LT1351CS8 [Linear]

250uA, 3MHz, 200V/us Operational Amplifier; 250uA ,为3MHz , 200V / us的运算放大器
LT1351CS8
型号: LT1351CS8
厂家: Linear    Linear
描述:

250uA, 3MHz, 200V/us Operational Amplifier
250uA ,为3MHz , 200V / us的运算放大器

运算放大器
文件: 总16页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1351  
250µA, 3MHz, 200V/µs  
Operational Amplifier  
U
FEATURES  
DESCRIPTION  
The LT®1351 is a low power, high speed, high slew rate  
operational amplifier with outstanding AC and DC perfor-  
mance. The LT1351 features lower supply current, lower  
input offset voltage, lower input bias current and higher  
DC gain than devices with comparable bandwidth. The  
circuit combines the slewing performance of a current  
feedback amplifier in a true operational amplifier with  
matched high impedance inputs. The high slew rate en-  
sures thatthe large-signalbandwidth is notdegraded. The  
amplifier is a single gain stage with outstanding settling  
characteristics which make the circuit an ideal choice for  
data acquisition systems. The output drives a 1kload to  
±13Vwith±15Vsuppliesanda500loadto±3.4Von±5V  
supplies. The amplifier is also stable with any capacitive  
load which makes it useful in buffer or cable driver  
applications.  
3MHz Gain Bandwidth  
200V/µs Slew Rate  
250µA Supply Current  
Available in Tiny MSOP Package  
C-LoadTM Op Amp Drives All Capacitive Loads  
Unity-Gain Stable  
Power Saving Shutdown Feature  
Maximum Input Offset Voltage: 600µV  
Maximum Input Bias Current: 50nA  
Maximum Input Offset Current: 15nA  
Minimum DC Gain, RL = 2k: 30V/mV  
Input Noise Voltage: 14nV/Hz  
Settling Time to 0.1%, 10V Step: 700ns  
Settling Time to 0.01%, 10V Step: 1.25µs  
Minimum Output Swing into 1k: ±13V  
Minimum Output Swing into 500: ±3.4V  
Specified at ±2.5V, ±5V and ±15V  
The LT1351 is a member of a family of fast, high perfor-  
mance amplifiers using this unique topology and employ-  
ing Linear Technology Corporation’s advanced  
complementary bipolar processing. For dual and quad  
amplifier versions of the LT1351 see the LT1352/LT1353  
data sheet. For higher bandwidth devices with higher  
supplycurrentseetheLT1354throughLT1365datasheets.  
Singles, duals and quads of each amplifier are available.  
U
APPLICATIONS  
Battery-Powered Systems  
Wideband Amplifiers  
Buffers  
Active Filters  
Data Acquisition Systems  
Photodiode Amplifiers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
C-Load is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Instrumentation Amplifier  
Large-Signal Response  
R1  
50k  
R2  
5k  
R5  
1.1k  
R4  
50k  
R3  
5k  
LT1351  
V
+
LT1351  
IN  
OUT  
V
+
+
GAIN = [R4/R3][1 + (1/2)(R2/R1 + R3/R4) + (R2 + R3)/R5] = 102  
TRIM R5 FOR GAIN  
TRIM R1 FOR COMMON MODE REJECTION  
BW = 30kHz  
AV = –1  
1351 TA02  
1351 TA01  
1
LT1351  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V) .............................. 36V  
Differential Input Voltage (Transient Only, Note 1)... ±10V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 2) ........... Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 6) .....40°C to 85°C  
Maximum Junction Temperature (See Below)  
Plastic Package ................................................ 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
NULL  
IN  
1
2
3
4
NULL  
NULL 1  
–IN 2  
8 NULL  
7 V  
8
7
6
5
+
+
V
LT1351CN8  
LT1351CS8  
+IN 3  
6 V  
5 SHDN  
LT1351CMS8  
OUT  
V
4
+IN  
V
OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
V
SHDN  
S8 PART MARKING  
1351  
MS8 PART MARKING  
LTBT  
N8 PACKAGE  
S8 PACKAGE  
TJMAX = 150°C, θJA = 250°C/ W  
8-LEAD PDIP 8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 130°C/ W (N8)  
JMAX = 150°C, θJA = 190°C/ W (S)  
T
Consult factory for Industrial and Military grade parts.  
