LT1490CN8#PBF [Linear]

LT1490 - Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C;
LT1490CN8#PBF
型号: LT1490CN8#PBF
厂家: Linear    Linear
描述:

LT1490 - Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C

运算放大器 光电二极管
文件: 总12页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1490/LT1491  
Dual and Quad  
Micropower Rail-to-Rail  
Input and Output Op Amps  
U
FEATURES  
DESCRIPTION  
The dual LT®1490 and quad LT1491 op amps operate on all  
single and split supplies with a total voltage of 2V to 44V  
drawing only 40µA of quiescent current per amplifier. These  
amplifiersarereversesupplyprotected;theydrawnocurrent  
for reverse supply up to 18V. The input range of the LT1490/  
LT1491includesbothsuppliesandtheoutputswingstoboth  
supplies. Unlike most micropower op amps, the LT1490/  
LT1491 can drive heavy loads; their rail-to-rail outputs drive  
20mA.TheLT1490/LT1491areunity-gainstableanddriveall  
capacitive loads up to 10,000pF when optional 0.22µF and  
150compensation is used.  
Rail-to-Rail Input and Output  
Single Supply Input Range: 0.4V to 44V  
Micropower: 50µA/Amplifier Max  
Specified on 3V, 5V and ±15V Supplies  
High Output Current: 20mA  
Output Drives 10,000pF with Output Compensation  
Reverse Battery Protection to 18V  
No Supply Sequencing Problems  
High Voltage Gain: 1500V/mV  
High CMRR: 98dB  
No Phase Reversal  
Gain Bandwidth Product: 200kHz  
The LT1490/LT1491 have a unique input stage that oper-  
ates and remains high impedance when above the positive  
supply. The inputs take 44V both differential and common  
mode even when operating on a 3V supply. Built-in resis-  
tors protect the inputs for faults below the negative supply  
upto22V.Thereisnophasereversaloftheoutputforinputs  
22V below Vor 44V above V, independent of V+.  
U
APPLICATIONS  
Battery- or Solar-Powered Systems  
Portable Instrumentation  
Sensor Conditioning  
Supply Current Sensing  
The LT1490 dual op amp is available in the 8-pin SO and  
PDIPpackages. ThequadLT1491isavailableinthe14-pin  
Battery Monitoring  
Micropower Active Filters  
4mA to 20mA Transmitters  
SO and PDIP packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Battery Monitor  
R
R
S
A
0.2Ω  
2k  
Q1  
2N3904  
CHARGER  
VOLTAGE  
+
A
R
I
A
'
BATT  
1/4 LT1491  
2k  
C
LOGIC  
1/4 LT1491  
+
R
B
Q2  
2N3904  
2k  
LOGIC HIGH (5V) = CHARGING  
LOGIC LOW (0V) = DISCHARGING  
+
B
R
B
'
1/4 LT1491  
2k  
LOAD  
+
D
+
R
G
V
1/4 LT1491  
OUT  
10k  
V
= 12V  
BATT  
S1  
10k  
90.9k  
V
V
=
OUT  
OUT  
S1 = OPEN, GAIN = 1  
S1 = CLOSED, GAIN = 10  
R
= R  
A
S
B
I
=
AMPS  
BATT  
1490/91 TA01  
(R )(R /R )(GAIN) GAIN  
V
= 5V, 0V  
S
G
A
1
LT1490/LT1491  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V+ to V) .............................. 44V  
Input Differential Voltage ......................................... 44V  
Input Current ...................................................... ±25mA  
Output Short-Circuit Duration (Note 1) .........Continuous  
Operating Temperature Range ................ 40°C to 85°C  
Junction Temperature........................................... 150°C  
Specified Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
TOP VIEW  
ORDER PART  
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
+
NUMBER  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V
LT1490CMS8  
LT1490CN8  
LT1490CS8  
A
B
D
C
OUT B  
–IN B  
+IN B  
12 +IN D  
A
LT1491CN  
LT1491CS  
+
V
11  
V
B
V
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
– IN C  
OUT C  
MS8 PACKAGE  
8-LEAD MSOP  
N8 PACKAGE  
8-LEAD PDIP  
MS8 PART MARKING  
LTBB  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N PACKAGE  
S PACKAGE  
14-LEAD PDIP 14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 110°C/ W (N)  
TJMAX = 150°C, θJA = 150°C/ W (S)  
S8 PART MARKING  
1490  
TJMAX = 150°C, θJA = 250°C/ W (MS8)  
JMAX = 150°C, θJA = 130°C/ W (N8)  
JMAX = 150°C, θJA = 190°C/ W (S8)  
T
T
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = half supply, TA = 25°C, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
LT1490 N Package  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
220  
800  
1000  
1100  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1490 S Package  
220  
300  
350  
950  
1200  
1300  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1491 N Package  
1100  
1350  
1450  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1490CMS8 Package, LT1491 S Package  
1450  
1650  
1750  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
Input Offset Voltage Drift  
Input Offset Current  
0°C T 70°C (Note 6)  
2
4
µV/°C  
A
I
I
0.2  
0.8  
0.8  
nA  
µA  
OS  
V
= 44V (Note 3)  
CM  
Input Bias Current  
4
4
0.1  
8
10  
nA  
µA  
nA  
B
V
= 44V (Note 3)  
CM  
V = 0V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 1kHz  
1
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
50  
nV/Hz  
pA/Hz  
i
n
f = 1kHz  
0.03  
2
LT1490/LT1491  
ELECTRICAL CHARACTERISTICS  
VS = 3V, 0V; VS = 5V, 0V; VCM = VOUT = half supply, TA = 25°C, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
Input Resistance  
Differential  
6
4
17  
11  
MΩ  
MΩ  
IN  
Common Mode, V = 0V to 44V  
CM  
C
Input Capacitance  
4.6  
pF  
V
IN  
Input Voltage Range  
0
44  
CMRR  
Common Mode Rejection Ratio  
(Note 3)  
V
V
= 0V to V – 1V  
84  
80  
98  
98  
dB  
dB  
CM  
CM  
CC  
= 0V to 44V  
A
Large-Signal Voltage Gain  
V = 3V, V = 500mV to 2.5V, R = 10k  
200  
133  
100  
1500  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V = 5V, V = 500mV to 4.5V, R = 10k  
400  
250  
200  
1500  
V/mV  
V/mV  
V/mV  
S
O
L
0°C T 70°C  
A
40°C T 85°C  
A
V
V
Output Voltage Swing Low  
V = 3V, No Load  
22  
50  
mV  
mV  
OL  
OH  
S
V = 3V, I  
= 5mA  
250  
450  
S
SINK  
V = 5V, No Load  
22  
250  
330  
50  
500  
500  
mV  
mV  
mV  
S
V = 5V, I  
= 5mA  
= 10mA  
S
SINK  
SINK  
V = 5V, I  
S
Output Voltage Swing High  
V = 3V, No Load  
2.95  
2.55  
2.978  
2.6  
V
V
S
V = 3V, I  
S
= 5mA  
SOURCE  
V = 5V, No Load  
4.95  
4.30  
4.978  
4.6  
V
V
S
V = 5V, I  
= 10mA  
S
SOURCE  
I
Short-Circuit Current (Note 1)  
V = 3V, Short to GND  
10  
10  
15  
30  
mA  
mA  
SC  
S
V = 3V, Short to V  
S
CC  
V = 5V, Short to GND  
15  
15  
25  
30  
mA  
mA  
S
V = 5V, Short to V  
S
CC  
PSRR  
Power Supply Rejection Ratio  
Minimum Operating Supply Voltage  
Reverse Supply Voltage  
V = 2.5V to 12.5V, V = V = 1V  
84  
98  
2
dB  
V
S
CM  
O
2.5  
I = 100µA per Amplifier  
S
18  
27  
40  
V
I
Supply Current per Amplifier  
(Note 4)  
50  
55  
µA  
µA  
S
GBW  
SR  
Gain Bandwidth Product  
(Note 3)  
f = 1kHz  
110  
100  
90  
180  
kHz  
kHz  
kHz  
0°C T 70°C  
A
40°C T 85°C  
A
Slew Rate  
(Note 5)  
A = 1, R = ∞  
0.035  
0.031  
0.030  
0.06  
V/µs  
V/µs  
V/µs  
V
L
0°C T 70°C  
A
40°C T 85°C  
A
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
LT1490 N, S Package  
250  
1200  
1400  
1500  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1491 N Package  
350  
400  
1250  
1500  
1600  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
LT1490CMS8 Package, LT1491 S Package  
1600  
1850  
1950  
µV  
µV  
µV  
0°C T 70°C  
A
40°C T 85°C  
A
3
LT1490/LT1491  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3
MAX  
6
UNITS  
µV/°C  
nA  
Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
0°C T 70°C (Note 6)  
A
I
I
0.2  
4
0.8  
8
OS  
B
nA  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
0.1Hz to 10Hz  
f = 1kHz  
1
µV  
P-P  
e
50  
0.03  
nV/Hz  
pA/Hz  
n
i
n
f = 1kHz  
R
Differential  
Common Mode, V = 15V to 14V  
6
17  
15000  
MΩ  
MΩ  
IN  
CM  
C
Input Capacitance  
4.6  
pF  
V
IN  
Input Voltage Range  
15  
80  
29  
CMRR  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
V
= 15V to 29V  
98  
dB  
CM  
A
VOL  
V = ±14V, R = 10k  
0°C T 70°C  
40°C T 85°C  
100  
75  
50  
250  
V/mV  
V/mV  
V/mV  
O
L
A
A
V
O
Output Voltage Swing  
No Load  
±14.9  
±14.5  
±14.5  
±14.978  
±14.750  
±14.670  
V
V
V
I
I
= ±5mA  
= ±10mA  
OUT  
OUT  
I
Short-Circuit Current (Note 1)  
Short to GND  
0°C T 70°C  
±20  
±15  
±10  
±25  
mA  
mA  
mA  
SC  
A
40°C T 85°C  
A
PSRR  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
V = ±1.25V to ±22V  
S
88  
98  
50  
dB  
I
70  
85  
µA  
µA  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f = 1kHz  
125  
110  
100  
200  
kHz  
kHz  
kHz  
0°C T 70°C  
A
40°C T 85°C  
A
A = 1, R = ∞, V = ±10V,  
0.0375  
0.07  
V/µs  
V
L
O
Measure at V = ±5V  
O
0°C T 70°C  
0.0330  
0.0300  
V/µs  
V/µs  
A
40°C T 85°C  
A
Note 3: V = 5V limits are guaranteed by correlation to V = 3V and  
V = ±15V tests.  
S
The  
denotes specifications which apply over the full operating  
S
S
temperature range.  
Note 4: V = 3V limits are guaranteed by correlation to V = 5V and  
Note 1: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage  
and how many amplifiers are shorted.  
S
S
V = ±15V tests.  
S
Note 5: Guaranteed by correlation to slew rate at V = ±15V and GBW  
S
Note 2: The LT1490/LT1491 are designed, characterized and expected  
to meet these extended temperature limits, but are not tested at 40°C  
and 85°C. Guaranteed I grade parts are available, consult factory.  
at V = 3V and V = ±15V tests.  
Note 6: This parameter is not 100% tested.  
S S  
4
LT1490/LT1491  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current  
vs Common Mode Voltage  
Supply Current vs Supply Voltage  
Minimum Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
300  
6000  
4000  
V
= 5V, 0V  
S
T
= 125°C  
A
T
200  
100  
2000  
= 25°C  
A
T
A
= –55°C  
T
= 25°C  
A
0
30  
20  
T
= –55°C  
T
= –55°C  
A
A
–100  
–200  
–300  
10  
0
T
= 25°C  
A
T
= 125°C  
T
= 125°C  
A
A
400  
–10  
0
5
10 15 20 25 30 35 40 45  
TOTAL SUPPLY VOLTAGE (V)  
0
1
3
4
5
4.0  
4.4  
5.2  
5.6  
44  
2
4.8  
TOTAL SUPPLY VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
1490/91 G01  
1490/91 G02  
1490/91 G03  
Output Saturation Voltage  
Output Saturation Voltage  
vs Input Overdrive  
Output Saturation Voltage  
vs Load Current (Output Low)  
vs Load Current (Output High)  
1
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= ±2.5V  
OD  
V = ±2.5V  
S
NO LOAD  
V
V
= ±2.5V  
OD  
S
S
= 30mV  
= 30mV  
T
= 125°C  
T
= 125°C  
A
A
0.1  
0.1  
T
= 25°C  
A
T
= 25°C  
A
T
A
= 55°C  
T
A
= 55°C  
OUTPUT HIGH  
OUTPUT LOW  
0.01  
0.01  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
0
10 20 30 40 50 60 70 80 90 100  
INPUT OVERDRIVE (mV)  
1490/91 G06  
SOURCING LOAD CURRENT (mA)  
SINKING LOAD CURRENT (mA)  
1490/90 G04  
1490/90 G05  
Noise Voltage Density  
vs Frequency  
0.1Hz to 10Hz Noise Voltage  
Input Noise Current vs Frequency  
80  
70  
60  
50  
40  
30  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= ±2.5V  
S
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
1
10  
100  
1k  
TIME (SEC)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1490/91 G08  
1490/91 G09  
1490 G07  
5
LT1490/LT1491  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Gain and Phase Shift  
vs Frequency  
Gain Bandwith Product  
vs Temperature  
Slew Rate vs Temperature  
0.12  
0.10  
0.08  
0.06  
0.04  
70  
60  
50  
40  
100  
80  
260  
240  
220  
200  
180  
160  
140  
120  
100  
V
= ±2.5V  
f = 1kHz  
S
RISING, V = ±15V  
60  
S
PHASE  
40  
30  
20  
20  
0
V
S
= ±15V  
RISING, V = ±1.5V  
S
GAIN  
FALLING, V = ±15V  
V
= ±3V  
S
S
10  
0
–20  
40  
60  
80  
–100  
FALLING, V = ±1.5V  
S
–10  
–20  
–30  
50  
75 100 125  
–50 –25  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
1
10  
100  
1000  
–50  
0
25  
–25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
1490/91 G10  
1490/91 G12  
1490/91 G11  
Gain Bandwidth Product and  
CMRR vs Frequency  
PSRR vs Frequency  
Phase Margin vs Supply Voltage  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
60  
50  
40  
30  
20  
10  
120  
80  
70  
V
= ±2.5V  
S
PHASE MARGIN  
100  
80  
60  
40  
20  
60  
50  
V
S
= ±15V  
POSITIVE SUPPLY  
40  
V
S
= ±1.5V  
30  
GAIN BANDWIDTH  
20  
NEGATIVE SUPPLY  
10  
0
R
= 10k  
L
–10  
–20  
f = 1kHz  
0
5
10 15 20 25 30 35 40 45  
TOTAL SUPPLY VOLTAGE (V)  
1
10  
100  
1
10  
FREQUENCY (kHz)  
100  
FREQUENCY (kHz)  
1490 G14  
1490/91 G15  
1490/91 G13  
Gain Bandwith Product and Phase  
Margin vs Load Resistance  
Output Impedance vs Frequency  
Channel Separation vs Frequency  
350  
300  
250  
200  
150  
100  
50  
80  
130  
120  
110  
100  
90  
10k  
1k  
V
= ±15V  
V
= ±2.5V  
V
A
= ±2.5V  
S
S
S
V
F
= –1  
R = R = 100k 70  
G
f = 1kHz  
A
A
= 100  
= 10  
V
V
PHASE MARGIN  
60  
50  
40  
30  
20  
100  
10  
80  
GAIN BANDWIDTH  
70  
A
= 1  
V
60  
1
50  
40  
0.1  
1
10  
LOAD RESISTANCE (k)  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1490/91 G16  
1490/91 G17  
1490/91 G18  
6
LT1490/LT1491  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Undistorted Output Swing  
vs Frequency  
Settling Time to 0.1%  
vs Output Step  
Capacitive Load Handling,  
Overshoot vs Capacitive Load  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
DISTORTION 1%  
V = 5V, 0V  
S
S
V
S
= ±15V  
I
= 170µA  
SOURCE  
A
= –1  
V
6
A
= 1  
V
4
2
0
A
V
= 10  
–2  
–4  
–6  
–8  
–10  
A
V
= 1  
A
V
= 2  
A
= 5  
V
V
S
= ±2.5V  
A
= –1  
V
A
= 1  
V
0
0
140  
0.1  
1
10  
100  
20 40 60 80 100 120  
160  
10  
100  
1000  
10000  
SETTLING TIME (µs)  
CAPACITIVE LOAD (pF)  
FREQUENCY (kHz)  
1490/91 G19  
1490/91 G21  
1490/91 F20  
Total Harmonic Distortion + Noise  
vs Frequency  
Total Harmonic Distortion + Noise  
vs Load Resistance  
Total Harmonic Distortion + Noise  
vs Output Voltage  
10  
1
10  
1
10  
1
V
V
V
= 3V, 0V  
= 2V  
CM  
= 50k  
V
A
V
= 3V TOTAL  
= 1  
R
V
= 10k  
CM  
f = 1kHz  
S
OUT  
S
V
L
= HALF SUPPLY  
P-P  
= 1.2V  
= 2V AT 1kHz  
IN  
P-P  
R
L
V
V
= ±1.5V  
= ±1V  
S
IN  
A
V
= 1  
= ±1.5V  
V
S
A
S
= –1  
V
V
= ±1.5V  
0.1  
0.1  
0.1  
V
V
= 3V, 0V  
IN  
S
= 0.5V TO 2.5V  
A
S
= –1  
0.01  
0.01  
0.001  
0.01  
V
A
= –1  
V
V
= 3V, 0V  
A
= 1  
V
V
V
= 3V, 0V  
IN  
S
A
= 1  
V
V
S
= 3V, 0V  
= 0.2V TO 2.2V  
0.001  
0.001  
0
1
2
3
0.01  
0.1  
1
10  
0.1  
1
10  
100  
OUTPUT VOLTAGE (V  
)
P-P  
FREQUENCY (kHz)  
LOAD RESISTANCE TO GROUND (k)  
1490/91 G24  
1490/91 G22  
1490/91 G23  
Open-Loop Gain  
Large-Signal Response  
Small-Signal Response  
VS = ±15V  
RL = 2k  
R
= 10k  
L
R
L = 50k  
VS = ±15V  
AV = –1  
V
S = ±15V  
1490/91 G27  
–10V  
0V  
10V  
1490/91 G25  
1490/91 G26  
AV = 1  
OUTPUT VOLTAGE (5V/DIV)  
7
LT1490/LT1491  
U
W U U  
APPLICATIONS INFORMATION  
Supply Voltage  
The inputs are protected against excursions as much as  
22V below Vby an internal 1k resistor in series with each  
input and a diode from the input to the negative supply.  
There is no output phase reversal for inputs up to 22V  
below V. There are no clamping diodes between the  
inputs and the maximum differential input voltage is 44V.  
The positive supply pin of the LT1490/LT1491 should be  
bypassed with a small capacitor (about 0.01µF) within an  
inch of the pin. When driving heavy loads an additional  
4.7µF electrolytic capacitor should be used. When using  
split supplies, the same is true for the negative supply pin.  
The LT1490/LT1491 are protected against reverse battery  
voltagesupto18V. Intheeventareversebatterycondition  
occurs, the supply current is less than 1nA.  
The LT1490/LT1491 can be shut down by removingV+. In  
this condition the input bias current is less than 0.1nA,  
even if the inputs are 44V above the negative supply.  
Output  
The output voltage swing of the LT1490/LT1491 is af-  
fected by input overdrive as shown in the typical perfor-  
mance curves. When monitoring voltages within 100mV  
of either rail, gain should be taken to keep the output from  
clipping.  
When operating the LT1490/LT1491 on total supplies of  
30V or more, the supply must not be brought up faster  
than 1µs. This is especially true if low ESR bypass capaci-  
tors are used. A series RLC circuit is formed from the  
supply lead inductance and the bypass capacitor. 5of  
resistance in the supply or the bypass capacitor will  
dampen the tuned circuit enough to limit the rise time.  
The output of the LT1490/LT1491 can be pulled up to 18V  
beyondV+ withlessthan1nAofleakagecurrent, provided  
that V+ is less than 0.5V.  
The normally reverse-biased substrate diode from the  
outputto Vwillcauseunlimitedcurrentstoflowwhenthe  
output is forced below V. If the current is transient and  
limited to 100mA, no damage will occur.  
Inputs  
The LT1490/LT1491 is internally compensated to drive at  
least 200pF of capacitance under any output loading  
conditions. A 0.22µF capacitor in series with a 150Ω  
resistor between the output and ground will compensate  
theseamplifiersforlargercapacitiveloads,upto10,000pF,  
at all output currents.  
The LT1490/LT1491 have two input stages, NPN and PNP  
(see the Simplified Schematic), resulting in three distinct  
operating regions as shown in the Input Bias Current vs  
Common Mode typical performance curve.  
For input voltages about 0.8V or more below V+, the PNP  
input stage is active and the input bias current is typically  
4nA. When the input voltage is about 0.5V or less from  
V+, the NPN input stage is operating and the input bias  
current is typically 18nA. Increases in temperature will  
cause the voltage at which operation switches from the  
PNPstagetotheNPNstagetomovetowardsV+. Theinput  
offset voltage of the NPN stage is untrimmed and is  
typically 600µV.  
Distortion  
There are two main contributors of distortion in op amps:  
output crossover distortion as the output transitions from  
sourcing to sinking current and distortion caused by  
nonlinear common mode rejection. Of course, if the op  
amp is operating inverting there is no common mode  
induced distortion. When the LT1490 switches between  
input stages there is significant nonlinearity in the CMRR.  
Lower load resistance increases the output crossover  
distortion, but has no effect on the input stage transition  
distortion.ForlowestdistortiontheLT1490/LT1491should  
be operated single supply, with the output always sourc-  
ing current and with the input voltage swing between  
ground and (V+ – 0.8V). See the Typical Performance  
Characteristics curves.  
A Schottky diode in the collector of each NPN transistor of  
the NPN input stage allows the LT1490/LT1491 to operate  
with either or both of its inputs above V+. At about 0.3V  
aboveV+ theNPNinputtransistorisfullysaturatedandthe  
input bias current is typically 4µA at room temperature.  
The input offset voltage is typically 700µV when operating  
above V+. The LT1490/LT1491 will operate with its inputs  
44V above Vregardless of V+.  
8
LT1490/LT1491  
U
W U U  
APPLICATIONS INFORMATION  
Gain  
mance in single supply applications where the load is  
returned to ground. The typical performance photo of  
Open-Loop Gain for various loads shows the details.  
The open-loop gain is almost independent of load when  
the output is sourcing current. This optimizes perfor-  
U
TYPICAL APPLICATIONS  
Square Wave Oscillator  
Optional Output Compensation for  
Capacitive Loads Greater Than 200pF  
59k  
5V  
100k  
100k  
+
V
IN  
+
1/2 LT1490  
1/2 LT1490  
V
OUT  
C
L
10,000pF  
R
50k  
C
1490/91 TA02  
0.22µF  
150Ω  
0.1µF  
1
2RC  
f =  
1490/91 TA04  
V
OUT  
= 5V WITH 5V SUPPLY  
P-P  
I
= 200µA  
S
AT V = 5V, R = 50k, C = 1nF  
S
OUTPUT IS 5kHz SLEW LIMITED TRIANGLE WAVE  
W
W
SI PLIFIED SCHE ATIC  
+
V
Q2  
Q1  
Q3  
Q22  
D1  
D2  
D3  
R1  
30k  
R2  
1k  
Q19  
Q4  
IN  
+IN  
Q17  
Q18  
Q20  
OUT  
Q7  
Q8  
Q11 Q12  
R3  
1k  
+
Q16  
2µA  
Q15  
Q9  
Q10  
Q13  
Q14  
Q21  
R4  
40k  
R5  
40k  
Q5  
Q6  
D4  
D5  
V
ONE AMPLIFIER  
1490/91 SS  
9
LT1490/LT1491  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
MS Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.10)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.006 ± 0.004  
(0.15 ± 0.10)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.10)  
0.192 ± 0.004  
(4.88 ± 0.10)  
0.021 ± 0.004  
(0.53 ± 0.01)  
0.012  
(0.30)  
0.025  
(0.65)  
TYP  
MSOP08 0595  
1
2
3
4
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.125  
0.005  
(0.127)  
MIN  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
0.325  
2
3
–0.015  
+0.635  
8.255  
N8 0695  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
10  
LT1490/LT1491  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.380)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
(
)
–0.381  
N14 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
13  
12  
11  
10  
9
8
14  
0.228 – 0.244  
0.150 – 0.157**  
(5.791 – 6.197)  
(3.810 – 3.988)  
1
2
3
4
5
6
7
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S14 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1490/LT1491  
U
TYPICAL APPLICATION  
Ring-Tone Generator  
60V  
R16  
100k  
R2  
47k  
Q1  
R3  
R5  
IRF628  
R6  
Q3  
2N3904  
10k  
100k  
10k  
C3  
C2  
0.047µF  
0.47µF  
R17  
620Ω  
Z1  
15V  
100k  
5
R9  
300k  
R11  
+
10k  
10  
9
3
2
7
D1  
1N4148  
1/4 LT1491  
+
+
1
6
8
R1  
33k  
1/4 LT1491  
1/4 LT1491  
4
13  
12  
R7  
16k  
C4  
0.068µF  
14  
C7  
R18  
1/4 LT1491  
100Ω  
+
R26  
2k  
R24  
420  
R23  
4.7k  
R12  
10k  
R14  
10k  
R4  
R8  
620k  
C1  
1µF  
11  
47µF  
R10  
620k  
1.6M  
SMOOTHING FILTER  
OPTO1*  
R25  
4.7k  
R13  
130k  
R15  
47k  
C5  
0.01µF  
CADENCE OSCILLATOR  
20Hz OSCILLATOR  
Q5  
2N3904  
UP TO  
LOAD TEN  
PHONES  
Z2  
15V  
R19  
620Ω  
Q4  
2N3906  
Q2  
IRF9620  
R21  
150Ω  
*LED OF OPTO1 ILLUMINATES WHEN THE PHONE IS OFF THE HOOK  
OFF HOOK DETECTION  
C6  
0.033µF  
POWER AMPLIFIER  
R20  
100k  
–180V  
1490/1491 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Input/Output Common Mode Includes Ground, 70µV V  
LT1078/LT1079  
Dual/Quad 55µA Max, Single Supply, Precision Op Amps  
OS(MAX)  
and 2.5µV/°C Drift (Max), 200kHz GBW, 0.07V/µs Slew Rate  
LTC1152  
Rail-to-Rail Input, Rail-to-Rail Output, Zero-Drift Amplifier  
High DC Accuracy, 10µV V , 100nV/°C, 1MHz GBW,  
OS(MAX)  
1V/µs Slew Rate, Supply Current 2.2mA (Max), Single Supply,  
Can Be Configured for C-LoadTM Operation  
LT1178/LT1179  
LT1366/LT1367  
Dual/Quad 17µA Max, Single Supply, Precison Op Amps  
Input/Output Common Mode Includes Ground, 70µV V  
OS(MAX)  
and 4µV/°C Drift (Max), 85kHz GBW, 0.04V/µs Slew Rate  
Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps  
475µV V , 500V/mV A , 400kHz GBW  
OS(MAX)  
VOL(MIN)  
C-Load is a trademark of Linear Technology Corporation.  
14901fa LT/TP 0897 4K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1996  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
12  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY