LT1529IQ#PBF [Linear]

LT1529 - 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown; Package: DD PAK; Pins: 5; Temperature Range: -40°C to 85°C;
LT1529IQ#PBF
型号: LT1529IQ#PBF
厂家: Linear    Linear
描述:

LT1529 - 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown; Package: DD PAK; Pins: 5; Temperature Range: -40°C to 85°C

输出元件 调节器
文件: 总12页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1529  
LT1529-3.3/LT1529-5  
3A Low Dropout Regulators  
with Micropower  
Quiescent Current  
and Shutdown  
U
FEATURES  
DESCRIPTIO  
The LT®1529/LT1529-3.3/LT1529-5 are 3A low dropout  
regulators with micropower quiescent current and shut-  
down. The devices are capable of supplying 3A of output  
current with a dropout voltage of 0.6V. Designed for use  
in battery-powered systems, the low quiescent current,  
50µA operating and 16µA in shutdown, make them an  
ideal choice. The quiescent current is well controlled; it  
does not rise in dropout as it does with many other low  
dropout PNP regulators.  
Dropout Voltage: 0.6V at IOUT = 3A  
Output Current: 3A  
Quiescent Current: 50µA  
No Protection Diodes Needed  
Adjustable Output from 3.8V to 14V  
3.3V and 5V Fixed Output Voltages  
Controlled Quiescent Current in Dropout  
Shutdown IQ = 16µA  
Stable with 22µF Output Capacitor  
Reverse Battery Protection  
Other features of the LT1529 /LT1529-3.3/LT1529-5 in-  
clude the ability to operate with small output capacitors.  
They are stable with 22µF on the output while most older  
devices require up to 100µF for stability. Small ceramic  
capacitors can be used, enhancing manufacturabiltiy.  
Alsotheinputmaybeconnectedtovoltageslowerthanthe  
output voltage, including negative voltages, without re-  
verse current flow from output to input. This makes the  
LT1529/LT1529-3.3/LT1529-5 ideal for backup power  
situations where the output is held high and the input is at  
ground or reversed. Under these conditions, only 16µA  
will flow from the OUTPUT pin to ground. The devices are  
available in 5-lead TO-220 and 5-lead DD packages.  
No Reverse Current  
Thermal Limiting  
U
APPLICATIO S  
High Efficiency Regulator  
Regulator for Battery-Powered Systems  
Post Regulator for Switching Supplies  
5V to 3.3V Logic Regulator  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Dropout Voltage  
0.6  
5V Supply with Shutdown  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
1
2
5V  
3A  
V
OUTPUT  
LT1529-5  
IN  
+
V
> 5.5V  
IN  
22µF  
SHDN SENSE  
GND  
3
V
SHDN  
(PIN 4) OUTPUT  
<0.25  
>2.8  
NC  
OFF  
ON  
ON  
LT1529 • TA01  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
OUTPUT CURRENT (A)  
LT1529 • TA02  
152935fb  
1
LT1529  
LT1529-3.3/LT1529-5  
W W W  
U
ABSOLUTE AXI U RATI GS (Note 1)  
Input Voltage ...................................................... ±15V*  
OUTPUT Pin Reverse Current .............................. 10mA  
SENSE Pin Current .............................................. 10mA  
ADJ Pin Current ................................................... 10mA  
SHDN Pin Input Voltage (Note 2) .............. 6.5V, – 0.6V  
SHDN Pin Input Current (Note 2) .......................... 5mA  
Output Short-Circuit Duration......................... Indefinite  
Storage Temperature Range ................ – 65°C to 150°C  
Operating Junction Temperature Range  
Commercial .......................................... 0°C to 125°C  
Industrial ......................................... 45°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
*
For applications requiring input voltage ratings greater than 15V, contact  
the factory.  
W U  
/O  
PACKAGE RDER I FOR ATIO  
FRONT VIEW  
FRONT VIEW  
ORDER PART  
ORDER PART  
NUMBER  
5
4
3
2
1
V
NUMBER  
IN  
5
4
3
2
1
V
IN  
SHDN  
GND  
SENSE/ADJ*  
OUTPUT  
SHDN  
TAB IS  
GND  
TAB IS  
GND  
GND  
SENSE/ADJ*  
OUTPUT  
LT1529CQ  
LT1529CT  
LT1529CQ-3.3  
LT1529CQ-5  
LT1529IQ  
LT1529CT-3.3  
LT1529CT-5  
LT1529IT  
Q PACKAGE  
5-LEAD PLASTIC DD PAK  
T PACKAGE  
5-LEAD PLASTIC TO-220  
LT1529IQ-3.3  
LT1529IQ-5  
LT1529IT-3.3  
LT1529IT-5  
*PIN 2 = SENSE FOR LT1529-3.3/LT1529-5  
= ADJ FOR LT1529  
*PIN 2 = SENSE FOR LT1529-3.3/LT1529-5  
= ADJ FOR LT1529  
TJMAX = 125°C, θJA 30°C/W  
TJMAX = 125°C, θJA 50°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the operating temperature range, otherwise specificatons are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Regulated Output Voltage  
(Note 4)  
LT1529-3.3  
V
= 3.8V, I  
= 1mA, T = 25°C  
3.250  
3.200  
3.300  
3.300  
3.350  
3.400  
V
V
IN  
OUT  
J
4.3V < V < 15V, 1mA < I  
< 3A  
OUT  
IN  
LT1529-5  
V
= 5.5V, I  
= 1mA, T = 25°C  
4.925  
4.850  
5.000  
5.000  
5.075  
5.150  
V
V
IN  
OUT  
J
6V < V < 15V, 1mA < I  
< 3A  
OUT  
IN  
LT1529 (Note 5)  
V
= 4.3V, I  
= 1mA, T = 25°C  
3.695  
3.640  
3.750  
3.750  
3.805  
3.860  
V
V
IN  
OUT  
J
4.8V < V < 15V, 1mA < I  
< 3A  
OUT  
IN  
Line Regulation  
Load Regulation  
LT1529-3.3  
LT1529-5  
V = 3.8V to 15V, I  
= 1mA  
= 1mA  
= 1mA  
1.5  
1.5  
1.5  
10  
10  
10  
mV  
mV  
mV  
IN  
OUT  
OUT  
OUT  
V = 5.5V to 15V, I  
IN  
LT1529 (Note 5)  
LT1529-3.3  
V = 4.3V to 15V, I  
IN  
I  
I  
= 1mA to 3A, V = 4.3V, T = 25°C  
= 1mA to 3A, V = 4.3V  
5
12  
20  
30  
mV  
mV  
LOAD  
LOAD  
IN  
IN  
J
LT1529-5  
I  
I  
= 1mA to 3A, V = 6V, T = 25°C  
= 1mA to 3A, V = 6V  
5
12  
20  
30  
mV  
mV  
LOAD  
LOAD  
IN  
J
IN  
LT1529 (Note 5)  
I  
I  
= 1mA to 3A, V = 4.8V, T = 25°C  
= 1mA to 3A, V = 4.8V  
5
12  
20  
30  
mV  
mV  
LOAD  
LOAD  
IN  
IN  
J
Dropout Voltage  
(Note 6)  
I
I
= 10mA, T = 25°C  
110  
200  
180  
250  
mV  
mV  
LOAD  
LOAD  
J
= 10mA  
I
I
= 100mA, T = 25°C  
= 100mA  
300  
400  
mV  
mV  
LOAD  
LOAD  
J
152935fb  
2
LT1529  
LT1529-3.3/LT1529-5  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the operating temperature range, otherwise specificatons are at TA = 25°C. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
(Note 6)  
I
I
I
I
I
I
= 700mA, T = 25°C  
= 700mA  
320  
430  
550  
550  
700  
750  
950  
mV  
mV  
mV  
mV  
mV  
mV  
LOAD  
LOAD  
J
= 1.5A, T = 25°C  
430  
600  
LOAD  
LOAD  
J
= 1.5A  
= 3A, T = 25°C  
LOAD  
LOAD  
J
= 3A  
GND Pin Current  
(Note 7)  
I
I
= 0mA, T = 25°C  
50  
400  
100  
µA  
µA  
LOAD  
LOAD  
J
= 0mA, T = 125°C (Note 8)  
J
I
I
= 100mA, T = 25°C  
0.6  
1.0  
1.0  
mA  
mA  
LOAD  
LOAD  
J
= 100mA, T = 125°C (Note 8)  
J
I
I
I
= 700mA  
= 1.5A  
= 3A  
5.5  
20  
80  
150  
1.20  
0.75  
12  
40  
160  
300  
2.8  
mA  
mA  
mA  
nA  
V
V
LOAD  
LOAD  
LOAD  
ADJ Pin Bias Current (Notes 5, 9)  
Shutdown Threshold  
T = 25°C  
V
V
J
= Off to On  
= On to Off  
OUT  
OUT  
0.25  
SHDN Pin Current (Note 10)  
Quiescent Current in Shutdown  
(Note 11)  
V
V
= 0V  
4.5  
15  
10  
30  
µA  
µA  
SHDN  
= V  
(Nominal) + 1V, V  
= 0V  
IN  
OUT  
SHDN  
Ripple Rejection  
V
– V  
= 1V (Avg), V  
= 0.5V  
,
50  
62  
dB  
IN  
OUT  
RIPPLE  
P-P  
f
= 120Hz, I  
= 1.5A  
RIPPLE  
LOAD  
Current Limit  
V
V
V
– V  
= V  
= 15V, V  
= 7V, T = 25°C  
(Nominal) + 1.5V, V  
5
4.7  
A
A
mA  
µA  
µA  
µA  
IN  
IN  
OUT  
OUT  
J
= 0.1V  
3.2  
OUT  
Input Reverse Leakage Current  
Reverse Output Current (Note 12)  
= 0V  
1.0  
IN  
OUT  
LT1529-3.3  
LT1529-5  
LT1529 (Note 6)  
V
V
V
= 3.3V, V = 0V  
16  
16  
16  
OUT  
OUT  
OUT  
IN  
= 5V, V = 0V  
IN  
= 3.8V, V = 0V  
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 7: GND pin current is tested with V = V  
(nominal) and a current  
OUT  
IN  
source load. This means that the device is tested while operating in its  
dropout region. This is the worst-case GND pin current. The GND pin  
current will decrease slightly at higher input voltages.  
Note 2: The SHDN pin input voltage rating is required for a low impedance  
source. Internal protection devices connected to the SHDN pin will turn on  
and clamp the pin to approximately 7V or 0.6V. This range allows the use  
of 5V logic devices to drive the pin directly. For high impedance sources or  
logic running on supply voltages greater than 5.5V, the maximum current  
driven into the SHDN pin must be limited to less than 5mA.  
Note 8: GND pin current will rise at T > 75°C. This is due to internal  
J
circuitry designed to compensate for leakage currents in the output  
transistor at high temperatures. This allows quiescent current to be  
minimized at lower temperatures, yet maintain output regulation at high  
temperatures with light loads. See quiescent current curve in typical  
performance characteristics.  
Note 3: The device is tested under pulse load conditions such that T = T .  
J
A
Note 4: Operating conditions are limited by maximum junction  
Note 9: ADJ pin bias current flows into the ADJ pin.  
temperature. The regulated output voltage specification will not apply for  
all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current the input voltage  
range must be limited.  
Note 5: The LT1529 is tested and specified with the ADJ pin connected to  
the OUTPUT pin.  
Note 10: SHDN pin current at V  
= 0V flows out of the SHDN pin.  
SHDN  
Note 11: Quiescent current in shutdown is equal to the sum total of the  
SHDN pin current (5µA) and the GND pin current (10µA).  
Note 12: Reverse output current is tested with the V pin grounded and  
the OUTPUT pin forced to the rated output voltage. This current flows into  
the OUTPUT pin and out of the GND pin.  
IN  
Note 6: Dropout voltage is the minimum input/output voltage required to  
maintain regulation at the specified output current. In dropout the output  
voltage will be equal to (V – V  
).  
IN  
DROPOUT  
152935fb  
3
LT1529  
LT1529-3.3/LT1529-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Dropout Voltage  
Guaranteed Dropout Voltage  
Quiescent Current  
250  
200  
150  
100  
50  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 6V  
A: I  
LOAD  
B: I  
LOAD  
C: I  
LOAD  
D: I  
LOAD  
= 3A  
E: I  
F: I  
= 100mA  
= 10mA  
IN  
L
LOAD  
LOAD  
R
=
= 1.5A  
= 700mA  
= 300mA  
0.8  
0.7  
0.6  
A
B
0.5  
0.4  
C
D
E
V
= OPEN  
SHDN  
0.3  
0.2  
0.1  
0
V
= 0V  
SHDN  
F
= TEST POINT  
0
50  
0
25  
50  
75 100 125  
25  
0
0.5  
1.5  
2.0  
2.5  
3.0  
25  
0
50  
75 100 125  
1.0  
50  
25  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
LT1529 • G03  
LT1529 • G01  
LT1529 • G02  
LT1529-3.3  
Quiescent Current  
LT1529-5  
Quiescent Current  
LT1529  
Quiescent Current  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
I
= 0  
I
= 0  
I = 0  
LOAD  
LOAD  
L
LOAD  
L
R
=
R
=
R = ∞  
L
V
= V  
ADJ  
OUT  
V
SHDN  
= OPEN (HIGH)  
V
= OPEN (HIGH)  
V
= OPEN (HIGH)  
SHDN  
SHDN  
50  
50  
50  
V
= 0V  
5
V
= 0V  
5
V
= 0V  
SHDN  
SHDN  
4
SHDN  
25  
25  
25  
0
0
0
0
1
2
3
6
7
8
9
10  
0
1
2
3
4
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1529 • G04  
LT1529 • G05  
LT1529 • G06  
LT1529-3.3  
Output Voltage  
LT1529-5  
Output Voltage  
LT1529  
ADJ Pin Voltage  
3.400  
5.100  
3.850  
I
= 1mA  
I
= 1mA  
I
= 1mA  
LOAD  
LOAD  
LOAD  
3.375  
3.350  
5.075  
5.050  
3.825  
3.800  
3.325  
3.300  
3.275  
3.250  
3.225  
5.025  
5.000  
4.975  
4.950  
4.925  
3.775  
3.750  
3.725  
3.700  
3.675  
3.200  
4.900  
3.650  
25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
–50  
25  
50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1529 • G07  
LT1529 • G08  
LT1529 • G09  
152935fb  
4
LT1529  
LT1529-3.3/LT1529-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LT1529-5  
GND Pin Current  
LT1529  
GND Pin Current  
LT1529-3.3  
GND Pin Current  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
T
= 25°C  
T
= 25°C  
T
= 25°C  
J
J
J
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
V
= V  
V
= V  
ADJ  
OUT  
SENSE  
OUT  
SENSE  
OUT  
*FOR V  
= 5V  
*FOR V  
= 3.3V  
*FOR V  
3.75V  
=
OUT  
OUT  
OUT  
R
I
= 10  
R
LOAD  
= 7.5Ω  
LOAD  
R
I
= 6.6Ω  
LOAD  
LOAD  
LOAD  
LOAD  
= 500mA*  
I
= 500mA*  
= 500mA*  
R
I
= 500Ω  
R
I
= 375Ω  
= 10mA*  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA*  
R
= 330Ω  
= 10mA*  
LOAD  
LOAD  
I
R
= 12.5Ω  
= 300mA*  
LOAD  
LOAD  
I
R
= 16.6Ω  
= 300mA*  
R
I
= 11Ω  
= 300mA*  
LOAD  
LOAD  
LOAD  
I
LOAD  
R
I
= 33Ω  
= 100mA*  
R
I
= 38Ω  
LOAD  
LOAD  
R
= 50Ω  
LOAD  
= 100mA*  
LOAD  
LOAD  
I
= 100mA*  
LOAD  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
4
5
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1529 • G10  
LT1529 • G11  
LT1529 • G12  
LT1529-3.3  
GND Pin Current  
LT1529  
GND Pin Current  
LT1529-5  
GND Pin Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
T
= 25°C  
J
T
= 25°C  
*FOR V  
= 3.3V  
R
J
J
OUT  
V
= V  
V
= V  
ADJ  
V
= V  
OUT  
SENSE  
OUT  
OUT  
SENSE  
R
I
= 1.7Ω  
LOAD  
LOAD  
R
= 1.25W  
= 3A*  
*FOR V  
= 5V  
*FOR V  
= 3.75V  
OUT  
LOAD  
LOAD  
OUT  
= 3A*  
= 1.1Ω  
LOAD  
I
I
= 3A*  
LOAD  
R
= 7.1Ω  
LOAD  
= 700mA*  
I
LOAD  
R = 4.7Ω  
LOAD  
= 700mA*  
LOAD  
R
= 5.3Ω  
= 700mA*  
LOAD  
LOAD  
I
I
R
I
= 2.5Ω  
= 1.5A*  
R
= 3.3Ω  
= 1.5A*  
R
LOAD  
= 2.2Ω  
= 1.5A*  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
1
2
8
9
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
0
3
4
5
6
7
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LT1529 • G13  
LT1529 • G14  
LT1529 • G15  
SHDN Pin Threshold  
(On-to-Off)  
SHDN Pin Threshold  
(Off-to-On)  
GND Pin Current  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
I
= 1mA  
V
V
V
= 3.75V (LT1529)  
= 3.3V (LT1529-3.3)  
= 5V (LT1529-5)  
LOAD  
IN  
IN  
IN  
I
= 3A  
LOAD  
80  
70  
60  
DEVICE IS OPERATING  
IN DROPOUT  
T
= 25°C  
J
I
= 1mA  
LOAD  
50  
40  
T
= 125°C  
J
T
= 50°C  
J
30  
20  
10  
0
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
– 50  
0
25  
TEMPERATURE (°C)  
–25  
0
0.5  
1.5  
2.0  
2.5  
3.0  
1.0  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
LT1529 • G17  
LT1529 • G18  
LT1529 • G16  
152935fb  
5
LT1529  
LT1529-3.3/LT1529-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
SHDN Pin Current  
SHDN Pin Input Current  
ADJ Pin Bias Current  
10  
9
8
7
6
5
4
3
2
1
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
25  
20  
V
= 0V  
V
= V  
= 3.75V  
OUT  
SHDN  
ADJ  
15  
10  
5
0
0
– 50  
0 25  
TEMPERATURE (°C)  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–25  
0
1
2
3
4
5
6
7
8
9
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
LT1529 • G19  
LT1529 • G21  
LT1529 • G20  
Reverse Output Current  
Current Limit  
Current Limit  
150  
125  
100  
75  
6
5
4
3
6
5
4
3
2
1
0
V
V
= 7V  
V
= 0V  
IN  
OUT  
OUT  
= 0V  
50  
25  
0
2
1
0
50  
TEMPERATURE (°C)  
100 125  
0
1
2
3
4
5
6
7
50  
TEMPERATURE (°C)  
100 125  
50 25  
0
25  
75  
50 25  
0
25  
75  
INPUT VOLTAGE (V)  
LT1529 • G22  
LT1529 • G23  
LT1529 • G24  
Reverse Output Current  
Ripple Rejection  
Ripple Rejection  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
62  
60  
I = 1.5A  
OUT  
T
= 25°C, V = 0V  
(V – V )AVG = 1V  
J
V
IN  
IN  
OUT  
= 0.5V  
V
= V  
(NOMINAL) + 1  
OUT  
= V  
IN  
V
I
OUT  
SENSE  
RIPPLE  
LOAD  
f = 120Hz  
P-P  
+ 50mV  
RIPPLE  
RMS  
(LT1529-3.3/LT1529-5)  
V
CURRENT FLOWS  
INTO DEVICE  
= 1.5A  
= V  
(LT1529)  
OUT  
ADJ  
58  
56  
54  
52  
50  
C
= 47µF  
OUT  
LT1529  
C
= 22µF  
OUT  
LT1529-3.3  
LT1529-5  
48  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
50  
25  
50  
75  
100 125  
25  
0
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LT1529 • G27  
LT1529 • G25  
LT1529 • G26  
152935fb  
6
LT1529  
LT1529-3.3/LT1529-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Load Regulation  
LT1529-5 Transient Response  
LT1529-5 Transient Response  
5
0
V
C
C
= 6V  
V
C
C
= 6V  
IN  
IN  
IN  
IN  
LT1529-5  
0.2  
0.1  
0.2  
0.1  
= 10µF  
= 3.3µF  
= 47µF  
= 22µF  
OUT  
OUT  
0
0
LT1529-3.3  
LT1529  
–5  
–10  
0.1  
0.2  
0.1  
0.2  
–15  
–20  
–25  
3
2
1
3
2
1
V
= V  
(NOMINAL) + 1V  
IN  
OUT  
I  
= 100mA to 3A  
= V  
OUT  
LOAD  
V
ADJ  
50  
100 125  
200 300  
600 700  
800 9001000  
50 25  
0
25  
75  
0
100  
400 500  
0
20 40 60  
120 140 160 180 200  
80 100  
TEMPERATURE (°C)  
TIME (µs)  
TIME (µs)  
LT1529 • G28  
LT1529 • G29  
LT1529 • G30  
U
U
U
PI FU CTIO S  
R
R
P
5
4
1
2
OUTPUT (Pin 1): OUTPUT Pin. The OUTPUT pin supplies  
power to the load. A minimum output capacitor of 22µF is  
required to prevent oscillations. Larger values will be  
required to optimize transient response for large load  
current deltas. See the Applications Information section  
for further information on output capacitance and reverse  
output characteristics.  
V
OUTPUT  
LT1529-5  
IN  
SHDN SENSE  
+
LOAD  
+
V
GND  
3
IN  
P
LT1529 • F01  
Figure 1. Kelvin Sense Connection  
SENSE (Pin 2): SENSE Pin. For fixed voltage versions of  
the LT1529 (LT1529-3.3, LT1529-5) the SENSE pin is the  
input to the error amplifier. Optimum regulation will be  
obtained at the point where the SENSE pin is connected to  
the output pin. For most applications the SENSE pin is  
connected directly to the OUTPUT pin at the regulator. In  
critical applications small voltage drops caused by the  
resistance (RP) of PC traces between the regulator and the  
load, which would normally degrade regulation, may be  
eliminated by connecting the SENSE pin to the OUTPUT  
pin at the load as shown in Figure 1 (Kelvin Sense Connec-  
tion). Note that the voltage drop across the external PC  
traces will add to the dropout voltage of the regulator. The  
SENSE pin bias current is 15µA at the nominal regulated  
output voltage. This pin is internally clamped to 0.6V  
(one VBE).  
pin is internally clamped to 6V and 0.6V (one VBE). This  
pin has a bias current of 150nA which flows into the pin.  
See Bias Current curve in the Typical Performance Char-  
acteristics.TheADJpinreferencevoltageisequalto3.75V  
referenced to ground.  
SHDN (Pin 4): Shutdown Pin. This pin is used to put the  
device into shutdown. In shutdown the output of the  
device is turned off. This pin is active low. The device will  
be shut down if the SHDN pin is actively pulled low. The  
SHDNpincurrentwiththepinpulledtogroundwillbe6µA.  
The SHDN pin is internally clamped to 7V and 0.6V (one  
VBE). This allows the SHDN pin to be driven directly by 5V  
logicorbyopen-collectorlogicwithapull-upresistor. The  
pull-up resistor is only required to supply the leakage  
current of the open-collector gate, normally several mi-  
croamperes. Pull-up current must be limited to a maxi-  
ADJ (Pin 2): Adjust Pin. For the LT1529 (adjustable  
version) the ADJ pin is the input to the error amplifier. This  
mum of 5mA. A curve of SHDN pin input current as a  
152935fb  
7
LT1529  
LT1529-3.3/LT1529-5  
U
U
U
PI FU CTIO S  
include a bypass capacitor in battery-powered circuits. A  
bypass capacitor in the range of 1µF to 10µF is sufficient.  
The LT1529 is designed to withstand reverse voltages on  
the VIN pin with respect to ground and OUTPUT pin. In the  
case of a reversed input, which can happen if a battery is  
plugged in backwards, the LT1529 will act as if there is a  
diode in series with its input. There will be no reverse  
current flow into the LT1529 and no reverse voltage will  
appear at the load. The device will protect both itself and  
the load.  
function of voltage appears in the Typical Performance  
Characteristics. If the SHDN pin is not used it can be left  
open circuit. The device will be active, output on, if the  
SHDN pin is not connected.  
VIN (Pin 5): Input Pin. Power is supplied to the device  
through the VIN pin. The VIN pin should be bypassed to  
ground if the device is more than six inches away from the  
main input filter capacitor. In general, the output imped-  
ance of a battery rises with frequency so it is advisable to  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
5
4
1
2
The LT1529 is a 3A low dropout regulator with mi-  
cropower quiescent current and shutdown capable of  
supplying 3A of output current at a dropout voltage of  
0.6V. The device operates with very low quiescent current  
(50µA). In shutdown the quiescent current drops to only  
16µA. In addition to the low quiescent current the LT1529  
incorporates several protection features which make it  
ideal for use in battery-powered systems. The device is  
protectedagainstreverseinputvoltages.Inbatterybackup  
applications where the output can be held up by a backup  
batterywhentheinputispulledtoground,theLT1529acts  
like it has a diode in series with its output and prevents  
reverse current flow.  
V
V
OUTPUT  
LT1529  
OUT  
IN  
+
V
R2  
R1  
IN  
SHDN SENSE  
GND  
3
LT1529 • F02  
R2  
R1  
V
= 3.75V 1 +  
+ (I  
× R2)  
ADJ  
OUT  
ADJ  
(
)
V
I
= 3.75V  
= 150nA AT 25°C  
ADJ  
OUTPUT RANGE = 3.3V TO 14V  
Figure 2. Adjustable Operation  
Bias Current vs Temperature appear in the Typical Perfor-  
mance Characteristics. The reference voltage at the ADJ  
pin has a positive temperature coefficient of approxi-  
mately15ppm/°C.TheADJpinbiascurrenthasanegative  
temperature coefficient. These effects will tend to cancel  
each other.  
Adjustable Operation  
The adjustable version of the LT1529 has an output  
voltage range of 3.75V to 14V. The output voltage is set  
by the ratio of two external resistors as shown in Figure 2.  
The device servos the output voltage to maintain the  
voltage at the ADJ pin at 3.75V. The current in R1 is then  
equal to 3.75V/R1. The current in R2 is equal to the sum  
of the current in R1 and the ADJ pin bias current. The ADJ  
pinbiascurrent, 150nAat25°C, flowsthroughR2intothe  
ADJ pin. The output voltage can be calculated according  
to the formula in Figure 2. The value of R1 should be less  
than 400k to minimize errors in the output voltage caused  
by the ADJ pin bias current. Note that in shutdown the  
output is turned off and the divider current will be zero.  
Curves of ADJ Pin Voltage vs Temperature and ADJ Pin  
The adjustable device is specified with the ADJ pin tied to  
the OUTPUT pin. This sets the output voltage to 3.75V.  
Specificationsforoutputvoltagegreaterthan3.75Vwillbe  
proportional to the ratio of the desired output voltage to  
3.75V (VOUT/3.75V). For example: load regulation for an  
output current change of 1mA to 3A is 0.5mV typical at  
VOUT = 3.75V. At VOUT = 12V, load regulation would be:  
12V  
3.75V  
–0.5mV = –1.6mV  
) (  
(
)
152935fb  
8
LT1529  
LT1529-3.3/LT1529-5  
O U  
W
U
PPLICATI  
Thermal Considerations  
S I FOR ATIO  
A
tance. The thermal resistance for each application will be  
affectedbythermalinteractionswithothercomponentsas  
well as board size and shape. Some experimentation will  
be necessary to determine the actual value.  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
power dissipated by the device will be made up of two  
components:  
Table 1. Q Package, 5-Lead DD  
COPPER AREA  
TOPSIDE* BACKSIDE  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
1. Output current multiplied by the input/output voltage  
differential: IOUT • (VIN – VOUT), and  
BOARD AREA  
2500 sq. mm 2500 sq. mm 2500 sq. mm  
1000 sq. mm 2500 sq. mm 2500 sq. mm  
125 sq. mm 2500 sq. mm 2500 sq. mm  
* Device is mounted on topside.  
23°C/W  
25°C/W  
33°C/W  
2. Ground pin current multiplied by the input voltage:  
IGND • VIN .  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics.Powerdissipationwillbeequaltothesumofthetwo  
components listed above.  
T Package, 5-Lead TO-220  
Thermal Resistance (Junction-to-Case) = 2.5°C/W  
Calculating Junction Temperature  
The LT1529 series regulators have internal thermal limit-  
ing designed to protect the device during overload condi-  
tions. For continuous normal load conditions the maxi-  
mum junction temperature rating of 125°C must not be  
exceeded. It is important to give careful consideration to  
allsourcesofthermalresistancefromjunctiontoambient.  
Additional heat sources mounted nearby must also be  
considered.  
Example: Given an output voltage of 3.3V, an input voltage  
range of 4.5V to 5.5V, an output current range of 0mA to  
500mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
The power dissipated by the device will be equal to:  
IOUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX)  
)
where, IOUT(MAX) = 500mA  
For surface mount devices heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Experiments have shown that the  
heat spreading copper layer does not need to be electri-  
cally connected to the tab of the device. The PC material  
can be very effective at transmitting heat between the pad  
area, attached to the tab of the device, and a ground or  
power plane layer either inside or on the opposite side of  
theboard.AlthoughtheactualthermalresistanceofthePC  
material is high, the length/area ratio of the thermal  
resistor between layers is small. Copper board stiffeners  
and plated through-holes can also be used to spread the  
heat generated by power devices.  
VIN(MAX) = 5.5V  
IGND at (IOUT = 500mA, VIN = 5.5V) = 3.6mA  
so,  
P = 500mA • (5.5V – 3.3V) + (3.6mA • 5.5V)  
= 1.12W  
If we use a DD package, then the thermal resistance will be  
in the range of 23°C/W to 33°C/W depending on copper  
area. So the junction temperature rise above ambient will  
be approximately equal to:  
1.12W • 28°C/W = 31.4°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
The following tables list thermal resistances for each  
package. For the TO-220 package, thermal resistance is  
given for junction-to-case only since this package is  
usually mounted to a heat sink. Measured values of  
thermal resistance for several different copper areas are  
listed for the DD package. All measurements were taken in  
stillairon3/32"FR-4boardwith1-ozcopper.Thisdatacan  
be used as a rough guideline in estimating thermal resis-  
TJMAX = 50°C + 31.4°C = 81.4°C  
Output Capacitance and Transient Performance  
The LT1529 is designed to be stable with a wide range of  
output capacitors. The minimum recommended value is  
22µF with an ESR of 0.2or less. The LT1529 is a  
152935fb  
9
LT1529  
LT1529-3.3/LT1529-5  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
micropower device and output transient response will be  
a function of output capacitance. See the Transient Re-  
sponsecurvesintheTypicalPerformanceCharacteristics.  
Larger values of output capacitance will decrease the peak  
deviations and provide improved output transient re-  
sponse for larger load current deltas. Bypass capacitors,  
used to decouple individual components powered by the  
LT1529, will increase the effective value of the output  
capacitor.  
OUTPUT pin of an adjustable device, or the SENSE pin of  
a fixed voltage device, is pulled below ground, with the  
input open or grounded, current must be limited to less  
than 5mA.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled to  
ground, pulled to some intermediate voltage, or is left  
open circuit. Current flow back into the output will vary  
depending on the conditions. Many battery-powered cir-  
cuits incorporate some form of power management. The  
following information will help optimize battery life. Table  
2 summarizes the following information.  
Protection Features  
TheLT1529incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In addi-  
tion to the normal protection features associated with  
monolithic regulators, such as current limiting and ther-  
mal limiting, the device is protected against reverse input  
voltages, and reverse voltages from output to input.  
The reverse output current will follow the curve in Figure  
3 when the input is pulled to ground. This current flows  
through the device to ground. The state of the SHDN pin  
will have no effect on output current when the VIN pin is  
pulled to ground.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C.  
100  
T
= 25°C, V = 0V  
J
V
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= V  
OUT  
SENSE  
(LT1529-3.3/LT1529-5)  
V
CURRENT FLOWS  
INTO DEVICE  
= V  
(LT1529)  
OUT  
ADJ  
The input of the device will withstand reverse voltages of  
15V.Currentflowintothedevicewillbelimitedtolessthan  
1mA (typically less than 100µA) and no negative voltage  
will appear at the output. The device will protect both itself  
and the load. This provides protection against batteries  
that can be plugged in backwards.  
LT1529  
LT1529-3.3  
LT1529-5  
For fixed voltage versions of the device, the SENSE pin is  
internally clamped to one diode drop below ground. For  
the adjustable version of the device, the OUTPUT pin is  
internally clamped at one diode drop below ground. If the  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
LT1529 • F03  
Figure 3. Reverse Output Current  
Table 2. Fault Conditions  
V
PIN  
SHDN PIN  
Open (High)  
Grounded  
OUTPUT/SENSE PINS  
IN  
<V  
<V  
(Nominal)  
(Nominal)  
Forced to V  
Forced to V  
(Nominal)  
(Nominal)  
Reverse Output Current 15µA (See Figure 3), Input Current 1µA (See Figure 4)  
Reverse Output Current 15µA (See Figure 3), Input Current 1µA (See Figure 4)  
Reverse Output Current 15µA Peak (See Figure 3)  
Reverse Output Current 15µA (See Figure 3)  
Output Current = 0  
OUT  
OUT  
OUT  
OUT  
Open  
Open  
Open (High)  
Grounded  
> 1V  
> 1V  
0V  
0V  
0V  
0V  
0.8V  
0.8V  
>1.5V  
Open (High)  
Grounded  
Output Current = 0  
Open (High)  
Grounded  
Output Current = Short-Circuit Current  
15V < V < 15V  
Output Current = 0  
IN  
152935fb  
10  
LT1529  
LT1529-3.3/LT1529-5  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Insomeapplicationsitmaybenecessarytoleavetheinput  
to the LT1529 unconnected when the output is held high.  
This can happen when the LT1529 is powered from a  
rectified AC source. If the AC source is removed, then the  
input of the LT1529 is effectively left floating. The reverse  
output current also follows the curve in Figure 3 if the VIN  
pin is left open. The state of the SHDN pin will have no  
effect on the reverse output current when the VIN pin is  
floating.  
willtypicallydroptolessthan2µA(seeFigure4). Thestate  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
5
V
V
= 3.3V (LT1529-3.3)  
= 5V (LT1529-5)  
OUT  
OUT  
4
3
2
1
0
LT1529-3.3  
LT1529-5  
When the input of the LT1529 is forced to a voltage below  
its nominal output voltage and its output is held high, the  
outputcurrentwillfollowthecurveshowninFigure3.This  
can happen if the input of the LT1529 is connected to a  
discharged (low voltage) battery and the output is held up  
by either a backup battery or by a second regulator circuit.  
When the VIN pin is forced below the OUTPUT pin or the  
OUTPUT pin is pulled above the VIN pin, the input current  
0
1
2
3
4
5
INPUT VOLTAGE (V)  
LT1529 • F04  
Figure 4. Input Current  
U
PACKAGE DESCRIPTIO  
Q Package  
5-Lead Plastic DD Pak  
(LTC DWG # 05-08-1461)  
.060  
(1.524)  
TYP  
.390 – .415  
(9.906 – 10.541)  
.060  
(1.524)  
.165 – .180  
(4.191 – 4.572)  
.256  
(6.502)  
.045 – .055  
(1.143 – 1.397)  
15° TYP  
+.008  
–.004  
+0.203  
–0.102  
.004  
.060  
(1.524)  
.059  
(1.499)  
TYP  
.183  
(4.648)  
.330 – .370  
(8.382 – 9.398)  
0.102  
(
)
.095 – .115  
(2.413 – 2.921)  
.075  
(1.905)  
.067  
(1.702)  
BSC  
.050 ± .012  
(1.270 ± 0.305)  
.300  
(7.620)  
.013 – .023  
(0.330 – 0.584)  
+.012  
.143  
–.020  
.028 – .038  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 0502  
(0.711 – 0.965)  
(
)
–0.508  
TYP  
.420  
.276  
.420  
.080  
.350  
.325  
.205  
.320  
.067  
.565  
.565  
NOTE:  
1. DIMENSIONS IN INCH/(MILLIMETER)  
2. DRAWING NOT TO SCALE  
.090  
.042  
RECOMMENDED SOLDER PAD LAYOUT  
.090  
.042  
.067  
RECOMMENDED SOLDER PAD LAYOUT  
FOR THICKER SOLDER PASTE APPLICATIONS  
152935fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
11  
LT1529  
LT1529-3.3/LT1529-5  
U
PACKAGE DESCRIPTIO  
T Package  
5-Lead Plastic TO-220 (Standard)  
(LTC DWG # 05-08-1421)  
.165 – .180  
(4.191 – 4.572)  
.147 – .155  
(3.734 – 3.937)  
DIA  
.390 – .415  
(9.906 – 10.541)  
.045 – .055  
(1.143 – 1.397)  
.230 – .270  
(5.842 – 6.858)  
.570 – .620  
(14.478 – 15.748)  
.620  
(15.75)  
TYP  
.460 – .500  
(11.684 – 12.700)  
.330 – .370  
(8.382 – 9.398)  
.700 – .728  
(17.78 – 18.491)  
.095 – .115  
(2.413 – 2.921)  
SEATING PLANE  
.152 – .202  
(3.861 – 5.131)  
.155 – .195*  
(3.937 – 4.953)  
.260 – .320  
(6.60 – 8.13)  
.013 – .023  
(0.330 – 0.584)  
.067  
BSC  
.135 – .165  
(3.429 – 4.191)  
.028 – .038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0801  
RELATED PARTS  
PART NUMBER  
LT1120A  
LTC®1174  
LT1303  
DESCRIPTION  
COMMENTS  
125mA Low Dropout Regulator with 20µA I  
Includes 2.5V Reference and Comparator  
Over 90% Efficiency, Includes Comparator  
Includes Comparator, Good for EL Displays  
Uses Extremely Small External Components  
Q
High Efficiency 425mA Step-Down DC/DC Converter  
Micropower Step-Up DC/DC Converter  
LT1376  
500kHz 1.25A Step-Down DC/DC Converter  
LT1521  
300µA Low Dropout Regulator with 15µA I  
Lowest I Low Dropout Regulator  
Q
Q
152935fb  
LT/LT 0305 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
©LINEAR TECHNOLOGY CORPORATION 1995  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY