LT1631 [Linear]

30MHz, 10V/us, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps; 为30MHz , 10V / us的,双/四轨至轨输入和输出精密运算放大器
LT1631
型号: LT1631
厂家: Linear    Linear
描述:

30MHz, 10V/us, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps
为30MHz , 10V / us的,双/四轨至轨输入和输出精密运算放大器

运算放大器
文件: 总16页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1630/LT1631  
30MHz, 10V/µs, Dual/Quad  
Rail-to-Rail Input and Output  
Precision Op Amps  
U
FEATURES  
DESCRIPTION  
The LT®1630/LT1631 are dual/quad, rail-to-rail input and  
outputopampswitha30MHzgain-bandwidthproductand  
a 10V/µs slew rate.  
Gain-Bandwidth Product: 30MHz  
Slew Rate: 10V/µs  
Low Supply Current per Amplifier: 3.5mA  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
Input Offset Voltage, Rail-to-Rail: 525µV Max  
Input Offset Current: 150nA Max  
Input Bias Current: 1000nA Max  
Open-Loop Gain: 1000V/mV Min  
Low Input Noise Voltage: 6nV/Hz Typ  
Low Distortion: 91dBc at 100kHz  
Wide Supply Range: 2.7V to ±15V  
Large Output Drive Current: 35mA Min  
Dual in 8-Pin PDIP and SO Packages  
Quad in Narrow 14-Pin SO Package  
The LT1630/LT1631 have excellent DC precision over the  
full range of operation. Input offset voltage is typically less  
than 150µV and the minimum open-loop gain of one  
million into a 10k load virtually eliminates all gain error. To  
maximize common mode rejection, the LT1630/LT1631  
employ a patented trim technique for both input stages,  
one at the negative supply and the other at the positive  
supply, that gives a typical CMRR of 106dB over the full  
input range.  
The LT1630/LT1631 maintain their performance for sup-  
pliesfrom2.7Vto36Vandarespecifiedat3V,5Vand±15V  
supplies. The inputs can be driven beyond the supplies  
without damage or phase reversal of the output. The  
output delivers load currents in excess of 35mA.  
U
APPLICATIONS  
Active Filters  
The LT1630 is available in 8-pin PDIP and SO packages  
withthestandarddualopamppinout.TheLT1631features  
the standard quad op amp configuration and is available in  
a 14-pin plastic SO package. These devices can be used as  
plug-in replacements for many standard op amps to  
improve input/output range and performance.  
Rail-to-Rail Buffer Amplifiers  
Driving A/D Converters  
Low Voltage Signal Processing  
Battery-Powered Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Frequency Response  
10  
Single Supply, 400kHz, 4th Order Butterworth Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
47pF  
2.32k  
6.65k  
2.32k  
22pF  
2.74k  
5.62k  
V
IN  
2.74k  
220pF  
1/2 LT1630  
+
470pF  
V
1/2 LT1630  
+
–70  
–80  
–90  
OUT  
V
V
= 3V, 0V  
S
IN  
= 2.5V  
P-P  
V /2  
S
1630/31 TA01  
0.1k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1630/31 TA02  
1
LT1630/LT1631  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Total Supply Voltage (V+ to V) ............................. 36V  
Input Current ..................................................... ±10mA  
Output Short-Circuit Duration (Note 2)........ Continuous  
Operating Temperature Range ............... 40°C to 85°C  
Specified Temperature Range (Note 4) ... 40°C to 85°C  
Junction Temperature.......................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
OUTA  
IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
IN D  
+IN D  
+
OUT A  
IN A  
+IN A  
1
2
3
4
V
8
7
6
5
A
B
D
C
LT1630CN8  
LT1630CS8  
LT1631CS  
OUT B  
IN B  
+IN B  
A
+
V
V
B
V
+IN B  
IN B  
OUT B  
+IN C  
IN C  
OUT C  
N8 PACKAGE  
S8 PACKAGE  
S8 PART MARKING  
1630  
8-LEAD PDIP 8-LEAD PLASTIC SO  
8
TJMAX = 150°C, θJA = 130°C/ W (N8)  
TJMAX = 150°C, θJA = 190°C/ W (S8)  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/ W  
Consult factory for Military and Industrial grade parts.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V  
= V  
150  
150  
525  
525  
µV  
µV  
OS  
CM  
CM  
+
V  
OS  
Input Offset Shift  
V
= V to V  
150  
200  
525  
950  
µV  
µV  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V , V (Note 5)  
CM  
+
I
Input Bias Current  
V
V
= V  
= V  
0
540  
– 540  
1000  
0
nA  
nA  
B
CM  
CM  
–1000  
+
I  
B
Input Bias Current Shift  
V
= V to V  
1080  
2000  
nA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V (Note 5)  
25  
25  
300  
300  
nA  
nA  
CM  
CM  
= V (Note 5)  
+
I
Input Offset Current  
V
V
= V  
= V  
20  
20  
150  
150  
nA  
nA  
OS  
CM  
CM  
+
I  
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
40  
300  
6
300  
nA  
OS  
CM  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
n
i
f = 1kHz  
0.9  
5
n
C
A
IN  