TA = 25°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
±15V  
±5V  
±2.5V  
0.2  
0.2  
0.3  
0.6  
0.6  
0.8  
mV  
mV  
mV  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
5
15  
50  
nA  
nA  
OS  
20  
14  
0.5  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
n
R
V
CM  
= ±12V  
±15V  
±15V  
300  
600  
20  
MΩ  
MΩ  
IN  
Differential  
C
Input Capacitance  
±15V  
3
pF  
IN  
Positive Input Voltage Range  
±15V  
±5V  
±2.5V  
12.0  
2.5  
0.5  
13.5  
3.5  
1.0  
V
V
V
Negative Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
±15V  
±5V  
±2.5V  
13.5 12.0  
V
V
V
3.5  
1.0  
2.5  
0.5  
CMRR  
PSRR  
V
V
V
= ±12V  
= ±2.5V  
= ±0.5V  
±15V  
±5V  
±2.5V  
80  
78  
68  
94  
86  
77  
dB  
dB  
dB  
CM  
CM  
CM  
V = ±2.5V to ±15V  
S
90  
106  
dB  
2
LT1351  
ELECTRICAL CHARACTERISTICS TA = 25°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
A
Large-Signal Voltage Gain  
V
V
V
V
V
V
V
= ±12V, R = 5k  
±15V  
±15V  
±15V  
±5V  
±5V  
±5V  
40  
30  
20  
30  
25  
15  
20  
80  
60  
40  
60  
50  
30  
40  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
L
= ±10V, R = 2k  
L
= ±10V, R = 1k  
L
= ±2.5V, R = 5k  
L
= ±2.5V, R = 2k  
L
= ±2.5V, R = 1k  
L
= ±1V, R = 5k  
±2.5V  
L
V
Output Swing  
Output Current  
R = 5k, V = ±10mV  
±15V  
±15V  
±15V  
±5V  
±5V  
±2.5V  
13.5  
13.4  
13.0  
3.5  
3.4  
1.3  
14.0  
13.8  
13.4  
4.0  
3.8  
1.7  
±V  
±V  
±V  
±V  
±V  
±V  
OUT  
L
IN  
R = 2k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 500, V = ±10mV  
L
IN  
R = 5k, V = ±10mV  
L
IN  
I
I
V
V
= ±13V  
= ±3.4V  
±15V  
±5V  
13.0  
6.8  
13.4  
7.6  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
V
= 0V, V = ±3V  
±15V  
30  
45  
mA  
OUT  
IN  
SR  
A = 1, R = 5k (Note 3)  
±15V  
±5V  
120  
30  
200  
50  
V/µs  
V/µs  
V
L
Full-Power Bandwidth  
Gain Bandwidth  
10V Peak (Note 4)  
3V Peak (Note 4)  
±15V  
±5V  
3.2  
2.6  
MHz  
MHz  
GBW  
f = 200kHz, R = 10k  
±15V  
± 5V  
± 2.5V  
2.0  
1.8  
3.0  
2.7  
2.5  
MHz  
MHz  
MHz  
L
t , t  
r
Rise Time, Fall Time  
Overshoot  
A = 1, 10% to 90%, 0.1V  
±15V  
±5V  
46  
53  
ns  
ns  
f
V
A = 1, 0.1V  
V
±15V  
±5V  
13  
16  
%
%
Propagation Delay  
Settling Time  
50% V to 50% V , 0.1V  
±15V  
±5V  
41  
52  
ns  
ns  
IN  
OUT  
t
10V Step, 0.1%, A = 1  
±15V  
±15V  
±5V  
700  
1250  
950  
ns  
ns  
ns  
ns  
s
V
10V Step, 0.01%, A = 1  
V
5V Step, 0.1%, A = 1  
V
5V Step, 0.01%, A = 1  
±5V  
1400  
V
R
Output Resistance  
A = 1, f = 20kHz  
V
±15V  
1.5  
O
I
Shutdown Input Current  
SHDN = V + 0.1V  
±15V  
±15V  
10  
0.1  
µA  
µA  
SHDN  
EE  
SHDN = V  
2
CC  
I
Supply Current  
±15V  
±5V  
±5V  
250  
220  
10  
330  
300  
µA  
µA  
µA  
S
SHDN = V + 0.1V  
EE  
0°C TA 70°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
±15V  
±5V  
±2.5V  
0.8  
0.8  
1.0  
mV  
mV  
mV  
OS  
Input V Drift  
(Note 5)  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
3
8
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
20  
75  
OS  
nA  
B
3
LT1351  
0°C TA 70°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
V
CM  
= ±12V  
= ±2.5V  
= ±0.5V  
±15V  
±5V  
±2.5V  
78  
77  
67  
dB  
dB  
dB  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2.5V to ±15V  
89  
dB  
S
A
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= ±12V, R = 5k  
±15V  
±15V  
±5V  
±5V  
±5V  
25  
20  
20  
15  
10  
15  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
L
= ±10V, R = 2k  
L
= ±2.5V, R = 5k  
L
= ±2.5V, R = 2k  
L
= ±2.5V, R = 1k  
L
= ±1V, R = 5k  
±2.5V  
L
V
Output Swing  
Output Current  
R = 5k, V = ±10mV  
±15V  
±15V  
±15V  
±5V  
±5V  
±2.5V  
13.4  
13.3  
12.0  
3.4  
3.3  
1.2  
±V  
±V  
±V  
±V  
±V  
±V  
L
IN  
R = 2k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 500, V = ±10mV  
L
IN  
R = 5k, V = ±10mV  
L
IN  
I
I
V
OUT  
V
OUT  
= ±12V  
= ±3.3V  
±15V  
±5V  
12.0  
6.6  
mA  
mA  
OUT  
SC  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V = ±3V  
±15V  
24  
mA  
IN  
SR  
A = 1, R = 5k (Note 3)  
±15V  
±5V  
100  
21  
V/µs  
V/µs  
V
L
GBW  
Gain Bandwidth  
f = 200kHz, R = 10k  
±15V  
± 5V  
1.8  
1.6  
MHz  
MHz  
L
I
I
Shutdown Input Current  
Supply Current  
SHDN = V + 0.1V  
±15V  
±15V  
– 20  
µA  
µA  
SHDN  
S
EE  
SHDN = V  
3
CC  
±15V  
±5V  
±5V  
380  
355  
µA  
µA  
µA  
SHDN = V + 0.1V  
20  
EE  
40°C TA 85°C, VCM = 0V unless otherwise noted (Note 6).  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
±15V  
±5V  
±2.5V  
1.0  
1.0  
1.2  
mV  
mV  
mV  
OS  
Input V Drift  
(Note 5)  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
3
8
µV/°C  
nA  
OS  
I
I
Input Offset Current  
30  
OS  
Input Bias Current  
100  
nA  
B
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
V
CM  
= ±12V  
= ±2.5V  
= ±0.5V  
±15V  
±5V  
±2.5V  
76  
76  
66  
dB  
dB  
dB  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2.5V to ±15V  
87  
dB  
S
A
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= ±12V, R = 5k  
±15V  
±15V  
±5V  
±5V  
±5V  
20  
15  
15  
10  
8
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
L
= ±10V, R = 2k  
L
= ±2.5V, R = 5k  
L
= ±2.5V, R = 2k  
L
= ±2.5V, R = 1k  
L
= ±1V, R = 5k  
±2.5V  
10  
L
4
LT1351  
ELECTRICAL CHARACTERISTICS 40°C TA 85°C, VCM = 0V unless otherwise noted (Note 6).  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Output Swing  
R = 5k, V = ±10mV  
±15V  
±15V  
±15V  
±5V  
±5V  
±2.5V  
13.3  
13.2  
10.0  
3.3  
3.2  
1.1  
±V  
±V  
±V  
±V  
±V  
±V  
OUT  
L
IN  
R = 2k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 500, V = ±10mV  
L
IN  
R = 5k, V = ±10mV  
L
IN  
I
I
Output Current  
V
V
= ±10V  
= ±3.2V  
±15V  
±5V  
10.0  
6.4  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
V
= 0V, V = ±3V  
±15V  
20  
mA  
OUT  
IN  
SR  
A = 1, R = 5k (Note 3)  
±15V  
±5V  
50  
15  
V/µs  
V/µs  
V
L
GBW  
Gain Bandwidth  
f = 200kHz, R = 10k  
±15V  
± 5V  
1.6  
1.4  
MHz  
MHz  
L
I
I
Shutdown Input Current  
Supply Current  
SHDN = V + 0.1V  
±15V  
±15V  
– 30  
30  
µA  
µA  
SHDN  
S
EE  
SHDN = V  
5
CC  
±15V  
±5V  
±5V  
390  
380  
µA  
µA  
µA  
SHDN = V + 0.1V  
EE  
Note 1: Differential inputs of ±10V are appropriate for transient operation  
only, such as during slewing. Large, sustained differential inputs will cause  
excessive power dissipation and may damage the part. See Input  
Considerations in the Applications Information section of this data sheet  
for more details.  
Note 4: Full-power bandwidth is calculated from the slew rate  
measurement: FPBW = (Slew Rate)/2πV .  
P
Note 5: This parameter is not 100% tested.  
Note 6: The LT1351 is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and at 85°C.  
Guaranteed I grade parts are available; consult factory.  
Note 2: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
Note 3: Slew rate is measured between ±8V on the output with ±12V  
input for ±15V supplies and ±2V on the output with ±3V input for ±5V  
supplies.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
and Temperature  
Input Common Mode Range  
vs Supply Voltage  
Input Bias Current  
vs Input Common Mode Voltage  
+
V
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
T
= 25°C  
OS  
T
= 25°C  
= ±15V  
+
A
A
S
–0.5  
–1.0  
–1.5  
–2.0  
V = 1mV  
V
I
+ I  
2
B
B
I
=
B
125°C  
25°C  
2.0  
1.5  
1.0  
0.5  
55°C  
–10  
–20  
V
0
10  
15  
20  
–15  
–10  
–5  
0
5
10  
15  
5
10  
SUPPLY VOLTAGE (±V)  
15  
5
0
20  
INPUT COMMON MODE VOLTAGE (V)  
SUPPLY VOLTAGE (±V)  
1351 G03  
1351 G02  
1351 G01  
5
LT1351  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Input Bias Current vs Temperature  
Input Noise Spectral Density  
Open-Loop Gain vs Resistive Load  
40  
36  
32  
28  
24  
20  
16  
12  
8
110  
100  
90  
100  
10  
1
10  
V
= ±15V  
T
= 25°C  
T = 25°C  
A
S
B
A
S
V
+
V
A
= ±15V  
= 101  
I
B
+ I  
2
B
I
=
V
= ±15V  
S
R
= 100k  
S
V
S
= ±5V  
e
n
1
80  
i
n
70  
4
0
60  
0.1  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1k  
10k  
1
10  
1k  
10k  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LOAD RESISTANCE ()  
1351 G04  
1351 G06  
1351 G05  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Open-Loop Gain vs Temperature  
+
+
V
100  
99  
V
V
V
= ±15V  
= ±12V  
= 5k  
V
V
= ±5V  
IN  
S
O
L
S
0.5  
–1.0  
–1.5  
–2.0  
85°C  
= 10mV  
R
R
= 2k  
25°C  
L
L
–1  
–2  
R
40°C  
25°C  
40°C 85°C  
= 1k  
98  
–3  
3
T
= 25°C  
IN  
A
97  
V
= ±10mV  
25°C  
85°C  
2.0  
1.5  
1.0  
0.5  
96  
95  
94  
R
R
= 1k  
= 2k  
2
L
L
40°C  
40°C  
25°C  
85°C  
1
V
V
–20 –15  
0
10  
15  
50  
TEMPERATURE (°C)  
100 125  
–5  
20  
–50 –25  
0
25  
75  
5
10  
SUPPLY VOLTAGE (V)  
20  
–10  
5
0
15  
OUTPUT CURRENT (mA)  
1351 G09  
1351 G07  
1351 G08  
Output Short-Circuit Current  
vs Temperature  
Settling Time vs Output Step  
(Noninverting)  
Settling Time vs Output Step  
(Inverting)  
10  
8
60  
55  
10  
8
V
S
= ±15V  
6
6
10mV  
1mV  
50  
45  
40  
35  
30  
4
4
10mV  
1mV  
SINK  
SOURCE  
2
2
0
0
–2  
–4  
–6  
–8  
–2  
–4  
–6  
–8  
–10  
V
S
A
V
= ±15V  
= 1  
10mV  
1mV  
10mV  
1mV  
V
A
= ±15V  
S
V
= –1  
OUTPUT  
FILTER:  
1.6MHz  
LPF  
R
= R = 2k  
G
F
F
C
= 5pF  
= 2k  
R
L
–10  
25  
0.7 0.8 0.9  
1
1.1 1.2 1.3  
1.4 1.5  
1.6  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
SETTLING TIME (µs)  
SETTLING TIME (µs)  
1351 G11  
1351 G10  
1351 G12  
6
LT1351  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
vs Capacitive Load  
Gain and Phase vs Frequency  
Output Impedance vs Frequency  
10  
8
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
1000  
100  
10  
T
= 25°C  
= ±15V  
T
= 25°C  
= ±15V  
= –1  
T
= 25°C  
A
S
A
V
F
A
S
V
V
V
A
A
= –1  
PHASE  
= ±15V  
R = R = 5k  
G
6
R
= R = 5k  
C = 5000pF  
C = 1000pF  
FB  
G
A
V
= 100  
C = 500pF  
C = 100pF  
4
V
V
= ±15V  
A
= 10  
S
S
A = 1  
V
V
60  
2
0
V
= ±5V  
V
S
= ±5V  
S
40  
C = 10pF  
GAIN  
–2  
–4  
1
20  
0
–6  
0.1  
0.01  
–20  
–40  
–8  
–10  
–10  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1351 G14  
1351 G13  
1351 G15  
Gain Bandwidth and Phase Margin  
vs Temperature  
Frequency Response  
vs Supply Voltage (AV = 1)  
Frequency Response  
vs Supply Voltage (AV = 1)  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
5
5
4
3
2
T
= 25°C  
= 1  
= 5k  
T
= 25°C  
A
V
= ±15V  
= ±5V  
A
V
L
S
4
3
2
A
A
= –1  
V
R
R
= R = 5k  
L G  
V
S
PHASE MARGIN  
1
0
1
0
GAIN BANDWIDTH  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
V
= ±15V  
= ±5V  
S
±15V  
±5V  
±2.5V  
±15V  
±5V  
±2.5V  
V
S
–50  
0
25  
50  
75 100 125  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
–25  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1351 G17  
1351 G18  
1351 G16  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
120  
100  
80  
60  
40  
20  
0
120  
100  
T
= 25°C  
= ±15V  
T
= 25°C  
= ±15V  
A
S
A
S
T
A
= 25°C  
V
V
PHASE MARGIN  
80  
60  
PSRR = +PSRR  
40  
20  
0
GAIN BANDWIDTH  
0
10  
15  
20  
10  
100  
1k  
10k 100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
5
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1351 G19  
1351 G20  
1351 G21  
7
LT1351  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
Slew Rate vs Input Level  
250  
200  
150  
100  
50  
200  
150  
100  
50  
200  
175  
150  
125  
T
= 25°C  
A = –1  
V
T
= 25°C  
= ±15V  
= –1  
A
V
F
A
S
V
A
= –1  
R = R = R = 5k  
F G L  
V
A
+
R
= R = 5k  
SR = (SR + SR )/2  
G
+
SR = (SR + SR )/2  
R
= R = 5k  
FB  
G
+
V
= ±15V  
S
SR = (SR + SR )/2  
100  
75  
V
S
= ±5V  
50  
25  
0
0
0
0
5
10  
15  
50  
125  
4
8
16  
–50 –25  
0
25  
75 100  
0
20  
24  
12  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
INPUT LEVEL (V  
)
P-P  
1351 G22  
1351 G23  
1351 G24  
Total Harmonic Distortion  
vs Frequency  
Undistorted Output Swing  
Undistorted Output Swing  
vs Frequency (±15V)  
vs Frequency (±5V)  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
1
T
= 25°C  
= ±15V  
= 5k  
A
S
L
O
A
= –1  
V
V
R
V
A
= 1  
= 2V  
V
P-P  
0.1  
A
V
= 1  
A
V
= –1  
0.01  
A
= –1  
= 1  
V
V
= ±15V  
V
= ±5V  
S
L
S
L
R
= 5k  
R
= 5k  
THD = 1%  
A
THD = 1%  
V
0.001  
0
10k  
100k  
1M  
10k  
100k  
1M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1351 G27  
1351 G26  
1351 G25  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Shutdown Supply Current  
vs Temperature  
Capacitive Load Handling  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
30  
40  
50  
60  
–70  
80  
90  
V
A
= ±15V  
= 1  
V = ±15V  
S
T
= 25°C  
= ±15V  
= 5k  
S
V
L
A
S
L
V
R
= 5k  
R
80  
V
= 2V  
O
P-P  
70  
V
SHDN  
= V + 0.2  
EE  
A
= 1  
V
60  
50  
3RD HARMONIC  
2ND HARMONIC  
V
= V + 0.1  
EE  
SHDN  
40  
30  
20  
10  
0
A
= –1  
V
V
= V  
EE  
SHDN  
25  
100k  
1M  
50  
125  
10p  
100p  
1n  
10n  
0.1µ  
1µ  
–50  
0
75 100  
–25  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
CAPACITIVE LOAD (F)  
1351 G28  
1351 G30  
1351 G29  
8
LT1351  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Small-Signal Transient  
(AV = 1)  
Small-Signal Transient  
(AV = 1)  
Small-Signal Transient  
(AV = 1, CL = 1000pF)  
1351 G31  
1351 G32  
1351 G33  
Large-Signal Transient  
(AV = 1)  
Large-Signal Transient  
(AV = 1)  
Large-Signal Transient  
(AV = 1, CL = 10,000pF)  
1351 G34  
1351 G35  
1351 G36  
U
W U U  
APPLICATIONS INFORMATION  
The LT1351 may be inserted directly into many high  
speed amplifier applications improving both DC and AC  
performance, provided that the nulling circuitry is re-  
moved. The suggested nulling circuit for the LT1351 is  
shown in Figure 1.  
Layout and Passive Components  
The LT1351 amplifier is easy to apply and tolerant of less  
than ideal layouts. For maximum performance (for ex-  
ample fast settling time) use a ground plane, short lead  
lengthsandRF-qualitybypasscapacitors(0.01µFto0.1µF).  
For high drive current applications use low ESR bypass  
capacitors (1µF to 10µF tantalum). For details see Design  
Note 50.  
+
V
0.1µF  
3
+
7
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input can combine with  
the input capacitance to form a pole which can cause  
peakingorevenoscillations.Forfeedbackresistorsgreater  
than 10k, a parallel capacitor of value, CF > (RG)(CIN/RF)  
should be used to cancel the input pole and optimize  
dynamic performance. For applications where the DC  
6
LT1351  
2
4
8
1
0.1µF  
100k  
V
1351 F01  
Figure 1. Offset Nulling  
9
LT1351  
U
W U U  
APPLICATIONS INFORMATION  
noise gain is one and a large feedback resistor is used, CF  
should be greater than or equal to CIN. An example would  
beanI-to-VconverterasshownintheTypicalApplications  
section.  
Shutdown  
The LT1351 has a Shutdown pin for conserving power.  
When this pin is open or 2V above the negative supply the  
part operates normally. When pulled down to Vthe  
supply current will drop to about 10µA. The current out of  
the Shutdown pin is also typically 10µA. In shutdown the  
amplifier output is not isolated from the inputs so the  
LT1351 cannot be used in multiplexing applications using  
the shutdown feature.  
Capacitive Loading  
The LT1351 is stable with any capacitive load. As the  
capacitive load increases, both the bandwidth and phase  
margin decrease so there will be peaking in the frequency  
domain and in the transient response. Graphs of Fre-  
quency Response vs Capacitive Load, Capacitive Load  
Handling and the transient response photos clearly show  
these effects.  
A level shift application is shown in the Typical Applica-  
tions section so that a ground-referenced logic signal can  
control the Shutdown pin.  
Circuit Operation  
Input Considerations  
The LT1351 circuit topology is a true voltage feedback  
amplifier that has the slewing behavior of a current  
feedback amplifier. The operation of the circuit can be  
understood by referring to the simplified schematic.  
Each of the LT1351 inputs is the base of an NPN and  
a PNP transistor whose base currents are of opposite  
polarity and provide first-order bias current cancellation.  
Because of variation in the matching of NPN and PNP  
beta, the polarity of the input bias current can be positive  
or negative. The offset current does not depend on  
NPN/PNP beta matching and is well controlled. The use of  
balanced source resistance at each input is recommended  
for applications where DC accuracy must be maximized.  
The inputs are buffered by complementary NPN and PNP  
emitter followers which drive R1, a 1k resistor. The input  
voltage appears across the resistor generating currents  
which are mirrored into the high impedance node and  
compensation capacitor CT. Complementary followers  
form an output stage which buffers the gain node from  
the load. The output devices Q19 and Q22 are connected  
to form a composite PNP and composite NPN.  
The inputs can withstand transient differential input volt-  
ages up to 10V without damage and need no clamping or  
source resistance for protection. Differential inputs, how-  
ever, generate large supply currents (tens of mA) as  
required for high slew rates. If the device is used with  
sustained differential inputs, the average supply current  
will increase, excessive power dissipation will result and  
the part may be damaged. The part should not be used as  
a comparator, peak detector or other open-loop applica-  
tion with large, sustained differential inputs. Under  
normal, closed-loop operation, an increase of power  
dissipation is only noticeable in applications with large  
slewing outputs and is proportional to the magnitude of  
the differential input voltage and the percent of the time  
that the inputs are apart. Measure the average supply  
current for the application in order to calculate the power  
dissipation.  
The bandwidth is set by the input resistor and the  
capacitance on the high impedance node. The slew rate  
is determined by the current available to charge the  
capacitance. This current is the differential input voltage  
divided by R1, so the slew rate is proportional to the  
input. Highest slew rates are therefore seen in the lowest  
gain configurations. For example, a 10V output step in a  
gain of 10 has only a 1V input step whereas the same  
outputstepinunitygainhasa10timesgreaterinputstep.  
The curve of Slew Rate vs Input Level illustrates this  
relationship.  
Capacitive load compensation is provided by the RC, CC  
network which is bootstrapped across the output stage.  
When the amplifier is driving a light load the network has  
no effect. When driving a capacitive load (or a low value  
10  
LT1351  
U
W U U  
APPLICATIONS INFORMATION  
resistive load) the network is incompletely bootstrapped which improve the phase margin. The design ensures  
and adds to the compensation at the high impedance that even for very large load capacitances the total phase  
node. The added capacitance slows down the amplifier lag can never exceed 180 degrees (zero phase margin)  
and a zero is created by the RC combination, both of and the amplifier remains stable.  
W
W
SI PLIFIED SCHE ATIC  
+
V
R2  
R3  
Q11  
Q10  
Q12  
Q17  
Q20  
Q21  
C1  
R6  
Q9  
Q19  
Q3  
Q4  
Q7  
Q8  
R1  
1k  
C
C
R
C
Q5  
Q1  
–IN  
+IN  
Q2  
OUTPUT  
Q6  
Q18  
Q16  
R7  
Q22  
R4  
Q13  
Q15  
C2  
C
T
Q14  
Q23  
Q24  
R5  
1351 SS  
V
U
TYPICAL APPLICATIONS  
20kHz, 4th Order Butterworth Filter  
4.64k  
5.49k  
470pF  
220pF  
4.64k  
13.3k  
V
IN  
5.49k  
11.3k  
LT1351  
2200pF  
V
OUT  
+
LT1351  
4700pF  
+
1351 TA03  
11  
LT1351  
U
TYPICAL APPLICATIONS  
Shutdown Circuit  
3
+
6
LT1351  
5
2
1N4148  
1M  
S
G
SHDN  
SST177  
D
S
G
SST177  
D
1M  
1351 TA04  
V
DAC I-to-V Converter  
10pF  
12  
5k  
DAC  
INPUTS  
V
LT1351  
OUT  
565A TYPE  
+
V
A
5k  
OUT  
V + I (5k) +  
OS OS  
< 0.5LSB  
1351 TA05  
VOL  
12  
LT1351  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.192 ± 0.004  
(4.88 ± 0.10)  
1
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
MSOP (MS8) 1197  
0.0256  
(0.65)  
TYP  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
13  
LT1351  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
N8 1197  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
14  
LT1351  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1351  
TYPICAL APPLICATION  
U
Low Power Sample-and-Hold  
+
LTC201  
LT1351  
+
V
OUT  
LT1351  
2000pF  
V
IN  
DROOP: 20nA/2000pF = 10mV/ms  
ACQUISITION TIME: 10V, 0.1% = 2µs  
CHARGE INJECTION ERROR: 8pC/2000pF = 4mV  
1351 TA06  
RELATED PARTS  
PART NUMBER  
LT1352/LT1353  
LT1354  
DESCRIPTION  
COMMENTS  
Dual/Quad 250µA, 3MHz, 200V/µs Op Amp  
1mA, 12MHz, 400V/µs Op Amp  
Good DC Precision, Stable with All Capacitive Loads  
Good DC Precision, Stable with All Capacitive Loads  
1351fa LT/TP 0498 REV A 2K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY