LT1399IS#TR [Linear]

LT1399 - Low Cost Dual and Triple 300MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C;
LT1399IS#TR
型号: LT1399IS#TR
厂家: Linear    Linear
描述:

LT1399 - Low Cost Dual and Triple 300MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C

放大器
文件: 总16页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1398/LT1399/LT1399HV  
Low Cost Dual and Triple  
300MHz Current Feedback  
Amplifiers with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LT®1399 and LT1399HV contain three independent  
300MHz current feedback amplifiers, each with a shut-  
down pin. The LT1399HV is a higher voltage version of the  
LT1399. The LT1398 is a two amplifier version of the  
LT1399.  
300MHz Bandwidth on ±5V (AV = 1, 2 and –1)  
0.1dB Gain Flatness: 150MHz (AV = 1, 2 and –1)  
Completely Off in Shutdown, 0µA Supply Current  
High Slew Rate: 800V/µs  
Wide Supply Range:  
±2V(4V) to ±6V(12V) (LT1398/LT1399)  
±2V (4V) to ±7.5V (15V) (LT1399HV)  
The LT1398/LT1399 operate on all supplies from a single  
4Vto±6V.TheLT1399HVoperatesonallsuppliesfrom4V  
to ±7.5V.  
80mA Output Current  
Low Supply Current: 4.6mA/Amplifier  
Fast Turn-On Time: 30ns  
Fast Turn-Off Time: 40ns  
Each amplifier draws 4.6mA when active. When disabled  
eachamplifierdrawszerosupplycurrentanditsoutputbe-  
comeshighimpedance.Theamplifiersturnoninonly30ns  
andturnoffin40ns,makingthemidealinspreadspectrum  
and portable equipment applications.  
16-Pin Narrow SUO/Narrow SSOP Packages  
APPLICATIO S  
RGB Cable Drivers  
LCD Drivers  
TheLT1398/LT1399/LT1399HVaremanufacturedonLin-  
ear Technology’s proprietary complementary bipolar pro-  
cess. The LT1399/LT1399HV are pin-for-pin upgrades to  
the LT1260 optimized for use on ±5V/±7.5V supplies.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Spread Spectrum Amplifiers  
MUX Amplifiers  
Composite Video Cable Drivers  
Portable Equipment  
U
TYPICAL APPLICATIO  
3-Input Video MUX Cable Driver  
CHANNEL  
SELECT  
A
B C  
EN A  
Square Wave Response  
V
IN A  
V
IN B  
V
IN C  
+
97.6Ω  
97.6Ω  
97.6Ω  
R
G
1/3 LT1399  
200Ω  
75Ω  
R
324Ω  
F
CABLE  
V
OUT  
OUTPUT  
200mV/DIV  
EN B  
75Ω  
+
R
G
1/3 LT1399  
200Ω  
R
324Ω  
F
1398/99 TA02  
RL = 100Ω  
TIME (10ns/DIV)  
RF = RG = 324Ω  
f = 10MHz  
EN C  
+
R
1399 TA01  
G
1/3 LT1399  
200Ω  
R
F
324Ω  
1
LT1398/LT1399/LT1399HV  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V)  
Output Short-Circuit Duration (Note 3)........ Continuous  
Operating Temperature Range ............... 40°C to 85°C  
Specified Temperature Range (Note 4).. 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Junction Temperature (Note 5)............................ 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1398/LT1399 ................................................ 12.6V  
LT1399HV ....................................................... 15.5V  
Input Current (Note 2) ....................................... ±10mA  
Output Current................................................. ±100mA  
Differential Input Voltage (Note 2) ........................... ±5V  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
1
2
3
4
5
6
7
8
EN R  
16  
15  
14  
13  
12  
11  
10  
9
–IN R  
+IN R  
*GND  
–IN G  
+IN G  
*GND  
+IN B  
–IN B  
1
2
3
4
5
6
7
8
EN A  
16  
15  
14  
13  
12  
11  
10  
9
–IN A  
+IN A  
*GND  
*GND  
*GND  
*GND  
+IN B  
–IN B  
R
G
B
A
OUT R  
OUT A  
LT1398CS  
LT1399CGN  
LT1399CS  
LT1399HVCS  
+
V
+
V
EN G  
GND*  
GND*  
OUT G  
V
V
OUT B  
EN B  
GN PART MARKING  
1399  
OUT B  
EN B  
B
GN PACKAGE  
S PACKAGE  
S PACKAGE  
16-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 100°C/W  
16-LEAD PLASTIC SSOP 16-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 120°C/W (GN)  
TJMAX = 150°C, θJA = 100°C/W (S)  
*Ground pins are not internally connected. For best channel isolation, connect to ground. Consult factory for Industrial and Military grade parts.  
(LT1398/LT1399)  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, VS = ±5V, EN = 0V, pulse tested, unless otherwise noted. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
1.5  
10  
12  
mV  
mV  
OS  
V /T  
Input Offset Voltage Drift  
Noninverting Input Current  
15  
10  
µV/°C  
OS  
+
I
25  
30  
µA  
µA  
IN  
I
Inverting Input Current  
10  
50  
60  
µA  
µA  
IN  
e
Input Noise Voltage Density  
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Resistance  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
4.5  
6
nV/Hz  
pA/Hz  
pA/Hz  
MΩ  
n
F
G
S
+i  
–i  
f = 1kHz  
f = 1kHz  
n
25  
1
n
IN  
IN  
R
V
IN  
= ±3.5V  
0.3  
3.5  
C
Input Capacitance  
Amplifier Enabled  
Amplifier Disabled  
2.0  
2.5  
pF  
pF  
C
V
Output Capacitance  
Amplifier Disabled  
8.5  
pF  
OUT  
Input Voltage Range, High  
V = ±5V  
4.0  
4.0  
V
V
INH  
S
V = 5V, 0V  
S
2
LT1398/LT1399/LT1399HV  
(LT1398/LT1399)  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, VS = ±5V, EN = 0V, pulse tested, unless otherwise noted. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
V = ±5V  
MIN  
TYP  
MAX  
UNITS  
V
Input Voltage Range, Low  
3.5  
4.0  
1.0  
V
V
INL  
S
V = 5V, 0V  
S
V
Maximum Output Voltage Swing, High  
Maximum Output Voltage Swing, Low  
Maximum Output Voltage Swing, High  
Maximum Output Voltage Swing, Low  
Common Mode Rejection Ratio  
V = ±5V, R = 100k  
3.9  
3.7  
4.2  
V
V
V
OUTH  
S
L
V = ±5V, R = 100k  
S
L
V = 5V, 0V; R = 100k  
4.2  
S
L
V
V
V
V = ±5V, R = 100k  
3.9  
3.7  
4.2  
V
V
V
OUTL  
OUTH  
OUTL  
S
L
V = ±5V, R = 100k  
S
L
V = 5V, 0V; R = 100k  
0.8  
3.6  
S
L
V = ±5V, R = 150Ω  
3.4  
3.2  
V
V
V
S
L
V = ±5V, R = 150Ω  
S
L
V = 5V, 0V; R = 150Ω  
3.6  
S
L
V = ±5V, R = 150Ω  
3.4  
3.2  
3.6  
V
V
V
S
L
V = ±5V, R = 150Ω  
S
L
V = 5V, 0V; R = 150Ω  
0.6  
52  
10  
S
L
CMRR  
–I  
V
= ±3.5V  
42  
dB  
CM  
Inverting Input Current  
Common Mode Rejection  
V
V
= ±3.5V  
= ±3.5V  
16  
22  
µA/V  
µA/V  
CMRR  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±5V, EN = V  
S
56  
70  
1
dB  
+I  
Noninverting Input Current  
Power Supply Rejection  
V = ±2V to ±5V, EN = V  
S
2
3
µA/V  
µA/V  
PSRR  
–I  
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±5V, EN = V  
S
2
7
µA/V  
PSRR  
A
Large-Signal Voltage Gain  
V
V
= ±2V, R = 150Ω  
50  
40  
80  
65  
dB  
kΩ  
mA  
mA  
µA  
V
OUT  
OUT  
L
R
Transimpedance, V /I  
= ±2V, R = 150Ω  
100  
OL  
OUT IN  
L
I
I
Maximum Output Current  
Supply Current per Amplifier  
Disable Supply Current per Amplifier  
Enable Pin Current  
R = 0Ω  
OUT  
S
L
V
= 0V  
4.6  
0.1  
30  
6.5  
OUT  
EN Pin Voltage = 4.5V, R = 150Ω  
100  
L
I
110  
200  
µA  
µA  
EN  
SR  
Slew Rate (Note 6)  
A = 10, R = 150Ω  
500  
800  
30  
V/µs  
ns  
V
L
t
t
Turn-On Delay Time (Note 7)  
Turn-Off Delay Time (Note 7)  
Small-Signal Rise and Fall Time  
Propagation Delay  
R = R = 324, R = 100Ω  
75  
ON  
F
G
L
R = R = 324, R = 100Ω  
40  
100  
ns  
OFF  
F
G
L
t , t  
r
R = R = 324, R = 100, V  
= 1V  
= 1V  
= 1V  
1.3  
2.5  
10  
ns  
f
F
G
L
OUT  
OUT  
OUT  
P-P  
P-P  
P-P  
t
R = R = 324, R = 100, V  
ns  
PD  
F
G
L
os  
Small-Signal Overshoot  
Settling Time  
R = R = 324, R = 100, V  
%
F
G
L
t
0.1%, A = 1, R = R = 309, R = 150Ω  
25  
ns  
S
V
F
G
L
dG  
dP  
Differential Gain (Note 8)  
Differential Phase (Note 8)  
R = R = 324, R = 150Ω  
0.13  
0.10  
%
F
G
L
R = R = 324, R = 150Ω  
DEG  
F
G
L
3
LT1398/LT1399/LT1399HV  
(LT1399HV)  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, VS = ±7.5V, EN = 0V, pulse tested, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
1.5  
10  
12  
mV  
mV  
V /T Input Offset Voltage Drift  
15  
10  
µV/°C  
OS  
+
I
Noninverting Input Current  
25  
30  
µA  
µA  
IN  
I
Inverting Input Current  
10  
50  
60  
µA  
µA  
IN  
e
Input Noise Voltage Density  
f = 1kHz, R = 1k, R = 10, R = 0, V = ±5V  
4.5  
6
nV/Hz  
pA/Hz  
pA/Hz  
MΩ  
n
F
G
S
S
+i  
–i  
Noninverting Input Noise Current Density f = 1kHz, V = ±5V  
S
n
Inverting Input Noise Current Density  
Input Resistance  
f = 1kHz, V = ±5V  
25  
1
n
IN  
IN  
S
R
V
= ±6V  
0.3  
IN  
C
Input Capacitance  
Amplifier Enabled  
Amplifier Disabled  
2.0  
2.5  
pF  
pF  
C
V
Output Capacitance  
Amplifier Disabled  
8.5  
pF  
OUT  
Input Voltage Range, High  
V = ±7.5V  
6
6.5  
6.5  
V
V
INH  
S
V = 7.5V, 0V  
S
V
V
Input Voltage Range, Low  
V = ±7.5V  
–6  
6.5  
1.0  
V
V
INL  
S
V = 7.5V, 0V  
S
Maximum Output Voltage Swing, High  
V = ±7.5V, R = 100k  
6.4  
6.1  
6.7  
V
V
V
OUTH  
S
L
V = ±7.5V, R = 100k  
S
L
V = 7.5V, 0V; R = 100k  
6.7  
S
L
V
OUTL  
V
OUTH  
V
OUTL  
Maximum Output Voltage Swing, Low  
Maximum Output Voltage Swing, High  
Maximum Output Voltage Swing, Low  
Common Mode Rejection Ratio  
V = ±7.5V, R = 100k  
6.4  
6.1  
6.7  
V
V
V
S
L
V = ±7.5V, R = 100k  
S
L
V = 7.5V, 0V; R = 100k  
0.8  
5.8  
S
L
V = ±7.5V, R = 150Ω  
5.4  
5.1  
V
V
V
S
L
V = ±7.5V, R = 150Ω  
S
L
V = 7.5V, 0V; R = 150Ω  
5.8  
S
L
V = ±7.5V, R = 150Ω  
5.4  
5.1  
5.8  
V
V
V
S
L
V = ±7.5V, R = 150Ω  
S
L
V = 7.5V, 0V; R = 150Ω  
0.6  
52  
10  
S
L
CMRR  
–I  
V
= ±6V  
42  
dB  
CM  
Inverting Input Current  
Common Mode Rejection  
V
V
= ±6V  
= ±6V  
16  
22  
µA/V  
µA/V  
CMRR  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±7.5V, EN = V  
S
56  
70  
1
dB  
+I  
Noninverting Input Current  
Power Supply Rejection  
V = ±2V to ±7.5V, EN = V  
S
2
3
µA/V  
µA/V  
PSRR  
–I  
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±7.5V, EN = V  
S
2
7
µA/V  
PSRR  
A
Large-Signal Voltage Gain  
V
V
= ±4.5V, R = 150Ω  
50  
40  
80  
65  
dB  
kΩ  
mA  
mA  
µA  
V
OUT  
OUT  
L
R
Transimpedance, V /I  
= ±4.5V, R = 150Ω  
100  
OL  
OUT IN  
L
I
I
Maximum Output Current  
Supply Current per Amplifier  
Disable Supply Current per Amplifier  
Enable Pin Current  
R = 0Ω  
OUT  
S
L
V
= 0V  
4.6  
0.1  
30  
7
OUT  
EN Pin Voltage = 7V, R = 150Ω  
100  
L
I
110  
200  
µA  
µA  
EN  
4
LT1398/LT1399/LT1399HV  
(LT1399HV)  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the specified operating temperature range, otherwise specifications are at TA = 25°C.  
For each amplifier: VCM = 0V, VS = ±7.5V, EN = 0V, pulse tested, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
SR Slew Rate (Note 6)  
CONDITIONS  
A = 10, R = 150, V = ±5V  
MIN  
TYP  
800  
30  
MAX  
UNITS  
V/µs  
ns  
500  
V
L
S
t
t
Turn-On Delay Time (Note 7)  
Turn-Off Delay Time (Note 7)  
Small-Signal Rise and Fall Time  
R = R = 324, R = 100, V = ±5V  
75  
ON  
F
G
L
S
R = R = 324, R = 100, V = ±5V  
40  
100  
ns  
OFF  
F
G
L
S
t , t  
R = R = 324, R = 100, V  
= 1V  
= 1V  
= 1V  
,
,
,
1.3  
ns  
r
f
F
G
L
OUT  
P-P  
P-P  
P-P  
V = ±5V  
S
t
Propagation Delay  
Small-Signal Overshoot  
Settling Time  
R = R = 324, R = 100, V  
2.5  
10  
25  
ns  
%
ns  
PD  
F
G
L
OUT  
V = ±5V  
S
os  
R = R = 324, R = 100, V  
F G L  
V = ±5V  
S
OUT  
t
0.1%, A = 1V, R = R = 309, R = 150,  
V F G L  
V = ±5V  
S
S
dG  
dP  
Differential Gain (Note 8)  
Differential Phase (Note 8)  
R = R = 324, R = 150, V = ±5V  
0.13  
0.10  
%
F
G
L
S
R = R = 324, R = 150, V = ±5V  
DEG  
F
G
L
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 6: Slew rate is measured at ±2V on a ±3V output signal.  
of a device may be impaired.  
Note 2: This parameter is guaranteed to meet specified performance  
through design and characterization. It has not been tested.  
Note 3: A heat sink may be required depending on the power supply  
Note 7: Turn-on delay time (tON) is measured from control input to  
appearance of 1V at the output, for VIN = 1V. Likewise, turn-off delay  
time (tOFF) is measured from control input to appearance of 0.5V on  
the output for VIN = 0.5V. This specification is guaranteed by design  
and characterization.  
voltage and how many amplifiers have their outputs short circuited.  
Note 8: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°.  
Ten identical amplifier stages were cascaded giving an effective  
resolution of 0.01% and 0.01°.  
Note 4: The LT1398/LT1399/LT1399HV are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet these extended temperature limits, but are not tested at  
40°C and 85°C. Guaranteed I grade parts are available, consult factory.  
Note 5: TJ is calculated from the ambient temperature TA and the  
power dissipation PD according to the following formula:  
LT1398CS, LT1399CS, LT1399HVCS: TJ = TA + (PD • 100°C/W)  
LT1399CGN: TJ = TA + (PD • 120°C/W)  
W U  
TYPICAL AC PERFOR A CE  
SMALL SIGNAL  
3dB BW (MHz)  
SMALL SIGNAL  
0.1dB BW (MHz)  
SMALL SIGNAL  
PEAKING (dB)  
V (V)  
S
A
R ()  
L
R ()  
F
R ()  
G
V
±5  
±5  
±5  
1
100  
100  
100  
365  
324  
309  
300  
300  
300  
150  
150  
150  
0.05  
0
2
324  
309  
–1  
0
5
LT1398/LT1399/LT1399HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Closed-Loop Gain vs Frequency  
(AV = 1)  
Closed-Loop Gain vs Frequency  
(AV = 2)  
Closed-Loop Gain vs Frequency  
(AV = 1)  
4
2
10  
8
4
2
0
6
0
–2  
–4  
4
–2  
–4  
2
1M  
VS = ±5V  
IN = –10dBm  
RF = 365Ω  
RL = 100Ω  
10M  
FREQUENCY (Hz)  
100M  
1G  
1398/99 G01  
1M  
VS = ±5V  
IN = –10dBm  
RF = RG = 324Ω  
RL = 100Ω  
10M  
FREQUENCY (Hz)  
100M  
1G  
1398/99 G02  
1M  
VS = ±5V  
10M  
FREQUENCY (Hz)  
100M  
1G  
1398/99 G03  
V
V
VIN = 10dBm  
RF = RG = 309Ω  
R
L = 100Ω  
Large-Signal Transient Response  
(AV = 1)  
Large-Signal Transient Response  
(AV = 2)  
Large-Signal Transient Response  
(AV = 1)  
1398/99 G04  
1398/99 G05  
1398/99 G06  
VS = ±5V  
TIME (5ns/DIV)  
VS = ±5V  
IN = ±1.25V  
RF = RG = 324Ω  
RL = 100Ω  
TIME (5ns/DIV)  
VS = ±5V  
IN = ±2.5V  
RF = RG = 309Ω  
RL = 100Ω  
TIME (5ns/DIV)  
V
V
VIN = ±2.5V  
RF = 365Ω  
RL = 100Ω  
2nd and 3rd Harmonic Distortion  
vs Frequency  
Maximum Undistorted Output  
Voltage vs Frequency  
PSRR vs Frequency  
30  
8
80  
T
= 25°C  
G
A
F
L
S
R
R
V
= R = 324Ω  
40  
50  
70  
60  
50  
40  
30  
20  
10  
0
= 100Ω  
= ±5V  
7
6
5
4
3
2
A
= +1  
A = +2  
V
V
V
= 2VPP  
OUT  
+PSRR  
PSRR  
HD2  
60  
70  
HD3  
80  
90  
T
= 25°C  
= 324Ω  
= 100Ω  
= ±5V  
T
= 25°C  
A
A
R
R
R
R
= R = 324Ω  
F
L
S
F
L
V
G
100  
110  
= 100Ω  
V
A
= +2  
1
10  
FREQUENCY (MHz)  
100  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1
10  
100  
1000 10000 100000  
FREQUENCY (kHz)  
1398/1399 G09  
1398/1399 G08  
1398/1399 G07  
6
LT1398/LT1399/LT1399HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Voltage Noise and Current  
Noise vs Frequency  
Output Impedance (Disabled)  
vs Frequency  
Output Impedance vs Frequency  
1000  
100  
100k  
10k  
1k  
100  
10  
R
A
= 365Ω  
= +1  
R
R
A
= R = 324Ω  
F
V
S
F
L
V
S
G
= 50Ω  
= +2  
= ±5V  
V
= ±5V  
V
1
IN  
+IN  
EN  
10  
1
0.1  
0.01  
100  
10 30 100 300 1k 3k 10k 30k 100k  
FREQUENCY (Hz)  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
1398/1399 G12  
1398/1399 G11  
1398/1399 G10  
Maximum Capacitive Load  
vs Feedback Resistor  
Capacitive Load  
vs Output Series Resistor  
Supply Current vs Supply Voltage  
1000  
100  
10  
40  
30  
20  
10  
0
6
R
S
= R = 324Ω  
F
G
V
= ±5V  
5
4
OVERSHOOT < 2%  
EN = V  
EN = 0V  
3
2
R
A
= R  
G
F
V
S
= +2  
1
0
V
= ±5V  
PEAKING 5dB  
1
300  
900  
1500  
2100  
2700  
3300  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
0
1
2
3
4
5
6
7
8
9
FEEDBACK RESISTANCE ()  
SUPPLY VOLTAGE (±V)  
1398/1399 G13  
1398/1399 G14  
1398/1399 G15  
Output Voltage Swing  
vs Temperature  
Enable Pin Current  
vs Temperature  
Positive Supply Current per  
Amplifier vs Temperature  
5
4
10  
20  
5.00  
V
S
= ±5V  
V
S
= ±5V  
EN = 5V  
4.75  
4.50  
R
L
= 100k  
R
L
= 150Ω  
3
EN = 0V  
EN = 0  
2
30  
40  
50  
60  
70  
4.25  
4.00  
3.75  
3.50  
3.25  
1
0
EN = –5V  
–1  
–2  
–3  
–4  
–5  
R
L
= 100k  
R
L
= 150Ω  
80  
3.00  
–50  
0
25  
50  
75 100 125  
–25  
50  
100 125  
–25  
0
50  
75 100 125  
50 25  
0
25  
75  
–50  
25  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1398/1399 G16  
1398/1399 G17  
1398/1399 G18  
7
LT1398/LT1399/LT1399HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Offset Voltage  
vs Temperature  
Input Bias Currents  
vs Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
15  
12  
V
S
= ±5V  
V
S
= ±5V  
+
I
B
9
6
3
I
B
0
–3  
0.5  
–1.0  
–6  
25  
0
50  
75 100 125  
50  
100 125  
50  
25  
–50  
25  
75  
–25  
0
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1398/1399 G19  
1398/99 G20  
All Hostile Crosstalk  
All Hostile Crosstalk (Disabled)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
R = R = 324Ω  
R = R = 324Ω  
F
L
V
G
F
L
V
G
R
= 100Ω  
R
= 100Ω  
A
= +2  
R
G
B
A
= +2  
R
G
B
100k  
1M  
10M  
100M 500M  
100k  
1M  
10M  
100M 500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1398/1399 G21  
1398/1399 G24  
Propagation Delay  
Rise Time and Overshoot  
OS = 10%  
INPUT  
100mV/DIV  
VOUT  
200mV/DIV  
OUTPUT  
200mV/DIV  
1398/1399 G22  
1398/1399 G23  
tPD = 2.5ns  
tr = 1.3ns  
A
V = +2  
TIME (500ps/DIV)  
A
V = +2  
TIME (500ps/DIV)  
RL = 100Ω  
RL = 100Ω  
RF = RG = 324Ω  
RF = RG = 324Ω  
8
LT1398/LT1399/LT1399HV  
U
U
U
PIN FUNCTIONS  
LT1398  
LT1399, LT1399HV  
IN A (Pin 1): Inverting Input of A Channel Amplifier.  
+IN A (Pin 2): Noninverting Input of A Channel Amplifier.  
GND (Pins 3, 4, 5, 6): Ground. Not connected internally.  
+IN B (Pin 7): Noninverting Input of B Channel Amplifier.  
IN B (Pin 8): Inverting Input of B Channel Amplifier.  
EN B (Pin 9): B Channel Enable Pin. Logic low to enable.  
OUT B (Pin 10): B Channel Output.  
V(Pin 11): Negative Supply Voltage, Usually 5V.  
GND (Pins 12, 13): Ground. Not connected internally.  
V+ (Pin 14): Positive Supply Voltage, Usually 5V.  
OUT A (Pin 15): A Channel Output.  
IN R (Pin 1): Inverting Input of R Channel Amplifier.  
+IN R (Pin 2): Noninverting Input of R Channel Amplifier.  
GND (Pin 3): Ground. Not connected internally.  
IN G (Pin 4): Inverting Input of G Channel Amplifier.  
+IN G (Pin 5): Noninverting Input of G Channel Amplifier.  
GND (Pin 6): Ground. Not connected internally.  
+IN B (Pin 7): Noninverting Input of B Channel Amplifier.  
IN B (Pin 8): Inverting Input of B Channel Amplifier.  
EN B (Pin 9): B Channel Enable Pin. Logic low to enable.  
OUT B (Pin 10): B Channel Output.  
V(Pin 11): Negative Supply Voltage, Usually 5V.  
EN A (Pin 16): A Channel Enable Pin. Logic low to enable.  
OUT G (Pin 12): G Channel Output.  
EN G (Pin 13): G Channel Enable Pin. Logic low to enable.  
V+ (Pin 14): Positive Supply Voltage, Usually 5V.  
OUT R (Pin 15): R Channel Output.  
EN R (Pin 16): R Channel Enable Pin. Logic low to enable.  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response).  
Feedback Resistor Selection  
The small-signal bandwidth of the LT1398/LT1399/  
LT1399HVissetbytheexternalfeedbackresistorsandthe  
internal junction capacitors. As a result, the bandwidth is  
a function of the supply voltage, the value of the feedback  
resistor, the closed-loop gain and the load resistor. The  
LT1398/LT1399 have been optimized for ±5V supply  
operationandhavea–3dBbandwidthof300MHzatagain  
of 2. The LT1399HV provides performance similar to the  
LT1399. Please refer to the resistor selection guide in the  
Typical AC Performance table.  
Capacitive Loads  
The LT1398/LT1399/LT1399HV can drive many capaci-  
tive loads directly when the proper value of feedback  
resistor is used. The required value for the feedback  
resistor will increase as load capacitance increases and as  
closed-loop gain decreases. Alternatively, a small resistor  
(5to 35) can be put in series with the output to isolate  
the capacitive load from the amplifier output. This has the  
advantage that the amplifier bandwidth is only reduced  
when the capacitive load is present. The disadvantage is  
that the gain is a function of the load resistance.  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
9
LT1398/LT1399/LT1399HV  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
will remain enabled at all times, then the EN pin should be  
tied to the Vsupply. The enable pin current is approxi-  
mately 30µA when activated. If using CMOS open-drain  
logic, an external 1k pull-up resistor is recommended to  
ensure that the LT1399 remains disabled in spite of any  
CMOS drain-leakage currents.  
Power Supplies  
The LT1398/LT1399 will operate from single or split  
supplies from ±2V (4V total) to ±6V (12V total). The  
LT1399HV will operate from single or split supplies from  
±2V (4V total) to ±7.5V (15V total). It is not necessary to  
use equal value split supplies, however the offset voltage  
and inverting input bias current will change. The offset  
voltage changes about 600µV per volt of supply mis-  
match. The inverting bias current will typically change  
about 2µA per volt of supply mismatch.  
5.0  
T
= 25°C  
A
+
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
V
= 0V  
V
= 5V  
Slew Rate  
Unlike a traditional voltage feedback op amp, the slew rate  
of a current feedback amplifier is not independent of the  
amplifier gain configuration. In a current feedback ampli-  
fier,boththeinputstageandtheoutputstagehaveslewrate  
limitations.Intheinvertingmode,andforgainsof2ormore  
inthenoninvertingmode,thesignalamplitudebetweenthe  
input pins is small and the overall slew rate is that of the  
outputstage.Forgainslessthan2inthenoninvertingmode,  
the overall slew rate is limited by the input stage.  
0
2
3
+
4
5
6
7
1
V
– V (V)  
EN  
1398/99 F01  
Figure 1. +IS vs (V+ – VEN  
)
OUTPUT  
The input slew rate of the LT1398/LT1399/LT1399HV is  
approximately 600V/µs and is set by internal currents and  
capacitances.Theoutputslewrateissetbythevalueofthe  
feedback resistor and internal capacitance. At a gain of 2  
with 324feedback and gain resistors and ±5V supplies,  
the output slew rate is typically 800V/µs. Larger feedback  
resistors will reduce the slew rate as will lower supply  
voltages.  
EN  
1398/99 F02  
VS = ±5V RF = 324Ω  
IN = 1V G = 324Ω  
RL = 100Ω  
V
R
Enable/ Disable  
Figure 2. Amplifier Enable Time, AV = 2  
Each amplifier of the LT1398/LT1399/LT1399HV has a  
unique high impedance, zero supply current mode which  
is controlled by its own EN pin. These amplifiers are  
designed to operate with CMOS logic; the amplifiers draw  
zero current when these pins are high. To activate each  
amplifier, its EN pin is normally pulled to a logic low.  
However, supply current will vary as the voltage between  
the V+ supply and EN is varied. As seen in Figure 1, +IS  
does vary with (V+ – VEN), particularly when the voltage  
difference is less than 3V. For normal operation, it is  
important to keep the EN pin at least 3V below the V+  
supply. If a V+ of less than 3V is desired, and the amplifier  
OUTPUT  
EN  
1398/99 F03  
VS = ±5V RF = 324Ω  
VIN = 1V RG = 324Ω  
RL = 100Ω  
Figure 3. Amplifier Disable Time, AV = 2  
10  
LT1398/LT1399/LT1399HV  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The enable/disable times are very fast when driven from  
standard 5V CMOS logic. Each amplifier enables in about  
30ns (50% point to 50% point) while operating on ±5V  
supplies (Figure 2). Likewise, the disable time is approxi-  
mately 40ns (50% point to 50% point) (Figure 3).  
EN A  
EN B  
OUTPUT  
Differential Input Signal Swing  
To avoid any breakdown condition on the input transis-  
tors, thedifferentialinputswingmustbelimitedto±5V. In  
normal operation, the differential voltage between the  
input pins is small, so the ±5V limit is not an issue. In the  
disabled mode however, the differential swing can be the  
same as the input swing, and there is a risk of device  
breakdown if input voltage range has not been properly  
considered.  
1398/99 F05  
VS = ±5V  
INA = VINB = 2VP-P  
at 3.58MHz  
20ns/DIV  
V
Figure 5. 3-Input Video MUX Switching Response (AV = 2)  
Using the LT1399 to Drive LCD Displays  
Driving the current crop of XGA and UXGA LCD displays  
can be a difficult problem because they require drive  
voltagesofupto12V, areusuallyacapacitiveloadofover  
300pF, and require fast settling. The LT1399HV is par-  
ticularly well suited for driving these LCD displays be-  
cause it is capable of swinging more than ±6V on ±7.5V  
supplies, and it can drive large capacitive loads with a  
small series resistor at the output, minimizing settling  
time. As seen in Figures 6 and 7, at a gain of +3 with a  
16.9output series resistor and a 330pF load, the  
LT1399HV is capable of settling to 0.1% in 30ns for a 6V  
step. Similarly, a 12V output step settles in 70ns.  
3-Input Video MUX Cable Driver  
The application on the first page of this data sheet shows  
a low cost, 3-input video MUX cable driver. The scope  
photo below (Figure 4) displays the cable output of a  
30MHz square wave driving 150. In this circuit the  
active amplifier is loaded by the sum of RF and RG of each  
disabled amplifier. Resistor values have been chosen to  
keep the total back termination at 75while maintaining  
a gain of 1 at the 75load. The switching time between  
any two channels is approximately 32ns when both  
enable pins are driven.  
When building the board, care was taken to minimize  
tracelengthsattheinvertinginput. Thegroundplanewas  
also pulled away from RF and RG on both sides of the  
board to minimize stray capacitance.  
VIN  
VOUT  
OUTPUT  
200mV/DIV  
1398/99 AI06  
VS = ±5V  
20ns/DIV  
RF = 324Ω  
R
G = 162Ω  
RS = 16.9Ω  
CL = 330pF  
Figure 6. LT1399/LT1399HV Large-Signal Pulse Response  
1398/99 F04  
RL = 150Ω  
5ns/DIV  
RF = RG = 324Ω  
f = 10MHz  
Figure 4. Square Wave Response  
11  
LT1398/LT1399/LT1399HV  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
resistor R11, which yields a 75input impedance at the  
R input when considered in parallel with R8. R8 connects  
to the inverting input of a second LT1398 amplifier (A2),  
which also sums the weighted G and B inputs to create a  
–0.5 • Y output. LT1398 amplifier B1 then takes the  
–0.5 • Y output and amplifies it by a gain of –2, resulting  
in the Y output. Amplifier A1 is configured in a noninvert-  
ing gain of 2 with the bottom of the gain resistor R2 tied  
to the Y output. The output of amplifier A1 thus results in  
the color-difference output R-Y.  
VIN  
VOUT  
1398/99 F07  
VS = ±7.5V  
RF = 324Ω  
RG = 162Ω  
50ns/DIV  
The B input is similar to the R input. It arrives via 75Ω  
coax, and is routed to the noninverting input of LT1398  
amplifier B2, and to a 2940resistor R10. There is also  
a 76.8termination resistor R13, which yields a 75Ω  
input impedance when considered in parallel with R10.  
R10 also connects to the inverting input of amplifier A2,  
adding the B contribution to the Y signal as discussed  
above. Amplifier B2 is configured in a noninverting gain  
of 2 configuration with the bottom of the gain resistor R4  
tied to the Y output. The output of amplifier B2 thus  
results in the color-difference output B-Y.  
R
S = 16.9Ω  
CL = 330pF  
Figure 7. LT1399HV Output Voltage Swing  
Buffered RGB to Color-Difference Matrix  
Two LT1398s can be used to create buffered color-  
difference signals from RGB inputs (Figure 8). In this  
application, the R input arrives via 75coax. It is routed  
to the noninverting input of LT1398 amplifier A1 and to  
a 1082resistor R8. There is also an 80.6termination  
+
75Ω  
R8  
A1  
SOURCES  
R-Y  
1082Ω  
1/2 LT1398  
R
R1  
324Ω  
R11  
80.6Ω  
R9  
549Ω  
R7  
G
B
324Ω  
R12  
86.6Ω  
R10  
2940Ω  
R6  
162Ω  
R5  
R2  
324Ω  
324Ω  
R13  
76.8Ω  
A2  
1/2 LT1398  
+
B1  
Y
1/2 LT1398  
+
R4  
324Ω  
R3  
324Ω  
ALL RESISTORS 1%  
= ±5V  
B2  
B-Y  
V
S
1/2 LT1398  
1398/99 F08  
+
Figure 8. Buffered RGB to Color-Difference Matrix  
12  
LT1398/LT1399/LT1399HV  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The G input also arrives via 75coax and adds its  
contributiontotheYsignalviaa549resistorR9, which  
is tied to the inverting input of amplifier A2. There is also  
an 86.6termination resistor R12, which yields a 75Ω  
termination when considered in parallel with R9. Using  
superposition, it is straightforward to determine the  
output of amplifier A2. Although inverted, it sums the R,  
G and B signals in the standard proportions of 0.3R,  
0.59G and 0.11B that are used to create the Y signal.  
Amplifier B1 then inverts and amplifies the signal by 2,  
resulting in the Y output.  
R10, giving an amplification of 0.37. This results in a  
contribution at the output of A2 of 0.37Y – 0.37B.  
IfwenowsumthethreecontributionsattheoutputofA2,  
we get:  
A2OUT = 3.40Y – 1.02R – 0.37B  
It is important to remember though that Y is a weighted  
sum of R, G and B such that:  
Y = 0.3R + 0.59G + 0.11B  
If we substitute for Y at the output of A2 we then get:  
A2OUT = (1.02R – 1.02R) + 2G + (0.37B – 0.37B)  
= 2G  
Buffered Color-Difference to RGB Matrix  
The LT1399 can be used to create buffered RGB outputs  
from color-difference signals (Figure 9). The R output is  
a back-terminated 75signal created using resistor R5  
and LT1399 amplifier A1 configured for a gain of +2 via  
324resistors R3 and R4. The noninverting input of  
amplifier A1 is connected via 1k resistors R1 and R2 to  
the Y and R-Y inputs respectively, resulting in cancella-  
tion of the Y signal at the amplifier input. The remaining  
R signal is then amplified by A1.  
Theback-terminationresistorR11thenhalvestheoutput  
of A2 resulting in the G output.  
R1  
1k  
Y
R2  
1k  
R5  
75  
+
A1  
R-Y  
R
1/3 LT1399  
R3  
324Ω  
The B output is also a back-terminated 75signal  
created using resistor R16 and amplifier A3 configured  
for a gain of +2 via 324resistors R14 and R15. The  
noninverting input of amplifier A3 is connected via 1k  
resistors R12 and R13 to the Y and B-Y inputs respec-  
tively, resulting in cancellation of the Y signal at the  
amplifier input. The remaining B signal is then amplified  
by A3.  
R4  
324Ω  
R6  
205Ω  
R11  
75Ω  
+
A2  
R7  
1k  
G
1/3 LT1399  
R10  
324Ω  
R8  
316Ω  
R9  
845Ω  
The G output is the most complicated of the three. It is a  
weighted sum of the Y, R-Y and B-Y inputs. The Y input  
is attenuated via resistors R6 and R7 such that amplifier  
A2’s noninverting input sees 0.83Y. Using superposition,  
we can calculate the positive gain of A2 by assuming that  
R8 and R9 are grounded. This results in a gain of 2.41 and  
a contribution at the output of A2 of 2Y. The R-Y input is  
amplified by A2 with the gain set by resistors R8 and R10,  
giving an amplification of –1.02. This results in a contri-  
bution at the output of A2 of 1.02Y – 1.02R. The B-Y input  
is amplified by A2 with the gain set by resistors R9 and  
B-Y  
R12  
1k  
R16  
75Ω  
+
A3  
R13  
1k  
B
1/3 LT1399  
R14  
324Ω  
ALL RESISTORS 1%  
= ±5V  
V
S
R15  
324Ω  
1398/99 F09  
Figure 9. Buffered Color-Difference to RGB Matrix  
13  
LT1398/LT1399/LT1399HV  
W
W
SI PLIFIED SCHE ATIC, each amplifier  
+
V
–IN  
OUT  
+IN  
EN  
V
1398/99 SS  
14  
LT1398/LT1399/LT1399HV  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
0.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
0.015 ± 0.004  
(0.38 ± 0.10)  
× 45°  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN16 (SSOP) 0398  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
0.228 – 0.244  
(3.810 – 3.988)  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
15  
LT1398/LT1399/LT1399HV  
U
O
TYPICAL APPLICATI  
Single Supply RGB Video Amplifier  
input. Assuming a 75source impedance for the signal  
driving VIN, the Thevenin equivalent signal arriving at  
A1’s positive input is 3V + 0.4VIN, with a source imped-  
ance of 714. The combination of these two inputs gives  
anoutputatthecathodeofD2of2•VIN withnoadditional  
DC offset. The 75back termination resistor R9 halves  
the signal again such that VOUT equals a buffered version  
of VIN.  
The LT1399 can be used with a single supply voltage of  
6V or more to drive ground-referenced RGB video. In  
Figure 10, two 1N4148 diodes D1 and D2 have been  
placed in series with the output of the LT1399 amplifier  
A1 but within the feedback loop formed by resistor R8.  
These diodes effectively level-shift A1’s output down-  
ward by 2 diodes, allowing the circuit output to swing to  
ground.  
It is important to note that the 4.7µF capacitor C1 has  
been added to provide enough current to maintain the  
voltage drop across diodes D1 and D2 when the circuit  
outputdropslowenoughthatthediodesmightotherwise  
reverse bias. This means that this circuit works fine for  
continuousvideoinput, butwillrequirethatC1chargeup  
after a period of inactivity at the input.  
Amplifier A1 is used in a positive gain configuration. The  
feedbackresistorR8is324.Thegainresistoriscreated  
from the parallel combination of R6 and R7, giving a  
Thevenin equivalent 80.4connected to 3.75V. This  
gives an AC gain of +5 from the noninverting input of  
amplifier A1 to the cathode of D2. However, the video  
input is also attenuated before arriving at A1’s positive  
5V  
C1  
4.7µF  
V
S
R1  
R6  
107Ω  
6V TO 12V  
1000Ω  
D1  
D2  
R9  
75Ω  
+
V
OUT  
1N4148 1N4148  
A1  
R2  
1300Ω  
1/3 LT1399  
R3  
160Ω  
R8  
324Ω  
V
IN  
1398/99 F10  
R4  
75Ω  
R7  
324Ω  
R5  
2.32Ω  
Figure 10. Single Supply RGB Video Amplifier (1 of 3 Channels)  
RELATED PARTS  
PART NUMBER  
LT1203/LT1205  
LT1204  
DESCRIPTION  
COMMENTS  
150MHz Video Multiplexers  
2:1 and Dual 2:1 MUXs with 25ns Switch Time  
Cascadable Enable 64:1 Multiplexing  
4-Input Video MUX with Current Feedback Amplifier  
140MHz Current Feedback Amplifier  
Low Cost Video Amplifiers  
LT1227  
1100V/µs Slew Rate, Shutdown Mode  
LT1252/LT1253/LT1254  
LT1259/LT1260  
LT1675  
Single, Dual and Quad Current Feedback Amplifiers  
130MHz Bandwidth, 0.1dB Flatness > 30MHz  
2.5ns Switching Time, 250MHz Bandwidth  
Dual/Triple Current Feedback Amplifier  
Triple 2:1 Buffered Video Mulitplexer  
13989f LT/TP 0699 4K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 1998  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1399IS#TRPBF

LT1399 - Low Cost Dual and Triple 300MHz Current Feedback Amplifiers with Shutdown; Package: SO; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1399_15

Low Cost Dual and Triple 300MHz Current Feedback Amplifiers with Shutdown
Linear

LT140

Hall Voltage 160mV Thin-Type Package GaAs Hall Device
SHARP

LT140A

Hall Voltage 160mV Thin-Type Package GaAs Hall Device
SHARP

LT140AA

Analog Circuit, 1 Func, PDSO4,
SHARP

LT140SA

Hall Voltage 160mV Thin-Type Package GaAs Hall Device
SHARP

LT140SAA

Analog Circuit, 1 Func, PDSO4,
SHARP

LT140SAB

Analog Circuit, 1 Func, PDSO4,
SHARP

LT140SAC

Analog Circuit, 1 Func, PDSO4,
SHARP

LT140Z

GREEN OVAL LAMP LED
SEOUL

LT141

INFRARED LAMP LED
SEOUL

LT1413

Single Supply, Dual Precision Op Amp
Linear