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
500  
400  
3500  
2000  
V/mV  
V/mV  
S
O
L
S
O
L
2
LT1630/LT1631  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
V = 5V, V = V to V  
MIN  
TYP  
MAX  
UNITS  
+
+
CMRR  
Common Mode Rejection Ratio  
79  
75  
90  
86  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
+
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V to V  
72  
67  
96  
88  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = 2.7V to 12V, V = V = 0.5V  
87  
80  
105  
107  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 2.7V to 12V, V = V = 0.5V  
S
CM  
O
V
= V = 0.5V  
2.7  
CM  
O
V
V
No Load  
14  
31  
600  
500  
30  
60  
1200  
1000  
mV  
mV  
mV  
mV  
OL  
OH  
I
I
I
= 0.5mA  
= 25mA, V = 5V  
= 20mA, V = 3V  
SINK  
SINK  
SINK  
S
S
Output Voltage Swing High (Note 6)  
Short-Circuit Current  
No Load  
15  
42  
900  
680  
40  
80  
1800  
1400  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
= 20mA, V = 5V  
= 15mA, V = 3V  
SOURCE  
SOURCE  
SOURCE  
S
S
I
I
V = 5V  
±20  
±15  
±41  
±30  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
3.5  
30  
4.4  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
15  
MHz  
4.6  
4.2  
9.2  
8.5  
V/µs  
V/µs  
S
V
L
O
V = 3V, A = 1, R = Open  
S
V
L
t
Settling Time  
V = 5V, A = 1, R = 1k,  
520  
ns  
S
S
V
L
0.01%, V  
= 2V  
STEP  
0°C < TA < 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V – 0.1V  
175  
175  
700  
700  
µV  
µV  
OS  
CM  
CM  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
Input Offset Voltage Shift  
2.5  
1
5.5  
3.5  
µV/°C  
µV/°C  
OS  
+
V
V
= V – 0.1V  
CM  
CM  
+
V  
= V + 0.2V to V – 0.1V  
175  
200  
750  
µV  
µV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V – 0.1V (Note 5)  
1200  
CM  
+
I
Input Bias Current  
V
V
= V – 0.1V  
0
585  
585  
1100  
0
nA  
nA  
B
CM  
CM  
= V + 0.2V  
1100  
+
I  
B
Input Bias Current Shift  
V
= V + 0.2V to V – 0.1V  
1170  
2200  
nA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V – 0.1V (Note 5)  
25  
25  
340  
340  
nA  
nA  
CM  
CM  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
V
= V – 0.1V  
20  
20  
170  
170  
nA  
nA  
OS  
CM  
CM  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
40  
340  
nA  
OS  
CM  
A
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
450  
350  
3500  
2000  
V/mV  
V/mV  
VOL  
S
O
L
S
O
L
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
75  
71  
89  
83  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
70  
65  
90  
85  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
3
LT1630/LT1631  
ELECTRICAL CHARACTERISTICS  
0°C < TA < 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
V = 3V to 12V, V = V = 0.5V  
MIN  
82  
TYP  
101  
102  
2.6  
MAX  
UNITS  
dB  
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
V = 3V to 12V, V = V = 0.5V  
78  
dB  
S
CM  
O
V
= V = 0.5V  
2.7  
V
CM  
O
V
V
Output Voltage Swing Low (Note 6)  
No Load  
17  
36  
700  
560  
40  
80  
1400  
1200  
mV  
mV  
mV  
mV  
OL  
OH  
I
I
I
= 0.5mA  
= 25mA, V = 5V  
= 20mA, V = 3V  
SINK  
SINK  
SINK  
S
S
Output Voltage Swing High (Note 6)  
Short-Circuit Current  
No Load  
16  
50  
820  
550  
40  
100  
1600  
1100  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
= 15mA, V = 5V  
= 10mA, V = 3V  
SOURCE  
SOURCE  
SOURCE  
S
S
I
I
V = 5V  
±18  
±13  
±36  
±25  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.0  
28  
5.1  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
14  
MHz  
4.2  
3.9  
8.3  
7.7  
V/µs  
V/µs  
S
V
L
O
V = 3V, A = 1, R = Open  
S
V
L
40°C < TA < 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V – 0.1V  
250  
250  
775  
775  
µV  
µV  
OS  
OS  
CM  
CM  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
Input Offset Voltage Shift  
2.5  
1
5.5  
3.5  
µV/°C  
µV/°C  
+
V
V
= V – 0.1V  
CM  
CM  
+
V  
= V + 0.2V to V – 0.1V  
200  
210  
750  
µV  
µV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V (Note 5)  
1500  
CM  
+
I
Input Bias Current  
V
V
= V – 0.1V  
0
650  
650  
1300  
0
nA  
nA  
B
CM  
CM  
= V + 0.2V  
1300  
+
I  
B
Input Bias Current Shift  
V
= V + 0.2V to V – 0.1V  
1300  
2600  
nA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V – 0.1V (Note 5)  
25  
25  
390  
390  
nA  
nA  
CM  
CM  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
V
= V – 0.1V  
25  
25  
195  
195  
nA  
nA  
OS  
CM  
CM  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
50  
390  
nA  
OS  
CM  
A
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
400  
300  
3500  
1800  
V/mV  
V/mV  
VOL  
S
O
L
S
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
75  
71  
87  
83  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
69  
65  
89  
85  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
Power Supply Rejection Ratio  
V = 3V to 12V, V = V = 0.5V  
82  
78  
98  
102  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 3V to 12V, V = V = 0.5V  
S
CM  
O
V
= V = 0.5V  
2.7  
CM  
O
V
No Load  
18  
38  
730  
580  
40  
80  
1500  
1200  
mV  
mV  
mV  
mV  
OL  
I
I
I
= 0.5mA  
SINK  
SINK  
SINK  
= 25mA, V = 5V  
= 20mA, V = 3V  
S
S
4
LT1630/LT1631  
ELECTRICAL CHARACTERISTICS  
40°C < TA < 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Output Voltage Swing High (Note 6)  
No Load  
15  
55  
860  
580  
40  
110  
1700  
1200  
mV  
mV  
mV  
mV  
OH  
I
I
I
= 0.5mA  
= 15mA, V = 5V  
= 10mA, V = 3V  
SOURCE  
SOURCE  
SOURCE  
S
S
I
I
Short-Circuit Current  
V = 5V  
V = 3V  
S
±17  
±12  
±34  
±24  
mA  
mA  
SC  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.1  
28  
5.2  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = –1, R = Open, V = 4V  
14  
MHz  
3.5  
3.3  
7
6.5  
V/µs  
V/µs  
S
V
L
O
V = 3V, A = –1, R = Open  
S
V
L
TA = 25°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V  
= V  
220  
220  
1000  
1000  
µV  
µV  
OS  
CM  
CM  
+
V  
OS  
Input Offset Voltage Shift  
V
= V to V  
150  
200  
1000  
1500  
µV  
µV  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V , V (Note 5)  
CM  
+
I
Input Bias Current  
V
V
= V  
= V  
0
550  
550  
1100  
0
nA  
nA  
B
CM  
CM  
1100  
+
I  
B
Input Bias Current Shift  
V
= V to V  
1100  
2200  
nA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V (Note 5)  
20  
20  
300  
300  
nA  
nA  
CM  
CM  
= V (Note 5)  
+
I
Input Offset Current  
V
V
= V  
= V  
20  
20  
150  
150  
nA  
nA  
OS  
CM  
CM  
+
I  
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
40  
300  
6
300  
nA  
OS  
CM  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
n
i
f = 1kHz  
0.9  
3
n
C
A
f = 100kHz  
IN  
VOL  
Large-Signal Voltage Gain  
V = 14.5V to 14.5V, R = 10k  
V = 10V to 10V, R = 2k  
1000  
650  
5000  
3500  
V/mV  
V/mV  
O
L
O
L
Channel Separation  
V = 10V to 10V, R = 2k  
112  
89  
134  
106  
110  
105  
107  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V to V  
CM  
CM  
+
= V to V  
86  
V = ±5V to ±15V  
S
87  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = ±5V to ±15V  
S
82  
V
V
No Load  
16  
150  
600  
35  
300  
1200  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing High (Note 6)  
No Load  
15  
250  
1200  
40  
500  
2400  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
5
LT1630/LT1631  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
±70  
4.1  
30  
MAX  
UNITS  
mA  
I
I
Short-Circuit Current  
±35  
SC  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
5.0  
mA  
GBW  
SR  
f = 100kHz  
15  
5
MHz  
V/µs  
A = 1, R = Open, V = ±10V,  
10  
V
L
O
Measure at V = ±5V  
O
t
Settling Time  
0.01%, V  
= 10V, A = 1, R = 1k  
1.2  
µs  
S
STEP  
V
L
0°C < TA < 70°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V – 0.1V  
300  
300  
1250  
1250  
µV  
µV  
OS  
CM  
CM  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
4.5  
1.5  
7
4
µV/°C  
µV/°C  
OS  
+
V
V
= V – 0.1V  
CM  
CM  
+
V  
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
180  
300  
1100  
2000  
µV  
µV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V – 0.1V (Note 5)  
CM  
+
I
Input Bias Current  
V
V
= V – 0.1V  
0
600  
600  
1200  
0
nA  
nA  
B
CM  
CM  
= V + 0.2V  
1200  
+
I  
B
Input Bias Current Shift  
V
= V + 0.2V to V – 0.1V  
1200  
2400  
nA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V – 0.1V (Note 5)  
30  
30  
350  
350  
nA  
nA  
CM  
CM  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
V
= V – 0.1V  
25  
25  
175  
175  
nA  
nA  
OS  
CM  
CM  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
50  
350  
nA  
OS  
CM  
A
V = 14.5V to 14.5V, R = 10k  
V = 10V to 10V, R = 2k  
900  
600  
6000  
4000  
V/mV  
V/mV  
VOL  
O
L
O
L
Channel Separation  
V = 10V to 10V, R = 2k  
112  
88  
132  
104  
104  
100  
104  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V + 0.2V to V – 0.1V  
CM  
CM  
+
= V + 0.2V to V – 0.1V  
84  
V = ±5V to ±15V  
S
86  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = ±5V to ±15V  
S
80  
V
V
No Load  
19  
175  
670  
45  
350  
1400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing High (Note 6)  
No Load  
15  
300  
1400  
40  
600  
2800  
mV  
mV  
mV  
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
I
Short-Circuit Current  
±28  
±57  
4.6  
28  
9
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
5.6  
S
GBW  
SR  
f = 100kHz  
A = 1, R = Open, V = ±10V,  
14  
MHz  
V/µs  
4.5  
V
L
O
Measured at V = ±5V  
O
6
LT1630/LT1631  
ELECTRICAL CHARACTERISTICS  
40°C < TA < 85°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V – 0.1V  
350  
350  
1400  
1400  
µV  
µV  
OS  
OS  
CM  
CM  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
4.5  
1.5  
7
4
µV/°C  
µV/°C  
+
V
V
= V – 0.1V  
CM  
CM  
+
V  
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
180  
350  
1200  
2200  
µV  
µV  
OS  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V – 0.1V (Note 5)  
CM  
+
I
Input Bias Current  
V
V
= V – 0.1V  
0
690  
690  
1400  
0
nA  
nA  
B
CM  
CM  
= V + 0.2V  
1400  
+
I  
B
Input Bias Current Shift  
V
= V + 0.2V to V – 0.1V  
1380  
2800  
nA  
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V – 0.1V (Note 5)  
30  
30  
420  
420  
nA  
nA  
CM  
CM  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
V
= V – 0.1V  
30  
30  
210  
210  
nA  
nA  
OS  
CM  
CM  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
60  
420  
nA  
OS  
CM  
A
V = 14.5V to 14.5V, R = 10k  
V = 10V to 10V, R = 2k  
700  
400  
6000  
4000  
V/mV  
V/mV  
VOL  
O
L
O
L
Channel Separation  
V = 10V to 10V, R = 2k  
112  
87  
132  
104  
104  
100  
100  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
V
= V + 0.2V to V – 0.1V  
CM  
CM  
+
= V + 0.2V to V – 0.1V  
84  
V = ±5V to ±15V  
S
84  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = ±5V to ±15V  
S
80  
V
V
No Load  
22  
180  
700  
50  
350  
1400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
Output Voltage Swing High (Note 6)  
No Load  
15  
300  
1500  
40  
600  
3000  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
±27  
±54  
4.8  
27  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
5.9  
S
GBW  
SR  
f = 100kHz  
A = 1, R = Open, V = ±10V,  
14  
MHz  
V/µs  
4.2  
8.5  
V
L
O
Measure at V = ±5V  
O
The  
range.  
denotes specifications that apply over the full operating temperature  
Note 5: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LT1631; between the two amplifiers on the  
LT1630.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Output voltage swings are measured between the output and  
power supply rails.  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 7: V = 3V, V = ±15V GBW limit guaranteed by correlation to  
S
S
5V tests.  
Note 3: This parameter is not 100% tested.  
Note 8: V = 3V, V = 5V slew rate limit guaranteed by correlation to  
S
S
±15V tests.  
Note 4: The LT1630C/LT1631C are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet these extended temperature limits, but are not tested at  
40°C and 85°C. Guaranteed I grade parts are available, consult factory.  
Note 9: Minimum supply voltage is guaranteed by testing the change of  
to be less than 250µV when the supply voltage is varied from 3V to  
V
OS  
2.7V.  
7
LT1630/LT1631  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
VOS Distribution, VCM = 0V  
(PNP Stage)  
VOS Distribution, VCM = 5V  
(NPN Stage)  
VOS Shift for VCM = 0V to 5V  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
S
S
S
= 0V  
= 5V  
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
–500  
–300  
–100  
100  
300  
500  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
1630/31 G34  
1630/31 G32  
1630/31 G33  
Input Bias Current vs  
Supply Current vs Supply Voltage  
Common Mode Voltage  
Supply Current vs Temperature  
600  
400  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
V
= 5V, 0V  
S
V
= ±15V  
S
T
= 125°C  
= 25°C  
A
200  
0
T
A
V
= 5V, 0V  
S
–200  
–400  
–600  
–800  
–1000  
T
= 125°C  
= 25°C  
A
T
= –55°C  
A
T
A
T
A
= 55°C  
16 20 24  
–75 –50 –25  
0
25 50 75 100 125  
0
0
4
8
12  
28 32 36  
–2 –1  
1
2
3
4
5
6
TOTAL SUPPLY VOTAGE (V)  
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
1630/31 G01  
1630/31 G02  
1630/31 G03  
Output Saturation Voltage vs  
Load Current (Output High)  
Output Saturation Voltage vs  
Load Current (Output Low)  
Input Bias Current vs Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
1
10  
1
V
= 5V, 0V  
V = 5V, 0V  
S
S
V
= 5V, 0V  
CM  
S
V
= 5V  
V
CM  
= ±15V  
S
V
= 15V  
T
A
= 125°C  
T
= 125°C  
A
–0.2  
T
A
= 25°C  
V
CM  
= ±15V  
S
0.1  
0.01  
0.1  
0.01  
T
= 25°C  
A
–0.4  
V
= 15V  
T
= –55°C  
T
A
= –55°C  
–0.6  
–0.8  
–1.0  
A
V
= 5V, 0V  
CM  
S
V
= 0V  
–50 –35 –20 –5 10 25 40 55 70 85 100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1630/31 G05  
1630/31 G06  
1630/31 G04  
8
LT1630/LT1631  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Minimum Supply Voltage  
Current Noise Spectrum  
Noise Voltage Spectrum  
35  
30  
25  
20  
15  
10  
5
10  
9
300  
250  
200  
150  
100  
50  
V
= 5V, 0V  
S
V = 5V, 0V  
S
8
V
= 2.5V  
CM  
PNP ACTIVE  
7
V
= 4.25V  
6
5
CM  
NPN ACTIVE  
T
= 25°C  
A
4
3
2
1
0
V
= 4.25V  
CM  
NPN ACTIVE  
T
= 125°C  
T
= –55°C  
A
A
V
= 2.5V  
CM  
PNP ACTIVE  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
4
1
2
3
5
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
11630/31 G09  
1630/31 G10  
1630/31 G07  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
0.1Hz to 10Hz Output  
Voltage Noise  
Gain and Phase vs Frequency  
80  
70  
180  
135  
90  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= V /2  
S
V
V
=5V, 0V  
CM  
S
= V /2  
CM  
S
60  
PHASE  
GAIN  
50  
45  
GAIN BANDWIDTH  
PHASE MARGIN  
40  
0
30  
–45  
–90  
–135  
–180  
–225  
–270  
20  
10  
0
R
V
V
= 1k  
= 3V, 0V  
= ±15V  
L
S
S
–10  
–20  
0
0.01  
0.1  
1
10  
100  
0
5
15  
20  
25  
30  
10  
FREQUENCY (MHz)  
TOTAL SUPPLY VOLTAGE (V)  
TIME (1s/DIV)  
1630/31 G11  
1630/31 G25  
1630/31 G14  
CMRR vs Frequency  
PSRR vs Frequency  
Channel Separation vs Frequency  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40  
–50  
V
= ±15V  
S
–60  
V
S
= ±15V  
POSITIVE SUPPLY  
–70  
–80  
80  
70  
–90  
V
S
= 5V, 0V  
NEGATIVE SUPPLY  
60  
–100  
–110  
–120  
–130  
–140  
50  
40  
30  
20  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1630/31 G12  
1630/31 G13  
1630/31 G15  
9
LT1630/LT1631  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Output Step vs  
Capacitive Load Handling  
Settling Time to 0.01%  
Slew Rate vs Supply Voltage  
10  
8
60  
50  
40  
30  
20  
10  
0
14  
13  
12  
11  
10  
9
V
= ±15V  
S
V
A
= 5V, 0V  
= 1  
= 1k  
V
A
= 80% OF V  
S
S
V
L
OUT  
V
= –1  
R
6
NONINVERTING  
INVERTING  
4
RISING EDGE  
2
0
FALLING EDGE  
–2  
–4  
–6  
–8  
–10  
INVERTING  
1.00 1.25  
NONINVERTING  
8
24  
0
0.25  
0.75  
1
10  
100  
1000  
0
4
8
12 16 20  
28 32  
0.50  
1.50  
TOTAL SUPPLY VOLTAGE (V)  
SETTLING TIME (µs)  
CAPACITIVE LOAD (pF)  
1630/31 G16  
1630/31 G18  
1630/31 G17  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
200  
150  
100  
50  
20  
15  
8
V
= ±15V  
V
S
= 5V, 0V  
V
= ±15V  
= 100Ω  
S
S
L
R
6
4
10  
5
R
L
= 1k  
2
R
= 10k  
L
0
0
0
R
= 10k  
L
R
= 1k  
L
–5  
–50  
–100  
–150  
–200  
–2  
–4  
–6  
–8  
–10  
–15  
20  
0
5
1
2
4
0
1
2
4
6
–20 –15 –10 –5  
10 15 20  
0
5
6
–5 –4 –3 –2 –1  
3
5
7
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1630/31 G19  
1630/31 G20  
1630/31 G21  
Maximum Undistorted Output  
Signal vs Frequency  
Total Harmonic Distortion + Noise  
vs Frequency  
Warm-Up Drift vs Time  
5
4
3
2
1
0
40  
0
1
0.1  
V
= 2V  
P-P  
= 10k  
S8 PACKAGE  
= 5V, 0V  
N8 PACKAGE  
= 5V, 0V  
IN  
L
R
V
S
V
S
V
= 5V, 0V  
V
S
A
= –1  
–40  
–80  
–120  
–160  
–200  
LT1631CS  
= 5V, 0V  
V
= 5V, 0V  
V
N8 PACKAGE  
= ±15V  
S
V
S
A
= 1  
V
V
= 3V, 0V  
S
S
0.01  
A
= 1  
V
S8 PACKAGE  
= ±15V  
V
S
V
= 5V, 0V AND 3V, 0V  
S
A
= –1  
0.001  
V
LT1631CS  
= ±15V  
V
S
V
= 5V, 0V  
S
A
= 1  
V
0.0001  
80  
TIME AFTER POWER-UP (SEC)  
0
20 40 60  
100 120 140 160  
1
10  
100  
1000  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1630/31 G24  
163031 G23  
1630/31 G22  
10  
LT1630/LT1631  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Harmonic Distortion vs Frequency  
5V Small-Signal Response  
5V Large-Signal Response  
0
–20  
V
A
V
= 5V, 0V  
= 1  
S
V
= 2V  
IN  
P-P  
R
= 150Ω  
= 1k  
L
L
R
–40  
2ND  
–60  
3RD  
2ND  
–80  
1630/31 G26  
1630/31 G27  
3RD  
VS = 5V, 0V  
VS = 5V, 0V  
A
V = 1  
AV = 1  
RL = 1k  
R
L = 1k  
–100  
100  
1000  
200  
500  
FREQUENCY (kHz)  
16310/03010G30  
Harmonic Distortion vs Frequency  
±15V Small-Signal Response  
±15V Large-Signal Response  
0
–20  
V
A
V
= 5V, 0V  
= –1  
S
V
= 2V  
IN  
P-P  
R
= 150Ω  
= 1k  
L
L
R
–40  
2ND  
–60  
3RD  
–80  
1630/31 G28  
1630/31 G29  
2ND  
VS = ±15V  
VS = ±15V  
3RD  
AV = 1  
AV = 1  
R
L = 1k  
RL = 1k  
–100  
100  
1000  
200  
500  
FREQUENCY (kHz)  
16310/03010G31  
U
W U U  
APPLICATIONS INFORMATION  
Rail-to-Rail Input and Output  
transistor Q5 will steer the tail current I1 to the current  
mirror Q6/Q7, activating the NPN differential pair and the  
PNP pair becomes inactive for the rest of the input com-  
mon mode range up to the positive supply.  
The LT1630/LT1631 are fully functional for an input and  
output signal range from the negative supply to the posi-  
tive supply. Figure 1 shows a simplified schematic of the  
amplifier. The input stage consists of two differential  
amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4  
that are active over different ranges of input common  
mode voltage. The PNP differential input pair is active for  
input common mode voltages VCM between the negative  
supply to approximately 1.4V below the positive supply.  
As VCM moves closer toward the positive supply, the  
The output is configured with a pair of complementary  
common emitter stages Q14/Q15 that enables the output  
to swing from rail to rail. These devices are fabricated on  
Linear Technology’s proprietary complementary bipolar  
process to ensure similar DC and AC characteristics.  
Capacitors C1 and C2 form local feedback loops that lower  
the output impedance at high frequencies.  
11  
LT1630/LT1631  
U
W U U  
APPLICATIONS INFORMATION  
+
V
R3  
R4  
R5  
+
Q12  
I
Q11  
Q13  
Q15  
1
D1  
R6  
225  
+IN  
+
V
Q5  
I
BIAS  
C2  
2
D2  
D5  
D6  
R7  
225Ω  
C
C
V
OUT  
IN  
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
OUTPUT BIAS  
Q9  
R1  
Q8  
D4  
C1  
Q7  
Q6  
Q14  
R2  
V
1630/31 F01  
Figure 1. LT1630 Simplified Schematic Diagram  
Power Dissipation  
To ensure that the LT1630/LT1631 are used properly,  
calculate the worst-case power dissipation, get the ther-  
mal resistance for a chosen package and its maximum  
junction temperature to derive the maximum ambient  
temperature.  
The LT1630/LT1631 amplifiers combine high speed and  
large output current drive in a small package. Because the  
amplifiers operate over a very wide supply range, it is  
possible to exceed the maximum junction temperature of  
150°C in plastic packages under certain conditions. Junc-  
tion temperature TJ is calculated from the ambient tem-  
perature TA and power dissipation PD as follows:  
Example: An LT1630CS8 operating on ±15V supplies and  
driving a 500, the worst-case power dissipation per  
amplifier is given by:  
LT1630CN8: TJ = TA + (PD • 130°C/W)  
LT1630CS8: TJ = TA + (PD • 190°C/W)  
LT1631CS: TJ = TA + (PD • 150°C/W)  
PDMAX = (30V • 4.75mA) + (15V – 7.5V)(7.5/500)  
= 0.143 + 0.113 = 0.256W  
If both amplifiers are loaded simultaneously, thenthe total  
power dissipation is 0.512W. The SO-8 package has a  
junction-to-ambientthermalresistanceof190°C/Winstill  
air. Therefore, themaximumambienttemperaturethatthe  
part is allowed to operate is:  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage, output voltage and load resistance. For a given  
supply voltage, the worst-case power dissipation PDMAX  
occurs at the maximum supply current and when the  
output voltage is at half of either supply voltage (or the  
maximum swing if less than 1/2 supply voltage). There-  
fore PDMAX is given by:  
TA = TJ – (PDMAX • 190°C/W)  
TA = 150°C – (0.512W • 190°C/W) = 53°C  
For a higher operating temperature, lower the supply  
voltage or use the DIP package part.  
PDMAX = (VS • ISMAX) + (VS/2)2/RL  
12  
LT1630/LT1631  
U
W U U  
APPLICATIONS INFORMATION  
Input Offset Voltage  
The LT1630/LT1631’s input stages are protected against  
large differential input voltages by a pair of back-to-back  
diodes D5/D6. When a differential voltage of more than  
0.7V is applied to the inputs, these diodes will turn on,  
preventing the emitter-base breakdown of the input  
transistors. The current in D5/D6 should be limited to  
less than 10mA. Internal 225resistors R6 and R7 will  
limittheinputcurrentfordifferentialinputsignalsof4.5V  
or less. For larger input levels, a resistor in series with  
either or both inputs should be used to limit the current.  
Worst-casedifferentialinputvoltageusuallyoccurswhen  
the output is shorted to ground. In addition, the amplifier  
is protected against ESD strikes up to 3kV on all pins.  
The offset voltage changes depending upon which input  
stage is active, and the maximum offset voltages are  
trimmed to less than 525µV. To maintain the precision  
characteristics of the amplifier, the change of VOS over the  
entire input common mode range (CMRR) is guaranteed  
to be less than 525µV on a single 5V supply.  
Input Bias Current  
The input bias current polarity depends on the input  
common mode voltage. When the PNP differential pair is  
active, the input bias currents flow out of the input pins.  
They flow in the opposite direction when the NPN input  
stage is active. The offset voltage error due to input bias  
currents can be minimized by equalizing the noninverting  
and inverting input source impedance.  
Capacitive Load  
The LT1630/LT1631 are wideband amplifiers that can  
drive capacitive loads up to 200pF on ±15V supplies in a  
unity-gain configuration. On a 3V supply, the capacitive  
load should be kept to less than 100pF. When there is a  
need to drive larger capacitive loads, a resistor of 20to  
50should be connected between the output and the  
capacitiveload.Thefeedbackshouldstillbetakenfromthe  
output so that the resistor isolates the capacitive load to  
ensure stability.  
Output  
The outputs of the LT1630/LT1631 can deliver large load  
currents; the short-circuit current limit is 70mA. Take care  
to keep the junction temperature of the IC below the  
absolute maximum rating of 150°C (refer to the Power  
Dissipation section). The output of these amplifiers have  
reverse-biased diodes to each supply. If the output is  
forced beyond either supply, unlimited current will flow  
throughthesediodes.Ifthecurrentistransientandlimited  
to several hundred mA, no damage to the part will occur.  
Feedback Components  
The low input bias currents of the LT1630/LT1631 make it  
possible to use the high value feedback resistors to set the  
gain. However, care must be taken to ensure that the pole  
formedbythefeedbackresistorsandthetotalcapacitance  
at the inverting input does not degrade stability. For  
instance, the LT1630/LT1631 in a noninverting gain of 2,  
set with two 20k resistors, will probably oscillate with  
10pF total input capacitance (5pF input capacitance and  
5pF board capacitance). The amplifier has a 5MHz cross-  
ing frequency and a 52° phase margin at 6dB of gain. The  
feedback resistors and the total input capacitance form a  
pole at 1.6MHz that induces a phase shift of 72° at 5MHz!  
The solution is simple: either lower the value of the  
resistors or add a feedback capacitor of 10pF or more.  
Overdrive Protection  
To prevent the output from reversing polarity when the  
input voltage exceeds the power supplies, two pairs of  
crossing diodes D1 to D4 are employed. When the input  
voltage exceeds either power supply by approximately  
700mV, D1/D2 or D3/D4 will turn on, forcing the output to  
the proper polarity. For this phase reversal protection to  
work properly, the input current must be limited to less  
than 5mA. If the amplifier is to be severely overdriven, an  
external resistor should be used to limit the overdrive  
current.  
13  
LT1630/LT1631  
U
TYPICAL APPLICATIONS  
Single Supply, 40dB Gain, 350kHz  
Instrumentation Amplifier  
Tunable Q Notch Filter  
A single supply, tunable Q notch filter as shown in Figure  
4 is built with LT1630 to maximize the output swing. The  
filter has a gain of 2, and the notch frequency (fO) is set by  
thevaluesofRandC. TheresistorsR10andR11setupthe  
DC level at the output. The Q factor can be adjusted by  
varying the value of R8. The higher value of R8 will  
decrease Q as depicted in Figure 5, because the output  
induces less of feedback to amplifier A2. The value of R7  
should be equal or greater than R9 to prevent oscillation.  
If R8 is a short and R9 is larger than R7, then the positive  
feedbackfromtheoutputwillcreatephaseinversionatthe  
output of amplifier A2, which will lead to oscillation.  
An instrumentation amplifier with a rail-to-rail output  
swing,operatingfroma3Vsupplycanbeconstructedwith  
the LT1630 as shown in Figure 2. The amplifier has a  
nominal gain of 100, which can be adjusted with resistor  
R5. The DC output level is set by the difference of the two  
inputs multiplied by the gain of 100. Common mode range  
can be calculated by the equations shown with Figure 2.  
For example, the common mode range is from 0.15V to  
2.65V if the output is set at one half of the 3V supply. The  
common mode rejection is greater than 110dB at 100Hz  
when trimmed with resistor R1. The amplifier has a  
bandwidth of 355kHz as shown in Figure 3.  
C
1 0 0 0 p F  
R 5  
4 3 2  
R 4  
2 0 k  
R 2  
2 k  
C 1  
2 . µ2F  
5 V  
V
R
+
V
S
I N  
R 1  
1 . 6 2 k  
A 1  
2 0 k  
V
O U T  
R
R 3  
2 k  
1 / 2 L T 1 6 3 0  
R 1  
1 . 6 2 k  
O U T 1  
5 0 0  
1 / 2 L T 1 6 3 0  
C
R 2  
1 k  
1 0 0 0 p F  
+
V
O U T  
1 / 2 L T 1 6 3 0  
+
V
I N  
+
R 6  
1 k  
V
I N  
R 5  
1 k  
C 5  
4 . µ7F  
1 6 3 0 / 3 1 F 0 2  
R 7  
1 k  
A 2  
5 V  
R 1 0  
BW = 355kHz  
1 / 2 L T 1 6 3 0  
L O W E R LTI MCOIMMON MODE INPUT VOLTAGE  
+
R4  
R3  
R2 R3 +R2  
V
R2  
R5  
1.0  
1.1  
A
=
1+  
+
= 100  
OUT  
R 8  
5 k  
V
R 9  
1 k  
V
=
+ 0.1V  
CML  
1 0 k  
R1  
R5  
A
V
1 6 3 0 / 3 1  
F
+
V
=
V
V  
A  
UPPER LIMIT COMMON MODE INPUT VOLTAGE  
OUT  
IN  
IN  
V
C 2  
4 . µ7F  
R 1 1  
1 0 k  
5V R11  
V
R2  
R5  
1.0  
1.1  
(
)(  
)
OUT  
V
=
+ V 0.15V  
f = 98kHz  
V
=
= 2.5V  
(
)
CMH  
S
O
O(DC)  
A
R11+R10  
V
1
A
= 2  
f =  
V
WHERE V IS THE SUPPLY VOLTAGE  
O
S
2πRC  
Figure 2. Single Supply, 40dB Gain Instrumentation Amplifier  
Figure 4. Tunable Q Notch Filter  
50  
40  
40  
DIFFERENTIAL INPUT  
30  
20  
10  
20  
0
INCREASING R8  
0
COMMON MODE INPUT  
–10  
–20  
–30  
–40  
–50  
DECREASING R8  
–20  
–40  
V
A
= 3V  
S
V
–60  
–70  
= 100  
0
20 40 60 80 100 120 140 160 180 200  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
1630/31 F03  
13630/31 F05  
Figure 3. Frequency Response  
Figure 5. Frequency Response  
14  
LT1630/LT1631  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
8.255  
N8 1197  
(
)
(0.457 ± 0.076)  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
SO8 0996  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
S14 0695  
1
2
3
4
5
6
7
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1630/LT1631  
U
TYPICAL APPLICATIONS  
5V  
RF Amplifier Control Biasing and DC Restoration  
R4  
R2  
R1  
Taking advantage of the rail-to-rail input and output, and  
the large output current capability of the LT1630, the  
circuit, shown in Figure 6, provides precise bias currents  
for the RF amplifiers and restores DC output level. To  
ensure optimum performance of an RF amplifier, its bias  
point must be accurate and stable over the operating  
temperature range. The op amp A1 combined with Q1, Q2,  
R1, R2 and R3 establishes two current sources of 21.5mA  
to bias RF1 and RF2 amplifiers. The current of Q1 is  
determined by the voltage across R2 over R1, which is  
replicated in Q2. These current sources are stable and  
precise over temperature and have a low dissipated power  
due to a low voltage drop between their terminals. The  
amplifier A2 is used to restore the DC level at the output.  
With a large output current of the LT1630, the output can  
be set at 1.5VDC on 5V supply and 50load. This circuit  
hasa3dBbandwidthfrom2MHzto2GHzandapowergain  
of 25dB.  
10  
453Ω  
10Ω  
5V  
Q1  
2N3906  
A1  
Q2  
2N3906  
1/2 LT1630  
+
+
C1  
R3  
10k  
+
+
C6  
C5  
0.01µF  
0.01µF  
0.01µF  
L1  
220µH  
L2  
220µH  
HP-MSA0785  
RF2  
HP-MSA0785  
RF1  
C3  
C2  
1500pF  
C4  
1500pF  
1500pF  
V
V
IN  
OUT  
L3  
3.9µH  
L4  
3.9µH  
+
A2  
1630/31 F06  
R5  
50Ω  
1/2 LT1630  
Figure 6. RF Amplifier Control Biasing and DC Restoration  
RELATED PARTS  
PART NUMBER  
DESCRIPTON  
COMMENTS  
Input Common Mode Includes Ground, 275µV V  
6µV/°C Max Drift, Max Supply Current 1.8mA per Op Amp  
LT1211/LT1212 Dual/Quad 14MHz, 7V/µs, Single Supply Precision Op Amps  
LT1213/LT1214 Dual/Quad 28MHz, 12V/µs, Single Supply Precision Op Amps  
LT1215/LT1216 Dual/Quad 23MHz, 50V/µs, Single Supply Precision Op Amps  
,
OS(MAX)  
Input Common Mode Includes Ground, 275µV V  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 3.5mA per Op Amp  
Input Common Mode Includes Ground, 450µV V  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 6.6mA per Op Amp  
LT1498/LT1499 Dual/Quad 10MHz, 6V/µs Rail-to-Rail Input and Output  
High DC Accuracy, 475µV V , 4µV/°C Max Drift,  
Max Supply Current 2.2mA per Amp  
OS(MAX)  
C-LoadTM Op Amps  
LT1632/LT1633 Dual/Quad 45MHz, 45V/µs Rail-to-Rail Input and Output Op Amps High DC Accuracy, 1.35mV V , 70mA Output Current,  
OS(MAX)  
Max Supply Current 5.2mA per Amp  
C-Load is a trademark of Linear Technology Corporation.  
16301f LT/TP 0998 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY