LT1613CS5#PBF [Linear]

LT1613 - 1.4MHz, Single Cell DC/DC Converter in 5-Lead SOT-23; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LT1613CS5#PBF
型号: LT1613CS5#PBF
厂家: Linear    Linear
描述:

LT1613 - 1.4MHz, Single Cell DC/DC Converter in 5-Lead SOT-23; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

转换器
文件: 总12页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1613  
1.4MHz, Sing le Ce ll DC/ DC  
Co nve rte r in 5-Le a d SOT-23  
U
DESCRIPTIO  
FEATURES  
Uses Tiny Capacitors and Inductor  
Internally Compensated  
Fixed Frequency 1.4MHz Operation  
The LT®1613 is the industrys first 5-lead SOT-23 current  
mode DC/DC converter. Intended for small, low power  
applications, it operates from an input voltage as low as  
1.1V and switches at 1.4MHz, allowing the use of tiny, low  
cost capacitors and inductors 2mm or less in height. Its  
small size and high switching frequency enables the  
complete DC/DC converter function to take up less than  
0.2 square inches of PC board area. Multiple output power  
supplies can now use a separate regulator for each output  
voltage, replacing cumbersome quasi-regulated ap-  
proaches using a single regulator and a custom trans-  
former.  
Operates with V as Low as 1.1V  
IN  
3V at 30mA from a Single Cell  
5V at 200mA from 3.3V Input  
15V at 60mA from Four Alkaline Cells  
High Output Voltage: Up to 34V  
Low Shutdown Current: <1µA  
Low VCESAT Switch: 300mV at 300mA  
Tiny 5-Lead SOT-23 Package  
U
A constant frequency, internally compensated current  
mode PWM architecture results in low, predictable output  
noise that is easy to filter. The high voltage switch on the  
LT1613 is rated at 36V, making the device ideal for boost  
converters up to 34V as well as for Single-Ended Primary  
Inductance Converter (SEPIC) and flyback designs. The  
device can generate 5V at up to 200mA from a 3.3V supply  
or 5V at 175mA from four alkaline cells in a SEPIC design.  
APPLICATIO S  
Digital Cameras  
Pagers  
Cordless Phones  
Battery Backup  
LCD Bias  
Medical Diagnostic Equipment  
Local 5V or 12V Supply  
External Modems  
The LT1613 is available in the 5-lead SOT-23 package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
PC Cards  
U
TYPICAL APPLICATIO  
L1  
4.7µH  
Efficiency Curve  
D1  
100  
95  
V
3.3V  
V
OUT  
5V  
200mA  
IN  
R1  
37.4k  
V
SW  
FB  
IN  
90  
V
= 4.2V  
= 3.5V  
IN  
+
+
C1  
15µF  
C2  
22µF  
85  
80  
75  
70  
65  
60  
55  
50  
LT1613  
V
IN  
SHDN  
SHDN  
GND  
V
IN  
= 2.8V  
R2  
12.1k  
V
IN  
= 1.5V  
L1: MURATA LQH3C4R7M24 OR SUMIDA CD43-4R7  
C1: AVX TAJA156M010  
C2: AVX TAJB226M006  
1613 TA01  
D1: MBR0520  
0
50 100 150 200 250 300 350 400  
LOAD CURRENT (mA)  
Figure 1. 3.3V to 5V 200mA DC/DC Converter  
1613 TA01a  
1
LT1613  
W W  
U W  
U
W
U
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
PACKAGE/ORDER INFORMATION  
ORDER PART NUMBER  
V Voltage .............................................................. 10V  
IN  
SW Voltage ................................................0.4V to 36V  
LT1613CS5  
TOP VIEW  
FB Voltage ..................................................... V + 0.3V  
IN  
SW 1  
GND 2  
FB 3  
5 V  
IN  
Current into FB Pin ............................................... ±1mA  
SHDN Voltage .......................................................... 10V  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range  
Commercial ............................................. 0°C to 70°C  
Extended Commercial (Note 2)........... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
4 SHDN  
S5 PART MARKING  
LTED  
S5 PACKAGE  
5-LEAD PLASTIC SOT-23  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Commercial grade 0°C to 70°C, V = 1.5V, VSHDN = V unless  
IN  
IN  
otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.1  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage  
0.9  
10  
V
1.205  
1.23  
27  
3
1.255  
80  
V
FB Pin Bias Current  
nA  
mA  
Quiescent Current  
V
= 1.5V  
4.5  
SHDN  
Quiescent Current in Shutdown  
V
V
SHDN  
= 0V, V = 2V  
= 0V, V = 5V  
IN  
0.01  
0.01  
0.5  
1.0  
µA  
µA  
SHDN  
IN  
Reference Line Regulation  
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
1.5V V 10V  
0.02  
1.4  
0.2  
1.8  
%/V  
MHz  
%
IN  
1.0  
82  
86  
(Note 3)  
550  
800  
300  
0.01  
mA  
mV  
µA  
V
Switch V  
I
SW  
= 300mA  
350  
1
CESAT  
Switch Leakage Current  
SHDN Input Voltage High  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
SW  
= 5V  
1
0.3  
V
V
SHDN  
= 3V  
25  
0.01  
50  
0.1  
µA  
µA  
V
SHDN  
= 0V  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT1613C is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
2
LT1613  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency vs  
Temperature  
Switch VCESAT vs Switch Current  
SHDN Pin Current vs V  
SHDN  
700  
600  
500  
400  
300  
200  
100  
0
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
50  
40  
30  
20  
10  
0
T
= 25°C  
T
= 25°C  
A
A
V
= 5V  
IN  
V
IN  
= 1.5V  
0
100 200 300 400 500 600 700  
SWITCH CURRENT (mA)  
–50  
–25  
0
25  
50  
75  
100  
0
1
2
3
4
5
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
1613 G01  
1613 G02  
1613 G03  
Current Limit vs Duty Cycle  
Feedback Pin Voltage  
1000  
1.25  
900  
1.24  
1.23  
1.22  
1.21  
1.20  
800  
70°C  
VOLTAGE  
700  
600  
500  
400  
300  
200  
25°C  
–40°C  
10  
20  
30  
40  
50  
60  
70  
80  
–50  
–25  
0
25  
50  
75  
100  
DUTY CYCLE (%)  
TEMPERATURE (°C)  
1613 G04  
1613 G05  
Switching Waveforms, Circuit of Figure 1  
VOUT  
100mV/DIV  
AC COUPLED  
V
SW  
5V/DIV  
ISW  
200mA/DIV  
ILOAD = 150mA  
200ns/DIV  
1613 G06  
3
LT1613  
U
U
U
PIN FUNCTIONS  
SW (Pin 1): Switch Pin. Connect inductor/diode here.  
SHDN (Pin 4): Shutdown Pin. Tie to 1V or more to enable  
Minimize trace area at this pin to keep EMI down.  
device. Ground to shut down.  
GND (Pin 2): Ground. Tie directly to local ground plane.  
V (Pin 5): Input Supply Pin. Must be locally bypassed.  
IN  
FB (Pin 3): Feedback Pin. Reference voltage is 1.23V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to VOUT = 1.23V(1 + R1/R2).  
W
BLOCK DIAGRAM  
V
IN  
V
IN  
5
R5  
R6  
40k  
40k  
1
SW  
V
OUT  
+
COMPARATOR  
A2  
A1  
R1  
DRIVER  
g
m
(EXTERNAL)  
FF  
S
Q3  
R
Q
R
FB  
C
+
RAMP  
GENERATOR  
Q1  
Q2  
x10  
Σ
FB  
3
C
+
C
R2  
(EXTERNAL)  
R3  
30k  
0.15Ω  
1.4MHz  
OSCILLATOR  
R4  
140k  
SHDN  
4
SHUTDOWN  
2
GND  
1613 • BD  
U
OPERATIO  
The LT1613 is a current mode, internally compensated,  
fixed frequency step-up switching regulator. Operation  
can be best understood by referring to the Block Diagram.  
Q1 and Q2 form a bandgap reference core whose loop is  
closed around the output of the regulator. The voltage  
drop across R5 and R6 is low enough such that Q1 and Q2  
50%) exceeds the V signal, comparator A2 changes  
C
state, resetting the flip flop and turning off the switch.  
More power is delivered to the output as switch current is  
increased. The output voltage, attenuated by external  
resistor divider R1 and R2, appears at the FB pin, closing  
the overall loop. Frequency compensation is provided  
internally by RC and CC. Transient response can be opti-  
mized by the addition of a phase lead capacitor CPL in  
parallel with R1 in applications where large value or low  
ESR output capacitors are used.  
do not saturate, even when V is 1V. When there is no  
IN  
load, FB rises slightly above 1.23V, causing V (the error  
C
amplifier’s output) to decrease. Comparator A2s output  
stays high, keepingswitchQ3intheoffstate. As increased  
output loading causes the FB voltage to decrease, A1s  
output increases. Switch current is regulated directly on a  
As the load current is decreased, the switch turns on for a  
shorter period each cycle. If the load current is further  
decreased, the converter will skip cycles to maintain  
outputvoltageregulation. IftheFBpinvoltageis increased  
significantly above 1.23V, the LT1613 will enter a low  
power state where quiescent current falls to approxi-  
mately 100µA.  
cycle-by-cycle basis by the V node. The flip flop is set at  
C
the beginning of each switch cycle, turning on the switch.  
When the summation of a signal representing switch  
current and a ramp generator (introduced to avoid  
subharmonic oscillations at duty factors greater than  
4
LT1613  
U
OPERATIO  
C3  
1µF  
LAYOUT  
L1A  
22µH  
V
IN  
4V TO  
7V  
The LT1613 switches current at high speed, mandating  
careful attention to layout for proper performance. You  
will not get advertised performance with careless layouts.  
Figure 2 shows recommended component placement for  
a boost (step-up) converter. Follow this closely in your  
PCB layout. Note the direct path of the switching loops.  
Input capacitor C1 must be placed close (<5mm) to the IC  
+
L1B  
22µH  
V
SW  
FB  
C1  
15µF  
IN  
D1  
LT1613  
R1  
100k  
V
OUT  
5V/150mA  
SHDN  
SHDN  
GND  
+
R2  
32.4k  
C2  
15µF  
C1, C2: AVX TAJA156M016  
C3: TAIYO YUDEN JMK325BJ226MM  
D1: MOTOROLA MBR0520  
1613 F03  
L1, L2: MURATA LQH3C220  
package. As little as 10mm of wire or PC trace from C to  
IN  
V will cause problems such as inability to regulate or  
oscillation.  
Figure 3. Single-Ended Primary Inductance Converter (SEPIC)  
Generates 5V from An Input Voltage Above or Below 5V  
IN  
The ground terminal of output capacitor C2 should tie  
closetoPin2oftheLT1613.Doingthis reduces dI/dtinthe  
ground copper which keeps high frequency spikes to a  
minimum. The DC/DC converter ground should tie to the  
PC board ground plane at one place only, to avoid intro-  
ducing dI/dt in the ground plane.  
L1B  
C3  
L1A  
+
C1  
V
IN  
V
OUT  
D1  
A SEPIC (single-ended primary inductance converter)  
schematic is shown in Figure 3. This converter topology  
produces a regulated output voltage that spans (i.e., can  
be higher or lower than) the output. Recommended com-  
ponent placement for a SEPIC is shown in Figure 4.  
+
1
5
4
C2  
2
3
SHUTDOWN  
VIAS TO  
GROUND  
PLANE  
R2  
R1  
GROUND  
L1  
+
1613 F04  
C1  
V
IN  
V
OUT  
D1  
Figure 4. Recommended Component Placement for SEPIC  
+
1
2
3
5
4
C2  
COMPONENT SELECTION  
Inductors  
SHUTDOWN  
VIAS TO  
GROUND  
PLANE  
Inductors used with the LT1613 should have a saturation  
current rating (where inductance is approximately 70% of  
zerocurrentinductance)ofapproximately0.5Aorgreater.  
DCR of the inductors should be 0.5or less. For boost  
converters, inductance should be 4.7µH for input voltage  
less than 3.3V and 10µH for inputs above 3.3V. When  
using the device as a SEPIC, either a coupled inductor or  
two separate inductors can be used. If using separate  
inductors, 22µH units are recommended for input voltage  
above 3.3V. Coupled inductors have a beneficial mutual  
inductance, so a 10µH coupled inductor results in the  
same ripple current as two 20µH uncoupled units.  
R2  
R1  
GROUND  
1613 F02  
Figure 2. Recommended Component Placement for Boost  
Converter. Note Direct High Current Paths Using Wide PCB  
Traces. Minimize Area at Pin 3 (FB). Use Vias to Tie Local  
Ground Into System Ground Plane. Use Vias at Location Shown  
to Avoid Introducing Switching Currents Into Ground Plane  
5
LT1613  
U
OPERATIO  
Table 1 lists several inductors that will work with the  
LT1613, although this is not an exhaustive list. There are  
many magnetics vendors whose components are suitable  
for use.  
lower ESR will result in lower output ripple.  
Ceramic capacitors can be used with the LT1613 provided  
loop stability is considered. A tantalum capacitor has  
some ESR and this causes an “ESR zero” in the regulator  
loop. This zero is beneficial to loop stability. The internally  
compensated LT1613 does not have an accessible com-  
pensation node, but other circuit techniques can be em-  
ployed to counteract the loss of the ESR zero, as detailed  
in the next section.  
Diodes  
ASchottkydiodeis recommendedforusewiththeLT1613.  
The Motorola MBR0520 is a very good choice. Where the  
input to output voltage differential exceeds 20V, use the  
MBR0530 (a 30V diode). If cost is more important than  
efficiency, the1N4148canbeused, butonlyatlowcurrent  
loads.  
Some capacitor types appropriate for use with the LT1613  
are listed in Table 2.  
Capacitors  
OPERATION WITH CERAMIC CAPACITORS  
The input bypass capacitor must be placed physically  
close to the input pin. ESR is not critical and in most cases  
an inexpensive tantalum is appropriate.  
Because the LT1613 is internally compensated, loop sta-  
bility must be carefully considered when choosing an  
output capacitor. Small, low cost tantalum capacitors  
have some ESR, which aids stability. However, ceramic  
capacitors are becoming more popular, having attractive  
characteristics such as near-zero ESR, small size and  
reasonable cost. Simply replacing a tantalum output ca-  
pacitorwithaceramicunitwilldecreasethephasemargin,  
in some cases to unacceptable levels. With the addition of  
a phase lead capacitor (CPL) and isolating resistor (R3),  
the LT1613 can be used successfully with ceramic output  
capacitors as described in the following figures.  
The choice of output capacitor is far more important. The  
quality of this capacitor is the greatest determinant of the  
output voltage ripple. The output capacitor must have  
enough capacitance to satisfy the load under transient  
conditions and it must shunt the switched component of  
current coming through the diode. Output voltage ripple  
results when this switched current passes through the  
finite output impedance of the output capacitor. The  
capacitor should have low impedance at the 1.4MHz  
switching frequency of the LT1613. At this frequency, the  
impedanceis usuallydominatedbythecapacitors equiva-  
lent series resistance (ESR). Choosing a capacitor with  
A boost converter, stepping up 2.5V to 5V, is shown in  
Figure 5. Tantalum capacitors are used for the input and  
output (the input capacitor is not critical and has little  
Table 1. Inductor Vendors  
VENDOR  
PHONE  
URL  
PART  
COMMENT  
Sumida  
(847) 956-0666  
www.sumida.com  
CLS62-22022  
CD43-220  
22µH Coupled  
22µH  
Murata  
(404) 436-1300  
(407) 241-7876  
www.murata.com  
LQH3C-220  
LQH3C-100  
LQH3C-4R7  
22µH, 2mm Height  
10µH  
4.7µH  
Coiltronics  
www.coiltronics.com  
CTX20-1  
20µH Coupled, Low DCR  
Table 2. Capacitor Vendors  
VENDOR  
Taiyo Yuden  
AVX  
PHONE  
URL  
PART  
COMMENT  
(408) 573-4150  
(803) 448-9411  
www.t-yuden.com  
www.avxcorp.com  
Ceramic Caps  
X5R Dielectric  
Ceramic Caps  
Tantalum Caps  
Murata  
(404) 436-1300  
www.murata.com  
Ceramic Caps  
6
LT1613  
U
OPERATIO  
effect on loop stability, as long as minimum capacitance  
requirements are met). The transient response to a load  
step of 50mA to 100mA is pictured in Figure 6. Note the  
“doubletrace,”duetotheESRofC2. Theloopis stableand  
settles in less than 100µs. In Figure 7, C2 is replaced by a  
10µF ceramic unit. Phase margin decreases drastically,  
resulting in a severely underdamped response. By adding  
R3 and CPL as detailed in Figure 8’s schematic, phase  
margin is restored, and transient response to the same  
load step is pictured in Figure 9. R3 isolates the device FB  
pin from fast edges on the VOUT node due to parasitic PC  
trace inductance.  
Figure 10’s circuit details a 5V to 12V boost converter,  
delivering up to 130mA. The transient response to a load  
step of 10mA to 130mA, without CPL, is pictured in  
Figure 11. Although the ringing is less than that of the  
previous example, the response is still underdamped and  
can be improved. After adding R3 and CPL, the improved  
transient response is detailed in Figure 12.  
L1  
10µH  
D1  
V
2.5V  
V
OUT  
5V  
IN  
+
V
SW  
FB  
C1  
15µF  
R1  
37.4k  
IN  
+
LT1613  
C2  
22µF  
SHDN  
SHDN  
GND  
R2  
12.1k  
Figure 13 shows a SEPIC design, converting a 3V to 10V  
input to a 5V output. The transient response to a load step  
of 20mA to 120mA, without CPL and R3, is pictured in  
Figure 14. After adding these two components, the im-  
proved response is shown in Figure 15.  
C1: AVX TAJA156M010R  
C2: AVX TAJA226M006R  
D1: MOTOROLA MBR0520  
L1: MURATA LQH3C100  
1613 F05  
Figure 5. 2.5V to 5V Boost Converter with “A”  
Case Size Tantalum Input and Output Capacitors  
L1  
10µH  
D1  
V
IN  
V
OUT  
2.5V  
5V  
C
330pF  
PL  
+
V
SW  
FB  
C1  
15µF  
IN  
VOUT  
20mV/DIV  
R1  
37.4k  
LT1613  
R3  
10k  
C2  
10µF  
AC COUPLED  
SHUTDOWN  
SHDN  
GND  
R2  
12.1k  
100mA  
LOAD CURRENT  
50mA  
C1: AVX TAJA156M010R  
C2: TAIYO YUDEN LMK325BJ106MN  
D1: MBR0520  
L1: MURATA LQH3C100K04  
200µs/DIV  
1613 F06  
1613 F08  
Figure 6. 2.5V to 5V Boost Converter Transient  
Response with 22µF Tantalum Output Capacitor.  
Apparent Double Trace on VOUT Is Due to Switching  
Frequency Ripple Current Across Capacitor ESR  
Figure 8. 2.5V to 5V Boost Converter with Ceramic  
Output Capacitor. CPL Added to Increase Phase Margin,  
R3 Isolates FB Pin from Fast Edges  
VOUT  
20mV/DIV  
VOUT  
20mV/DIV  
AC COUPLED  
AC COUPLED  
100mA  
50mA  
100mA  
50mA  
LOAD CURRENT  
LOAD CURRENT  
200µs/DIV  
1613 F07  
200µs/DIV  
1613 F09  
Figure 7. 2.5V to 5V Boost Converter with  
10µF Ceramic Output Capacitor, No CPL  
Figure 9. 2.5V to 5V Boost Converter with 10µF Ceramic  
Output Capacitor, 330pF CPL and 10k in Series with FB Pin  
7
LT1613  
U
OPERATIO  
L1  
10µH  
C3  
1µF  
L1  
22µH  
D1  
V
12V  
130mA  
OUT  
V
V
IN  
3V TO  
10V  
IN  
5V  
C
PL  
L2  
22µH  
+
C
330pF  
D1  
V
SW  
FB  
PL  
200pF  
C1  
22µF  
+
IN  
V
SW  
FB  
C1  
22µF  
IN  
R1  
107k  
LT1613  
R3  
10k  
C2  
4.7µF  
LT1613  
R3  
10k  
SHUTDOWN  
SHDN  
V
OUT  
5V  
SHUTDOWN  
SHDN  
GND  
R2  
12.3k  
R1  
37.4k  
GND  
R2  
12.1k  
C2  
10µF  
C1: AVX TAJB226M010  
C2: TAIYO YUDEN EMK325BJ475MN  
D1: MOTOROLA MBR0520  
C1: AVX TAJB226M010  
C2: TAIYO YUDEN LMK325BJ106MN  
C3: TAIYO YUDEN LMK212BJ105MG  
D1: MOTOROLA MBR0520  
1613 F10  
L1: MURATA LQH3C100  
1613 F13  
L1, L2: MURATA LQH3C220  
Figure 10. 5V to 12V Boost Converter with 4.7µF Ceramic  
Output Capacitor, CPL Added to Increase Phase Margin  
Figure 13. 5V Output SEPIC with Ceramic  
Output Capacitor. CPL Adds Phase Margin  
VOUT  
100mV/DIV  
AC COUPLED  
V
OUT  
50mV/DIV  
AC COUPLED  
130mA  
10mA  
120mA  
20mA  
LOAD CURRENT  
LOAD CURRENT  
200µs/DIV  
1613 F11  
200µs/DIV  
1613 F14  
Figure 11. 5V to 12V Boost Converter  
with 4.7µF Ceramic Output Capacitor  
Figure 14. 5V Output SEPIC with 10µF  
Ceramic Output Capacitor. No CPL. V = 4V  
IN  
VOUT  
VOUT  
50mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
130mA  
10mA  
120mA  
20mA  
LOAD CURRENT  
LOAD CURRENT  
200µs/DIV  
1613 F12  
200µs/DIV  
1613 F15  
Figure 12. 5V to 12V Boost Converter with 4.7µF  
Ceramic Output Capacitor and 200pF Phase-Lead  
Capacitor CPL and 10k in Series with FB Pin  
Figure 15. 5V Output SEPIC with 10µF Ceramic Output  
Capacitor, 330pF CPL and 10k in Series with FB Pin  
8
LT1613  
U
OPERATIO  
time required to reach final value increases to 1.7ms. In  
Figure 19, CS is increased to 33nF. Input current does not  
exceed the steady-state current the device uses to supply  
power to the 50load. Start-up time increases to 4.3ms.  
CS can be increased further for an even slower ramp, if  
desired.  
START-UP/SOFT-START  
When the LT1613 SHDN pin voltage goes high, the device  
rapidly increases the switch current until internal current  
limit is reached. Input current stays at this level until the  
output capacitor is charged to final output voltage. Switch  
current can exceed 1A. Figure 16s oscillograph details  
start-up waveforms of Figure 17’s SEPIC into a 50load  
without any soft-start. The output voltage reaches final  
value in approximately 200µs, while input current reaches  
400mA. Switch current in a SEPIC is 2x the input current,  
so the switch is conducting approximately 800mA peak.  
VOUT  
2V/DIV  
IIN  
200mA/DIV  
Soft-start reduces the inrush current by taking more time  
to reach final output voltage. A soft-start circuit consisting  
of Q1, RS1, RS2 and CS1 as shown in Figure 17 can be used  
to limit inrush current to a lower value. Figure 18 pictures  
VOUT and input current with RS2 of 33kand CS of 10nF.  
Input current is limited to a peak value of 200mA as the  
V
S
5V/DIV  
500µs/DIV  
1613 F18  
Figure 18. Soft-Start Components in Figure 17’s SEPIC  
Reduces Inrush Current. CSS = 10nF, RLOAD = 50Ω  
VOUT  
VOUT  
2V/DIV  
2V/DIV  
IIN  
IIN  
200mA/DIV  
200mA/DIV  
V
SHDN  
V
S
5V/DIV  
5V/DIV  
200µs/DIV  
1613 F16  
1ms/DIV  
1613 F18  
Figure 16. Start-Up Waveforms of  
Figure 17’s SEPIC Into 50Load  
Figure 19. Increasing CS to 33nF Further  
Reduces Inrush Current. RLOAD = 50Ω  
C3  
1µF  
L1  
22µH  
V
IN  
4V  
+
C1  
L2  
22µH  
C
330pF  
D1  
PL  
22µF  
V
SW  
FB  
IN  
SOFT-START COMPONENTS  
LT1613  
R
R3  
10k  
S1  
33k  
V
OUT  
V
SHDN  
S
5V  
R1  
37.4k  
Q1  
2N3904  
GND  
R2  
12.1k  
R
LOAD  
C
10nF/  
33nF  
S
R
33k  
S2  
C2  
10µF  
1613 F17  
C1: AVX TAJB226M006  
C2: TAIYO YUDEN LMK325BJ106MN  
C3: TAIYO YUDEN LMK212BJ105MG  
D1: MOTOROLA MBR0520  
L1, L2: MURATA LQH3C220  
Figure 17. 5V SEPIC with Soft-Start Components  
9
LT1613  
U
TYPICAL APPLICATIO S  
4-Cell to 5V SEPIC DC/DC Converter  
C3  
1µF  
L1  
22µH  
D1  
6.5V TO 4V  
V
5V  
175mA  
OUT  
+
V
SW  
FB  
C1  
15µF  
IN  
L2  
22µH  
LT1613  
374k  
121k  
4-CELL  
+
C2  
22µF  
SHDN  
SHDN  
GND  
L1, L2: MURATA LQH3C220  
C3: AVX 1206YG105 CERAMIC  
D1: MBR0520  
1613 • TA03  
4-Cell to 15V/30mA DC/DC Converter  
L1  
10µH  
D1  
Efficiency  
V
IN  
V
OUT  
15V/30mA  
3.5V TO  
8V  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 6.5V  
IN  
+
V
SW  
FB  
C1  
22µF  
IN  
1nF  
10k  
R1  
137k  
1%  
+
LT1613  
V = 5V  
IN  
C2  
4.7µF  
V
= 3.6V  
IN  
SHDN  
SHDN  
GND  
R2  
12.1k  
C1: AVX TAJB226M016  
C2: AVX TAJA475M025  
D1: MOTOROLA MBR0520  
L1: MURATA LQH3C100  
1613 TA04  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
1613 TA04a  
3.3V to 8V/70mA, 8V/5mA, 24V/5mA TFT LCD Bias Supply Uses All Ceramic Capacitors  
D2  
V
OFF  
8V  
5mA  
1µF  
D3  
V
ON  
24V  
5mA  
0.22µF  
0.22µF  
0.22µF: TAIYO YUDEN EMK212BJ224MG  
1µF  
1µF  
D4  
1µF: TAIYO YUDEN LMK212BJ105MG  
4.7µF: TAIYO YUDEN LMK316BJ475ML  
D1: MOTOROLA MBRO520  
0.22µF  
D2, D3, D4: BAT54S  
L1: SUMIDA CDRH5D185R4  
L1  
D1  
5.4µH  
V
IN  
3.3V  
AV  
DD  
8V  
70mA  
V
IN  
SW  
274k  
LT1613  
C1  
C2  
4.7µF  
4.7µF  
SHDN  
FB  
GND  
48.7k  
1613 TA05  
10  
LT1613  
U
TYPICAL APPLICATIO S  
4-Cell to 5V/50mA, 12V/10mA, 15V/10mA Digital Camera Power Supply  
D3  
D2  
D1  
15V/10mA  
12V/10mA  
5V/50mA  
C1: TAIYO YUDEN JMK316BJ106ML  
C2, C3, C4: TAIYO YUDEN EMK212BJ105MG  
C5: TAIYO YUDEN JMK212BJ475MG  
D1: MOTOROLA MBR0520  
2
5
C3  
1µF  
D2, D3: BAT54  
T1: COILCRAFT CCI8245A  
(847) 639-6400  
C4  
1µF  
V
IN  
7V TO 3.6V  
T1  
6
3
4
C5  
4.7µF  
1
C1  
10µF  
C2  
1µF  
V
SW  
270pF  
102k  
IN  
LT1613  
SHDN  
SHUTDOWN  
FB  
GND  
33.2k  
1613 TA07  
4-Cell to 5V/50mA, 15V/10mA, 7.5V/10mA Digital Camera Power Supply  
D2  
15V/10mA  
C1: TAIYO YUDEN JMK316BJ106ML  
C2, C3, C4: TAIYO YUDEN EMK212BJ105MG  
C5: TAIYO YUDEN JMK212BJ475MG  
D1: MOTOROLA MBR0520  
2
5
C3  
1µF  
D1  
D2, D3: BAT54  
5V/50mA  
T1: COILCRAFT CCI8244A  
(847) 639-6400  
C5  
4.7µF  
V
IN  
7V TO 3.6V  
T1  
6
3
4
C4  
1µF  
D3  
1
–7.5V/10mA  
C1  
10µF  
C2  
1µF  
V
IN  
SW  
270pF  
LT1613  
SHDN  
102k  
SHUTDOWN  
FB  
GND  
33.2k  
1613 TA08  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1613  
U
TYPICAL APPLICATIONS  
Li-Ion to 16V/20mA Step-Up DC/DC Converter  
L1  
2.2µH  
D1  
V
IN  
2.7V  
TO 4.5V  
+
V
SW  
FB  
C1  
4.7µF  
IN  
LT1613  
165k  
1%  
16V  
SHDN  
SHDN  
20mA  
C2  
1µF  
X5R  
GND  
13.7k  
1%  
CERAMIC  
C1: AVX TAJA4R7M010  
C2: TAIYO YUDEN LMK212BJ105MG  
D1: BAT54S DUAL DIODE  
L1: MURATA LQH3C2R2  
1613 TA06  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S5 Package  
5-Lead Plastic SOT-23  
(LTC DWG # 05-08-1633)  
2.60 – 3.00  
(0.102 – 0.118)  
2.80 – 3.00  
(0.110 – 0.118)  
(NOTE 3)  
1.50 – 1.75  
(0.059 – 0.069)  
0.00 – 0.15  
(0.00 – 0.006)  
0.90 – 1.45  
(0.035 – 0.057)  
0.35 – 0.55  
(0.014 – 0.022)  
0.35 – 0.50  
0.90 – 1.30  
0.09 – 0.20  
0.95  
(0.037)  
REF  
(0.014 – 0.020)  
FIVE PLACES (NOTE 2)  
(0.035 – 0.051)  
(0.004 – 0.008)  
(NOTE 2)  
1.90  
(0.074)  
REF  
NOTE:  
S5 SOT-23 0599  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DIMENSIONS ARE INCLUSIVE OF PLATING  
3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
4. MOLD FLASH SHALL NOT EXCEED 0.254mm  
5. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1307  
Single Cell Micropower DC/DC  
2-Cell Micropower DC/DC  
3.3V/75mA From 1V; 600kHz Fixed Frequency  
LT1317  
3.3V/200mA From Two Cells; 600kHz Fixed Frequency  
LTC1474  
LT1521  
Low Quiescent Current, High Efficiency Step-Down Converter 94% Efficiency, 10µA I , 9V to 5V at 250µA  
Q
300mA Low Dropout Regulator with Micropower Quiescent  
Current and Shutdown  
500mV Dropout, 300mA Output Current, 12µA I  
Q
LTC1517-5  
LT1610  
Micropower, Regulated Charge Pump  
3-Cells to 5V at 20mA, SOT-23 Package, 6µA I  
Q
1.7MHz Single Cell Micropower DC/DC Converter  
Inverting 1.4MHz Switching Regulator  
30µA I , MSOP Package, Internal Compensation  
Q
LT1611  
5V to –5V at 150mA, Low Output Noise  
LT1615/LT1615-1 Micropower DC/DC Converter in 5-Lead SOT-23  
20V at 12mA from 2.5V Input, Tiny SOT-23 Package  
1613f LT/TP 1299 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1997  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1613CS5#TR

暂无描述
Linear

LT1613CS5#TRMPBF

LT1613 - 1.4MHz, Single Cell DC/DC Converter in 5-Lead SOT-23; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1613CS5#TRPBF

LT1613 - 1.4MHz, Single Cell DC/DC Converter in 5-Lead SOT-23; Package: SOT; Pins: 5; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1614

Inverting 600kHz Switching Regulator
Linear

LT1614

High Voltage, Low Quiescent Current Inverting Charge Pump
Linear System

LT1614CMS8

Inverting 600kHz Switching Regulator
Linear

LT1614CMS8#PBF

LT1614 - Inverting 600kHz Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1614CMS8#TRPBF

LT1614 - Inverting 600kHz Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1614CS8

Inverting 600kHz Switching Regulator
Linear

LT1614CS8#PBF

LT1614 - Inverting 600kHz Switching Regulator; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1614CS8#TRPBF

暂无描述
Linear

LT1614IMS8

Inverting 600kHz Switching Regulator
Linear