LT1352CN8 [Linear]

Dual and Quad 250uA, 3MHz, 200V/us Operational Amplifiers; 双核和四250uA ,为3MHz , 200V / us的运算放大器
LT1352CN8
型号: LT1352CN8
厂家: Linear    Linear
描述:

Dual and Quad 250uA, 3MHz, 200V/us Operational Amplifiers
双核和四250uA ,为3MHz , 200V / us的运算放大器

运算放大器
文件: 总12页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1352/LT1353  
Dual and Quad  
250µA, 3MHz, 200V/µs  
Operational Amplifiers  
U
FEATURES  
DESCRIPTION  
The LT®1352/LT1353 are dual and quad, very low power,  
highspeedoperationalamplifierswithoutstandingACand  
DC performance. The amplifiers feature much lower sup-  
ply current and higher slew rate than devices with compa-  
rable bandwidth. The circuit combines the slewing perfor-  
mance of a current feedback amplifier in a true operational  
amplifier with matched high impedance inputs. The high  
slew rate ensures that the large-signal bandwidth is not  
degraded. Each output is capable of driving a 1kload to  
±13V with ±15V supplies and a 500load to ±3.4V on  
±5V supplies.  
3MHz Gain Bandwidth  
200V/µs Slew Rate  
250µA Supply Current per Amplifier  
C-LoadTM Op Amp Drives All Capacitive Loads  
Unity-Gain Stable  
Maximum Input Offset Voltage: 600µV  
Maximum Input Bias Current: 50nA  
Maximum Input Offset Current: 15nA  
Minimum DC Gain, RL = 2k: 30V/mV  
Input Noise Voltage: 14nV/Hz  
Settling Time to 0.1%, 10V Step: 700ns  
Settling Time to 0.01%, 10V Step: 1.25µs  
The LT1352/LT1353 are members of a family of fast, high  
performance amplifiers using this unique topology and  
employing Linear Technology Corporation’s advanced  
complementary bipolar processing. For higher bandwidth  
deviceswithhighersupplycurrentseetheLT1354through  
LT1365datasheets.Bandwidthsof12MHz,25MHz,50MHz  
and 70MHz are available with 1mA, 2mA, 4mA and 6mA of  
supply current per amplifier. Singles, duals and quads of  
each amplifier are available.  
Minimum Output Swing into 1k: ±13V  
Minimum Output Swing into 500: ±3.4V  
Specified at ±2.5V, ±5V and ±15V  
U
APPLICATIONS  
Battery-Powered Systems  
Wideband Amplifiers  
Buffers  
Active Filters  
Data Acquisition Systems  
Photodiode Amplifiers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
C-Load is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Instrumentation Amplifier  
Large-Signal Response  
R1  
50k  
R2  
5k  
R5  
1.1k  
R4  
50k  
R3  
5k  
1/2  
LT1352  
1/2  
LT1352  
+
V
+
IN  
OUT  
V
+
GAIN = [R4/R3][1 + (1/2)(R2/R1 + R3/R4) + (R2 + R3)/R5] = 102  
TRIM R5 FOR GAIN  
TRIM R1 FOR COMMON MODE REJECTION  
BW = 30kHz  
AV = –1  
1352/53 TA02  
1352/53 TA01  
1
LT1352/LT1353  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V) .............................. 36V  
Differential Input Voltage ....................................... ±10V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 1) ........... Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range ................ 40°C to 85°C  
Maximum Junction Temperature (See Below)  
Plastic Package ............................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
OUT B  
–IN B  
+IN B  
A
B
D
C
A
LT1352CN8  
LT1352CS8  
LT1353CS  
+
B
V
V
V
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
N8 PACKAGE  
8-LEAD PDIP  
S8 PART MARKING  
1352  
8
S8 PACKAGE  
8-LEAD PLASTIC SO  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 130°C/ W (N8)  
JMAX = 150°C, θJA = 190°C/ W (S8)  
T
TJMAX = 150°C, θJA = 150°C/ W  
Consult factory for Industrial and Military grade parts.  
TA = 25°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
±15V  
±5V  
±2.5V  
0.2  
0.2  
0.3  
0.6  
0.6  
0.8  
mV  
mV  
mV  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
5
15  
50  
nA  
nA  
OS  
20  
14  
0.5  
B
e
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
n
i
n
R
V
= ±12V  
CM  
±15V  
±15V  
300  
600  
20  
MΩ  
MΩ  
IN  
Differential  
C
Input Capacitance  
±15V  
3
pF  
IN  
Positive Input Voltage Range  
±15V  
±5V  
±2.5V  
12.0  
2.5  
0.5  
13.5  
3.5  
1.0  
V
V
V
Negative Input Voltage Range  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
±15V  
±5V  
±2.5V  
13.5 12.0  
V
V
V
3.5  
1.0  
2.5  
0.5  
CMRR  
PSRR  
V
V
V
= ±12V  
= ±2.5V  
= ±0.5V  
±15V  
±5V  
±2.5V  
80  
78  
68  
94  
86  
77  
dB  
dB  
dB  
CM  
CM  
CM  
V = ±2.5V to ±15V  
90  
106  
dB  
S
2
LT1352/LT1353  
ELECTRICAL CHARACTERISTICS TA = 25°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
A
VOL  
Large-Signal Voltage Gain  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= ±12V, R = 5k  
±15V  
±15V  
±15V  
±5V  
±5V  
±5V  
40  
30  
20  
30  
25  
15  
20  
80  
60  
40  
60  
50  
30  
40  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
L
= ±10V, R = 2k  
L
= ±10V, R = 1k  
L
= ±2.5V, R = 5k  
L
= ±2.5V, R = 2k  
L
= ±2.5V, R = 1k  
L
= ±1V, R = 5k  
±2.5V  
L
V
Output Swing  
Output Current  
R = 5k, V = ±10mV  
±15V  
±15V  
±15V  
±5V  
±5V  
±2.5V  
13.5  
13.4  
13.0  
3.5  
3.4  
1.3  
14.0  
13.8  
13.4  
4.0  
3.8  
1.7  
±V  
±V  
±V  
±V  
±V  
±V  
OUT  
L
IN  
R = 2k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 500, V = ±10mV  
L
IN  
R = 5k, V = ±10mV  
L
IN  
I
I
V
OUT  
V
OUT  
= ±13V  
= ±3.4V  
±15V  
±5V  
13.0  
6.8  
13.4  
7.6  
mA  
mA  
OUT  
SC  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V = ±3V  
±15V  
30  
45  
mA  
IN  
SR  
A = 1, R = 5k (Note 2)  
±15V  
±5V  
120  
30  
200  
50  
V/µs  
V/µs  
V
L
Full-Power Bandwidth  
Gain Bandwidth  
10V Peak (Note 3)  
3V Peak (Note 3)  
±15V  
±5V  
3.2  
2.6  
MHz  
MHz  
GBW  
f = 200kHz, R = 10k  
±15V  
± 5V  
± 2.5V  
2.0  
1.8  
3.0  
2.7  
2.5  
MHz  
MHz  
MHz  
L
t , t  
r
Rise Time, Fall Time  
Overshoot  
A = 1, 10% to 90%, 0.1V  
±15V  
±5V  
46  
53  
ns  
ns  
f
V
A = 1, 0.1V  
V
±15V  
±5V  
13  
16  
%
%
Propagation Delay  
Settling Time  
50% V to 50% V , 0.1V  
±15V  
±5V  
41  
52  
ns  
ns  
IN  
OUT  
t
10V Step, 0.1%, A = 1  
±15V  
±15V  
±5V  
700  
1250  
950  
ns  
ns  
ns  
ns  
s
V
10V Step, 0.01%, A = 1  
V
5V Step, 0.1%, A = 1  
V
5V Step, 0.01%, A = 1  
±5V  
1400  
V
R
Output Resistance  
Channel Separation  
Supply Current  
A = 1, f = 20kHz  
±15V  
±15V  
1.5  
O
V
V
OUT  
= ±10V, R = 2k  
101  
120  
dB  
L
I
Each Amplifier  
Each Amplifier  
±15V  
±5V  
250  
230  
320  
300  
µA  
µA  
S
0°C TA 70°C, VCM = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
OS  
Input Offset Voltage  
±15V  
±5V  
±2.5V  
0.8  
0.8  
1.0  
mV  
mV  
mV  
Input V Drift  
(Note 4)  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
3
8
µV/°C  
nA  
OS  
I
I
Input Offset Current  
Input Bias Current  
20  
75  
OS  
nA  
B
3
LT1352/LT1353  
0°C TA 70°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
V
CM  
= ±12V  
= ±2.5V  
= ±0.5V  
±15V  
±5V  
±2.5V  
78  
77  
67  
dB  
dB  
dB  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2.5V to ±15V  
89  
dB  
S
A
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= ±12V, R = 5k  
±15V  
±15V  
±5V  
±5V  
±5V  
25  
20  
20  
15  
10  
15  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
L
= ±10V, R = 2k  
L
= ±2.5V, R = 5k  
L
= ±2.5V, R = 2k  
L
= ±2.5V, R = 1k  
L
= ±1V, R = 5k  
±2.5V  
L
V
Output Swing  
Output Current  
R = 5k, V = ±10mV  
±15V  
±15V  
±15V  
±5V  
±5V  
±2.5V  
13.4  
13.3  
12.0  
3.4  
3.3  
1.2  
±V  
±V  
±V  
±V  
±V  
±V  
L
IN  
R = 2k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 500, V = ±10mV  
L
IN  
R = 5k, V = ±10mV  
L
IN  
I
I
V
OUT  
V
OUT  
= ±12V  
= ±3.3V  
±15V  
±5V  
12.0  
6.6  
mA  
mA  
OUT  
SC  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V = ±3V  
±15V  
24  
mA  
IN  
SR  
A = 1, R = 5k (Note 2)  
±15V  
±5V  
100  
21  
V/µs  
V/µs  
V
L
GBW  
Gain Bandwidth  
f = 200kHz, R = 10k  
±15V  
± 5V  
1.8  
1.6  
MHz  
MHz  
L
Channel Separation  
Supply Current  
V
= ±10V, R = 2k  
±15V  
100  
dB  
OUT  
L
I
Each Amplifier  
Each Amplifier  
±15V  
±5V  
350  
330  
µA  
µA  
S
40°C TA 85°C, VCM = 0V unless otherwise noted (Note 5).  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
±15V  
±5V  
±2.5V  
1.0  
1.0  
1.2  
mV  
mV  
mV  
OS  
Input V Drift  
(Note 4)  
±2.5V to ±15V  
±2.5V to ±15V  
±2.5V to ±15V  
3
8
µV/°C  
nA  
OS  
I
I
Input Offset Current  
30  
OS  
Input Bias Current  
100  
nA  
B
CMRR  
Common Mode Rejection Ratio  
V
V
V
= ±12V  
= ±2.5V  
= ±0.5V  
±15V  
±5V  
±2.5V  
76  
76  
66  
dB  
dB  
dB  
CM  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±2.5V to ±15V  
87  
dB  
S
A
V
V
V
V
V
V
= ±12V, R = 5k  
±15V  
±15V  
±5V  
±5V  
±5V  
20  
15  
15  
10  
8
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
L
= ±10V, R = 2k  
L
= ±2.5V, R = 5k  
L
= ±2.5V, R = 2k  
L
= ±2.5V, R = 1k  
L
= ±1V, R = 5k  
±2.5V  
10  
L
4
LT1352/LT1353  
ELECTRICAL CHARACTERISTICS 40°C TA 85°C, VCM = 0V unless otherwise noted (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
OUT  
Output Swing  
R = 5k, V = ±10mV  
±15V  
±15V  
±15V  
±5V  
±5V  
±2.5V  
13.3  
13.2  
10.0  
3.3  
3.2  
1.1  
±V  
±V  
±V  
±V  
±V  
±V  
L
IN  
R = 2k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 1k, V = ±10mV  
L
IN  
R = 500, V = ±10mV  
L
IN  
R = 5k, V = ±10mV  
L
IN  
I
I
Output Current  
V
V
= ±10V  
= ±3.2V  
±15V  
±5V  
10.0  
6.4  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, V = ±3V  
±15V  
20  
mA  
IN  
SR  
A = 1, R = 5k (Note 2)  
V
±15V  
±5V  
50  
15  
V/µs  
V/µs  
L
GBW  
Gain Bandwidth  
f = 200kHz, R = 10k  
±15V  
± 5V  
1.6  
1.4  
MHz  
MHz  
L
Channel Separation  
Supply Current  
V
= ±10V, R = 2k  
±15V  
99  
dB  
OUT  
L
I
Each Amplifier  
Each Amplifier  
±15V  
±5V  
380  
350  
µA  
µA  
S
Note 1: A heat sink may be required to keep the junction temperature  
Note 4: This parameter is not 100% tested.  
below absolute maximum when the output is shorted indefinitely.  
Note 5: The LT1352/LT1353 are designed, characterized and expected to  
meet these extended temperature limits, but are not tested at 40°C and  
85°C. Guaranteed I grade parts are available, consult factory.  
Note 2: Slew rate is measured between ±8V on the output with ±12V  
input for ±15V supplies and ±2V on the output with ±3V input for ±5V  
supplies.  
Note 3: Full-power bandwidth is calculated from the slew rate  
measurement: FPBW = (Slew Rate)/2πV .  
P
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
and Temperature  
Input Common Mode Range  
vs Supply Voltage  
Input Bias Current  
vs Input Common Mode Voltage  
+
V
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
T
= 25°C  
OS  
T
= 25°C  
= ±15V  
+
A
A
S
0.5  
–1.0  
–1.5  
–2.0  
V = 1mV  
V
I
+ I  
2
B
B
I
=
B
125°C  
25°C  
2.0  
1.5  
1.0  
0.5  
55°C  
–10  
–20  
V
15  
0
10  
15  
20  
–15  
–10  
–5  
0
5
10  
5
10  
SUPPLY VOLTAGE (±V)  
15  
5
0
20  
INPUT COMMON MODE VOLTAGE (V)  
SUPPLY VOLTAGE (±V)  
1352/53 G03  
1352/53 G02  
1352/53 G01  
5
LT1352/LT1353  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Input Bias Current vs Temperature  
Input Noise Spectral Density  
Open-Loop Gain vs Resistive Load  
40  
36  
32  
28  
24  
20  
16  
12  
8
110  
100  
90  
100  
10  
1
10  
V
= ±15V  
T
= 25°C  
T = 25°C  
A
S
B
A
S
V
+
V
A
= ±15V  
= 101  
I
B
+ I  
2
B
I
=
V
= ±15V  
S
R
= 100k  
S
V
S
= ±5V  
e
n
1
80  
i
n
70  
4
0
60  
0.1  
–50  
0
25  
50  
75 100 125  
–25  
10  
100  
1k  
10k  
1
10  
1k  
10k  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
LOAD RESISTANCE ()  
1352/53 G04  
1352/53 G06  
1352/53 G05  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Open-Loop Gain vs Temperature  
+
+
V
100  
99  
V
V
V
= ±15V  
= ±12V  
= 5k  
V
V
= ±5V  
IN  
S
O
L
S
0.5  
–1.0  
–1.5  
–2.0  
85°C  
= 10mV  
R
R
= 2k  
25°C  
L
L
–1  
–2  
R
40°C  
25°C  
= 1k  
98  
–3  
3
40°C 85°C  
T
= 25°C  
IN  
A
97  
V
= ±10mV  
25°C  
85°C  
2.0  
1.5  
1.0  
0.5  
96  
95  
94  
R
R
= 1k  
= 2k  
2
L
L
40°C  
40°C  
25°C  
85°C  
1
V
V
–20 –15  
0
10  
15  
50  
TEMPERATURE (°C)  
100 125  
–5  
20  
–50 –25  
0
25  
75  
5
10  
SUPPLY VOLTAGE (V)  
20  
–10  
5
0
15  
OUTPUT CURRENT (mA)  
1352/53 G09  
1352/53 G07  
1352/53 G08  
Output Short-Circuit Current  
vs Temperature  
Settling Time vs Output Step  
(Noninverting)  
Settling Time vs Output Step  
(Inverting)  
10  
8
60  
55  
10  
8
V
S
= ±15V  
6
6
10mV  
1mV  
50  
45  
40  
35  
30  
4
4
10mV  
1mV  
SINK  
SOURCE  
2
2
0
0
–2  
–4  
–6  
–8  
–2  
–4  
–6  
–8  
–10  
V
S
A
V
= ±15V  
= 1  
10mV  
1mV  
10mV  
1mV  
V
A
= ±15V  
S
V
G
= –1  
OUTPUT  
FILTER:  
1.6MHz  
LPF  
R
= R = 2k  
F
C = 5pF  
F
R
= 2k  
L
–10  
25  
0.7 0.8 0.9  
1
1.1 1.2 1.3  
1.4 1.5  
1.6  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
SETTLING TIME (µs)  
SETTLING TIME (µs)  
1352/53 G11  
1352/53 G10  
1352/53 G12  
6
LT1352/LT1353  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
vs Capacitive Load  
Output Impedance vs Frequency  
Gain and Phase vs Frequency  
10  
8
1000  
100  
10  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
T
= 25°C  
= ±15V  
T
= 25°C  
= ±15V  
= –1  
T
= 25°C  
A
S
A
V
F
A
S
V
V
V
A
A
= –1  
PHASE  
= ±15V  
R = R = 5k  
G
6
R
= R = 5k  
C = 5000pF  
C = 1000pF  
FB  
G
A
= 100  
V
C = 500pF  
C = 100pF  
4
V
V
= ±15V  
S
A
= 10  
A
= 1  
S
V
V
60  
2
0
V
S
= ±5V  
V
S
= ±5V  
40  
C = 10pF  
GAIN  
–2  
–4  
1
20  
0
–6  
0.1  
0.01  
–20  
–40  
–8  
–10  
–10  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FREQUENCY (Hz)  
1352/53 G14  
1352/53 G13  
1352/53 G15  
Gain Bandwidth and Phase Margin  
vs Temperature  
Frequency Response  
vs Supply Voltage (AV = 1)  
Frequency Response  
vs Supply Voltage (AV = 1)  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
5
5
4
3
2
T
= 25°C  
= 1  
= 5k  
T = 25°C  
A
V
= ±15V  
= ±5V  
A
V
L
S
4
3
2
A
A
R
= –1  
V
R
= R = 5k  
F G  
V
S
PHASE MARGIN  
1
0
1
0
GAIN BANDWIDTH  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
V
= ±15V  
= ±5V  
S
±15V  
±5V  
±2.5V  
±15V  
±5V  
±2.5V  
V
S
–50  
0
25  
50  
75 100 125  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
–25  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1352/53 G17  
1352/53 G18  
1352/53 G16  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
120  
100  
80  
60  
40  
20  
0
120  
100  
T
= 25°C  
= ±15V  
T = 25°C  
A
A
S
T
= 25°C  
A
V
V
= ±15V  
S
PHASE MARGIN  
80  
60  
PSRR = +PSRR  
40  
20  
0
GAIN BANDWIDTH  
0
10  
15  
20  
10  
1k  
10k 100k  
1M  
10M  
5
100  
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1352/53 G19  
1352/53 G20  
1352/53 G21  
7
LT1352/LT1353  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
Slew Rate vs Input Level  
250  
200  
150  
100  
50  
200  
150  
100  
50  
200  
175  
150  
125  
T
= 25°C  
A = –1  
V
T
= 25°C  
= ±15V  
= –1  
A
V
F
A
S
V
A
= –1  
R = R = R = 5k  
F G L  
V
A
+
R = R = 5k  
SR = (SR + SR )/2  
SR = (SR + SR )/2  
G
+
R
= R = 5k  
FB  
G
+
V
= ±15V  
S
SR = (SR + SR )/2  
100  
75  
V
S
= ±5V  
50  
25  
0
0
0
0
5
10  
15  
50  
125  
–50 –25  
0
25  
75 100  
4
8
16  
0
20  
24  
12  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
INPUT LEVEL (V  
)
P-P  
1352/53 G22  
1352/53 G23  
1352/53 G24  
Total Harmonic Distortion  
vs Frequency  
Undistorted Output Swing  
Undistorted Output Swing  
vs Frequency (±15V)  
vs Frequency (±5V)  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
1
T
= 25°C  
= ±15V  
= 5k  
A
S
L
O
A
= –1  
V
V
R
V
A
= 1  
= 2V  
V
P-P  
0.1  
A
V
= 1  
A
V
= –1  
0.01  
A
= –1  
= 1  
V
V
= ±15V  
V
= ±5V  
S
L
S
L
R
= 5k  
R
= 5k  
THD = 1%  
A
THD = 1%  
V
0.001  
0
10k  
100k  
1M  
10k  
100k  
1M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1352/53 G27  
1352/53 G26  
1352/53 G25  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Capacitive Load Handling  
Crosstalk vs Frequency  
40  
50  
100  
90  
30  
40  
50  
60  
–70  
80  
90  
T
= 25°C  
= 1  
V
A
= ±15V  
= 1  
T
= 25°C  
= ±15V  
= 5k  
A
V
L
S
V
L
A
S
L
A
V
R
V
= 1k  
R
= 5k  
R
80  
V
= 2V  
= 15dBm  
O
P-P  
60  
IN  
70  
A
= 1  
V
–70  
60  
50  
3RD HARMONIC  
2ND HARMONIC  
80  
40  
30  
20  
10  
0
90  
A
= –1  
V
–100  
–110  
–120  
100k  
1M  
10p  
100p  
1n  
10n  
0.1µ  
1µ  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
CAPACITIVE LOAD (F)  
FREQUENCY (Hz)  
1352/53 G28  
1352/53 G30  
1352/53 G29  
8
LT1352/LT1353  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Small-Signal Transient  
(AV = 1)  
Small-Signal Transient  
(AV = 1)  
Small-Signal Transient  
(AV = 1, CL = 1000pF)  
1352/53 G31  
1352/53 G32  
1352/53 G33  
Large-Signal Transient  
(AV = 1)  
Large-Signal Transient  
(AV = 1)  
Large-Signal Transient  
(AV = 1, CL = 10,000pF)  
1352/53 G34  
1352/53 G35  
1352/53 G36  
U
W U U  
APPLICATIONS INFORMATION  
Layout and Passive Components  
Capacitive Loading  
The LT1352/LT1353 amplifiers are easy to use and toler-  
ant of less than ideal layouts. For maximum performance  
(for example, fast 0.01% settling) use a ground plane,  
shortleadlengthsandRF-qualitybypasscapacitors(0.01µF  
to 0.1µF). For high drive current applications use low ESR  
bypass capacitors (1µF to 10µF tantalum).  
The LT1352/LT1353 are stable with any capacitive load.  
As the capacitive load increases, both the bandwidth and  
phase margin decrease so there will be peaking in the  
frequency domain and in the transient response. Graphs  
of Frequency Response vs Capacitive Load, Capacitive  
Load Handling and the transient response photos clearly  
show these effects.  
The parallel combination of the feedback resistor and  
gain setting resistor on the inverting input can combine  
withtheinputcapacitancetoformapolewhichcancause  
peakingorevenoscillations. Iffeedbackresistorsgreater  
than 10k are used, a parallel capacitor of value, CF >  
(RG)(CIN/RF), should be used to cancel the input pole and  
optimize dynamic performance. For applications where  
the DC noise gain is one and a large feedback resistor is  
used, CF should be greater than or equal to CIN. An  
example would be an I-to-V converter as shown in the  
Typical Applications section.  
Input Considerations  
Each of the LT1352/LT1353 amplifier inputs is the base of  
an NPN and PNP transistor whose base currents are of  
opposite polarity and provide first order bias current  
cancellation. Because of variation in the matching of NPN  
and PNP beta, the polarity of the input current can be  
positiveornegative.Theoffsetcurrentdoesnotdependon  
NPN to PNP beta matching and is well controlled. The use  
of balanced source resistance at each input is recom-  
9
LT1352/LT1353  
U
W U U  
APPLICATIONS INFORMATION  
mended for applications where DC accuracy must be  
maximized. The inputs can withstand differential input  
voltages of up to 10V without damage and need no  
clamping or source resistance for protection. Differential  
inputs generate large supply currents (up to 40mA) as  
required for high slew rates. Typically power dissipation  
does not significantly increase because of the low duty  
cycle of the transient inputs. If the device is used as a  
comparator with sustained differential inputs, excessive  
power dissipation may result.  
Capacitive load compensation is provided by the RC CC  
,
network which is bootstrapped across the output stage.  
When the amplifier is driving a light load the network has  
no effect. When driving a capacitive load (or a low value  
resistive load) the network is incompletely bootstrapped  
and adds to the compensation at the high impedance  
node. The added capacitance slows down the amplifier  
andazeroiscreatedbytheRCcombination, bothofwhich  
improve the phase margin. The design ensures that even  
for very large load capacitances, the total phase lag can  
never exceed 180 degrees (zero phase margin) and the  
amplifier remains stable.  
Circuit Operation  
The LT1352/LT1353 circuit topology is a true voltage  
feedback amplifier that has the slewing behavior of a  
currentfeedbackamplifier.Theoperationofthecircuitcan  
be understood by referring to the Simplified Schematic.  
Power Dissipation  
TheLT1352/LT1353combinehighspeedandlargeoutput  
drive in small packages. Because of the wide supply  
voltage range, it is possible to exceed the maximum  
junction temperature of 150°C under certain conditions.  
Maximum junction temperature TJ is calculated from the  
ambient temperature TA and power dissipation PD as  
follows:  
The inputs are buffered by complementary NPN and PNP  
emitter followers which drive R1, a 1k resistor. The input  
voltage appears across the resistor generating currents  
which are mirrored into the high impedance node and  
compensation capacitor CT. Complementary followers  
form an output stage which buffers the gain node from the  
load. The output devices Q19 and Q22 are connected to  
form a composite PNP and a composite NPN.  
LT1352CN8: TJ = TA + (PD)(130°C/W)  
LT1352CS8: TJ = TA + (PD)(190°C/W)  
LT1353CS: TJ = TA + (PD)(150°C/W)  
The bandwidth is set by the input resistor and the capaci-  
tance on the high impedance node. The slew rate is  
determined by the current available to charge the high  
impedance node capacitance. This current is the differen-  
tial input voltage divided by R1, so the slew rate is  
proportional to the input. Highest slew rates are therefore  
seen in the lowest gain configurations. For example, a 10V  
outputstepinagainof10hasonlya1Vinputstepwhereas  
the same output step in unity gain has a 10 times greater  
input step. The graph Slew Rate vs Input Level illustrates  
this relationship. In higher gain configurations the large-  
signal performance and the small-signal performance  
both look like a single pole response.  
Worst-case power dissipation occurs at the maximum  
supply current and when the output voltage is at 1/2 of  
either supply voltage (or the maximum swing if less than  
1/2 supply voltage). For each amplifier PD(MAX) is:  
PD(MAX) = (V+ – V)(IS(MAX)) + (V+/2)2/RL or  
(V+ V)(IS(MAX)) + (V+ – VMAX)(IMAX  
)
Example: LT1353 in S14 at 85°C, VS = ±15V, RL = 500,  
VOUT = ±5V (±10mA)  
PD(MAX) =(30V)(380µA)+(15V5V)(10mA)=111mW  
TJ = 85°C + (4)(111mW)(150°C/W) = 152°C  
10  
LT1352/LT1353  
W
W
SI PLIFIED SCHE ATIC  
+
V
R2  
R3  
Q11  
Q10  
Q12  
Q17  
Q20  
Q21  
C1  
R6  
Q9  
Q19  
Q3  
Q4  
Q7  
Q8  
R1  
1k  
C
C
R
C
Q5  
Q1  
–IN  
+IN  
Q2  
OUTPUT  
Q6  
Q18  
Q16  
R7  
Q22  
R4  
Q13  
Q15  
C2  
C
T
Q14  
Q23  
Q24  
R5  
1352/53 SS  
V
U
TYPICAL APPLICATIONS  
400kHz Photodiode Preamp with 10kHz Highpass Loop  
DAC I-to-V Converter  
1N5712  
10pF  
10k  
12  
5k  
DAC  
INPUTS  
1/2  
LT1352  
V
OUT  
565A TYPE  
1/2  
V
OUT  
+
LT1352  
+
BPV22NF  
1.5k  
10k  
5k  
V
A
OUT  
V
+ I (5k) +  
OS OS  
< 0.5LSB  
+
1352/53 TA03  
VOL  
1/2  
10nF  
LT1352  
10nF  
10k  
1352/53 TA05  
20kHz, 4th Order Butterworth Filter  
4.64k  
5.49k  
470pF  
220pF  
4.64k  
13.3k  
V
IN  
5.49k  
11.3k  
1/2  
LT1352  
2200pF  
1/2  
LT1352  
V
OUT  
+
4700pF  
+
1352/53 TA04  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1352/LT1353  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.005  
(0.127)  
MIN  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
2
3
0.325  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.635  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Good DC Precision, C-Load Stable, Power Saving Shutdown  
Single/Dual/Quad 1mA, 12MHz, 400V/µs Op Amp Good DC Precision, Stable with All Capacitive Loads  
LT1351  
LT1354/55/56  
250µA, 3MHz, 200V/µs Op Amp  
LT/GP 0796 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY