LT1469CDF-PBF [Linear]

Dual 90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er; 双90MHz的, 22V /μs的16位精度运算功率放大器儿
LT1469CDF-PBF
型号: LT1469CDF-PBF
厂家: Linear    Linear
描述:

Dual 90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
双90MHz的, 22V /μs的16位精度运算功率放大器儿

放大器 功率放大器
文件: 总20页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1469  
Dual 90MHz, 22V/µs  
16-Bit Accurate Operational Amplifier  
FEATURES  
DESCRIPTION  
The LT®1469 is a dual, precision high speed operational  
amplifierwith16-bitaccuracyand900nssettlingto150μV  
for 10V steps. This unique blend of precision and AC  
performance makes the LT1469 the optimum choice for  
highaccuracyapplicationssuchasDACcurrent-to-voltage  
conversion and ADC buffers. The initial accuracy and drift  
characteristicsoftheinputoffsetvoltageandinvertinginput  
bias current are tailored for inverting applications.  
n
90MHz Gain Bandwidth, f = 100kHz  
n
n
n
n
n
n
n
n
n
n
n
n
n
Maximum Input Offset Voltage: 125μV  
Settling Time: 900ns (A = –1, 150μV, 10V Step)  
V
22V/μs Slew Rate  
Low Distortion: –96.5dB for 100kHz, 10V  
P-P  
Maximum Input Offset Voltage Drift: 3μV/°C  
Maximum Inverting Input Bias Current: 10nA  
Minimum DC Gain: 300V/mV  
Minimum Output Swing into 2k: 12.8V  
Unity-Gain Stable  
Input Noise Voltage: 5nV/√Hz  
Input Noise Current: 0.6pA/√Hz  
Total Input Noise Optimized for 1kΩ < R < 20kΩ  
Specified at 5V and 15V Supplies  
The 90MHz gain bandwidth ensures high open-loop gain  
at frequency for reducing distortion. In noninverting ap-  
plications such as an ADC buffer, the low distortion and  
DC accuracy allow full 16-bit AC and DC performance.  
S
The 22V/μs slew rate of the LT1469 improves large signal  
performance compared to other precision op amps in  
applications such as active filters and instrumentation  
amplifiers.  
APPLICATIONS  
n
Precision Instrumentation  
The LT1469 is available in a space saving 4mm × 4mm  
leadless package, as well as in small outline and DIP pack-  
ages. A single version, the LT1468, is also available.  
n
High Accuracy Data Acquisition Systems  
n
16-Bit DAC Current-to-Voltage Converter  
n
ADC Buffer  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Low Distortion Active Filters  
n
Photodiode Amplifiers  
TYPICAL APPLICATION  
16-Bit DAC I-to-V Converter and Reference Inverter for Bipolar Output Swing (VOUT = –10V to 10V)  
15V  
Bipolar Multiplying Mode (LTC1597)  
Signal-to-(Noise + Distortion)  
V
REF  
40  
+
DAC INPUT CODE = ALL ZEROS  
1/2 LT1469  
50  
60  
V
= 20V  
REF  
P-P  
2.4μs SETTLING TIME  
TO 1LSB ON 20V STEP  
15pF  
70  
15pF  
80  
12k 12k  
12k  
12k  
500kHz FILTER  
16 BITS  
DAC INPUTS  
LTC1597  
90  
R
LPF  
1/2 LT1469  
+
V
OUT  
100  
110  
80kHz FILTER  
C
30kHz  
FILTER  
LPF  
10  
100  
1k  
10k  
100k  
–15V  
1469 TA01  
FREQUENCY (Hz)  
1469 TA01a  
1469fa  
1
LT1469  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
+
Total Supply Voltage (V to V ).................................36V  
Input Current (Note 2).......................................... 10mA  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4).... –40°C to 85°C  
Specified Temperature Range (Note 5) .... –40°C to 85°C  
Maximum Junction Temperature........................... 150°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
S8 and N8 Package........................................... 300°C  
PIN CONFIGURATION  
TOP VIEW  
+
TOP VIEW  
1
2
3
4
5
6
V
12  
OUT A  
–IN A  
+IN A  
+
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
11 OUT B  
A
OUT B  
–IN B  
+IN B  
–IN B  
+IN B  
N/C  
10  
9
A
B
V
13  
B
8
N/C  
N/C  
V
7
N/C  
N8 PACKAGE  
8-LEAD PDIP 8-LEAD PLASTIC SO  
= 150°C, θ = 130°C/W (N8)  
S8 PACKAGE  
DF PACKAGE  
12-LEAD (4mm × 4mm) PLASTIC DFN  
T
JMAX  
T
JA  
T
= 150°C, θ = 43°C/W  
JMAX  
JA  
= 150°C, θ = 190°C/W (S8)  
JMAX  
JA  
EXPOSED PAD (PIN 13) MUST BE CONNECTED TO V  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1469CN8#PBF  
LT1469IN8#PBF  
LT1469CS8#PBF  
LT1469IS8#PBF  
LT1469ACDF#PBF  
LT1469AIDF#PBF  
LT1469CDF#PBF  
LT1469IDF#PBF  
LEAD BASED FINISH  
LT1469CN8  
TAPE AND REEL  
PART MARKING*  
LT1469CN8  
LT1469IN8  
1469  
PACKAGE DESCRIPTION  
8-Lead PDIP  
TEMPERATURE RANGE  
0°C to 70°C  
NA  
NA  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LT1469CS8#TRPBF  
LT1469IS8#TRPBF  
LT1469ACDF#TRPBF  
LT1469AIDF#TRPBF  
LT1469CDF#TRPBF  
LT1469IDF#TRPBF  
TAPE AND REEL  
NA  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
12-Lead (4mm × 4mm) Plastic DFN  
12-Lead (4mm × 4mm) Plastic DFN  
12-Lead (4mm × 4mm) Plastic DFN  
12-Lead (4mm × 4mm) Plastic DFN  
PACKAGE DESCRIPTION  
8-Lead PDIP  
1469I  
–40°C to 85°C  
0°C to 70°C  
1469  
1469  
–40°C to 85°C  
0°C to 70°C  
1469  
1469  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING  
LT1469CN8  
LT1469IN8  
1469  
LT1469IN8  
NA  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LT1469CS8  
LT1469CS8#TR  
LT1469IS8#TR  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
LT1469IS8  
1469I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1469fa  
2
LT1469  
ELECTRICAL CHARACTERISTICS TA = 25°C, VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Input Offset Voltage  
N8, S8 Packages  
15V  
5V  
50  
50  
125  
200  
μV  
μV  
OS  
LT1469A, DF Package  
LT1469, DF Package  
15V  
5V  
50  
50  
125  
200  
μV  
μV  
15V  
5V  
100  
150  
225  
300  
μV  
μV  
I
Input Offset Current  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
13  
3
50  
10  
40  
nA  
nA  
nA  
OS  
I –  
Inverting Input Bias Current  
Noninverting Input Bias Current  
Input Noise Voltage  
B
I +  
–10  
0.3  
5
B
0.1Hz to 10Hz  
f = 10kHz  
μV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
nV/√Hz  
pA/√Hz  
n
i
f = 10kHz  
0.6  
n
R
Common Mode, V  
Differential  
=
CM  
12.5V  
15V  
15V  
100  
50  
240  
150  
MΩ  
kΩ  
IN  
C
V
Input Capacitance  
15V  
4
pF  
IN  
Input Voltage Range (Positive)  
Guaranteed by CMRR  
Guaranteed by CMRR  
15V  
5V  
12.5  
2.5  
13.5  
3.6  
V
V
CM  
Input Voltage Range (Negative)  
Common Mode Rejection Ratio  
15V  
5V  
–14.3  
–4.4  
–12.5  
–2.5  
V
V
CMRR  
PSRR  
V
CM  
V
CM  
=
=
12.5V  
2.5V  
15V  
5V  
96  
96  
110  
112  
dB  
dB  
Minimum Supply Voltage  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Guaranteed by PSRR  
V = 4.5V to 15V  
2.5  
4.5  
V
100  
112  
dB  
S
A
VOL  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
12.5V, R = 10k  
15V  
15V  
5V  
300  
300  
200  
200  
2000  
2000  
8000  
8000  
V/mV  
V/mV  
V/mV  
V/mV  
L
12.5V, R = 2k  
L
2.5V, R = 10k  
L
2.5V, R = 2k  
5V  
L
V
OUT  
Maximum Output Swing  
R = 10k, 1mV Overdrive  
15V  
15V  
5V  
13.0  
12.8  
3.0  
13.6  
13.5  
3.7  
V
V
V
V
L
R = 2k, 1mV Overdrive  
L
R = 10k, 1mV Overdrive  
L
R = 2k, 1mV Overdrive  
5V  
2.8  
3.6  
L
I
I
Maximum Output Current  
V
V
=
=
12.5V, 1mV Overdrive  
2.5V, 1mV Overdrive  
15V  
5V  
15  
15  
22  
22  
mA  
mA  
OUT  
OUT  
OUT  
Output Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, 0.2V Overdrive (Note 3)  
15V  
25  
40  
mA  
SC  
SR  
A = –10, R = 2k (Note 6)  
V
15V  
5V  
15  
11  
22  
17  
V/μs  
V/μs  
L
FPBW  
GBW  
Full-Power Bandwidth  
Gain Bandwidth Product  
Rise Time, Fall Time  
Overshoot  
10V Peak, (Note 7)  
3V Peak, (Note 7)  
15V  
5V  
350  
900  
kHz  
kHz  
f = 100kHz, R = 2k  
15V  
5V  
60  
55  
90  
88  
MHz  
MHz  
L
t , t  
A = 1, 10% to 90%, 0.1V Step  
V
15V  
5V  
11  
12  
ns  
ns  
r
f
OS  
A = 1, 0.1V Step  
V
15V  
5V  
30  
35  
%
%
t
PD  
Propagation Delay  
A = 1, 50% V to 50% V , 0.1V Step  
15V  
5V  
9
10  
ns  
ns  
V
IN  
OUT  
1469fa  
3
LT1469  
ELECTRICAL CHARACTERISTICS TA = 25°C. VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
t
Settling Time  
10V Step, 0.01%, A = –1  
15V  
15V  
5V  
760  
900  
770  
ns  
ns  
ns  
S
V
10V Step, 150μV, A = 1  
V
5V Step, 0.01%, A = –1  
V
THD  
Total Harmonic Distortion  
A = –1, V  
= 10V , f = 100kHz  
15V  
15V  
–96.5  
–125  
dB  
dB  
V
OUT  
P-P  
A = 1, V  
= 20V , f = 1kHz  
V
OUT  
P-P  
R
Output Resistance  
Channel Separation  
A = 1, f = 100kHz  
15V  
0.02  
Ω
OUT  
V
V
OUT  
V
OUT  
=
=
12.5V, R = 2k  
15V  
5V  
100  
100  
130  
130  
dB  
dB  
L
2.5V, R = 2k  
L
I
S
Supply Current  
Per Amplifier  
15V  
5V  
4.1  
3.8  
5.2  
5
mA  
mA  
ΔV  
OS  
Input Offset Voltage Match  
S8, DF A-Grade  
15V  
5V  
30  
50  
225  
350  
μV  
μV  
ΔI –  
Inverting Input Bias Current Match  
Noninverting Input Bias Current Match  
Common Mode Rejection Match  
5V to 15V  
5V to 15V  
2
5
18  
78  
nA  
nA  
B
ΔI +  
B
ΔCMRR  
V
CM  
V
CM  
=
=
12.5V (Note 9)  
2.5V (Note 9)  
15V  
5V  
93  
93  
113  
115  
dB  
dB  
ΔPSRR  
Power Supply Rejection Match  
V = 4.5V to 15V (Note 9)  
S
97  
115  
dB  
The l denotes the specifications which apply over the full operating temperature range, 0°C ≤ TA ≤ 70°C. VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
N8, S8 Packages  
15V  
5V  
350  
350  
μV  
μV  
OS  
LT1469A, DF Package  
LT1469, DF Package  
(Note 8)  
15V  
5V  
225  
275  
μV  
μV  
15V  
5V  
450  
450  
μV  
μV  
ΔV /ΔT Input Offset Voltage Drift  
OS  
15V  
5V  
1
1
5
3
μV/°C  
μV/°C  
I
Input Offset Current  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
80  
20  
60  
nA  
pA/°C  
nA  
OS  
ΔI /ΔT  
Input Offset Current Drift  
(Note 8)  
(Note 8)  
60  
40  
OS  
I –  
Inverting Input Bias Current  
Inverting Input Bias Current Drift  
Noninverting Input Bias Current  
Input Voltage Range (Positive)  
B
ΔI –/ΔT  
pA/°C  
nA  
B
I +  
B
V
Guaranteed by CMRR  
Guaranteed by CMRR  
15V  
5V  
12.5  
2.5  
V
V
CM  
Input Voltage Range (Negative)  
Common Mode Rejection Ratio  
15V  
5V  
–12.5  
–2.5  
V
V
CMRR  
PSRR  
V
V
=
=
12.5V  
2.5V  
15V  
5V  
94  
94  
dB  
dB  
V
CM  
CM  
Minimum Supply Voltage  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Guaranteed by PSRR  
V = 4.5V to 15V  
4.5  
95  
dB  
S
A
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
12.5V, R = 10k  
15V  
15V  
5V  
100  
100  
100  
100  
V/mV  
V/mV  
V/mV  
V/mV  
VOL  
L
12.5V, R = 2k  
L
2.5V, R = 10k  
L
2.5V, R = 2k  
5V  
L
1469fa  
4
LT1469  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, 0°C ≤ TA ≤ 70°C. VCM = 0V unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
R = 10k, 1mV Overdrive  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
Maximum Output Swing  
15V  
15V  
5V  
12.9  
12.7  
2.9  
V
V
V
V
OUT  
L
R = 2k, 1mV Overdrive  
L
R = 10k, 1mV Overdrive  
L
R = 2k, 1mV Overdrive  
5V  
2.7  
L
I
I
Maximum Output Current  
Output Short-Circuit Current  
Slew Rate  
V
V
=
=
12.5V, 1mV Overdrive  
2.5V, 1mV Overdrive  
15V  
5V  
12.5  
12.5  
mA  
mA  
OUT  
SC  
OUT  
OUT  
V
= 0V, 0.2V Overdrive  
15V  
17  
mA  
OUT  
(Note 3)  
SR  
A = –10, R = 2k (Note 6)  
V
15V  
5V  
13  
9
V/μs  
V/μs  
L
GBW  
Gain Bandwidth Product  
Channel Separation  
Supply Current  
f = 100kHz, R = 2k  
15V  
5V  
55  
50  
MHz  
MHz  
L
V
OUT  
V
OUT  
=
=
12.5V, R = 2k  
15V  
5V  
98  
98  
dB  
dB  
L
2.5V, R = 2k  
L
I
S
Per Amplifier  
15V  
5V  
6.5  
6.3  
mA  
mA  
ΔV  
OS  
Input Offset Voltage Match  
S8, DF A-Grade  
15V  
5V  
600  
600  
μV  
μV  
ΔI –  
Inverting Input Bias Current Match  
Noninverting Input Bias Current Match  
Common Mode Rejection Match  
5V to 15V  
5V to 15V  
38  
nA  
nA  
B
ΔI +  
B
118  
ΔCMRR  
V
CM  
V
CM  
=
=
12.5V (Note 9)  
2.5V (Note 9)  
15V  
5V  
91  
91  
dB  
dB  
ΔPSRR  
Power Supply Rejection Match  
V = 4.5V to 15V (Note 9)  
S
92  
dB  
The l denotes the specifications which apply over the full operating temperature range, –40°C ≤ TA ≤ 85°C, VCM = 0V unless otherwise  
noted. (Note 5)  
SYMBOL PARAMETER  
Input Offset Voltage  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
V
N8, S8 Packages  
15V  
5V  
500  
500  
μV  
μV  
OS  
LT1469A, DF Package  
LT1469, DF Package  
(Note 8)  
15V  
5V  
300  
350  
μV  
μV  
15V  
5V  
600  
600  
μV  
μV  
ΔV /ΔT Input Offset Voltage Drift  
OS  
15V  
5V  
1
1
6
5
μV/°C  
μV/°C  
I
Input Offset Current  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
5V to 15V  
120  
nA  
pA/°C  
nA  
OS  
ΔI /ΔT  
Input Offset Current Drift  
(Note 8)  
(Note 8)  
120  
80  
OS  
I –  
Inverting Input Bias Current  
Inverting Input Bias Current Drift  
Noninverting Input Bias Current  
Input Voltage Range (Positive)  
40  
B
ΔI –/ΔT  
pA/°C  
nA  
B
I +  
80  
B
V
Guaranteed by CMRR  
Guaranteed by CMRR  
15V  
5V  
12.5  
2.5  
V
V
CM  
Input Voltage Range (Negative)  
15V  
5V  
–12.5  
–2.5  
V
V
1469fa  
5
LT1469  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, –40°C ≤ TA ≤ 85°C, VCM = 0V unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
V
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
CMRR  
Common Mode Rejection Ratio  
V
CM  
V
CM  
=
=
12.5V  
2.5V  
15V  
5V  
92  
92  
dB  
dB  
4.5  
Minimum Supply Voltage  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Guaranteed by PSRR  
V = 4.5V to 15V  
V
PSRR  
93  
dB  
S
A
VOL  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
12,5V, R = 10k  
15V  
15V  
5V  
75  
75  
75  
75  
V/mV  
V/mV  
V/mV  
V/mV  
L
12.5V, R = 2k  
L
2.5V, R = 10k  
L
2.5V, R = 2k  
5V  
L
V
Maximum Output Swing  
Maximum Output Current  
R = 10k, 1mV Overdrive  
15V  
15V  
5V  
12.8  
12.6  
2.8  
V
V
V
V
OUT  
L
R = 2k, 1mV Overdrive  
L
R = 10k, 1mV Overdrive  
L
R = 2k, 1mV Overdrive  
5V  
2.6  
L
I
I
V
OUT  
V
OUT  
=
=
12.5V, 1mV Overdrive  
2.5V, 1mV Overdrive  
15V  
5V  
7
7
mA  
mA  
OUT  
Output Short-Circuit Current  
Slew Rate  
V
OUT  
= 0V, 0.2V Overdrive (Note 3)  
15V  
12  
mA  
SC  
SR  
A = –10, R = 2k (Note 6)  
15V  
5V  
9
6
V/μs  
V/μs  
V
L
GBW  
Gain Bandwidth Product  
Channel Separation  
f = 100kHz, R = 2k  
15V  
5V  
45  
40  
MHz  
MHz  
L
V
OUT  
V
OUT  
=
=
12.5V, R = 2k  
15V  
5V  
96  
96  
dB  
dB  
L
2.5V, R = 2k  
L
I
S
Supply Current  
Per Amplifier  
15V  
5V  
7
6.8  
mA  
mA  
ΔV  
Input Offset Voltage Match  
Inverting Input Bias Current Match  
S8, DF A-Grade  
15V  
5V  
800  
800  
μV  
μV  
OS  
ΔI –  
B
5V to 15V  
5V to 15V  
78  
nA  
nA  
ΔI +  
B
Noninverting Input Bias Current  
Match  
158  
ΔCMRR  
ΔPSRR  
Common Mode Rejection Match  
V
V
=
=
12.5V (Note 9)  
2.5V (Note 9)  
15V  
5V  
89  
89  
dB  
dB  
CM  
CM  
Power Supply Rejection Match  
V = 4.5V to 15V (Note 9)  
S
90  
dB  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The inputs are protected by back-to-back diodes and two 100Ω  
series resistors. If the differential input voltage exceeds 0.7V, the input  
current should be limited to less than 10mA. Input voltages outside the  
supplies will be clamped by ESD protection devices and input currents  
should also be limited to less than 10mA.  
Note 5: The LT1469C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet specified  
performance from –40°C to 85°C but is not tested or QA sampled at these  
temperatures. The LT1469I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 6: Slew rate is measured between 8V on the output with 12V  
swing for 15V supplies and 2V on the output with 3V swing for 5V  
supplies.  
Note 7: Full-power bandwidth is calculated from the slew rate. FPBW =  
Note 3: A heat sink may be required to keep the junction temperature  
SR/2πV .  
P
below absolute maximum when the output is shorted indefinitely.  
Note 8: This parameter is not 100% tested.  
Note 4: The LT1469C and LT1469I are guaranteed functional over the  
operating temperature range of 40°C to 85°C.  
Note 9: ΔCMRR and ΔPSRR are defined as follows: 1) CMRR and PSRR  
are measured in μV/V on each amplifier; 2) the difference between the two  
sides is calculated in μV/V; 3) the result is converted to dB.  
1469fa  
6
LT1469  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distribution of Input Offset  
Voltage  
Distribution of Inverting Input  
Bias Current  
Supply Current vs Supply Voltage  
and Temperature  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
V
T
=
15V  
V
T
=
15V  
S
A
S
A
85°C  
25°C  
= 25°C  
= 25°C  
–40°C  
–10 –7.5 –5 –2.5  
0
2.5  
5
7.5 10  
–175 –125 –75 –25 25  
75 125 175  
0
5
10  
15  
20  
INVERTING INPUT BIAS CURRENT (nA)  
SUPPLY VOLTAGE ( V)  
INPUT OFFSET VOLTAGE (μV)  
1469 G02  
1469 G01  
1469 G03  
Total Noise vs Unmatched  
Source Resistance  
Input Noise Spectral Density  
0.1Hz to 10Hz Voltage Noise  
100  
1000  
100  
10  
1
V
T
=
15V  
V
T
=
15V  
= 25°C  
S
A
V
=
15V  
S
A
S
A
V
= 25°C  
T
= 25°C  
= 101  
f = 10kHz  
A
R
= 100k FOR i  
S
n
TOTAL  
NOISE  
i
n
10  
1
RESISTOR  
NOISE ONLY  
e
n
10  
1
0.1  
R
S
+
0.1  
0.01  
1
10  
100  
1k  
10k  
100k  
TIME (1s/DIV)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
SOURCE RESISTANCE, R (ꢀ)  
1469 G05  
S
1469 G06  
1469 G04  
Input Bias Current  
vs Temperature  
Input Bias Current  
vs Input Common Mode Voltage  
Input Common Mode Range  
vs Supply Voltage  
+
30  
20  
80  
60  
V
T
= 25°C  
OS  
V
= 15V  
A
S
V
T
=
15V  
S
A
–0.5  
–1.0  
–1.5  
–2.0  
ΔV < 100μV  
= 25°C  
40  
10  
+
I
I
B
20  
0
I
B
0
+
I
B
–10  
–20  
–30  
–40  
2.0  
1.5  
1.0  
0.5  
–20  
–40  
–60  
–80  
B
V
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–10  
–5  
5
0
3
6
9
12  
15  
18  
–15  
10  
15  
0
SUPPLY VOLTAGE ( V)  
INPUT COMMON MODE VOLTAGE (V)  
1469 G07  
1469 G09  
1469 G08  
1469fa  
7
LT1469  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing  
vs Supply Voltage  
Output Voltage Swing  
vs Load Current  
Output Short-Circuit Current  
vs Temperature  
+
+
V
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
V
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
R
= 10k  
L
V
= 15V  
V
V
=
S
IN  
15V  
0.2V  
S
85°C  
25°C  
–1  
–2  
–3  
–4  
4
=
R
L
= 2k  
–40°C  
SOURCE  
SINK  
2.5  
2.0  
1.5  
1.0  
3
–40°C  
85°C  
2
R
= 2k  
L
25°C  
1
R
= 10k  
L
T
A
= 25°C  
V
V
0.5  
0
5
10  
15  
20  
–50  
0
25  
50  
75 100 125  
–25  
–20  
0
10 15  
–15 –10 –5  
5
20  
SUPPLY VOLTAGE ( V)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
1469 G10  
1469 G12  
1469 G11  
Settling Time to 0.01%  
vs Output Step, VS = 15V  
Settling Time to 0.01%  
vs Output Step, VS = 5V  
Settling Time to 150μV  
vs Output Step  
10  
8
5
4
10  
8
V
=
15V  
V
=
5V  
V
=
15V  
S
A
L
S
A
L
S
A
V
F
F
T
= 25°C  
= 1k  
T
= 25°C  
= 1k  
T
= 25°C  
= –1  
A
= –1  
A = 1  
V
A
= 1  
A = –1  
V
V
V
R
R
A
R
C
6
3
6
= R = 2k  
= 8pF  
G
4
2
4
2
1
2
0
0
0
–2  
–4  
–6  
–8  
–10  
–1  
–2  
–3  
–4  
–5  
–2  
–4  
–6  
–8  
–10  
A
= –1  
A
= 1  
V
V
A
= 1  
A = –1  
V
V
0
200  
400  
600  
800  
1000  
300  
400  
500  
600  
700  
800  
0
200  
400  
600  
800  
1000  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
1469 G13  
1469 G14  
1469 G15  
Open-Loop Gain  
vs Resistive Load  
Open-Loop Gain  
vs Temperature  
Open-Loop Gain  
vs Frequency  
160  
150  
140  
135  
130  
125  
120  
115  
110  
140  
120  
100  
80  
R
= 2k  
T
= 25°C  
L
A
T
= 25°C  
A
V
F
F
L
A
= –1  
R
= R = 5.1k  
V
S
=
5V  
G
S
V
V
=
=
5V  
S
S
C
= 5pF  
= 2k  
140  
130  
120  
110  
100  
R
60  
15V  
V
=
15V  
V
=
5V  
V = 15V  
S
S
40  
20  
0
90  
–20  
50  
100 125  
–50 –25  
0
25  
75  
10  
100  
1k  
10k  
10 100 1k 10k 100k 1M 10M 100M  
LOAD RESISTANCE (ꢀ)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1469 G17  
1469 G16  
1469 G18  
1469fa  
8
LT1469  
TYPICAL PERFORMANCE CHARACTERISTICS  
Open-Loop Gain and Phase vs  
Frequency  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain Bandwidth and Phase  
Margin vs Temperature  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
42  
40  
38  
36  
34  
32  
30  
40  
38  
36  
34  
32  
T
= 25°C  
= –1  
A
V
F
F
L
A
PHASE MARGIN  
R
= R = 5.1k  
PHASE  
15V  
G
V
=
S
15V  
5V  
PHASE MARGIN  
C
= 5pF  
= 2k  
60  
R
92  
90  
88  
86  
84  
82  
40  
V
=
S
5V  
20  
94  
92  
90  
88  
86  
84  
GAIN  
V
=
15V  
5V  
0
S
GAIN BANDWIDTH  
GAIN BANDWIDTH  
15V  
T
= 25°C  
= –1  
A
V
F
F
–20  
–40  
–60  
A
5V  
R
C
R
= R = 5.1k  
V =  
S
G
= 5pF  
= 2k  
L
–10  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10  
SUPPLY VOLTAGE ( V)  
0
5
15  
20  
50  
TEMPERATURE (°C)  
125  
–55  
0
25  
75 100  
–25  
1469 G19  
1469 G20  
1469 G21  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = 1  
5
4
3
2
5
4
3
2
14  
12  
10  
8
T
= 25°C  
= 1  
= 2k  
V
=
15V  
A
V
L
S
A
V
A
T
= 25°C  
= 1  
R
V
V
= R = 2k  
=
=
F
S
S
G
R
A
NO R  
5V  
L
15V  
R
F
= R = 5.1k  
G
100pF  
50pF  
20pF  
V
=
5V  
S
V
= 5V  
S
V
=
15V  
1
0
1
0
S
6
4
V
= 15V  
S
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
2
0
10pF  
T
= 25°C  
= –1  
A
V
L
F
–2  
–4  
–6  
A
R
C
= 2k  
= 5pF  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1469 G22  
1469 G23  
1469 G24  
Gain vs Frequency, AV = –1  
Slew Rate vs Supply Voltage  
Slew Rate vs Temperature  
14  
12  
10  
8
45  
30  
28  
26  
24  
22  
20  
18  
16  
14  
V
T
=
15V  
T
= 25°C  
A = –1  
V
V
A
= 15V  
= –1  
= 2k  
S
A
V
F
F
A
S
V
L
= 25°C  
= –1  
40  
35  
A
R
= 2k  
L
R
–SR  
R
C
NO R  
= R = 5.1k  
= 5pF  
G
300pF  
–SR  
+SR  
L
30  
25  
20  
15  
10  
6
4
+SR  
200pF  
2
0
100pF  
50pF  
–2  
–4  
–6  
5
100k  
1M  
10M  
100M  
0
10  
SUPPLY VOLTAGE ( V)  
20  
–50 –25  
0
25  
50  
75 100 125  
5
15  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1469 G25  
1469 G26  
1469 G27  
1469fa  
9
LT1469  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Supply Rejection Ratio  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
Channel Separation  
vs Frequency  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
160  
140  
120  
100  
V
T
= 15V  
= 25°C  
= 2k  
V
T
= 15V  
= 25°C  
= 2k  
V
T
= 15V  
= 25°C  
= 2k  
S
S
S
A
A
A
R
R
R
L
L
L
+PSRR  
–PSRR  
80  
60  
60  
40  
40  
20  
0
20  
0
1k  
10k  
1M  
100  
1k  
10k  
100k 1M  
10M 100M  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
10M 100M  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1469 G29  
1469 G30  
1469 G28  
Undistorted Output Swing  
vs Frequency, VS = 5V  
Undistorted Output Swing  
vs Frequency, VS = 15V  
Output Impedance vs Frequency  
10  
9
100  
10  
30  
25  
20  
15  
10  
5
V
T
= 5V  
= 25°C  
= 2k  
V
T
=
15V  
S
S
A
= 25°C  
A
R
L
8
A
= 1  
THD < 1%  
V
A
= 100  
= 10  
V
A
= 1  
V
7
1
6
5
A
= –1  
V
A
= –1  
V
A
V
4
3
2
1
0
0.1  
A
= 1  
V
V
T
= 15V  
= 25°C  
= 2k  
S
0.01  
0.001  
A
R
L
THD < 1%  
0
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1469 G33  
1469 G31  
1469 G32  
Total Harmonic Distortion  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Amplitude  
Warm-Up Drift vs Time  
–80  
–90  
–50  
–60  
10  
0
V
A
R
V
=
15V  
S
V
L
= 2  
= 2k  
OUT  
N8 5V  
= 10V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
P-P  
V
=
5V  
S
S0-8 5V  
–70  
–100  
–110  
–120  
–130  
V
=
15V  
S
–80  
N8 15V  
–90  
T
= 25°C  
= 1  
A
V
L
A
S0-8 15V  
–100  
R
= 600ꢀ  
f = 10kHz  
NOISE BW = 80kHz  
–110  
100  
1k  
10k  
100k  
0.01  
0.1  
OUTPUT SIGNAL (V  
1
10  
0
20  
40  
60  
80 100 120 140  
)
FREQUENCY (Hz)  
RMS  
TIME AFTER POWER UP (s)  
1469 G34  
1469 G35  
1469 G36  
1469fa  
10  
LT1469  
TYPICAL PERFORMANCE CHARACTERISTICS  
Small-Signal Transient, AV = 1  
Small-Signal Transient, AV = 1  
1469 G38  
1469 G37  
V
= 15V  
V
= 15V  
S
S
Large-Signal Transient, AV = 1  
Large-Signal Transient, AV = 1  
1469 G39  
1469 G40  
V
=
15V  
V = 15V  
S
S
APPLICATIONS INFORMATION  
Layout and Passive Components  
Board leakage can be minimized by encircling the input  
circuitry with a guard ring operated at a potential close  
to that of the inputs: for inverting configurations tie the  
ring to ground, in noninverting connections tie the ring  
to the inverting input (note the input capacitance will  
increase which may require a compensating capacitor as  
discussed below).  
The LT1469 requires attention to detail in board layout  
in order to maximize DC and AC performance. For best  
AC results (for example, fast settling time) use a ground  
plane, short lead lengths and RF quality bypass capacitors  
(0.01μF to 0.1μF) in parallel with low ESR bypass capaci-  
tors(Fto1Ftantalum). ForbestDCperformance, use  
“star” grounding techniques, equalize input trace lengths  
and minimize leakage (e.g., 1.5GΩ of leakage between an  
input and a 15V supply will generate 10nA—equal to the  
Microvolt level error voltages can also be generated in  
the external circuitry. Thermocouple effects caused by  
temperature gradients across dissimilar metals at the  
contacts to the inputs can exceed the inherent drift of  
maximum I – specification).  
B
1469fa  
11  
LT1469  
APPLICATIONS INFORMATION  
the amplifier. Air currents over device leads should be  
minimized, package leads should be short and the two  
input leads should be as close together as possible and  
maintained at the same temperature.  
TheLT1469employsbiascurrentcancellationattheinputs.  
The inverting input current is trimmed at zero common  
mode voltage to minimize errors in inverting applications  
such as I-to-V converters. The noninverting input current  
is not trimmed and has a wider variation and therefore a  
larger maximum value. As the input offset current can be  
greaterthaneitherinputcurrent,theuseofbalancedsource  
resistance is NOT recommended as it actually degrades  
DC accuracy and also increases noise.  
The parallel combination of the feedback resistor and gain  
settingresistorontheinvertinginputcancombinewiththe  
input capacitance to form a pole which can cause peaking  
or even oscillations. For feedback resistors greater than  
2k, a feedback capacitor of value C > R • C /R should  
F
G
IN  
F
be used to cancel the input pole and optimize dynamic  
The input bias currents vary with common mode voltage.  
The cancellation circuitry was not designed to track this  
common mode voltage because the settling time would  
have been adversely affected.  
performance. For applications where the DC noise gain is  
one, and a large feedback resistor is used, C should be  
F
greater than or equal to C . An example would be a DAC  
IN  
I-to-V converter as shown on the front page of the data  
sheet where the DAC can have many tens of picofarads  
of output capacitance. Another example would be a gain  
of –1 with 5k resistors; a 5pF to 10pF capacitor should  
be added across the feedback resistor.  
The LT1469 inputs can be driven to the negative supply  
and to within 0.5V of the positive supply without phase  
reversal. As the input moves closer than 0.5V to the posi-  
tive supply, the output reverses phase.  
Total Input Noise  
Input Considerations  
ThetotalinputnoiseoftheLT1469isoptimizedforasource  
resistance between 1k and 20k. Within this range, the  
total input noise is dominated by the noise of the source  
resistance itself. When the source resistance is below  
1k, voltage noise of the amplifier dominates. When the  
source resistance is above 20k, the input noise current is  
the dominant contributor.  
Each input of the LT1469 is protected with a 100Ω series  
resistor and back-to-back diodes across the bases of  
the input devices. If large differential input voltages are  
anticipated, limit the input current to less than 10mA with  
an external series resistor. Each input also has two ESD  
clamp diodes—one to each supply. If an input is driven  
beyond the supply, limit the current with an external resis-  
tor to less than 10mA.  
+
V
C
F
R
R1  
100ꢀ  
R1  
100ꢀ  
F
R
G
Q1  
Q2  
+IN  
–IN  
C
IN  
1/2 LT1469  
V
OUT  
V
IN  
+
1469 F01  
Figure 1. Nulling Input Capacitance  
1469 F02  
V
Figure 2. Input Stage Protection  
1469fa  
12  
LT1469  
APPLICATIONS INFORMATION  
Capacitive Loading  
measurements—ApplicationNotes47and74.AppendixB  
of AN47 is a vital primer on 12-bit settling measurements  
andAN74extendsthestate-of-the-artwhileconcentrating  
on settling time with a 16-bit current output DAC input.  
TheLT1469drivescapacitiveloadsofupto100pFinunity-  
gain and 300pF in a gain of –1. When there is a need to  
drivealargercapacitiveload,asmallseriesresistorshould  
be inserted between the output and the load. In addition,  
a capacitor should be added between the output and the  
inverting input as shown in Figure 3.  
The settling of the DAC I-to-V converter on the front page  
was measured using the exact methods of AN74. The  
optimum nulling of the DAC output capacitance requires  
15pFacrossthe12kfeedbackresistor.Thetheoreticallimit  
for 16-bit settling is 11.1 times this RC time constant or  
2μs. The actual settling time is 2.4μs at the output of the  
LT1469.  
Settling Time  
The LT1469 is a single stage amplifier with an optimal  
thermal layout that leads to outstanding settling per-  
formance. Measuring settling even at the 12-bit level is  
very challenging, and at the 16-bit level requires a great  
deal of subtlety and expertise. Fortunately, there are two  
excellent Linear Technology reference sources for settling  
The RC output noise filter adds a slight settling time delay  
butreducesthenoisebandwidthto1.6MHzwhichincreases  
the output resolution for 16-bit accuracy.  
R
F
R
R
F
≥ (1 + R /R )/(2Č • C • 5MHz)  
F G L  
O
F
≥ 10R  
O
C
= (2R /R )C  
O
F
L
C
R
F
G
R
O
1/2 LT1469  
V
OUT  
C
L
V
IN  
+
1469 F03  
Figure 3. Driving Capacitive Loads  
1469fa  
13  
LT1469  
TYPICAL APPLICATIONS  
Ultralow Distortion Balanced Audio Line Driver  
+
1/2 LT1364  
10k  
2.1k  
22pF  
33.2ꢀ  
+
820pF  
30.1ꢀ  
1/2 LT1469  
10k  
50 FEET SHIELDED  
TWISTED PAIR CABLE  
1k  
INPUT  
22pF  
600ꢀ  
Z
= 10kꢀ  
IN  
+
THD + N  
MEASURED HERE  
820pF  
30.1ꢀ  
33.2ꢀ  
1/2 LT1469  
20k  
22.1k  
22pF  
V
=
15V  
PARALLEL COMPOSITE TOPOLOGY:  
LT1364 PROVIDES OUTPUT CURRENT;  
LT1469 PRESERVES LINEARITY  
S
GAIN = 6dB  
+
1/2 LT1364  
20k  
24.3k  
22pF  
TOTAL HARMONIC DISTORTION + NOISE  
V
FREQUENCY  
1kHz  
MEASUREMENT BANDWIDTH  
OUT  
0.00025%  
0.0008%  
0.0006%  
10V  
10V  
22kHz  
80kHz  
RMS  
RMS  
20Hz TO 20kHz  
1kHz  
26dBu  
22kHz  
1469 TA02  
*1dBu = 1 milliwatt into 600ꢀ  
1469fa  
14  
LT1469  
TYPICAL APPLICATIONS  
Extending 16-Bit DAC Performance to 200V Output Swing  
125V  
1μF  
510ꢀ  
330ꢀ  
V
= 200V  
= 25mA  
OUT  
OUT  
P-P  
Q1  
2N5415  
I
15V  
THD + N = –90dB at 100Hz  
330pF  
Q3  
10k  
2N3440*  
V
REF  
1k  
1k  
Q5  
50k  
50k  
1M  
1M  
2N2222  
R
FB  
27ꢀ  
27ꢀ  
1N4148  
100pF  
R
***  
SELECT  
TYPICAL  
6ꢀ  
1/2 LT1469  
+
16 BITS  
LTC1597  
OUTPUT  
19.994k**  
1N4148  
1/2 LT1469  
+
Q6  
2N2907  
–15V  
Q3  
2N5415*  
Q2  
2N3440  
*HEAT SINK  
**VISHAY S102 RESISTOR 0.01%  
***1% METAL FILM RESISTOR  
510ꢀ  
1μF  
330ꢀ  
NOTE: FOR FURTHER EXPLANATION,  
REFER TO APPLICATION NOTE 74, APPENDIX H  
–125V  
50k** 50k** 50k** 50k**  
15pF  
1469 TA03  
1469fa  
15  
LT1469  
SIMPLIFIED SCHEMATIC  
+
V
I1  
I2  
I5  
Q10  
Q11  
Q8  
Q9  
OUT  
+IN  
Q1  
Q2  
–IN Q5  
Q3  
Q6  
Q7  
Q4  
C
BIAS  
I3  
I4  
I6  
V
1469 SS  
1469fa  
16  
LT1469  
PACKAGE DESCRIPTION  
DF Package  
12-Lead Plastic DFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1773 Rev Ø)  
2.50 REF  
0.70 0.05  
3.38 0.05  
2.65 0.05  
4.50 0.05  
3.10 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
4.00 0.10  
(4 SIDES)  
2.50 REF  
7
12  
0.40 0.10  
3.38 0.10  
2.65 0.10  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 × 45°  
PIN 1  
TOP MARK  
(NOTE 6)  
CHAMFER  
(DF12) DFN 0806 REV Ø  
6
R = 0.115  
TYP  
1
0.25 0.05  
0.50 BSC  
0.200 REF  
0.75 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
1469fa  
17  
LT1469  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1469fa  
18  
LT1469  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1469fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1469  
TYPICAL APPLICATION  
16-Bit Accurate Single Ended to Differential ADC Buffer  
5V  
4096 Point FFT of ADC Output  
R
S
V
+
IN  
0
–20  
100ꢀ  
1/2 LT1469  
f
= 333ksps  
SAMPLE  
IN  
IN  
5V  
V
=
1.25V  
f
V
= 100kHz  
= 5V  
S
3000pF  
–40  
+IN  
10pF  
2k  
16 BITS  
–60  
2k  
LTC1604  
–5V  
333ksps  
ADC OUTPUTS  
–80  
–IN  
3000pF  
100ꢀ  
–100  
–120  
–140  
1469 TA04  
1/2 LT1469  
+
0
20 40 60 80 100 120 140 160  
FREQUENCY (kHz)  
–5V  
1469 TA04a  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1167  
Precision Instrumentation Amplifier  
Single Resistor Gain Set, 0.04% Max Gain Error, 10ppm Max Gain  
Nonlinearity  
LT1468  
Single 90MHz, 22V/μs, 16-Bit Accurate Op Amp  
Single 200MHz, 30V/μs, 16-Bit Accurate A ≥ 2 Op Amp  
75μV V  
75μV V  
75μV V  
Single Version of LT1469  
OS(MAX),  
OS(MAX)  
OS(MAX)  
LT1468-2  
LT1469-2  
V
Dual 200MHz, 30V/μs, 16-Bit Accurate A ≥ 2 Op Amp  
V
LTC1595/LTC1596 16-Bit Serial Multiplying I  
DAC  
1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade  
1LSB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors  
2.5V Input, SINAD = 90dB, THD = –100dB  
OUT  
LTC1597  
LTC1604  
LTC1605  
LT1723  
16-Bit Parallel Multiplying I  
DAC  
OUT  
16-Bit, 333ksps Sampling ADC  
Single 5V, 16-Bit, 100ksps Sampling ADC  
Low Power, 10V Inputs, Parallel/Byte Interface  
Dual 200MHz, 70V/μs Low Noise Precision Op Amp  
V ≤ 5V, e = 3.8nV/√Hz, –85dBc at 1MHz  
S n  
LT1801  
Dual 80MHz, 25V/μs Low Power Rail-to-Rail Precision Op V ≤ 5V, I = 1.6mA, V ≤ 350μV  
S CC OS  
Amp  
LT6221  
Dual 60MHz, 20V/μs Low Power Rail-to-Rail Precision Op V ≤ 5V, I = 0.9mA, V ≤ 350μV  
S CC OS  
Amp  
LTC6244HV  
Dual 50MHz, Low Noise, Precision CMOS Op Amp  
V ≤ 5V, V ≤ 100μV, I 75pA  
S OS B  
1469fa  
LT 0808 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1469CDF-TRPBF

Dual 90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1469CN8

Dual 90MHz, 22V/us 16-Bit Accurate Operational Amplifier
Linear

LT1469CN8-PBF

Dual 90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1469CS8

Dual 90MHz, 22V/us 16-Bit Accurate Operational Amplifier
Linear

LT1469CS8#PBF

暂无描述
Linear

LT1469CS8#TRPBF

LT1469 - Dual 90MHz, 22V/us 16-Bit Accurate Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1469CS8-2#PBF

LT1469-2 - Dual 200MHz, 30V/&#181;s 16-Bit Accurate AV ≥ 2 Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1469CS8-2#TRPBF

LT1469-2 - Dual 200MHz, 30V/&#181;s 16-Bit Accurate AV ≥ 2 Op Amp; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1469CS8-2-PBF

Dual 200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear

LT1469CS8-2-TRPBF

Dual 200MHz, 30V/μs 16-Bit Accurate AV ≥ 2 Op Amp
Linear

LT1469CS8-PBF

Dual 90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear

LT1469CS8-TR

Dual 90MHz, 22V/μs 16-Bit Accurate Operational Amplifi er
Linear