperatingtemperaturerange(seesection  
on Frequency Compensation).  
MAX  
VALUE DCR  
HEIGHT  
(mm)  
PART  
MFR  
COMMENT  
LQH3C100  
10µH  
0.57 Murata-Erie  
2.0  
Smallest Size,  
Limited Current  
Handling  
DO1608-103 10µH  
0.16  
0.18  
0.10  
Coilcraft  
Sumida  
Sumida  
3.0  
3.2  
4.5  
2.2  
CD43-100  
CD54-100  
10µH  
10µH  
Input bypass capacitor ESR is less critical and smaller  
units may be used. If the input voltage source is physically  
near the VIN pin (<5mm), a 10µF ceramic or a 10µF A case  
tantalum is adequate.  
Best Efficiency  
1210 Footprint  
CTX32CT-100 10µH  
0.50 Coiltronics  
Capacitor Selection  
Diodes  
LowESR(EquivalentSeriesResistance)capacitorsshould  
be used at the output of the LT1317. For most applications  
a solid tantalum in a C or D case size works well. Accept-  
able capacitance values range from 10µF to 330µF with  
ESR falling between 0.1and 0.5. If component size is  
an issue, tantalum capacitors in smaller case sizes can be  
usedbuttheyhavehighESRandoutputvoltageripplemay  
reach unacceptable levels.  
Most of the application circuits on this data sheet specify  
the Motorola MBR0520L surface mount Schottky diode.  
In lower current applications, a 1N4148 can be used,  
although efficiency will suffer due to the higher forward  
drop. This effect is particularly noticeable at low output  
voltages. For higher voltage output applications, such as  
LCD bias generators, the extra drop is a small percentage  
of the output voltage so the efficiency penalty is small. The  
low cost of the 1N4148 makes it attractive wherever it can  
be used. In through hole applications the 1N5818 is the all  
around best choice.  
Ceramic capacitors are an alternative because of their  
combination of small size and low ESR. A 10µF ceramic  
capacitor will work for some applications but the ex-  
tremely low ESR of these capacitors may cause loop  
stability problems. Compensation components will need  
L1  
10µH  
D1  
V
V
IN  
OUT  
2V  
3.3V  
V
SW  
FB  
IN  
LT1317B  
R1  
1M  
1%  
VOUT  
200mV/DIV  
AC COUPLED  
SHDN  
V
C
C1  
10µF  
GND  
C2  
10µF  
CERAMIC  
R2  
604k  
1%  
R
C
20k  
C
ILOAD  
5mA TO  
200mA  
C
1500pF  
D1: MBR0520  
1317 F04  
L1: SUMIDA CD43-100  
200µs/DIV  
1317 F05  
Figure 5. Transient Response for the Circuit of Figure 4.  
Figure 4. 2V to 3.3V Converter with a 10µF Ceramic Output  
Capacitor. RC and CC Have Been Adjusted to Give Optimum  
Transient Response.  
9
LT1317/LT1317B  
U
W U U  
APPLICATIONS INFORMATION  
MBR0520L  
10µH  
FREQUENCY COMPENSATION  
V
V
OUT  
IN  
2V  
3.3V  
The LT1317 has an external compensation pin (VC) which  
allows the frequency response to be optimized for the  
circuit configuration. In most cases, the values used in  
Figure 1 will work. Some circuits may need additional  
compensation and a simple trial and error method for  
determining the necessary component values is given.  
V
SW  
IN  
1M  
15Ω  
2W  
LT1317  
+
+
FB  
SHDN  
47µF  
47µF  
V
GND  
C
604k  
R
C
C2  
50Ω  
100pF  
C
Figure 6 shows the test setup. A load step is applied and  
the resulting output voltage waveform is observed. Fig-  
ures 7 through 10 detail the response for various values of  
R and C in the compensation network. The circuit of  
Figure 7 starts with a large C and small R giving a highly  
overdampedsystem.Thissystemwillalwaysbestablebut  
the output voltage displays a long settling time of >5ms.  
Figure 8’s circuit has reduced C giving a shorter settling  
time but still overdamped. Figure 9 shows the results  
when C is reduced to the point where the system becomes  
underdamped. The output voltage responds quickly  
(200µs to 300µs) but some ringing exists. Figure 10 has  
1317 F06  
Figure 6. Frequency Response Test Setup  
optimum R and C values giving the best possible settling  
time with adequate phase margin.  
An additional 100pF capacitor (CC2) is connected to the VC  
pinandisnecessaryiftheLT1317isoperatednearcurrent  
limit. Also, CC2 should be present when higher ESR output  
capacitors are used.  
VOUT  
100mV/DIV  
VOUT  
100mV/DIV  
AC COUPLED  
AC COUPLED  
ILOAD  
ILOAD  
2mA TO  
200mA  
2mA TO  
200mA  
5ms/DIV  
1317 F07  
5ms/DIV  
1317 F08  
Figure 7. With C = 56nF and R = 33k,  
the System is Highly Overdamped.  
Figure 8. Reducing C to 22nF  
Speeds Up the Response. (R = 33k)  
VOUT  
100mV/DIV  
VOUT  
100mV/DIV  
AC COUPLED  
AC COUPLED  
ILOAD  
ILOAD  
2mA TO  
200mA  
2mA TO  
200mA  
1ms/DIV  
1317 F09  
1ms/DIV  
1317 F10  
Figure 9. Using 680pF for C Results in an  
Underdamped System with Ringing. (R = 33k)  
Figure 10. 3.3nF and 33k Gives the  
Shortest Settling Time with No Ringing.  
10  
LT1317/LT1317B  
U
W U U  
APPLICATIONS INFORMATION  
LOW-BATTERY DETECTOR  
Figure 11 details hookup. R1 and R2 need only be low  
enough in value so that the bias current of the LBI pin  
doesn’t cause large errors. For R2, 100k is adequate. The  
200mV reference can also be accessed as shown in  
Figure 12. The low-battery detector remains active in  
shutdown.  
The LT1317’s low-battery detector is a simple PNP input  
gain stage with an open collector NPN output. The nega-  
tive input of the gain stage is tied internally to a 200mV  
±5% reference. The positive input is the LBI pin. Arrange-  
ment as a low-battery detector is straightforward.  
3.3V  
R1  
V
IN  
LT1317  
LBO  
1M  
LBI  
+
TO PROCESSOR  
R2  
100k  
200k  
V
IN  
200mV  
V
LB  
– 200mV  
2µA  
2N3906  
REF  
LBO  
LBI  
R1 =  
INTERNAL  
LT1317  
REFERENCE  
GND  
V
200mV  
+
GND  
1317 F11  
10k  
10µF  
1317 F12  
Figure 11. Setting Low-Battery Detector Trip Point  
Figure 12. Accessing 200mV Reference  
U
TYPICAL APPLICATIO S  
Single Li-Ion Cell to 3.3V SEPIC Converter  
3.3V SEPIC Efficiency  
C3  
1µF  
80  
MBR0520  
L1A*  
75  
70  
65  
60  
+
C1  
47µF  
V
SW  
FB  
IN  
V
OUT  
LT1317  
3.3V  
1M  
1%  
SINGLE  
Li-ION  
CELL  
(2.7V TO  
4.2V)  
250mA  
SHDN  
V
L1B*  
GND  
C
+
C2  
47µF  
V
V
V
= 2.7V  
= 3.5V  
= 4.2V  
IN  
IN  
IN  
604k  
1%  
33k  
3300pF  
55  
50  
C1, C2: AVX TPSC476M010  
C3: AVX 1206YC106KAT  
* COILTRONICS CTX20-1  
1
10  
100  
1000  
1317 TA03  
LOAD CURRENT (mA)  
1317 TA03a  
11  
LT1317/LT1317B  
U
TYPICAL APPLICATIO S  
5V to 12V Boost Converter  
5V to 12V Boost Converter Efficiency  
L1  
22µH  
90  
MBR0520  
V
IN  
5V  
V
OUT  
12V  
85  
80  
75  
70  
150mA  
V
SW  
FB  
IN  
+
47µF  
LT1317  
1.07M  
1%  
SHUTDOWN  
SHDN  
LB0  
V
C
GND  
+
C2  
47µF  
124k  
1%  
56k  
3300pF  
L1: SUMIDA CD54-220  
1
10  
100  
1317 TA04  
LOAD CURRENT (mA)  
1317 TA04a  
Single Li-Ion to 5V DC/DC Converter  
Single Li-Ion to 5V DC/DC Converter Efficiency  
L1  
10µH  
90  
MBR0520  
85  
80  
75  
70  
+
V
SW  
FB  
IN  
47µF  
V
OUT  
LT1317  
5V  
1M  
1%  
SINGLE  
Li-ION  
CELL  
(2.7V TO  
4.2V)  
250mA  
SHUTDOWN  
SHDN  
V
GND  
C
+
47µF  
V
V
V
= 2.7V  
= 3.5V  
= 4.2V  
IN  
IN  
IN  
324k  
1%  
33k  
3300pF  
65  
60  
L1: SUMIDA CD43-100  
1
10  
100  
1000  
1317 TA05  
LOAD CURRENT (mA)  
1317 TA05a  
Low Profile 3.3 to 5V Converter  
L1  
10µH  
D1  
3.3V  
5V  
125mA  
V
SW  
FB  
IN  
+
C1  
15µF  
10V  
LT1317BCMS8  
1M  
SHDN  
V
GND  
C
C2  
10µF  
CERAMIC  
33k  
3.3nF  
332k  
C1: AVX TAJA156M010  
C2: MURATA GRM235Y5V106Z01  
1317 TA06  
L1: MURATA LQH3C100 OR SUMIDA CLQ61-100N  
D1: MOTOROLA MBR0520LT1  
12  
LT1317/LT1317B  
U
TYPICAL APPLICATIO S  
2-Cell to 5V DC/DC Converter with Undervoltage Lockout  
L1  
10µH  
D1  
5V  
130mA  
301k  
100k  
1M  
V
SW  
FB  
1M  
1%  
IN  
LT1317  
+
22µF  
10V  
SHDN  
V
C
LBO  
LBI  
2 ALKALINE  
CELLS  
GND  
+
33k  
100µF  
10V  
332k  
1%  
3.3nF  
340k  
470pF  
D1: MOTOROLA MBR0520LT1  
L1: SUMIDA CD43-101  
1317 TA07  
STARTS AT V = 1.9V  
IN  
STOPS AT V = 1.6V  
IN  
Universal Wall Cube to 4.1V  
CERAMIC  
L1A  
10µF, 16V  
20µH  
D1  
V
V
OUT  
IN  
1.5V TO  
10V  
4.1V  
110mA  
V
SW  
FB  
100k  
IN  
+
15µF  
20V  
LT1317  
SHDN  
V
1M  
1%  
L1B  
GND  
C
+
47µF  
10V  
Q1  
432k  
1%  
33k  
3.3nF  
D1: MOTOROLA MBR0520LT1  
L1: COILTRONICS CTX20-1  
Q1: 2N3904  
1317 TA08  
2 Li-Ion to 8.2V DC/DC Converter  
L1  
22µH  
D1  
8.2V  
400mA  
+
22µF  
V
SW  
IN  
16V  
22pF  
1M  
LT1317/LT1317B  
+
2 Li-ION  
47µF  
16V  
FB  
CELLS  
(5.8V TO  
8.4V)  
SHUTDOWN  
SHDN  
V
GND  
C
178k  
33k  
3.3nF  
100pF  
D1: MOTOROLA MBR0520LT1  
L1: SUMIDA CD43-220  
1317 TA09  
13  
LT1317/LT1317B  
TYPICAL APPLICATIO S  
U
Single Li-Ion Cell to 4V/70mA, 4V/10mA  
D2  
4V  
10mA  
C3  
15µF  
+
1µF  
CERAMIC  
L1  
22µH  
4.5V TO 2.5V  
C1  
1µF  
V
SW  
L2  
22µH  
IN  
1µF  
D1  
4V  
CERAMIC  
LT1317  
1.00M  
Li-Ion  
CELL  
SHUTDOWN  
SHDN  
V
FB  
GND  
70mA  
C
+
C2  
33µF  
100pF  
33k  
3.3nF  
442k  
1317 TA02  
C1: MURATA GRM235Y5V107Z01  
C2: AVX TAJB336M010  
C3: AVX TAJA156M010  
D1: MBR0520  
D2: BAT54S (DUAL DIODE)  
L1, L2: MURATA LQH3C220K04  
Low Noise 33V Varactor Bias Supply  
D3  
150pF  
680Ω  
D2  
L1  
22µH  
C3  
0.1µF  
D1  
V
IN  
3V TO 6V  
V
V
SW  
FB  
IN  
150k  
47Ω  
V
OUT  
33V  
LT1317B  
+
C1  
15µF  
10V  
0mA TO 10mA  
GND  
C
+
C4  
0.1µF  
C2  
C5  
0.1µF  
C6  
0.1µF  
10µF  
35V  
33k  
5.9k  
3300pF  
C1: AVX TAJ156M010  
C2: SANYO 35CV33GX  
C3, C4, C5, C6: 0.1µF CERAMIC  
1317 TA11  
D1, D2, D3: MOTOROLA MMBD914LT1  
L1: MURATA LQH3C220  
14  
LT1317/LT1317B  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.192 ± 0.004  
(4.88 ± 0.10)  
1
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
MSOP (MS8) 1197  
0.0256  
(0.65)  
TYP  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
0.053 – 0.069  
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1317/LT1317B  
U
TYPICAL APPLICATION  
Digital Camera Power Supply  
10k  
24V  
D3  
7
L
T1  
18V  
3mA  
+
C5  
10µF  
35V  
C
8
5
D2  
D1  
5V  
20mA  
+
C4  
L
B
A
22µF  
10V  
6
3
L :15µH  
PRI  
2
1
3.3V  
150mA  
+
+
C1  
22µF  
10V  
C2  
100µF  
6V  
L
4
4 AA  
CELLS  
(3.2V TO  
6.5V)  
C3  
1µF, 16V  
V
IN  
SW  
LT1317  
1M  
SHUTDOWN  
SHDN  
FB  
V
C
GND  
10k  
3300pF  
604k  
1317 TA10  
C1, C4: AVX TPSC226M016  
C2: AVX TPSC106M006  
C3: CERAMIC (i.e. AVX, MANY OTHERS)  
C5: SANYO 35CV10GX  
D1, D2: MBR0520LT1 (MOTOROLA) OR EQUIVALENT  
D3: MMBD914LT1 (MOTOROLA) OR EQUIVALENT  
T1: COILTRONICS CTX02-14272-X1  
RELATED PARTS  
PART NUMBER  
LTC®1163  
LTC1174  
LT1302  
DESCRIPTION  
COMMENTS  
Triple High Side Driver for 2-Cell Inputs  
Micropower Step-Down DC/DC Converter  
1.8V Minimum Input, Drives N-Channel MOSFETs  
94% Efficiency, 130µA I , 9V to 5V at 300mA  
Q
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
5V/600mA from 2V, 2A Internal Switch, 200µA I  
Low-Battery Detector Active in Shutdown  
3.3V at 75mA from 1 Cell, MSOP Package  
Q
LT1304  
LT1307  
Single Cell Micropower 600kHz PWM DC/DC Converter  
Ultralow Power Single/Dual Comparators with Reference  
2-Cell to 5V Regulated Charge Pump  
LTC1440/1/2  
LTC1516  
LT1521  
2.8µA I , Adjustable Hysteresis  
Q
12µA I , No Inductors, 5V at 50mA from 3V Input  
Q
Micropower Low Dropout Linear Regulator  
500mV Dropout, 300mA Current, 12µA I  
Q
13177bf LT/TP 1198 4K • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 1998  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY