LT1460MHS8-5#PBF [Linear]

暂无描述;
LT1460MHS8-5#PBF
型号: LT1460MHS8-5#PBF
厂家: Linear    Linear
描述:

暂无描述

电源电路 参考电压源
文件: 总24页 (文件大小:506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1460  
Micropower Precision  
Series Reference Family  
U
DESCRIPTIO  
FEATURES  
The LT®1460 is a micropower bandgap reference that  
combines very high accuracy and low drift with low power  
dissipation and small package size. This series reference  
uses curvature compensation to obtain low temperature  
coefficient and trimmed precision thin-film resistors to  
achieve high output accuracy. The reference will supply  
up to 20mA with excellent line regulation characteristics,  
making it ideal for precision regulator applications.  
Trimmed to High Accuracy: 0.075% Max  
Low Drift: 10ppm/°C Max  
Industrial Temperature Range  
Temperature Coefficient Guaranteed to 125°C  
Low Supply Current: 130µA Max (LT1460-2.5)  
Minimum Output Current: 20mA  
No Output Capacitor Required  
Reverse Battery Protection  
Minimum Input/Output Differential: 0.9V  
This series reference provides supply current and power  
dissipationadvantagesovershuntreferencesthatmustidle  
the entire load current to operate. Additionally, the LT1460  
does not require an output compensation capacitor, yet  
is stable with capacitive loads. This feature is important  
where PC board space is a premium or fast settling is  
demanded. In the event of a reverse battery connection,  
thesereferenceswillnotconductcurrent,andaretherefore  
protected from damage.  
Available in S0-8, MSOP-8, PDIP-8, TO-92 and  
SOT- 23 Package  
U
APPLICATIO S  
Handheld Instruments  
Precision Regulators  
A/D and D/A Converters  
Power Supplies  
Hard Disk Drives  
The LT1460 is available in the 8-lead MSOP, SO, PDIP and  
the 3-lead TO-92 and SOT23 packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Typical Distribution of Output Voltage  
S8 Package  
Basic Connection  
20  
1400 PARTS  
18  
LT1460-2.5  
3.4V  
FROM 2 RUNS  
16  
2.5V  
IN  
OUT  
TO 20V  
C1  
0.1µF  
GND  
14  
12  
10  
8
1460 TA01  
6
4
2
0
–0.10  
–0.06 –0.02 0 0.02  
0.06  
0.10  
OUTPUT VOLTAGE ERROR (%)  
1460 TA02  
1460f  
1
LT1460  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Input Voltage.............................................................30V  
Reverse Voltage ......................................................–15V  
Specified Temperature Range  
Commercial (C)........................................ 0°C to 70°C  
Industrial (I)......................................... –40°C to 85°C  
High (H)............................................. –40°C to 125°C  
Storage Temperature Range (Note 2)..... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
Output Short-Circuit Duration, T = 25°C  
A
V > 10V............................................................5 sec  
IN  
V ≤ 10V..................................................... Indefinite  
IN  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER  
S3 PART MARKING  
LT1460HCS3-2.5  
LT1460JCS3-2.5  
LT1460KCS3-2.5  
LT1460HCS3-3  
LT1460JCS3-3  
LT1460KCS3-3  
LT1460HCS3-3.3  
LT1460JCS3-3.3  
LT1460KCS3-3.3  
LT1460HCS3-5  
LT1460JCS3-5  
LT1460KCS3-5  
LT1460HCS3-10  
LT1460JCS3-10  
LT1460KCS3-10  
LTAC  
LTAD OR LTH8*  
}
LTAE  
LTAN  
LTAP OR LTH9*  
LTAQ  
LTAR  
LTAS OR LTJ1*  
LTAT  
LTAK  
LTAL OR LTJ2*  
LTAM  
LTAU  
LTAV OR LTJ3*  
LTAW  
TOP VIEW  
IN 1  
3 GND  
OUT 2  
}
S3 PACKAGE  
3-LEAD PLASTIC SOT-23  
}
T
= 125°C, θ = 325°C/W  
JA  
JMAX  
}
}
*The temperature grades and parametric grades are identified by a label on the shipping container. Product may be identified with either part marking.  
1460f  
2
LT1460  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER  
LT1460ACN8-2.5  
LT1460BIN8-2.5  
LT1460DCN8-2.5  
LT1460EIN8-2.5  
TOP VIEW  
DNC*  
1
2
3
4
DNC*  
DNC*  
8
7
6
5
V
IN  
DNC*  
GND  
V
OUT  
LT1460ACN8-5  
LT1460BIN8-5  
LT1460DCN8-5  
LT1460EIN8-5  
DNC*  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
*CONNECTED INTERNALLY.  
DO NOT CONNECT EXTERNAL CIRCUITRY TO THESE PINS  
LT1460ACN8-10  
LT1460BIN8-10  
LT1460DCN8-10  
LT1460EIN8-10  
T
= 150°C, θ = 130°C/W  
JMAX  
JA  
ORDER PART NUMBER  
S8 PART MARKING  
LT1460ACS8-2.5  
LT1460BIS8-2.5  
LT1460DCS8-2.5  
LT1460EIS8-2.5  
LT1460LHS8-2.5  
LT1460MHS8-2.5  
1460A2  
460BI2  
1460D2  
460EI2  
60LH25  
60MH25  
TOP VIEW  
DNC*  
1
2
3
4
8
7
6
5
DNC*  
V
DNC*  
IN  
DNC*  
GND  
V
OUT  
LT1460ACS8-5  
LT1460BIS8-5  
LT1460DCS8-5  
LT1460EIS8-5  
LT1460LHS8-5  
LT1460MHS8-5  
1460A5  
460BI5  
1460D5  
460EI5  
460LH5  
460MH5  
DNC*  
S8 PACKAGE  
8-LEAD PLASTIC SO  
*CONNECTED INTERNALLY.  
DO NOT CONNECT EXTERNAL CIRCUITRY TO THESE PINS  
T
= 150°C, θ = 190°C/W  
JA  
JMAX  
LT1460ACS8-10  
LT1460BIS8-10  
LT1460DCS8-10  
LT1460EIS8-10  
1460A1  
460BI1  
1460D1  
460EI1  
1460f  
3
LT1460  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
BOTTOM VIEW  
DNC* 1  
8 DNC*  
7 DNC*  
3
2
1
V
IN  
2
6 V  
DNC* 3  
GND 4  
OUT  
V
IN  
V
GND  
OUT  
5 DNC*  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
*CONNECTED INTERNALLY.  
DO NOT CONNECT EXTERNAL  
CIRCUITRY TO THESE PINS  
Z PACKAGE  
3-LEAD TO-92 PLASTIC  
= 150°C, θ = 160°C/W  
T
JMAX  
JA  
T
= 150°C, θ = 250°C/W  
JA  
JMAX  
ORDER PART NUMBER  
MS8 PART MARKING  
ORDER PART NUMBER  
LT1460CCMS8-2.5  
LT1460FCMS8-2.5  
LT1460CCMS8-5  
LT1460FCMS8-5  
LT1460CCMS8-10  
LT1460FCMS8-10  
LTAA  
LTAB  
LTAF  
LTAG  
LTAH  
LTAJ  
LT1460GCZ-2.5  
LT1460GIZ-2.5  
LT1460GCZ-5  
LT1460GIZ-5  
LT1460GCZ-10  
LT1460GIZ-10  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
AVAILABLE OPTIONS  
TEMPERATURE  
PACKAGE TYPE  
ACCURACY COEFFICIENT  
N8  
S8  
MS8  
Z
S3  
TEMPERATURE  
0°C to 70°C  
(%)  
0.075  
0.10  
0.10  
0.10  
0.125  
0.15  
0.25  
0.25  
0.20  
0.20  
0.20  
0.40  
0.50  
(ppm/°C)  
10  
LT1460ACN8  
LT1460BIN8  
LT1460ACS8  
LT1460BIS8  
–40°C to 85°C  
0°C to 70°C  
10  
15  
LT1460CCMS8  
LT1460FCMS8  
0°C to 70°C  
20  
LT1460DCN8  
LT1460EIN8  
LT1460DCS8  
LT1460EIS8  
–40°C to 85°C  
0°C to 70°C  
20  
25  
0°C to 70°C  
25  
LT1460GCZ  
LT1460GIZ  
–40°C to 85°C  
–40°C to 85°C/125°C  
–40°C to 125°C  
0°C to 70°C  
25  
20/50  
50  
LT1460LHS8  
LT1460MHS8  
20  
LT1460HCS3  
LT1460JCS3  
LT1460KCS3  
0°C to 70°C  
20  
0°C to 70°C  
50  
1460f  
4
LT1460  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 2.5V, IOUT = 0 unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
LT1460ACN8-2.5, ACS8-2.5  
2.49813  
–0.075  
2.50188  
0.075  
V
%
LT1460BIN8-2.5, BIS8-2.5, CCMS8-2.5,  
DCN8-2.5, DCS8-2.5  
2.4975  
–0.10  
2.5025  
0.10  
V
%
LT1460EIN8-2.5, EIS8-2.5  
2.49688  
–0.125  
2.50313  
0.125  
V
%
LT1460FCMS8-2.5  
2.49625  
–0.15  
2.50375  
0.15  
V
%
LT1460GCZ-2.5, GIZ-2.5  
LT1460LHS8-2.5, MHS8-2.5  
LT1460ACN8-5, ACS8-5  
2.49375  
–0.25  
2.50625  
0.25  
V
%
2.495  
–0.20  
2.505  
0.20  
V
%
4.99625  
–0.075  
5.00375  
0.075  
V
%
LT1460BIN8-5, BIS8-5, CCMS8-5,  
DCN8-5, DCS8-5  
4.995  
–0.10  
5.005  
0.10  
V
%
LT1460EIN8-5, EIS8-5  
4.99375  
–0.125  
5.00625  
0.125  
V
%
LT1460FCMS8-5  
4.9925  
–0.15  
5.0075  
0.15  
V
%
LT1460GCZ-5, GIZ-5  
LT1460LHS8-5, MHS8-5  
LT1460ACN8-10, ACS8-10  
4.9875  
–0.25  
5.0125  
0.25  
V
%
4.990  
–0.20  
5.010  
0.20  
V
%
9.9925  
–0.075  
10.0075  
0.075  
V
%
LT1460BIN8-10, BIS8-10, CCMS8-10,  
DCN8-10, DCS8-10  
9.990  
–0.10  
10.010  
0.10  
V
%
LT1460EIN8-10, EIS8-10  
9.9875  
–0.125  
10.0125  
0.125  
V
%
LT1460FCMS8-10  
9.985  
–0.15  
10.0015  
0.15  
V
%
LT1460GCZ-10, GIZ-10  
9.975  
–0.25  
10.025  
0.25  
V
%
LT1460HC  
LT1460JC  
LT1460KC  
–0.2  
–0.4  
–0.5  
0.2  
0.4  
0.5  
%
%
%
Output Voltage Temperature Coefficient (Note 3)  
T
≤ T ≤ T  
MIN J MAX  
LT1460ACN8, ACS8, BIN8, BIS8  
LT1460CCMS8  
5
10  
15  
20  
25  
20  
50  
50  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
7
LT1460DCN8, DCS8, EIN8, EIS8  
LT1460FCMS8, GCZ, GIZ  
LT1460LHS8  
10  
12  
10  
25  
25  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
LT1460MHS8  
LT1460HC  
LT1460JC  
LT1460KC  
10  
10  
25  
20  
20  
50  
ppm/°C  
ppm/°C  
ppm/°C  
1460f  
5
LT1460  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 2.5V, IOUT = 0 unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Line Regulation  
V
V
V
V
+ 0.9V ≤ V ≤ V  
OUT  
+ 2.5V  
30  
60  
80  
ppm/V  
ppm/V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
LT1460A, LT1460B, LT1460C, LT1460D, LT1460E,  
LT1460F, LT1460G, LT1460H, LT1460L, LT1460M  
+ 2.5V ≤ V ≤ 20V  
10  
150  
50  
25  
35  
ppm/V  
ppm/V  
IN  
LT1460HC, LT1460JC, LT1460KC  
+ 0.9V ≤ V ≤ V  
+ 2.5V  
800  
1000  
ppm/V  
ppm/V  
IN  
OUT  
+ 2.5V ≤ V ≤ 20V  
100  
130  
ppm/V  
ppm/V  
IN  
Load Regulation Sourcing (Note 4)  
I
I
I
I
I
I
= 100µA  
= 10mA  
= 20mA  
1500  
80  
2800  
3500  
ppm/mA  
ppm/mA  
LT1460A, LT1460B, LT1460C, LT1460D, LT1460E,  
LT1460F, LT1460G, LT1460H, LT1460L, LT1460M  
135  
180  
ppm/mA  
ppm/mA  
70  
100  
140  
ppm/mA  
ppm/mA  
0°C to 70°C  
LT1460HC, LT1460JC, LT1460KC  
= 100µA  
= 10mA  
= 20mA  
1000  
50  
3000  
4000  
ppm/mA  
ppm/mA  
OUT  
OUT  
OUT  
200  
300  
ppm/mA  
ppm/mA  
20  
70  
100  
ppm/mA  
ppm/mA  
Thermal Regulation (Note 5)  
ΔP = 200mW  
0.5  
2.5  
ppm/mW  
LT1460A, LT1460B, LT1460C, LT1460D, LT1460E,  
LT1460F, LT1460G, LT1460H, LT1460L, LT1460M  
LT1460HC, LT1460JC, LT1460KC  
Dropout Voltage (Note 6)  
ΔP = 200mW  
2.5  
10  
ppm/mW  
V
V
V
– V , I  
= 0  
0.9  
IN  
OUT OUT  
– V , I  
= 10mA  
1.3  
1.4  
V
V
IN  
OUT OUT  
Output Current  
Reverse Leakage  
Supply Current  
Short V  
to GND  
40  
0.5  
100  
mA  
µA  
OUT  
V
= –15V  
10  
IN  
LT1460-2.5  
130  
165  
µA  
µA  
LT1460-5  
125  
190  
115  
145  
145  
160  
215  
175  
225  
µA  
µA  
LT1460-10  
270  
360  
µA  
µA  
LT1460S3-2.5  
LT1460S3-3  
LT1460S3-3.3  
LT1460S3-5  
LT1460S3-10  
145  
175  
µA  
µA  
180  
220  
µA  
µA  
180  
220  
µA  
µA  
200  
240  
µA  
µA  
270  
350  
µA  
µA  
1460f  
6
LT1460  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT + 2.5V, IOUT = 0 unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µV  
Output Voltage Noise (Note 7)  
LT1460-2.5  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
10  
10  
P-P  
LT1460A, LT1460B, LT1460C, LT1460D, LT1460E,  
LT1460F, LT1460G, LT1460H, LT1460L, LT1460M  
µV  
µV  
µV  
RMS  
LT1460-5  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
20  
20  
µV  
P-P  
RMS  
LT1460-10  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
40  
35  
µV  
P-P  
RMS  
LT1460HC, LT1460JC, LT1460KC  
0.1Hz ≤ f ≤ 10Hz  
10Hz ≤ f ≤ 1kHz  
4
4
ppm (P-P)  
ppm (RMS)  
Long-Term Stability of Output Voltage (Note 8)  
S8 Pkg  
40  
ppm/√kHr  
LT1460HC, LT1460JC, LT1460KC  
100  
ppm/√kHr  
Hysteresis (Note 9)  
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
25  
160  
ppm  
ppm  
LT1460A, LT1460B, LT1460C, LT1460D, LT1460E,  
LT1460F, LT1460G, LT1460H, LT1460L, LT1460M  
LT1460HC, LT1460JC, LT1460KC  
ΔT = 0°C to 70°C  
ΔT = –40°C to 85°C  
50  
250  
ppm  
ppm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
a 2-pole lowpass filter at 1kHz. The resulting output is full wave rectified  
and then integrated for a fixed period, making the final reading an average  
as opposed to RMS. A correction factor of 1.1 is used to convert from  
average to RMS and a second correction of 0.88 is used to correct for the  
nonideal pass band of the filters.  
Note 2: If the part is stored outside of the specified temperature range, the  
output may shift due to hysteresis.  
Note 8: Long-term stability typically has a logarithmic characteristic and  
therefore, changes after 1000 hours tend to be much smaller than before  
that time. Total drift in the second thousand hours is normally less than  
one third that of the first thousand hours with a continuing trend toward  
reduced drift with time. Significant improvement in long-term drift can  
be realized by preconditioning the IC with a 100 hour to 200 hour, 125°C  
burn-in. Long-term stability will also be affected by differential stresses  
between the IC and the board material created during board assembly. See  
PC Board Layout in the Applications Information section.  
Note 9: Hysteresis in output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 85°C or –40°C before successive measurements. Hysteresis  
is roughly proportional to the square of the temperature change. For  
instruments that are stored at reasonably well-controlled temperatures  
(within 20 or 30 degrees of operating temperature) hysteresis is generally  
not a problem.  
Note 3: Temperature coefficient is measured by dividing the change in  
output voltage by the specified temperature range. Incremental slope is  
also measured at 25°C.  
Note 4: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 5: Thermal regulation is caused by die temperature gradients created  
by load current or input voltage changes. This effect must be added to  
normal line or load regulation. This parameter is not 100% tested.  
Note 6: Excludes load regulation errors. For LT1460S3, ΔV  
≤ 0.2%. For  
OUT  
all other packages, ΔV  
≤ 0.1%.  
OUT  
Note 7: Peak-to-peak noise is measured with a single highpass filter at  
0.1Hz and 2-pole lowpass filter at 10Hz. The unit is enclosed in a still-air  
environment to eliminate thermocouple effects on the leads. The test time  
is 10 sec. RMS noise is measured with a single highpass filter at 10Hz and  
1460f  
7
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1460-2.5 (N8, S8, MS8, Z Packages)  
2.5V Minimum Input-Output  
Voltage Differential  
2.5V Load Regulation, Sourcing  
2.5V Load Regulation, Sinking  
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
125°C  
125°C  
25°C  
–55°C  
25°C  
25°C  
125°C  
1
–55°C  
–55°C  
0.1  
0
0.5  
1.0  
1.5  
0.1  
1
10  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT-OUTPUT VOLTAGE (V)  
1460 G01  
1460 G03  
1460 G02  
2.5V Output Voltage  
Temperature Drift  
2.5V Supply Current vs Input  
Voltage  
2.5V Line Regulation  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
175  
150  
125  
100  
75  
2.5014  
2.5010  
2.5006  
2.5002  
2.4998  
2.4994  
2.4990  
3 TYPICAL PARTS  
125°C  
25°C  
125°C  
25°C  
–55°C  
50  
–55°C  
25  
0
–50  
0
25  
50  
75  
100  
–25  
5
10  
20  
0
15  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1460 G04  
1460 G05  
1460 G06  
2.5V Power Supply Rejection  
Ratio vs Frequency  
2.5V Output Impedance vs  
Frequency  
2.5V Transient Responses  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1k  
C = 0.1µF  
L
10  
1
C
= 0  
L
100  
0.1  
0
10  
1
I
= 10mA  
OUT  
1460 G09  
C = 1µF  
L
–10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1460 G08  
1460 G07  
1460f  
8
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
2.5V Output Voltage Noise  
Spectrum  
2.5V Long-Term Drift  
Three Typical Parts (S8 Package)  
2.5V Output Noise 0.1Hz to 10Hz  
1000  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
100  
0
1
2
3
4
5
6
7
8
9
10  
0
200  
400  
600  
800  
1000  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TIME (SEC)  
TIME (HOURS)  
1460 G10  
1460 G12  
1460 G11  
LT1460-5 (N8, S8, MS8, Z Packages)  
5V Minimum Input-Output Voltage  
Differential  
5V Load Regulation, Sourcing  
5V Load Regulation, Sinking  
6
5
4
3
2
1
0
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125°C  
25°C  
125°C  
–55°C  
25°C  
25°C  
–55°C  
1
–55°C  
125°C  
0.1  
0
1
2
3
4
5
0.1  
1
10  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT-OUTPUT VOLTAGE (V)  
1460 G13  
1460 G15  
1460 G14  
5V Output Voltage  
Temperature Drift  
5V Supply Current vs Input  
Voltage  
5V Line Regulation  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
200  
180  
160  
140  
120  
100  
80  
5.002  
5.000  
4.998  
4.996  
4.994  
4.992  
3 TYPICAL PARTS  
125°C  
25°C  
25°C  
125°C  
–55°C  
60  
–55°C  
40  
20  
0
–50  
0
25  
50  
75  
100  
–25  
2
4
6
8
10 12 14 16 18 20  
0
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1460 G16  
1460 G17  
1460 G18  
1460f  
9
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1460-5 (N8, S8, MS8, Z Packages)  
5V Power Supply Rejection Ratio  
vs Frequency  
5V Output Impedance vs  
Frequency  
5V Transient Responses  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1k  
100  
10  
C
= 0  
L
10  
1
C = 0.1µF  
L
0.1  
0
1
C = 1µF  
L
0.2ms/DIV  
I
= 10mA  
OUT  
1460 G21  
0.1  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1460 G20  
1460 G19  
5V Output Voltage Noise  
Spectrum  
5V Output Noise 0.1Hz to 10Hz  
3000  
2000  
1000  
100  
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TIME (SEC)  
1460 G22  
1460 G23  
LT1460-10 (N8, S8, MS8, Z Packages)  
10V Minimum Input/Output  
Voltage Differential  
10V Load Regulation, Sourcing  
10V Load Regulation, Sinking  
10  
9
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
7
10  
25°C  
6
5
125°C  
25°C  
55°C  
125°C  
4
3
2
1
0
55°C  
25°C  
125°C  
1
55°C  
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0.1  
1
10  
100  
0
1
3
4
2
5
INPUT/OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1460 G25  
1460 G24  
1460 G26  
1460f  
10  
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
10V Output Voltage  
Temperature Drift  
10V Supply Current vs Input  
Voltage  
10V Line Regulation  
10.006  
10.002  
9.998  
9.994  
9.990  
9.986  
9.982  
10.004  
10.000  
9.996  
9.992  
9.988  
9.984  
9.980  
400  
360  
320  
280  
240  
200  
160  
120  
80  
3 TYPICAL PARTS  
25°C  
55°C  
25°C  
55°C  
125°C  
125°C  
40  
0
50  
0
25  
50  
75  
100  
6
8
14  
16  
18  
20  
–25  
10  
12  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1460 G27  
1460 G29  
1460 G28  
10V Power Supply Rejection  
Ratio vs Frequency  
10V Output Impedance vs  
Frequency  
10V Transient Responses  
1000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0µF  
10  
1
L
C
= 0.1µF  
L
0.1  
0
C
L
= 1µF  
1
200µs/DIV  
I
= 10mA  
OUT  
1460 G32  
0.1  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
FREQUENCY (kHz)  
1460 G31  
1460 G30  
10V Output Voltage Noise  
Spectrum  
10V Output Noise 0.1Hz to 10Hz  
10  
1
0.1  
0.01  
0.1  
1
10  
100  
0
2
6
8
12  
4
10  
14  
FREQUENCY (kHz)  
TIME (SEC)  
1460 G33  
1460 G34  
1460f  
11  
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Characteristic curves are similar for all voltage  
options of the LT1460S3. Curves from the LT1460S3-2.5 and the LT1460S3-10 represent the extremes of the voltage options.  
Characteristic curves for other output voltages fall between these curves, and can be estimated based on their voltage output.  
LT1460S3-2.5V Minimum Input-  
Output Voltage Differential  
LT1460S3-2.5V Load Regulation,  
Sourcing  
LT1460S3-2.5V Load Regulation,  
Sinking  
100  
10  
1
120  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
125°C  
55°C  
80  
60  
25°C  
125°C  
55°C  
25°C  
25°C  
55°C  
40  
20  
0
125°C  
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
0.1  
1
10  
100  
INPUT-OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1460 G35  
1460 G36  
1460 G37  
LT1460S3-2.5V Output Voltage  
Temperature Drift  
LT1460S3-2.5V Supply Current  
vs Input Voltage  
LT1460S3-2.5V Line Regulation  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
2.503  
2.502  
2.501  
2.500  
250  
200  
150  
100  
50  
THREE TYPICAL PARTS  
25°C  
25°C  
125°C  
55°C  
55°C  
125°C  
2.499  
2.498  
2.497  
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
2
4
6
8
10 12 14 16 18 20  
5
10  
15  
0
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1460 G38  
1460 G40  
1460 G39  
LT1460S3-2.5V Power Supply  
Rejection Ratio vs Frequency  
LT1460S3-2.5V Output Impedance  
vs Frequency  
LT1460S3-2.5V Transient  
Response  
1000  
100  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0µF  
L
20  
10  
C
= 0.1µF  
L
1
C
= 1µF  
L
0.1  
1
200µs/DIV  
C
= 0µF  
LOAD  
1460 G43  
0.1  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1460 G41  
1460 G42  
1460f  
12  
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Characteristic curves are similar for all voltage  
options of the LT1460S3. Curves from the LT1460S3-2.5 and the LT1460S3-10 represent the extremes of the voltage options.  
Characteristic curves for other output voltages fall between these curves, and can be estimated based on their voltage output.  
LT1460S3-2.5V Output Voltage  
Noise Spectrum  
LT1460S3-2.5V Output Noise  
0.1Hz to 10Hz  
LT1460S3-10V Minimum Input-  
Output Voltage Differential  
100  
10  
1
1000  
125°C  
25°C  
55°C  
100  
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (2 SEC/DIV)  
10  
100  
1k  
10k  
100k  
INPUT-OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
1460 G45  
1460 G44  
1460 G46  
LT1460S3-10V Load Regulation,  
Sourcing  
LT1460S3-10V Load Regulation,  
Sinking  
LT1460S3-10V Output Voltage  
Temperature Drift  
10.006  
10.004  
10.002  
10.000  
9.998  
9.996  
9.994  
9.992  
9.990  
9.988  
9.986  
9.984  
9.982  
35  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
THREE TYPICAL PARTS  
125°C  
25°C  
–55°C  
55°C  
0
–5  
–10  
125°C  
25°C  
0
0.1  
1
10  
100  
50  
TEMPERATURE (°C)  
125  
50  
0
25  
75 100  
25  
0
1
2
3
4
5
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
1460 G47  
1460 G49  
1460 G48  
LT1460S3-10V Supply Current  
vs Input Voltage  
LT1460S3-10V Line Regulation  
10.010  
10.005  
10.000  
9.995  
350  
300  
25°C  
250  
25°C  
55°C  
125°C  
125°C  
55°C  
200  
150  
100  
50  
9.990  
9.985  
9.980  
0
14  
INPUT VOLTAGE (V)  
18  
20  
0
6
10 12 14 16 18 20  
6
8
10  
12  
16  
2
4
8
INPUT VOLTAGE (V)  
1460 G50  
1460 G51  
1460f  
13  
LT1460  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Characteristic curves are similar for all voltage  
options of the LT1460S3. Curves from the LT1460S3-2.5 and the LT1460S3-10 represent the extremes of the voltage options.  
Characteristic curves for other output voltages fall between these curves, and can be estimated based on their voltage output.  
LT1460S3-10V Power Supply  
Rejection Ratio vs Frequency  
LT1460S3-10V Output Impedance  
vs Frequency  
LT1460S3-10V Transient  
Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
20  
10  
C
= 0µF  
L
C
L
= 0.1µF  
1
C
= 1µF  
L
0.1  
1
200µs/DIV  
C
= 0µF  
LOAD  
1460 G54  
0.1  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1460 G52  
1460 G53  
LT1460S3-10V Output Voltage  
Noise Spectrum  
LT1460S3-10V Output Noise  
0.1Hz to 10Hz  
10  
1
0.1  
0.01  
0.1  
1
10  
100  
TIME (2 SEC/DIV)  
FREQUENCY (kHz)  
1460 G56  
1460 G55  
1460f  
14  
LT1460  
U
W U U  
APPLICATIO S I FOR ATIO  
Longer Battery Life  
F, the ringing can be reduced with a small resistor in  
series with the reference output as shown in Figure 4.  
Figure 5 shows the response of the LT1460-2.5 with a  
Series references have a large advantage over older shunt  
style references. Shunt references require a resistor from  
the power supply to operate. This resistor must be chosen  
tosupplythemaximumcurrentthatcaneverbedemanded  
by the circuit being regulated. When the circuit being  
controlled is not operating at this maximum current, the  
shunt reference must always sink this current, resulting  
in high dissipation and short battery life.  
2.5V  
1.5V  
V
GEN  
R
= 10k  
V
V
L
L
OUT  
OUT  
R
= 1k  
The LT1460 series reference does not require a current set-  
ting resistor and can operate with any supply voltage from  
V
OUT  
+0.9Vto20V. Whenthecircuitrybeingregulateddoes  
1460 F02  
1µs/DIV  
notdemandcurrent, theLT1460reducesitsdissipationand  
batterylifeisextended. Ifthereferenceisnotdeliveringload  
current it dissipates only a few mW, yet the same configura-  
tion can deliver 20mA of load current when demanded.  
Figure 2. CL = 0  
2.5V  
1.5V  
V
GEN  
Capacitive Loads  
R
R
= 10k  
The LT1460 is designed to be stable with capacitive loads.  
With no capacitive load, the reference is ideal for fast set-  
tling, applications where PC board space is a premium,  
or where available capacitance is limited.  
V
V
L
L
OUT  
OUT  
= 1k  
1460 F03  
The test circuit for the LT1460-2.5 shown in Figure 1 is  
used to measure the response time for various load cur-  
rents and load capacitors. The 1V step from 2.5V to 1.5V  
20µs/DIV  
Figure 3. CL = 0.01µF  
produces a current step of 1mA or 100µA for R = 1k or  
L
V
R
R
L
R = 10k. Figure 2 shows the response of the reference  
OUT  
S
L
V
= 5V  
C
LT1460-2.5  
IN  
V
GEN  
with no load capacitance.  
2.5V  
1.5V  
IN  
C
L
0.1µF  
The reference settles to 2.5mV (0.1%) in less than 1µs  
for a 100µA pulse and to 0.1% in 1.5µs with a 1mA step.  
When load capacitance is greater than 0.01µF, the refer-  
ence begins to ring due to the pole formed with the output  
impedance. Figure 3 shows the response of the reference  
to a 1mA and 100µA load current step with a 0.01µF load  
capacitor. The ringing can be greatly reduced with a DC  
load as small as 200µA. With large output capacitors, ≥  
1460 F04  
Figure 4. Isolation Resistor Test Circuit  
V
2.5V  
1.5V  
GEN  
R
R
= 1k  
L
S
V
V
OUT  
OUT  
= 0  
R
R
= 1k  
= 2Ω  
R
L
S
L
V
OUT  
V
= 5V  
LT1460-2.5  
IN  
V
GEN  
2.5V  
1.5V  
C
IN  
0.1µF  
C
L
1460 F05  
1460 F01  
0.1ms/DIV  
Figure 1. Response Time Test Circuit  
Figure 5. Effect of RS for CL = 1µF  
1460f  
15  
LT1460  
U
W U U  
APPLICATIO S I FOR ATIO  
R = 2Ω and C = 1µF. R should not be made arbitrarily  
and 100µA load current step with a 0.01µF load capacitor.  
Figure 9 to Figure 11 illustrate response of the LT1460-10.  
The 1V step from 10V to 9V produces a current step of  
S
L
S
large because it will limit the load regulation.  
Figure 6 to Figure 8 illustrate response in the LT1460-5.  
The 1V step from 5V to 4V produces a current step of  
1mA or 100µA for R = 1k or R = 10k. Figure 10 shows  
L
L
the response of the reference with no load capacitance.  
1mA or 100µA for R = 1k or R = 10k. Figure 7 shows  
L
L
the response of the reference with no load capacitance.  
The reference settles to 10mV (0.1%) in 0.4µs for a 100µA  
pulse and to 0.1% in 0.8µs with a 1mA step. When load  
capacitance is greater than 0.01µF, the reference begins  
to ring due to the pole formed with the output impedance.  
Figure11showstheresponseofthereferencetoa1mAand  
100µA load current step with a 0.01µF load capacitor.  
The reference settles to 5mV (0.1%) in less than 2µs for  
a 100µA pulse and to 0.1% in 3µs with a 1mA step. When  
loadcapacitanceisgreaterthan0.01µF,thereferencebegins  
to ring due to the pole formed with the output impedance.  
Figure 8 shows the response of the reference to a 1mA  
R
L
R
V
L
V
OUT  
OUT  
V
= 12.5V  
C
LT1460-10  
V
= 5V  
C
LT1460-5  
IN  
V
IN  
V
GEN  
GEN  
10V  
9V  
5V  
4V  
IN  
IN  
C
C
L
L
0.1µF  
0.1µF  
1460 F09  
1460 F06  
Figure 6. Response Time Test Circuit  
Figure 9. Response Time Test Circuit  
5V  
V
V
10V  
9V  
GEN  
GEN  
4V  
V
V
V
V
R
R
= 10k  
R
L
= 10k  
OUT  
OUT  
OUT  
OUT  
L
L
= 1k  
R
L
= 1k  
1460 F07  
1460 F10  
2µs/DIV  
2µs/DIV  
Figure 7. CL = 0  
Figure 10. CL = 0  
10V  
9V  
V
5V  
4V  
GEN  
V
V
GEN  
OUT  
V
V
R
R
= 10k  
= 1k  
R
R
= 10k  
OUT  
OUT  
L
L
L
L
= 1k  
V
OUT  
1460 F08  
1460 F11  
10µs/DIV  
10µs/DIV  
Figure 8. CL = 0.01µF  
Figure 11. CL = 0.01µF  
1460f  
16  
LT1460  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 1 gives the maximum output capacitance for vari-  
ous load currents and output voltages to avoid instability.  
Load capacitors with low ESR (effective series resistance)  
cause more ringing than capacitors with higher ESR such  
as polarized aluminum or tantalum capacitors.  
Hysteresis  
HysteresisdatashowninFigure13andFigure14represents  
the worst-case data taken on parts from 0°C to 70°C and  
from –40°C to 85°C. The device is capable of dissipating  
relatively high power, i.e., for the LT1460S3-2.5, PD =  
17.5V • 20mA = 350mW. The thermal resistance of the  
SOT-23 package is 325°C/W and this dissipation causes  
a 114°C internal rise producing a junction temperature of  
Table 1. Maximum Output Capacitance  
VOLTAGE  
OPTION  
2.5V  
3V  
I
= 100µA  
I
= 1mA  
I
= 10mA  
2µF  
I
= 20mA  
OUT  
OUT  
OUT  
OUT  
>10µF  
>10µF  
>10µF  
>10µF  
>10µF  
>10µF  
0.68µF  
T = 25°C + 114°C = 139°C. This elevated temperature will  
J
>10µF  
>10µF  
>10µF  
1µF  
2µF  
0.68µF  
0.68µF  
0.68µF  
0.1µF  
cause the output to shift due to thermal hysteresis. For  
highest performance in precision applications, do not  
let the LT1460S3’s junction temperature exceed 85°C.  
3.3V  
5V  
1µF  
1µF  
10V  
0.15µF  
18  
WORST-CASE HYSTERESIS  
ON 40 UNITS  
16  
14  
12  
10  
8
Long-Term Drift  
Long-termdriftcannotbeextrapolatedfromaccelerated  
hightemperaturetesting.Thiserroneoustechniquegives  
drift numbers that are wildly optimistic. The only way  
long-term drift can be determined is to measure it over  
the time interval of interest. The LT1460S3 long-term  
drift data was taken on over 100 parts that were soldered  
into PC boards similar to a “real world” application. The  
boards were then placed into a constant temperature oven  
70°C TO 25°C  
0°C TO 25°C  
6
4
2
0
160 200 240  
–240 –200 –160 –120 80 –40  
0
40 80 120  
HYSTERESIS (ppm)  
with T = 30°C, their outputs were scanned regularly and  
A
1460 F13  
measured with an 8.5 digit DVM. Figure 12 shows typical  
long-term drift of the LT1460S3s.  
Figure 13. 0°C to 70°C Hysteresis  
150  
100  
9
8
7
6
5
4
3
2
1
0
WORST-CASE HYSTERESIS  
ON 34 UNITS  
85°C TO 25°C  
–40°C TO 25°C  
50  
0
50  
–100  
–150  
0
100 200 300 400 500 600 700 800 900 1000  
HOURS  
400 500 600  
100 200 300  
–600 –500 –400 –300 –200 –100  
0
HYSTERESIS (ppm)  
1460 F12  
1460 F14  
Figure 14. –40°C to 85°C Hysteresis  
Figure 12. Typical Long-Term Drift  
1460f  
17  
LT1460  
U
W U U  
APPLICATIO S I FOR ATIO  
Input Capacitance  
Total worst-case output error is:  
It is recommended that a 0.1µF or larger capacitor be  
added to the input pin of the LT1460. This can help with  
stability when large load currents are demanded.  
0.075% + 0.035% + 0.070% = 0.180%.  
Table 1 gives worst-case accuracy for the LT1460AC, CC,  
DC, FC, GC from 0°C to 70°C and the LT1460BI, EI, GI  
from –40°C to 85°C.  
Output Accuracy  
Note that the LT1460-5 and LT1460-10 give identical ac-  
curacy as a fraction of their respective output voltages.  
Likeallreferences,eitherseriesorshunt,theerrorbudgetof  
theLT1460-2.5ismadeupofprimarilythreecomponents:  
initialaccuracy,temperaturecoefficientandloadregulation.  
Line regulation is neglected because it typically contrib-  
utes only 30ppm/V, or 75µV for a 1V input change. The  
LT1460-2.5typicallyshiftslessthan0.01%whensoldered  
into a PCB, so this is also neglected (see PC Board Layout  
section). The output errors are calculated as follows for a  
100µA load and 0°C to 70°C temperature range:  
PC Board Layout  
In 13- to 16-bit systems where initial accuracy and tem-  
perature coefficient calibrations have been done, the me-  
chanical and thermal stress on a PC board (in a cardcage  
for instance) can shift the output voltage and mask the  
true temperature coefficient of a reference. In addition,  
the mechanical stress of being soldered into a PC board  
can cause the output voltage to shift from its ideal value.  
Surface mount voltage references (MS8 and S8) are the  
most susceptible to PC board stress because of the small  
amount of plastic used to hold the lead frame.  
LT1460AC  
Initial accuracy = 0.075%  
For I = 100µA, and using the LT1460-2.5 for calculation,  
O
A simple way to improve the stress-related shifts is to  
mount the reference near the short edge of the PC board,  
or in a corner. The board edge acts as a stress boundary,  
or a region where the flexure of the board is minimum.  
The package should always be mounted so that the leads  
absorb the stress and not the package. The package is  
generally aligned with the leads parallel to the long side  
of the PC board as shown in Figure 16a.  
3500ppm  
mA  
VOUT  
=
0.1mA 2.5V = 875µV  
(
)(  
)
which is 0.035%.  
For temperature 0°C to 70°C the maximum ΔT = 70°C,  
10ppm  
V  
=
70°C 2.5V = 1.75mV  
(
)(  
)
OUT  
°C  
A qualitative technique to evaluate the effect of stress on  
voltage references is to solder the part into a PC board and  
which is 0.07%.  
Table 1. Worst-Case Output Accuracy Over Temperature  
I
LT1460AC LT1460BI LT1460CC LT1460DC LT1460EI LT1460FC LT1460GC LT1460GI LT1460HC LT1460JC LT1460KC  
OUT  
0
0.145%  
0.180%  
0.325%  
0.425%  
0.225%  
0.260%  
0.405%  
N/A  
0.205%  
0.240%  
0.385%  
0.485%  
0.240%  
0.275%  
0.420%  
0.520%  
0.375%  
0.410%  
0.555%  
N/A  
0.325%  
0.360%  
0.505%  
0.605%  
0.425%  
0.460%  
0.605%  
0.705%  
0.562%  
0.597%  
0.742%  
N/A  
0.340%  
0.380%  
0.640%  
0.540%  
0.540%  
0.580%  
0.840%  
0.740%  
0.850%  
0.890%  
1.15%  
1.05%  
100µA  
10mA  
20mA  
1460f  
18  
LT1460  
U
W U U  
APPLICATIO S I FOR ATIO  
deform the board a fixed amount as shown in Figure 15.  
The flexure #1 represents no displacement, flexure #2 is  
concavemovement,exure#3isrelaxationtonodisplace-  
ment and finally, flexure #4 is a convex movement. This  
motion is repeated for a number of cycles and the relative  
output deviation is noted. The result shown in Figure 16a  
is for two LT1460S8-2.5s mounted vertically and Figure  
16b is for two LT1460S8-2.5s mounted horizontally. The  
parts oriented in Figure 16a impart less stress into the  
package because stress is absorbed in the leads. Figures  
16a and 16b show the deviation to be between 125µV and  
250µV and implies a 50ppm and 100ppm change respec-  
tively. This corresponds to a 13- to 14-bit system and is  
not a problem for most 10- to 12-bit systems unless the  
system has a calibration. In this case, as with temperature  
hysteresis, this low level can be important and even more  
careful techniques are required.  
The most effective technique to improve PC board stress  
is to cut slots in the board around the reference to serve  
as a strain relief. These slots can be cut on three sides of  
thereferenceandtheleadscanexitonthefourthside. This  
“tongue” of PC board material can be oriented in the long  
direction of the board to further reduce stress transferred  
to the reference.  
1
2
3
The results of slotting the PC boards of Figures 16a and  
16b are shown in Figures 17a and 17b. In this example  
the slots can improve the output shift from about 100ppm  
to nearly zero.  
4
1460 F15  
Figure 15. Flexure Numbers  
2
2
1
1
LONG DIMENSION  
LONG DIMENSION  
0
0
–1  
–1  
0
0
40  
40  
10  
20  
FLEXURE NUMBER  
30  
10  
20  
FLEXURE NUMBER  
30  
1460 F16b  
1460 F16a  
Figure 16a. Two Typical LT1460S8-2.5s, Vertical  
Orientation Without Slots  
Figure 16b. Two Typical LT1460S8-2.5s, Horizontal  
Orientation Without Slots  
2
1
2
1
0
0
SLOT  
SLOT  
–1  
–1  
0
0
40  
40  
10  
20  
30  
10  
20  
30  
FLEXURE NUMBER  
FLEXURE NUMBER  
1460 F17a  
1460 F17b  
Figure 17a. Same Two LT1460S8-2.5s in Figure 16a,  
but with Slots  
Figure 17b. Same Two LT1460S8-2.5s in Figure 16b,  
but with Slots  
1460f  
19  
LT1460  
SIMPLIFIED SCHEMATIC  
V
CC  
V
OUT  
GND  
1460 SS  
1460f  
20  
LT1460  
U
PACKAGE DESCRIPTIO  
S3 Package  
3-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1631)  
0.764  
2.80 – 3.04  
(.110 – .120)  
0.8 0.127  
2.10 – 2.64  
1.20 – 1.40  
2.74  
(.083 – .104) (.047 – .060)  
0.96 BSC  
1.92  
0.45 – 0.60  
(.017 – .024)  
RECOMMENDED SOLDER PAD LAYOUT  
0.89 – 1.03  
(.035 – .041)  
0.37 – 0.51  
(.015 – .020)  
0.89 – 1.12  
(.035 – .044)  
0.01 – 0.10  
(.0004 – .004)  
0.55  
(.022)  
REF  
1.78 – 2.05  
(.070 – .081)  
0.09 – 0.18  
(.004 – .007)  
S3 SOT-23 0502  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE JEDEC REFERENCE IS TO-236 VARIATION AB  
1460f  
21  
LT1460  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 .015*  
(6.477 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1460f  
22  
LT1460  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 0.076  
(.005 .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
Z Package  
3-Lead Plastic TO-92 (Similar to TO-226)  
(Reference LTC DWG # 05-08-1410)  
.180 .005  
(4.572 0.127)  
.060 .005  
(1.524 0.127)  
DIA  
.90  
(2.286)  
NOM  
.180 .005  
(4.572 0.127)  
5°  
NOM  
.500  
(12.70)  
MIN  
.050  
(1.270)  
MAX  
UNCONTROLLED  
LEAD DIMENSION  
.016 .003  
.015 .002  
(0.406 0.076)  
(0.381 0.051)  
.050  
(1.27)  
BSC  
.098 +.016/–.04  
(2.5 +0.4/–0.1)  
2 PLCS  
Z3 (TO-92) 0801  
.060 .010  
TO-92 TAPE AND REEL  
(1.524 0.254)  
REFER TO TAPE AND REEL SECTION OF  
LTC DATA BOOK FOR ADDITIONAL INFORMATION  
.140 .010  
(3.556 0.127)  
3
2
1
10° NOM  
1460f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1460  
TYPICAL APPLICATIONS  
Handling Higher Load Currents  
+
V
40mA  
+
47µF  
IN  
R1*  
LT1460  
10mA  
V
OUT  
OUT  
GND  
TYPICAL LOAD  
CURRENT = 50mA  
R
L
*SELECT R1 TO DELIVER 80% OF TYPICAL LOAD CURRENT.  
LT1460 WILL THEN SOURCE AS NECESSARY TO MAINTAIN  
PROPER OUTPUT. DO NOT REMOVE LOAD AS OUTPUT WILL  
BE DRIVEN UNREGULATED HIGH. LINE REGULATION IS  
DEGRADED IN THIS APPLICATION  
+
V
– V  
OUT  
R1 =  
40mA  
1460 TA03  
Boosted Output Current with No Current Limit  
Boosted Output Current with Current Limit  
+
+
V
(V  
+ 1.8V)  
V
V  
+ 2.8V  
OUT  
OUT  
+
+
D1*  
LED  
R1  
220Ω  
R1  
220Ω  
47µF  
47µF  
8.2Ω  
2N2905  
2N2905  
IN  
IN  
LT1460  
LT1460  
V
OUT  
V
OUT  
OUT  
100mA  
OUT  
100mA  
+
2µF  
SOLID  
TANT  
GND  
+
2µF  
GND  
SOLID  
TANT  
GLOWS IN CURRENT LIMIT,  
DO NOT OMIT  
*
1460 TA05  
1460 TA04  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1019  
LT1027  
LT1236  
LT1461  
LT1634  
LT1790  
LTC®1798  
LT6660  
Precision Bandgap Reference  
Precision 5V Reference  
0.05% Max, 5ppm/°C Max  
0.02%, 2ppm/°C Max  
Precision Low Noise Reference  
0.05% Max, 5ppm/°C Max, SO Package  
Micropower Precision Low Dropout  
0.04% Max, 3ppm/°C Max, 50mA Output Current  
0.05%, 25ppm/°C Max  
Micropower Precision Shunt Reference 1.25V, 2.5V Output  
Micropower Precision Series References  
0.05% Max, 10ppm/°C Max, 60µA Supply, SOT23 Package  
0.15% Max, 40ppm/°C, 6.5µA Max Supply Current  
Micropower Low Dropout Reference, Fixed or Adjustable  
Tiny Micropower Precision Series References  
0.075% Max, 10ppm/°C Max, 20mA Output, 2mm × 2mm DFN Package  
1460f  
LT 0106 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY