LT1468CS8 [Linear]

90MHz, 22V/us 16-Bit Accurate Operational Amplifier; 90MHz的, 22V / us的16位的高精度运算放大器
LT1468CS8
型号: LT1468CS8
厂家: Linear    Linear
描述:

90MHz, 22V/us 16-Bit Accurate Operational Amplifier
90MHz的, 22V / us的16位的高精度运算放大器

运算放大器
文件: 总12页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1468  
90MHz, 22V/µs  
16-Bit Accurate  
Operational Amplifier  
U
DESCRIPTIO  
FEATURES  
The LT®1468 is a precision high speed operational ampli-  
fier with 16-bit accuracy and 900ns settling to 150µV for  
10V signals. This unique blend of precision and AC perfor-  
mance makes the LT1468 the optimum choice for high  
accuracy applications such as DAC current-to-voltage  
conversion and ADC buffers. The initial accuracy and drift  
characteristics of the input offset voltage and inverting  
input bias current are tailored for inverting applications.  
90MHz Gain Bandwidth, f = 100kHz  
22V/µs Slew Rate  
Settling Time: 900ns (AV = –1, 150µV, 10V Step)  
Low Distortion, 96.5dB for 100kHz, 10VP-P  
Maximum Input Offset Voltage: 75µV  
Maximum Input Offset Voltage Drift: 2µV/°C  
Maximum (–) Input Bias Current: 10nA  
Minimum DC Gain: 1000V/mV  
Minimum Output Swing into 2k: ±12.8V  
Unity Gain Stable  
Input Noise Voltage: 5nV/Hz  
Input Noise Current: 0.6pA/Hz  
Total Input Noise Optimized for 1k < RS < 20k  
Specified at ±5V and ±15V  
The 90MHz gain bandwidth ensures high open-loop gain  
atfrequencyforreducingdistortion. Innoninvertingappli-  
cations such as an ADC buffer, the low distortion and DC  
accuracy allow full 16-bit AC and DC performance.  
The 22V/µs slew rate of the LT1468 improves large-signal  
performance in applications such as active filters and  
instrumentation amplifiers compared to other precision  
op amps.  
U
APPLICATIONS  
16-Bit DAC Current-to-Voltage Converter  
The LT1468 is manufactured on Linear Technology’s  
complementary bipolar process.  
Precision Instrumentation  
ADC Buffer  
Low Distortion Active Filters  
High Accuracy Data Acquisition Systems  
Photodiode Amplifiers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Total Harmonic Distortion vs Frequency  
80  
V
A
= ±15V  
= 2  
16-Bit DAC I-to-V Converter  
S
V
L
R
= 2k  
90  
–100  
–110  
–120  
–130  
V
= 10V  
OUT  
P-P  
20pF  
16  
6k  
DAC  
INPUTS  
+
2k  
V
LT1468  
OUT  
LTC®1597  
50pF  
OPTIONAL NOISE FILTER  
OFFSET: V + I (6k) < 1LSB  
SETTLING TIME TO 150µV = 1.7µs  
SETTLING LIMITED BY 6k AND 20pF TO COMPENSATE DAC OUTPUT CAPACITANCE  
OS  
B
100  
1k  
10k  
100k  
1468 TA01  
FREQUENCY (Hz)  
1468 TA02  
1
LT1468  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
Total Supply Voltage (V+ to V) ............................... 36V  
Maximum Input Current (Note 2) ......................... 10mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 4)... 40°C to 85°C  
Junction Temperature........................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NULL  
IN  
1
2
3
4
8
7
6
5
DNC*  
LT1468CN8  
LT1468CS8  
LT1468IN8  
LT1468IS8  
+
V
+IN  
V
OUT  
V
NULL  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
*DO NOT CONNECT  
TJMAX = 150°C, θJA = 130°C/W (N8)  
TJMAX = 150°C, θJA = 190°C/W (S8)  
1468  
1468I  
Consult factory for Military Grade parts.  
TA = 25°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
±15V  
±5V  
30  
50  
75  
175  
µV  
µV  
OS  
I
I
I
Input Offset Current  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
13  
3
50  
nA  
nA  
nA  
OS  
Inverting Input Bias Current  
Noninverting Input Bias Current  
Input Noise Voltage  
±10  
±40  
B
B
+
10  
0.3  
5
0.1Hz to 10Hz  
f = 10kHz  
µV  
P-P  
e
Input Noise Voltage  
nV/Hz  
pA/Hz  
n
i
Input Noise Current  
f = 10kHz  
0.6  
n
R
Input Resistance  
V
= ±12.5V  
CM  
±15V  
±15V  
100  
50  
240  
150  
MΩ  
kΩ  
IN  
Differential  
C
Input Capacitance  
±15V  
4
pF  
IN  
Input Voltage Range +  
±15V  
±5V  
12.5  
2.5  
13.5  
3.5  
V
V
Input Voltage Range –  
±15V  
±5V  
–14.3  
4.3  
–12.5  
–2.5  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= ±12.5V  
= ±2.5V  
±15V  
±5V  
96  
96  
110  
112  
dB  
dB  
CM  
CM  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±4.5V to ±15V  
100  
112  
dB  
S
A
V
V
V
V
= ±12.5V, R = 10k  
±15V  
±15V  
±5V  
1000  
500  
1000  
500  
9000  
5000  
6000  
3000  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
OUT  
L
= ±12.5V, R = 2k  
L
= ±2.5V, R = 10k  
L
= ±2.5V, R = 2k  
±5V  
L
V
Output Swing  
R = 10k, V = ±1mV  
±15V  
±15V  
±5V  
±13.0  
±12.8  
±3.0  
±2.8  
±13.6  
±13.5  
±3.6  
V
V
V
V
OUT  
L
IN  
R = 2k, V = ±1mV  
L
IN  
R = 10k, V = ±1mV  
L
IN  
R = 2k, V = ±1mV  
±5V  
±3.5  
L
IN  
I
I
Output Current  
V
V
= ±12.5V  
= ±2.5V  
±15V  
±5V  
±15  
±15  
±22  
±22  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
V
= 0V, V = ±0.2V  
±15V  
±25  
±40  
mA  
OUT  
IN  
2
LT1468  
TA = 25°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
SR  
Slew Rate  
A = –1, R = 2k (Note 5)  
±15V  
±5V  
15  
11  
22  
17  
V/µs  
V/µs  
V
L
Full-Power Bandwidth  
Gain Bandwidth  
Total Harmonic Distortion  
Rise Time, Fall Time  
Overshoot  
10V Peak, (Note 6)  
3V Peak, (Note 6)  
±15V  
±5V  
350  
900  
kHz  
kHz  
GBW  
THD  
f = 100kHz, R = 2k  
±15V  
±5V  
60  
55  
90  
88  
MHz  
MHz  
L
A = 2, V = 10V , f = 1kHz  
±15V  
±15V  
0.00007  
0.0015  
%
%
V
O
P-P  
A = 2, V = 10V , f = 100kHz  
V
O
P-P  
t , t  
A = 1, 10% to 90%, 0.1V  
V
±15V  
±5V  
11  
12  
ns  
ns  
r
f
A = 1, 0.1V  
V
±15V  
±5V  
30  
35  
%
%
Propagation Delay  
Settling Time  
A = 1, 50% V to 50% V , 0.1V  
±15V  
±5V  
9
10  
ns  
ns  
V
IN  
OUT  
t
10V Step, 0.01%, A = –1  
±15V  
±15V  
±5V  
760  
900  
770  
ns  
ns  
ns  
s
V
10V Step, 150µV, A = –1  
V
5V Step, 0.01%, A = –1  
V
R
Output Resistance  
Supply Current  
A = 1, f = 100kHz  
V
±15V  
0.02  
O
I
±15V  
±5V  
3.9  
3.6  
5.2  
5.0  
mA  
mA  
S
0°C TA 70°C, VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
Input Offset Voltage  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
±15V  
±5V  
150  
250  
µV  
µV  
OS  
Input V Drift  
(Note 7)  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
0.7  
60  
40  
2.0  
65  
µV/°C  
nA  
OS  
I
I
I
Input Offset Current  
OS  
Input Offset Current Drift  
Inverting Input Bias Current  
Negative Input Current Drift  
Noninverting Input Bias Current  
Common Mode Rejection Ratio  
pA/°C  
nA  
±15  
±50  
B
B
pA/°C  
nA  
+
CMRR  
V
V
= ±12.5V  
= ±2.5V  
±15V  
±5V  
94  
94  
dB  
dB  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±4.5V to ±15V  
98  
dB  
S
A
V
V
V
V
V
= ±12.5V, R = 10k  
±15V  
±15V  
±5V  
500  
250  
500  
250  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
OUT  
OUT  
L
= ±12.5V, R = 2k  
L
= ±2.5V, R = 10k  
L
= ±2.5V, R = 2k  
±5V  
L
Output Swing  
Output Current  
R = 10k, V = ±1mV  
±15V  
±15V  
±5V  
±12.9  
±12.7  
±2.9  
V
V
V
V
L
IN  
R = 2k, V = ±1mV  
L
IN  
R = 10k, V = ±1mV  
L
IN  
R = 2k, V = ±1mV  
±5V  
±2.7  
L
IN  
I
I
V
V
= ±12.5V  
= ±2.5V  
±15V  
±5V  
±12.5  
±12.5  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
V
= 0V, V = ±0.2V  
±15V  
±17  
mA  
OUT  
IN  
SR  
A = –1, R = 2k (Note 5)  
±15V  
±5V  
13  
9
V/µs  
V/µs  
V
L
3
LT1468  
0°C TA 70°C, VCM = 0V unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
GBW  
Gain Bandwidth  
f = 100kHz, R = 2k  
±15V  
±5V  
55  
50  
MHz  
MHz  
L
I
Supply Current  
±15V  
±5V  
6.5  
6.3  
mA  
mA  
S
40°C TA 85°C, VCM = 0V unless otherwise noted (Note 4).  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
±15V  
±5V  
230  
330  
µV  
µV  
OS  
Input V Drift  
(Note 7)  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
±5V to ±15V  
0.7  
120  
80  
2.5  
80  
µV/°C  
nA  
OS  
I
I
I
Input Offset Current  
OS  
Input Offset Current Drift  
Inverting Input Bias Current  
Negative Input Current Drift  
Noninverting Input Bias Current  
Common Mode Rejection Ratio  
pA/°C  
nA  
±30  
±60  
B
B
pA/°C  
nA  
+
CMRR  
V
V
= ±12.5V  
= ±2.5V  
±15V  
±5V  
92  
92  
dB  
dB  
CM  
CM  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = ±4.5V to ±15V  
96  
dB  
S
A
V
V
V
V
V
= ±12V, R = 10k  
±15V  
±15V  
±5V  
300  
150  
300  
150  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
OUT  
OUT  
OUT  
OUT  
OUT  
L
= ±10V, R = 2k  
L
= ±2.5V, R = 10k  
L
= ±2.5V, R = 2k  
±5V  
L
Output Swing  
Output Current  
R = 10k, V = ±1mV  
±15V  
±15V  
±5V  
±12.8  
±12.6  
±2.8  
V
V
V
V
L
IN  
R = 2k, V = ±1mV  
L
IN  
R = 10k, V = ±1mV  
L
IN  
R = 2k, V = ±1mV  
±5V  
±2.6  
L
IN  
I
I
V
V
= ±12.5V  
= ±2.5V  
±15V  
±5V  
±7  
±7  
mA  
mA  
OUT  
SC  
OUT  
OUT  
Short-Circuit Current  
Slew Rate  
V
= 0V, V = ±0.2V  
±15V  
±12  
mA  
OUT  
IN  
SR  
A = –1, R = 2k (Note 5)  
±15V  
±5V  
9
6
V/µs  
V/µs  
V
L
GBW  
Gain Bandwidth  
Supply Current  
f = 100kHz, R = 2k  
±15V  
±5V  
45  
40  
MHz  
MHz  
L
I
±15V  
±5V  
7.0  
6.8  
mA  
mA  
S
The  
denotes specifications that apply over the full operating  
Note 4: The LT1468C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and at 85°C. The  
LT1468I is guaranteed to meet the extended temperature limits.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: Slew rate is measured between ±8V on the output with ±12V input  
for ±15V supplies and ±2V on the output with ±3V input for ±5V supplies.  
Note 6: Full power bandwidth is calculated from the slew rate  
Note 2: The inputs are protected by back-to-back diodes and two 100Ω  
series resistors. If the differential input voltage exceeds 0.7V, the input  
current should be limited to 10mA. Input voltages outside the supplies will  
be clamped by ESD protection devices and input currents should also be  
limited to 10mA.  
measurement: FPBW = SR/2πV  
P
Note 7: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted indefinitely.  
4
LT1468  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
and Temperature  
Input Common Mode Range  
vs Supply Voltage  
Input Bias Current  
vs Input Common Mode Voltage  
+
7
6
80  
60  
V
T
= 25°C  
OS  
V
T
= ±15V  
= 25°C  
A
S
A
0.5  
–1.0  
–1.5  
2.0  
V < 100µV  
40  
125°C  
5
4
20  
I
B
0
+
25°C  
I
B
2.0  
1.5  
1.0  
0.5  
–20  
40  
60  
80  
3
2
1
55°C  
V
0
5
10  
15  
20  
–10  
–5  
5
–15  
10  
15  
0
0
3
9
12  
15  
18  
6
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
INPUT COMMON MODE VOLTAGE (V)  
1468 G01  
1468 G03  
1468 G02  
Input Bias Current  
vs Temperature  
Input Noise Spectral Density  
0.1Hz to 10Hz Voltage Noise  
30  
20  
1000  
10  
V
= ±15V  
S
V
= ±15V  
V
= ±15V  
= 25°C  
= 101  
S
S
A
V
T
A
R
= 100k FOR i  
S
n
i
n
10  
100  
10  
1
1
+
I
I
B
0
–10  
20  
30  
40  
e
n
0.1  
B
0.01  
50  
TEMPERATURE (°C)  
100 125  
1
10  
100  
1k  
10k  
100k  
50 –25  
0
25  
75  
TIME (1s/DIV)  
FREQUENCY (Hz)  
1468 G06  
1468 G05  
1468 G04  
Open-Loop Gain  
vs Resistive Load  
Open-Loop Gain  
vs Temperature  
Warm-Up Drift vs Time  
140  
5
0
160  
150  
T
= 25°C  
R
= 2k  
A
L
V
= ±15V  
S
135  
130  
125  
120  
115  
110  
N8 ±5V  
V
= ±15V  
= ±5V  
S
S
–5  
V
= ±5V  
S
140  
130  
120  
110  
100  
S0-8 ±5V  
–10  
–15  
20  
25  
–30  
–35  
40  
V
N8 ±15V  
S0-8 ±15V  
90  
10  
100  
1k  
10k  
50  
100 125  
50 –25  
0
25  
75  
0
20  
40  
60  
80 100 120 140  
LOAD RESISTANCE ()  
TIME AFTER POWER UP (s)  
TEMPERATURE (°C)  
1468 G08  
1468 G09  
1468 G07  
5
LT1468  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Output Short-Circuit Current  
vs Temperature  
+
+
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
V
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
R
L
= 2k  
V
= ±15V  
V
V
= ±15V  
IN  
S
85°C  
S
25°C  
= ±0.2V  
–1  
–2  
–3  
–4  
4
R
L
= 10k  
40°C  
SOURCE  
SINK  
2.5  
2.0  
1.5  
1.0  
40°C  
85°C  
3
2
R
L
= 2k  
25°C  
1
R
L
= 10k  
T
= 25°C  
A
V
0.5  
20  
V
50  
–25  
0
25  
50  
75 100 125  
–15 –10 –5  
0
5
10 15  
20  
0
5
10  
15  
20  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (±V)  
1468 G12  
1468 G11  
1468 G10  
Settling Time to 0.01%  
vs Output Step, VS = ±15V  
Settling Time to 0.01%  
vs Output Step, VS = ±5V  
Settling Time to 150µV  
vs Output Step  
10  
8
5
4
10  
8
V
= ±15V  
= 1k  
V
= ±5V  
V
A
= ±15V  
S
L
S
S
V
F
F
R
R
= 1k  
L
= –1  
A
= –1  
A = 1  
V
A
= 1  
A = –1  
V
V
V
R
= R = 2k  
G
6
3
6
C
= 8pF  
4
2
4
2
1
2
0
0
0
–2  
–4  
–6  
–8  
–10  
–1  
–2  
–3  
–4  
–5  
–2  
–4  
–6  
–8  
–10  
A
= –1  
A
= 1  
V
V
A
= 1  
A = –1  
V
V
0
200  
400  
600  
800  
1000  
300  
400  
500  
600  
700  
800  
0
200  
600  
SETTLING TIME (ns)  
800  
1000  
400  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
1468 G13  
1468 G14  
1468 G15  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
Output Impedance vs Frequency  
104  
46  
100  
10  
98  
96  
94  
92  
90  
88  
86  
84  
82  
44  
42  
40  
38  
36  
34  
32  
30  
28  
V
T
= ±15V  
= 25°C  
T
= 25°C  
S
A
A
V
F
F
L
102  
100  
98  
96  
94  
92  
90  
88  
86  
84  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
A
= –1  
PHASE MARGIN  
R
= R = 5.1k  
V
= ±15V  
G
S
PHASE MARGIN  
C
= 5pF  
= 2k  
A
= 100  
V
R
V
= ±5V  
S
1
A
= 10  
V
0.1  
V
= 15V  
S
GAIN BANDWIDTH  
GAIN BANDWIDTH  
A
= 1  
V
0.01  
0.001  
V
= 5V  
S
10  
SUPPLY VOLTAGE (±V)  
–55  
0
25  
50  
75  
125  
0
5
15  
20  
–25  
100  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
TEMPERATURE (°C)  
1468 G19  
1468 G17  
1468 G18  
6
LT1468  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Rejection Ratio  
Common Mode Rejection Ratio  
vs Frequency  
Gain and Phase vs Frequency  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
160  
140  
120  
100  
V
= ±15V  
= 25°C  
V
= ±15V  
= 25°C  
S
A
S
A
T
T
PHASE  
+PSRR  
PSRR  
60  
±15V  
40  
±5V  
20  
80  
60  
GAIN  
0
±15V  
T
= 25°C  
A
V
F
F
L
–20  
40  
60  
40  
20  
0
A
= 1  
±5V  
R
= R = 5.1k  
G
C
= 5pF  
= 2k  
R
–10  
100  
10k  
100k 1M  
10M 100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1k  
10k  
1M  
1k  
100  
10M 100M  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1468 G16  
1468 G21  
1468 G20  
Frequency Response  
vs Capacitive Load, AV = 1  
Frequency Response  
vs Supply Voltage, AV = 1  
Frequency Response  
vs Supply Voltage, AV = 1  
14  
12  
10  
8
5
5
4
3
2
V
T
= ±15V  
= 25°C  
= 1  
T
= 25°C  
= 1  
= 2k  
S
A
V
A
V
L
4
3
2
A
R
= R = 2k  
G
F
A
R
±5V  
NO R  
L
±15V  
R
= R = 5.1k  
G
F
100pF  
50pF  
20pF  
±5V  
±5V  
±15V  
6
4
1
0
1
0
±15V  
2
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
10pF  
T
= 25°C  
= –1  
A
V
L
F
–2  
–4  
–6  
A
R
C
= 2k  
= 5pF  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1468 G24  
1468 G22  
1468 G23  
Frequency Response  
vs Capacitive Load, AV = –1  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
14  
12  
10  
8
45  
30  
28  
26  
24  
22  
20  
18  
16  
14  
T
= 25°C  
= –1  
= 2k  
V
T
= ±15V  
= 25°C  
= 1  
V
A
= ±15V  
= 1  
= 2k  
A
V
L
S
A
V
F
F
S
V
L
A
40  
35  
R
A
R
SR  
R
C
NO R  
= R = 5.1k  
G
300pF  
= 5pF  
SR  
+SR  
L
30  
25  
20  
15  
10  
6
4
+SR  
200pF  
2
0
100pF  
50pF  
–2  
–4  
–6  
5
10  
SUPPLY VOLTAGE (±V)  
50  
25  
0
25  
50  
75 100 125  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0
5
15  
20  
TEMPERATURE (°C)  
1468 G25  
1468 G26  
1468 G27  
7
LT1468  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Total Harmonic Distortion + Noise  
vs Frequency  
Undistorted Output Swing  
Total Harmonic Distortion + Noise  
vs Amplitude  
vs Frequency, ±15V  
0.010  
0.001  
50  
60  
30  
25  
20  
15  
10  
5
V
= ±15V  
= 25°C  
= 600Ω  
= 20V  
S
A
L
T
R
V
A
V
=1  
O
P-P  
±5V ±15V  
NOISE BW = 80kHz  
70  
A
V
= –1  
A
= 10  
= 1  
V
80  
A
V
90  
MEASUREMENT  
LIMIT  
T
= 25°C  
= 10  
A
V
L
A
–100  
R
= 600Ω  
V
= ±15V  
= 2k  
S
L
f = 10kHz  
R
NOISE BW = 80kHz  
0.0001  
–110  
0
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
0.01  
0.1  
1
10  
1
10  
100  
1000  
OUTPUT SIGNAL (V  
)
FREQUENCY (kHz)  
RMS  
1468 G28  
1468 G29  
1468 G30  
Undistorted Output Swing  
Small-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
vs Frequency, ±5V  
10  
9
V
= ±5V  
= 2k  
S
R
L
8
A
V
= 1  
7
6
5
A
= 1  
V
4
3
2
1
0
1468 G32  
1468 G31  
VS = ±15V  
VS = ±15V  
1
10  
100  
1000  
FREQUENCY (kHz)  
1468 G33  
Total Noise vs Unmatched  
Source Resistance  
Large-Signal Transient, AV = 1  
Large-Signal Transient, AV = 1  
100  
10  
1
V
= ±15V  
= 25°C  
S
A
T
f = 10kHz  
TOTAL  
NOISE  
RESISTOR  
NOISE ONLY  
R
S
+
1468 G32  
1468 G34  
VS = ±15V  
VS = ±15V  
0.1  
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE, R ()  
S
1468 G36  
8
LT1468  
U
W U U  
APPLICATIONS INFORMATION  
The LT1468 may be inserted directly into many opera-  
tional amplifier applications improving both DC and AC  
performance, provided that the nulling circuitry is re-  
moved. The suggested nulling circuit for the LT1468 is  
shown below.  
The parallel combination of the feedback resistor and gain  
setting resistor on the inverting input can combine with  
theinputcapacitancetoformapolethatcancausepeaking  
or even oscillations. For feedback resistors greater than  
2k, a feedback capacitor of the value:  
CF > (RG)(CIN/RF)  
Offset Nulling  
+
V
should be used to cancel the input pole and optimize dy-  
namic performance. For applications where the DC noise  
gainisone,andalargefeedbackresistorisused,CF should  
begreaterthanorequaltoCIN.AnexamplewouldbeaDAC  
I-to-V converter as shown on the front page of this data  
sheet where the DAC can have many tens of pF of output  
capacitance. Another example would be a gain of  
–1 with 5k resistors; a 5pF to 10pF capacitor should be  
addedacrossthefeedbackresistor.Thefrequencyresponse  
in a gain of –1 is shown in the Typical Performance curves  
with 2k and 5.1k resistors with a 5pF feedback capacitor.  
3
0.1µF  
0.1µF  
2.2µF  
2.2µF  
+
7
4
6
LT1468  
5
2
1
100k  
1468 AI01  
V
Layout and Passive Components  
The LT1468 requires attention to detail in board layout in  
order to maximize DC and AC performance. For best AC  
results(forexamplefastsettlingtime)useagroundplane,  
short lead lengths, and RF-quality bypass capacitors  
(0.01µF to 0.1µF) in parallel with low ESR bypass capaci-  
tors(1µFto10µFtantalum). ForbestDCperformance, use  
“star” grounding techniques, equalize input trace lengths  
and minimize leakage (i.e., 1.5Gof leakage between an  
input and a 15V supply will generate 10nA—equal to the  
maximum IBspecification.)  
Nulling Input Capacitance  
R
F
C
F
R
G
+
C
LT1468  
V
OUT  
IN  
V
IN  
1468 AI02  
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close to  
that of the inputs. For inverting configurations tie the ring  
to ground, in noninverting connections tie the ring to the  
inverting input (note the input capacitance will increase  
whichmayrequireacompensatingcapacitorasdiscussed  
below.)  
Input Considerations  
Each input of the LT1468 is protected with a 100series  
resistor and back-to-back diodes across the bases of the  
input devices. If the inputs can be pulled apart, the input  
current should be limited to less than 10mA with an  
external series resistor. Each input also has two ESD  
clamp diodes—one to each supply. If an input is driven  
abovethesupply,limitthecurrentwithanexternalresistor  
to less than 10mA.  
Microvolt level error voltages can also be generated in the  
external circuitry. Thermocouple effects caused by tem-  
perature gradients across dissimilar metals at the con-  
tacts to the inputs can exceed the inherent drift of the  
amplifier. Air currents over device leads should be mini-  
mized, package leads should be short, and the two input  
leads should be as close together as possible and main-  
tained at the same temperature.  
The LT1468 employs bias current cancellation at the  
inputs. The inverting input current is trimmed at zero  
common mode voltage to minimize errors in inverting  
applications such as I-to-V converters. The noninverting  
input current is not trimmed and has a wider variation and  
therefore a larger maximum value. As the input offset  
Make no connection to Pin 8. This pin is used for factory  
trim of the inverting input current.  
9
LT1468  
U
W U U  
APPLICATIONS INFORMATION  
Driving Capacitive Loads  
current can be greater than either input current, the use of  
balanced source resistance is NOT recommended as it  
actually degrades DC accuracy and also increases noise.  
R
F
C
F
R
R
C
(1 + R /R )/(2πC 5MHz)  
F G L  
O
F
F
10R  
O
O
The input bias currents vary with common mode voltage  
as shown in the Typical Performance Characteristics. The  
cancellation circuitry was not designed to track this com-  
mon mode voltage because the settling time would have  
been adversely affected.  
R
G
= (2R /R )C  
L
F
+
R
O
LT1468  
V
OUT  
C
V
L
IN  
1468 AI04  
The LT1468 inputs can be driven to the negative supply  
and to within 0.5V of the positive supply without phase  
reversal. As the input moves closer than 0.5V to the  
positive supply, the output reverses phase.  
excellentLinearTechnology reference sources forsettling  
measurements, Application Notes 47 and 74. Appendix B  
of AN47 is a vital primer on 12-bit settling measurements,  
and AN74 extends the state of the art while concentrating  
on settling time with a 16-bit current output DAC input.  
Input Stage Protection  
The 150µV settling curve in the Typical Performance  
Characteristics is measured using the Differential Ampli-  
fiermethodofAN74followedbyaclamped, nonsaturating  
gain of 100. The total gain of 500 allows a resolution of  
100µV/DIV with an oscilloscope setting of 0.05V/DIV  
R1  
100Ω  
R2  
100Ω  
Q1  
Q2  
+IN  
IN  
1468 AI03  
The settling of the DAC I-to-V converter on the front page  
was measured using the exact methods of AN74. The  
optimum nulling of the DAC output capacitance requires  
20pF across the 6k feedback resistor. The theoretical limit  
for 16-bit settling is 11.1 times this RC time constant or  
1.33µs. The actual settling time is 1.7µs at the output of  
the LT1468. The LT1468 is the fastest Linear Technology  
amplifier in this application.  
Total Input Noise  
ThecurveofTotalNoisevsUnmatchedSourceResistance  
intheTypicalPerformanceCharacteristicsshowsthatwith  
source resistance below 1k, the voltage noise of the am-  
plifier dominates. In the 1k to 20k region the increase in  
noise is due to the source resistance. Above 20k the input  
current noise component is larger than the resistor noise.  
The optional noise filter adds a slight delay of 100ns, but  
reduces the noise bandwidth to 1.6MHz which increases  
the output resolution for 16-bit accuracy.  
Capacitive Loading  
The LT1468 drives capacitive loads of up to 100pF in unity  
gain and 300pF in a gain of –1. When there is a need to  
drivealargercapacitiveload,asmallseriesresistorshould  
be inserted between the output and the load. In addition,  
a capacitor should be added between the output and the  
inverting input as shown in Driving Capacitive Loads.  
Distortion  
The LT1468 has outstanding distortion performance as  
shownintheTypicalPerformancecurvesofTotalHarmonic  
Distortion + Noise vs Frequency and Amplitude. The high  
open-loopgainandinherentlybalancedarchitecturereduce  
errors to yield 16-bit accuracy to frequencies as high as  
100kHz. An example of this performance is the Typical  
Application titled 100kHz Low Distortion Bandpass Filter.  
This circuit is useful for cleaning up the output of a high  
performance signal generator such as the B & K type 1051  
or HP3326A.  
Settling Time  
The LT1468 is a single stage amplifier with an optimal  
thermal layout that leads to outstanding settling  
performance. Measuring settling, even at the 12-bit level  
is very challenging, and at the 16-bit level requires a great  
deal of subtlety and expertise. Fortunately, there are two  
10  
LT1468  
U
W U U  
APPLICATIONS INFORMATION  
Another key application for LT1468 is buffering the input  
to a 16-bit A/D converter. In a gain of 1 or 2 this straight-  
forward circuit provides uncorrupted AC and DC levels to  
the converter, while buffering the A/D input sample-and-  
holdcircuitfromhighsourceimpedancewhichcanreduce  
the maximum sampling rate. The front page graph shows  
better than 16-bit distortion for a gain of 2 with a 10VP-P  
output.  
W
W
SI PLIFIED SCHEMATIC  
+
V
I1  
I2  
I5  
Q10  
Q8  
Q9  
OUT  
+IN  
Q1  
Q2  
IN Q5  
Q3  
Q6  
Q7  
Q11  
Q4  
C
BIAS  
I3  
I4  
I6  
V
1468 SS  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.400*  
(10.160)  
MAX  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
2
3
1
0.053 – 0.069  
2
3
4
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.065  
(1.651)  
TYP  
0°– 8° TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.016 – 0.050  
0.406 – 1.270  
0.020  
(0.508)  
MIN  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
+0.035  
–0.015  
0.325  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
(
)
N8 1197  
–0.381  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1468  
U
TYPICAL APPLICATIONS  
Instrumentation Amplifier  
16-Bit ADC Buffer  
10pF  
2k  
R5  
1.1k  
R4  
50k  
R2  
5k  
C2  
2pF  
C1  
10pF  
R1  
50k  
2k  
+
16 BITS  
200Ω  
LT1468  
LTC1605  
CAP  
R3  
5k  
1000pF  
V
IN  
1468 TA04  
33.2k  
LT1468  
+
LT1468  
V
OUT  
2.2µF  
1468 TA03  
+
V
IN  
+
GAIN = [R4/R3][1 + (1/2)(R2/R1 + R3/R4) + (R2 + R3)/R5] = 102  
TRIM R5 FOR GAIN  
TRIM R1 FOR COMMON MODE REJECTION  
BW = 480kHz  
100kHz Low Distortion Bandpass Filter  
1000pF  
22.1k  
100kHz Distortion  
SIGNAL LEVEL  
R
2ND HARMONIC 3RD HARMONIC  
L
1V  
2V  
1M  
1M  
1M  
2k  
2k  
2k  
106dB  
105dB  
106dB  
103dB  
99dB  
103dB  
105dB  
104dB  
103dB  
103dB  
102dB  
RMS  
RMS  
1000pF  
11k  
3.5V  
RMS  
RMS  
RMS  
V
IN  
1V  
2V  
LT1468  
V
OUT  
121Ω  
R
L
+
3.5V  
96.5dB  
RMS  
1468 TA05  
f
= 100kHz  
O
Q = 7  
= –1  
A
V
RELATED PARTS  
PART NUMBER  
LT1167  
DESCRIPTION  
COMMENTS  
Precision Instrumentation Amplifier  
Single Resistor Gain Set, 0.04% Max Gain Error, 10ppm Max Gain Nonlinearity  
±1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors  
±2.5V Input, SINAD = 90dB, THD = –100dB  
LTC1595/LTC1596  
LTC1597  
16-Bit Serial Multiplying I  
DACs  
OUT  
16-Bit Parallel Multiplying I  
DAC  
OUT  
LTC1604  
16-Bit, 333ksps Sampling ADC  
Single 5V, 16-Bit, 100ksps Sampling ADC  
LTC1605  
Low Power, ±10V Inputs, Parallel/Byte Interface  
1468f LT/TP 1098 4K • PRINTED IN USA  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1998  

相关型号:

LT1468CS8#TRPBF

LT1468 - 90MHz, 22V/us 16-Bit Accurate Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1468CS8-2#PBF

LT1468-2 - 200MHz, 30V/&#181;s 16-Bit Accurate AV ≥ 2 Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1468CS8-2-PBF

200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear

LT1468CS8-2-TRPBF

200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear

LT1468CS8-2PBF

16-Bit DAC Current-to-Voltage Converter
Linear

LT1468CS8-2TRPBF

16-Bit DAC Current-to-Voltage Converter
Linear

LT1468CS8-PBF

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1468CS8-TR

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1468CS8-TRPBF

90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1468IDD#PBF

LT1468 - 90MHz, 22V/us 16-Bit Accurate Operational Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1468IDD-2#PBF

LT1468-2 - 200MHz, 30V/&#181;s 16-Bit Accurate AV ≥ 2 Op Amp; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1468IDD-2-PBF

200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear