LT1632CS8 [Linear]

45MHz, 45V/us, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps; 为45MHz , 45V / us的,双/四轨至轨输入和输出精密运算放大器
LT1632CS8
型号: LT1632CS8
厂家: Linear    Linear
描述:

45MHz, 45V/us, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps
为45MHz , 45V / us的,双/四轨至轨输入和输出精密运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1632/LT1633  
45MHz, 45V/µs, Dual/Quad  
Rail-to-Rail Input and Output  
Precision Op Amps  
U
FEATURES  
DESCRIPTION  
The LT®1632/LT1633 are dual/quad, rail-to-rail input and  
outputopampswitha45MHzgain-bandwidthproductand  
a 45V/µs slew rate.  
Gain-Bandwidth Product: 45MHz  
Slew Rate: 45V/µs  
Low Supply Current per Amplifier: 4.3mA  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
The LT1632/LT1633 have excellent DC precision over the  
full range of operation. Input offset voltage is typically less  
than 400µV and the minimum open-loop gain of 0.8  
million into a 10k load virtually eliminates all gain error.  
Common mode rejection is typically 83dB overthefullrail-  
to-rail input range when on a single 5V supply for excellent  
noninverting performance.  
Input Offset Voltage, Rail-to-Rail: 1350µV Max  
Input Offset Current: 440nA Max  
Input Bias Current: 2.2µA Max  
Open-Loop Gain: 800V/mV Min  
Low Input Noise Voltage: 12nV/Hz Typ  
Low Distortion: 92dBc at 100kHz  
Wide Supply Range: 2.7V to ±15V  
Large Output Drive Current: 35mA Min  
Dual in 8-Pin PDIP and SO Packages  
The LT1632/LT1633 maintain their performance for sup-  
pliesfrom2.7Vto36Vandarespecifiedat3V,5Vand±15V  
supplies. The inputs can be driven beyond the supplies  
without damage or phase reversal of the output. The  
output delivers load currents in excess of 35mA.  
U
APPLICATIONS  
The LT1632 is available in 8-pin PDIP and SO packages  
withthestandarddualopamppinout.TheLT1633features  
the standard quad op amp configuration and is available in  
a 14-pin plastic SO package. These devices can be used as  
plug-in replacements for many standard op amps to  
improve input/output range and performance.  
Active Filters  
Rail-to-Rail Buffer Amplifiers  
Driving A/D Converters  
Low Voltage Signal Processing  
Battery-Powered Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Frequency Response  
50  
Single Supply, 40dB Gain, 550kHz Instrumentation Amplifier  
40  
DIFFERENTIAL INPUT  
30  
20  
10  
R5  
432  
R4  
20k  
R2  
2k  
0
R1  
COMMON MODE INPUT  
–10  
20k  
3V  
R3  
2k  
–20  
–30  
–40  
–50  
1/2 LT1632  
+
V
1/2 LT1632  
OUT  
V
IN  
+
+
V
IN  
V
A
= 3V  
= 100  
S
V
1630/31 F02  
–60  
–70  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1632/33 TA02  
1
LT1632/LT1633  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Total Supply Voltage (V+ to V) ............................. 36V  
Input Current ..................................................... ±10mA  
Output Short-Circuit Duration (Note 2)........ Continuous  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 4) ..... 40°C to 85°C  
Junction Temperature.......................................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
OUTA  
IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
IN D  
+IN D  
+
OUT A  
IN A  
+IN A  
1
2
3
4
V
8
7
6
5
A
B
D
C
LT1632CN8  
LT1632CS8  
LT1633CS  
OUT B  
IN B  
+IN B  
A
+
V
V
B
V
+IN B  
IN B  
OUT B  
+IN C  
IN C  
OUT C  
N8 PACKAGE  
S8 PACKAGE  
S8 PART MARKING  
1632  
8-LEAD PDIP 8-LEAD PLASTIC SO  
8
TJMAX = 150°C, θJA = 130°C/ W (N8)  
JMAX = 150°C, θJA = 190°C/ W (S8)  
S PACKAGE  
14-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 150°C/ W  
T
Consult factory for Military and Industrial grade parts.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V  
= V  
400  
400  
1350  
1350  
µV  
µV  
OS  
CM  
CM  
+
V  
Input Offset Shift  
V
= V to V  
350  
500  
1500  
2300  
µV  
µV  
OS  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V , V (Note 5)  
CM  
+
I
Input Bias Current  
V
V
= V  
= V  
0
2.2  
1.15  
1.15  
2.2  
0
µA  
µA  
B
CM  
CM  
+
I  
Input Bias Current Shift  
V
= V to V  
2.3  
4.4  
µA  
B
CM  
+
Input Bias Current Match (Channel-to-Channel)  
V
V
= V (Note 5)  
50  
50  
880  
880  
nA  
nA  
CM  
CM  
= V (Note 5)  
+
I
Input Offset Current  
V
V
= V  
= V  
40  
40  
440  
440  
nA  
nA  
OS  
CM  
CM  
+
I  
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
80  
400  
12  
880  
nA  
OS  
CM  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
n
i
f = 1kHz  
1.6  
5
n
C
A
IN  
VOL  
Large-Signal Voltage Gain  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
450  
350  
2000  
1500  
V/mV  
V/mV  
S
O
L
S
O
L
+
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
70  
66  
83  
81  
dB  
dB  
S
CM  
+
V = 3V, V = V to V  
S
CM  
2
LT1632/LT1633  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CMRR Match (Channel-to-Channel) (Note 5)  
CONDITIONS  
V = 5V, V = V to V  
MIN  
TYP  
MAX  
UNITS  
+
+
65  
61  
85  
82  
dB  
dB  
S
CM  
V = 3V, V = V to V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = 2.7V to 12V, V = V = 0.5V  
82  
79  
100  
101  
2.6  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 2.7V to 12V, V = V = 0.5V  
S
CM  
O
V
CM  
= V = 0.5V  
2.7  
O
V
V
No Load  
15  
32  
600  
30  
60  
1200  
mV  
mV  
mV  
mV  
OL  
I
I
I
= 0.5mA  
= 25mA, V = 5V  
= 20mA, V = 3V  
SINK  
SINK  
SINK  
S
500  
1000  
S
Output Voltage Swing High (Note 6)  
Short-Circuit Current  
No Load  
16  
42  
910  
680  
40  
80  
1800  
1400  
mV  
mV  
mV  
mV  
OH  
I
I
I
= 0.5mA  
= 20mA, V = 5V  
= 15mA, V = 3V  
SOURCE  
SOURCE  
SOURCE  
S
S
I
I
V = 5V  
±20  
±15  
±40  
±30  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.3  
45  
5.2  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
22  
MHz  
13  
11  
27  
22  
V/µs  
V/µs  
S
V
L
O
V = 3V, A = 1, R = Open  
S
V
L
t
Settling Time  
V = 5V, A = 1, R = 1k,  
400  
ns  
S
S
V
L
0.01%, V  
= 2V  
STEP  
0°C < TA < 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V – 0.1V  
600  
600  
2000  
2000  
µV  
µV  
OS  
OS  
CM  
CM  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
Input Offset Voltage Shift  
8
2.5  
15  
7
µV/°C  
µV/°C  
+
V
V
= V – 0.1V  
CM  
+
V  
= V + 0.2V to V – 0.1V  
400  
700  
2300  
3750  
µV  
µV  
OS  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V – 0.1V (Note 5)  
CM  
+
I
Input Bias Current  
V
CM  
V
CM  
= V – 0.1V  
0
2.6  
1.3  
1.3  
2.6  
0
µA  
µA  
B
= V + 0.2V  
+
I  
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
2.6  
5.2  
µA  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
50  
50  
1040  
1040  
nA  
nA  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
40  
40  
520  
520  
nA  
nA  
OS  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
80  
1040  
nA  
OS  
CM  
A
VOL  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
300  
200  
1100  
1000  
V/mV  
V/mV  
S
O
L
S
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
67  
61  
81  
77  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
62  
57  
78  
73  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
Power Supply Rejection Ratio  
V = 3V to 12V, V = V = 0.5V  
81  
77  
94  
95  
dB  
dB  
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
V = 3V to 12V, V = V = 0.5V  
S CM O  
3
LT1632/LT1633  
ELECTRICAL CHARACTERISTICS  
0°C < TA < 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
Minimum Supply Voltage (Note 9)  
CONDITIONS  
= V = 0.5V  
MIN  
TYP  
MAX  
UNITS  
V
2.6  
2.7  
V
CM  
O
V
Output Voltage Swing Low (Note 6)  
Output Voltage Swing High (Note 6)  
Short-Circuit Current  
No Load  
18  
37  
700  
560  
40  
80  
1400  
1200  
mV  
mV  
mV  
mV  
OL  
I
I
I
= 0.5mA  
= 25mA, V = 5V  
= 20mA, V = 3V  
SINK  
SINK  
SINK  
S
S
V
OH  
No Load  
16  
50  
820  
550  
40  
100  
1600  
1100  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
= 15mA, V = 5V  
= 10mA, V = 3V  
SOURCE  
SOURCE  
SOURCE  
S
S
I
I
V = 5V  
±18  
±13  
±37  
±26  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.9  
41  
6.0  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = 1, R = Open, V = 4V  
20  
MHz  
13  
10  
26  
21  
V/µs  
V/µs  
S
V
L
O
V = 3V, A = 1, R = Open  
S
V
L
40°C < TA < 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
700  
700  
2400  
2400  
µV  
µV  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
Input Offset Voltage Shift  
8
2.5  
15  
7
µV/°C  
µV/°C  
OS  
+
V
V
= V – 0.1V  
CM  
+
V  
= V + 0.2V to V – 0.1V  
475  
750  
2500  
4000  
µV  
µV  
OS  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V (Note 5)  
CM  
+
I
Input Bias Current  
V
CM  
V
CM  
= V – 0.1V  
0
3.0  
1.46  
1.46  
3.0  
0
µA  
µA  
B
= V + 0.2V  
+
I  
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
2.92  
6.0  
µA  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
70  
70  
1160  
1160  
nA  
nA  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
75  
75  
580  
580  
nA  
nA  
OS  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
50  
1160  
nA  
OS  
CM  
A
VOL  
V = 5V, V = 300mV to 4.7V, R = 10k  
V = 3V, V = 300mV to 2.7V, R = 10k  
250  
200  
1000  
800  
V/mV  
V/mV  
S
O
L
S
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V + 0.2V to V – 0.1V  
65  
60  
80  
75  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
+
CMRR Match (Channel-to-Channel) (Note 5)  
V = 5V, V = V + 0.2V to V – 0.1V  
62  
57  
78  
73  
dB  
dB  
S
CM  
+
V = 3V, V = V + 0.2V to V – 0.1V  
S
CM  
Power Supply Rejection Ratio  
V = 3V to 12V, V = V = 0.5V  
79  
75  
95  
95  
dB  
dB  
V
S
CM  
O
PSRR Match (Channel-to-Channel) (Note 5)  
Minimum Supply Voltage (Note 9)  
Output Voltage Swing Low (Note 6)  
V = 3V to 12V, V = V = 0.5V  
S
CM  
O
V
CM  
= V = 0.5V  
2.6  
2.7  
O
V
OL  
No Load  
19  
39  
730  
580  
40  
80  
1500  
1200  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
SINK  
SINK  
SINK  
= 25mA, V = 5V  
= 20mV, V = 3V  
S
S
4
LT1632/LT1633  
ELECTRICAL CHARACTERISTICS  
40°C < TA < 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OH  
Output Voltage Swing High (Note 6)  
No Load  
16  
55  
860  
580  
40  
110  
1700  
1200  
mV  
mV  
mV  
mV  
I
I
I
= 0.5mA  
= 15mA, V = 5V  
= 10mA, V = 3V  
SOURCE  
SOURCE  
SOURCE  
S
S
I
I
Short-Circuit Current  
V = 5V  
V = 3V  
S
±17  
±12  
±36  
±24  
mA  
mA  
SC  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate (Note 8)  
4.95  
40  
6.2  
mA  
S
GBW  
SR  
f = 100kHz  
V = 5V, A = –1, R = Open, V = 4V  
20  
MHz  
11  
9
22  
18  
V/µs  
V/µs  
S
V
L
O
V = 3V, A = –1, R = Open  
S
V
L
TA = 25°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V  
= V  
500  
500  
2200  
2200  
µV  
µV  
+
V  
Input Offset Voltage Shift  
V
= V to V  
360  
700  
2200  
3500  
µV  
µV  
OS  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V , V (Note 5)  
CM  
+
I
Input Bias Current  
V
CM  
V
CM  
= V  
= V  
0
2.2  
1.15  
1.15  
2.2  
0
µA  
µA  
B
+
I  
Input Bias Current Shift  
V
CM  
= V to V  
2.3  
4.4  
µA  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V (Note 5)  
50  
50  
880  
880  
nA  
nA  
= V (Note 5)  
+
I
Input Offset Current  
V
CM  
V
CM  
= V  
= V  
50  
50  
440  
440  
nA  
nA  
OS  
+
I  
Input Offset Current Shift  
Input Noise Voltage  
V
= V to V  
36  
400  
12  
880  
nA  
OS  
CM  
0.1Hz to 10Hz  
f = 1kHz  
nV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/Hz  
pA/Hz  
pF  
i
n
f = 1kHz  
1.6  
3
C
IN  
A
VOL  
f = 100kHz  
Large-Signal Voltage Gain  
V = 14.5V to 14.5V, R = 10k  
V = 10V to 10V, R = 2k  
800  
400  
5000  
2500  
V/mV  
V/mV  
O
L
O
L
Channel Separation  
V = 10V to 10V, R = 2k  
110  
82  
127  
98  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= V to V  
+
= V to V  
80  
101  
96  
V = ±5V to ±15V  
S
82  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = ±5V to ±15V  
S
80  
101  
V
No Load  
16  
150  
600  
35  
300  
1200  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
V
Output Voltage Swing High (Note 6)  
No Load  
16  
250  
1200  
40  
500  
2400  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
5
LT1632/LT1633  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
±70  
4.6  
45  
MAX  
UNITS  
mA  
I
I
Short-Circuit Current  
±35  
SC  
S
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
6
mA  
GBW  
SR  
f = 100kHz  
22  
22  
MHz  
V/µs  
A = 1, R = Open, V = ±10V,  
45  
V
L
O
Measure at V = ±5V  
O
t
Settling Time  
0.01%, V  
= 10V, A = 1, R = 1k  
575  
ns  
S
STEP  
V
L
0°C < TA < 70°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
= V – 0.1V  
800  
800  
2750  
2750  
µV  
µV  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
Input Offset Voltage Shift  
10  
5
17  
11  
µV/°C  
µV/°C  
OS  
+
V
V
= V – 0.1V  
CM  
+
V  
= V + 0.2V to V – 0.1V  
500  
800  
2500  
4000  
µV  
µV  
OS  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V – 0.1V (Note 5)  
CM  
+
I
Input Bias Current  
V
CM  
V
CM  
= V – 0.1V  
0
2.6  
1.3  
1.3  
2.6  
0
µA  
µA  
B
= V + 0.2V  
+
I  
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
2.6  
5.2  
µA  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
70  
70  
1040  
1040  
nA  
nA  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
70  
70  
520  
520  
nA  
nA  
OS  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
140  
1040  
nA  
OS  
CM  
A
VOL  
V = 14.5V to 14.5V, R = 10k  
V = 10V to 10V, R = 2k  
600  
300  
4000  
2000  
V/mV  
V/mV  
O
L
O
L
Channel Separation  
V = 10V to 10V, R = 2k  
110  
81  
125  
96  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= V + 0.2V to V – 0.1V  
+
= V + 0.2V to V – 0.1V  
77  
95  
V = ±5V to ±15V  
S
80  
94  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = ±5V to ±15V  
S
74  
95  
V
No Load  
21  
180  
680  
45  
350  
1400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
V
Output Voltage Swing High (Note 6)  
No Load  
15  
300  
1400  
40  
600  
2800  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
±28  
±57  
5.2  
41  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
6.9  
S
GBW  
SR  
f = 100kHz  
A = 1, R = Open, V = ±10V,  
20  
21  
MHz  
V/µs  
43  
V
L
O
Measured at V = ±5V  
O
6
LT1632/LT1633  
ELECTRICAL CHARACTERISTICS  
40°C < TA < 85°C, VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
Input Offset Voltage  
V
V
= V – 0.1V  
1000  
1000  
3000  
3000  
µV  
µV  
OS  
OS  
CM  
CM  
= V + 0.2V  
V
TC  
Input Offset Voltage Drift (Note 3)  
10  
5
17  
11  
µV/°C  
µV/°C  
+
V
V
= V – 0.1V  
CM  
+
V  
Input Offset Voltage Shift  
= V + 0.2V to V – 0.1V  
500  
850  
2600  
4000  
µV  
µV  
OS  
CM  
+
Input Offset Voltage Match (Channel-to-Channel) V = V + 0.2V, V – 0.1V (Note 5)  
CM  
+
I
Input Bias Current  
V
CM  
V
CM  
= V – 0.1V  
0
2.8  
1.4  
1.4  
2.8  
0
µA  
µA  
B
= V + 0.2V  
+
I  
Input Bias Current Shift  
V
CM  
= V + 0.2V to V – 0.1V  
2.8  
5.6  
µA  
B
+
Input Bias Current Match (Channel-to-Channel)  
V
CM  
V
CM  
= V – 0.1V (Note 5)  
75  
75  
1120  
1120  
nA  
nA  
= V + 0.2V (Note 5)  
+
I
Input Offset Current  
V
CM  
V
CM  
= V – 0.1V  
60  
60  
560  
560  
nA  
nA  
OS  
= V + 0.2V  
+
I  
Input Offset Current Shift  
Large-Signal Voltage Gain  
V
= V + 0.2V to V – 0.1V  
120  
1120  
nA  
OS  
CM  
A
VOL  
V = 14.5V to 14.5V, R = 10k  
V = 10V to 10V, R = 2k  
500  
250  
5000  
1800  
V/mV  
V/mV  
O
L
O
L
Channel Separation  
V = 10V to 10V, R = 2k  
110  
81  
124  
96  
dB  
dB  
dB  
dB  
dB  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel) (Note 5)  
Power Supply Rejection Ratio  
V
CM  
V
CM  
= V + 0.2V to V – 0.1V  
+
= V + 0.2V to V – 0.1V  
77  
95  
V = ±5V to ±15V  
S
80  
93  
PSRR Match (Channel-to-Channel) (Note 5)  
Output Voltage Swing Low (Note 6)  
V = ±5V to ±15V  
S
74  
95  
V
No Load  
23  
187  
700  
50  
350  
1400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 25mA  
SINK  
SINK  
V
Output Voltage Swing High (Note 6)  
No Load  
16  
300  
1500  
40  
600  
3000  
mV  
mV  
mV  
I
I
= 5mA  
= 25mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
±27  
±54  
5.3  
40  
mA  
mA  
SC  
Supply Current per Amplifier  
Gain-Bandwidth Product (Note 7)  
Slew Rate  
7
S
GBW  
SR  
f = 100kHz  
A = 1, R = Open, V = ±10V,  
20  
18  
MHz  
V/µs  
35  
V
L
O
Measure at V = ±5V  
O
The  
range.  
denotes specifications that apply over the full operating temperature  
Note 5: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LT1633; between the two amplifiers on the  
LT1632.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Output voltage swings are measured between the output and  
power supply rails.  
Note 2: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 7: V = 3V, V = ±15V GBW limit guaranteed by correlation to  
S
S
5V tests.  
Note 3: This parameter is not 100% tested.  
Note 8: V = 3V, V = 5V slew rate limit guaranteed by correlation to  
S
S
±15V tests.  
Note 4: The LT1632C/LT1633C are guaranteed to meet specified  
performance from 0°C to 70°C and are designed, characterized and  
expected to meet these extended temperature limits, but are not tested at  
40°C and 85°C. Guaranteed I grade parts are available, consult factory.  
Note 9: Minimum supply voltage is guaranteed by testing the change of  
to be less than 250µV when the supply voltage is varied from 3V to  
V
OS  
2.7V.  
7
LT1632/LT1633  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
V
OS Distribution, VCM = 0V  
VOS Distribution, VCM = 5V  
(NPN Stage)  
(PNP Stage)  
VOS Shift for VCM = 0V to 5V  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
V = 5V, 0V  
S
S
S
= 0V  
= 5V  
–1250 –750  
–250  
250  
750  
1250  
–1250 –750  
–250  
250  
750  
1250  
–1250 –750  
–250  
250  
750  
1250  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
1632/33 G31  
1632/33 G32  
1632/33 G33  
Input Bias Current vs  
Common Mode Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
2.0  
1.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
V
= 5V, 0V  
S
T
= 125°C  
A
1.0  
V
S
= ±15V  
T
A
= 25°C  
0.5  
0
V
S
= 5V, 0V  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 125°C  
= 55°C  
A
T
A
= 25°C  
T
= –55°C  
A
T
A
0
–2 –1  
1
2
3
4
5
6
16 20 24  
TOTAL SUPPLY VOTAGE (V)  
–75 –50 –25  
0
25 50 75 100 125  
0
4
8
12  
28 32 36  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
1632/33 G03  
1630/31 G01  
1632/33 G02  
Output Saturation Voltage vs Load  
Current (Output High)  
Output Saturation Voltage vs Load  
Current (Output Low)  
Input Bias Current vs Temperature  
2.8  
2.0  
10  
1
10  
1
V
= 5V, 0V  
V
S
= 5V, 0V  
S
V
= 5V, 0V  
CM  
S
V
= 5V  
1.2  
NPN ACTIVE  
PNP ACTIVE  
V
CM  
= ±15V  
S
0.4  
V
= 15V  
0
T
A
= 125°C  
T
= 125°C  
A
V
CM  
= ±15V  
= 15V  
–0.4  
–1.2  
–2.0  
–2.8  
S
T
= 25°C  
A
0.1  
0.01  
V
0.1  
0.01  
T
A
= 25°C  
V
= 5V, 0V  
CM  
T
A
= –55°C  
T
= –55°C  
S
A
V
= 0V  
50 –35 20 –5 10 25 40 55 70 85 100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1632/33 G06  
1632/33 G05  
1632/33 G04  
8
LT1632/LT1633  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Current Spectrum  
Minimum Supply Voltage  
Noise Voltage Spectrum  
20  
18  
16  
14  
70  
60  
50  
40  
30  
20  
600  
500  
400  
300  
200  
100  
0
V
= 5V, 0V  
V
= 5V, 0V  
S
S
12  
10  
V
= 4.25V  
CM  
NPN ACTIVE  
T
= 25°C  
A
8
6
4
2
0
V
= 4.25V  
CM  
NPN ACTIVE  
T
= 125°C  
T
A
= –55°C  
A
V
= 2.5V  
CM  
10 PNP ACTIVE  
V
= 2.5V  
CM  
PNP ACTIVE  
0
1
1
10  
100  
1000  
4
1
2
3
5
10  
100  
1000  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1632/33 G10  
11632/33 G09  
1632/33 G07  
0.1Hz to 10Hz  
Output Voltage Noise  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain and Phase vs Frequency  
80  
70  
225  
180  
120  
105  
90  
75  
60  
45  
30  
15  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= V /2  
S
R
V
= 1k  
V
V
= 5V, 0V  
= V /2  
CM  
L
S
S
S
CM  
= 3V, 0V  
S
V
= ±15V  
60  
135  
90  
50  
PHASE MARGIN  
PHASE  
40  
45  
30  
0
GAIN  
GAIN BANDWIDTH  
20  
–45  
–90  
–135  
–180  
–225  
10  
0
–10  
–20  
0.01  
0.1  
1
10  
100  
0
5
15  
20  
25  
30  
10  
TIME (1SEC/DIV)  
FREQUENCY (MHz)  
TOTAL SUPPLY VOLTAGE (V)  
1632/33 G11  
1632/33 G08  
1632/33 G14  
PSRR vs Frequency  
CMRR vs Frequency  
Channel Separation vs Frequency  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40  
–50  
–60  
–70  
–80  
–90  
V
= ±15V  
S
V
V
= ±15V  
OUT  
= 2k  
S
= ±10V  
P-P  
V
= ±15V  
S
R
L
V
S
= 5V, 0V  
POSITIVE SUPPLY  
80  
70  
60  
–100  
–110  
–120  
–130  
–140  
NEGATIVE SUPPLY  
50  
40  
30  
20  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1632/33 G12  
1632/33 G13  
1632/33 G15  
9
LT1632/LT1633  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Step vs  
Slew Rate vs Supply Voltage  
Capacitive Load Handling  
Settling Time to 0.01%  
10  
8
55  
50  
45  
40  
35  
30  
25  
20  
90  
80  
70  
60  
50  
40  
30  
V
= ±15V  
S
V
A
= 80% OF V  
V
A
= 5V, 0V  
= 1  
OUT  
V
S
S
V
L
= –1  
R
= 1k  
6
NONINVERTING  
INVERTING  
4
RISING EDGE  
2
0
FALLING EDGE  
–2  
–4  
–6  
–8  
–10  
NONINVERTING  
0.25  
INVERTING  
0.75  
0
4
8
12 16 20  
28 32 36  
24  
0
1.00  
0.50  
1
10  
100  
1000  
TOTAL SUPPLY VOLTAGE (V)  
SETTLING TIME (µs)  
CAPACITIVE LOAD (pF)  
1632/33 G17  
1632/33 G16  
1632/33 G18  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
200  
150  
100  
50  
20  
15  
20  
15  
V
S
= ±15V  
V
S
= 5V, 0V  
V = ±15V  
S
R
= 100Ω  
L
10  
5
10  
R
L
= 1k  
5
R
= 10k  
= 1k  
L
0
0
0
R
L
= 10k  
–5  
–50  
–100  
–150  
–200  
–5  
–10  
–15  
–20  
R
L
–10  
–15  
20  
0
5
–20 –15 –10 –5  
10 15 20  
1
2
4
0
5
6
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
3
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
1632/33 G19  
1632/33 G20  
1632/33 G21  
Total Harmonic Distortion + Noise  
vs Frequency  
Maximum Undistorted Output  
Signal vs Frequency  
Warm-Up Drift vs Time  
5
4
3
2
1
0
100  
0
1
0.1  
N8 PACKAGE, V = 5V, 0V  
A = 1  
V
S
V
= 2V  
P-P  
= 10k  
IN  
L
S8 PACKAGE, V = 5V, 0V  
R
S
A
= –1  
V
V
= 3V, 0V  
S
A
= 1  
V
–100  
–200  
–300  
–400  
–500  
N8 PACKAGE, V = ±15V  
S
LT1633CS, V = 5V, 0V  
S
0.01  
S8 PACKAGE, V = ±15V  
S
V
= 5V, 0V AND 3V, 0V  
S
A
= –1  
V
0.001  
LT1633CS, V = ±15V  
S
V
= 5V, 0V  
S
A
= 1  
V
V
= 5V, 0V  
S
0.0001  
80  
TIME AFTER POWER-UP (SEC)  
0
20 40 60  
100 120 140 160  
1
10  
100  
1000  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1630/31 G24  
1632/33 G22  
1632/33 G23  
10  
LT1632/LT1633  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Harmonic Distortion vs Frequency  
5V Small-Signal Response  
5V Large-Signal Response  
0
–20  
V
A
V
= 5V, 0V  
= 1  
S
V
= 2V  
IN  
P-P  
R
= 150Ω  
= 1k  
L
L
R
–40  
3RD  
2ND  
–60  
–80  
163233 G25  
1632/33 G26  
VS = 5V, 0V  
VS = 5V, 0V  
3RD  
A
V = 1  
AV = 1  
2ND  
RL = 1k  
R
L = 1k  
–100  
100  
1000  
2000  
200  
500  
FREQUENCY (kHz)  
1632/33 G29  
±15V Small-Signal Response  
Harmonic Distortion vs Frequency  
±15V Large-Signal Response  
0
–20  
V
A
V
= 5V, 0V  
= –1  
S
V
= 2V  
IN  
P-P  
R
= 150Ω  
= 1k  
L
L
R
2ND  
–40  
3RD  
–60  
2ND  
3RD  
–80  
1632/33 G27  
1632/33 G28  
VS = ±15V  
V = 1  
L = 1k  
VS = ±15V  
A
AV = 1  
R
RL = 1k  
–100  
100  
1000  
2000  
200  
500  
FREQUENCY (kHz)  
16312/03030G30  
U
W U U  
APPLICATIONS INFORMATION  
Rail-to-Rail Input and Output  
PNP pair becomes inactive for the rest of the input com-  
mon mode range up to the positive supply.  
The LT1632/LT1633 are fully functional for an input and  
output signal range from the negative supply to the posi- The output is configured with a pair of complementary  
tive supply. Figure 1 shows a simplified schematic of the common emitter stages Q14/Q15 that enables the output  
amplifier. The input stage consists of two differential to swing from rail to rail. These devices are fabricated on  
amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4 Linear Technology’s proprietary complementary bipolar  
that are active over different ranges of input common process to ensure similar DC and AC characteristics.  
mode voltage. The PNP differential input pair is active for Capacitors C1 and C2 form local feedback loops that lower  
input common mode voltages VCM between the negative the output impedance at high frequencies.  
supply to approximately 1.5V below the positive supply.  
Power Dissipation  
As VCM moves closer toward the positive supply, the  
transistor Q5 will steer the tail current I1 to the current  
mirror Q6/Q7, activating the NPN differential pair and the  
The LT1632/LT1633 amplifiers combine high speed and  
large output current drive in a small package. Because the  
11  
LT1632/LT1633  
U
W U U  
APPLICATIONS INFORMATION  
+
V
R3  
R4  
R5  
R6  
225  
+
Q12  
+IN  
Q11  
Q13  
Q15  
I
1
D1  
+
D6  
D5  
D8  
D7  
I
2
C2  
D2  
V
BIAS  
Q5  
R7  
225Ω  
C
V
C
OUT  
IN  
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
OUTPUT BIAS  
Q9  
R1  
Q8  
D4  
C1  
Q7  
Q6  
Q14  
R2  
V
1632/33 F01  
Figure 1. LT1632 Simplified Schematic Diagram  
amplifiers operate over a very wide supply range, it is  
possible to exceed the maximum junction temperature of  
150°C in plastic packages under certain conditions. Junc-  
tion temperature TJ is calculated from the ambient tem-  
perature TA and power dissipation PD as follows:  
P
DMAX = (30V • 5.6mA) + (15V – 7.5V)(7.5/500)  
= 0.168 + 0.113 = 0.281W  
If both amplifiers are loaded simultaneously, thenthe total  
power dissipation is 0.562W. The SO-8 package has a  
junction-to-ambientthermalresistanceof190°C/Winstill  
air. Therefore, themaximumambienttemperaturethatthe  
part is allowed to operate is:  
LT1632CN8: TJ = TA + (PD • 130°C/W)  
LT1632CS8: TJ = TA + (PD • 190°C/W)  
LT1633CS: TJ = TA + (PD • 150°C/W)  
TA = TJ – (PDMAX • 190°C/W)  
ThepowerdissipationintheICisthefunctionofthesupply  
voltage, output voltage and load resistance. For a given  
supply voltage, the worst-case power dissipation PDMAX  
occurs at the maximum supply current and when the  
output voltage is at half of either supply voltage (or the  
maximum swing if less than 1/2 supply voltage). There-  
fore PDMAX is given by:  
TA = 150°C – (0.562W • 190°C/W) = 43°C  
For a higher operating temperature, lower the supply  
voltage or use the DIP package part.  
Input Offset Voltage  
The offset voltage changes depending upon which input  
stage is active, and the maximum offset voltages are  
trimmed to less than 1350µV. To maintain the precision  
characteristics of the amplifier, the change of VOS over the  
entire input common mode range (CMRR) is guaranteed  
to be less than 1500µV on a single 5V supply.  
PDMAX = (VS • ISMAX) + (VS/2)2/RL  
To ensure that the LT1632/LT1633 are used properly,  
calculate the worst-case power dissipation, use the ther-  
mal resistance for a chosen package and its maximum  
junction temperature to derive the maximum ambient  
temperature.  
Input Bias Current  
The input bias current polarity depends on the input  
common mode voltage. When the PNP differential pair is  
active, the input bias currents flow out of the input pins.  
Example: An LT1632CS8 operating on ±15V supplies and  
driving a 500, the worst-case power dissipation per  
amplifier is given by:  
12  
LT1632/LT1633  
U
W U U  
APPLICATIONS INFORMATION  
They flow in the opposite direction when the NPN input  
stage is active. The offset voltage error due to input bias  
currents can be minimized by equalizing the noninverting  
and inverting input source impedance.  
tolessthan10mA.Internal225resistorsR6andR7will  
limittheinputcurrentfordifferentialinputsignalsof4.5V  
or less. For larger input levels, a resistor in series with  
either or both inputs should be used to limit the current.  
Worst-casedifferentialinputvoltageusuallyoccurswhen  
the output is shorted to ground. In addition, the amplifier  
is protected against ESD strikes up to 3kV on all pins.  
Output  
The outputs of the LT1632/LT1633 can deliver large load  
currents; the short-circuit current limit is 70mA. Take care  
to keep the junction temperature of the IC below the  
absolute maximum rating of 150°C (refer to the Power  
Dissipation section). The output of these amplifiers have  
reverse-biased diodes to each supply. If the output is  
forced beyond either supply, unlimited current will flow  
throughthesediodes.Ifthecurrentistransientandlimited  
to several hundred mA, no damage to the part will occur.  
Capacitive Load  
The LT1632/LT1633 are wideband amplifiers that can  
drive capacitive loads up to 200pF on ±15V supplies in a  
unity-gain configuration. On a 3V supply, the capacitive  
load should be kept to less than 100pF. When there is a  
need to drive larger capacitive loads, a resistor of 20to  
50should be connected between the output and the  
capacitiveload.Thefeedbackshouldstillbetakenfromthe  
output so that the resistor isolates the capacitive load to  
ensure stability.  
Overdrive Protection  
To prevent the output from reversing polarity when the  
input voltage exceeds the power supplies, two pairs of  
crossing diodes D1 to D4 are employed. When the input  
voltage exceeds either power supply by approximately  
700mV, D1/D2 or D3/D4 will turn on, forcing the output to  
the proper polarity. For this phase reversal protection to  
work properly, the input current must be limited to less  
than 5mA. If the amplifier is to be severely overdriven, an  
external resistor should be used to limit the overdrive  
current.  
Feedback Components  
The low input bias currents of the LT1632/LT1633 make it  
possible to use the high value feedback resistors to set the  
gain. However, care must be taken to ensure that the pole  
formedbythefeedbackresistorsandthetotalcapacitance  
at the inverting input does not degrade stability. For  
instance, the LT1632/LT1633 in a noninverting gain of 2,  
set with two 20k resistors, will probably oscillate with  
10pF total input capacitance (5pF input capacitance and  
5pF board capacitance). The amplifier has a 6MHz cross-  
ing frequency and a 55° phase margin at 6dB of gain. The  
feedback resistors and the total input capacitance form a  
pole at 1.6MHz that induces a phase shift of 75° at 5MHz!  
The solution is simple: either lower the value of the  
resistors or add a feedback capacitor of 10pF or more.  
The LT1632/LT1633’s input stages are also protected  
against large differential input voltages by a pair of back-  
to-back diodes D5/D8. When a differential voltage of  
more than 1.4V is applied to the inputs, these diodes will  
turn on, preventing the emitter-base breakdown of the  
input transistors. The current in D5/D8 should be limited  
U
TYPICAL APPLICATIONS  
Single Supply, 40dB Gain, 550kHz Instrumentation  
Amplifier  
The amplifier has a nominal gain of 100, which can be  
adjusted with resistor R5. The DC output level is set by the  
difference of the two inputs multiplied by the gain of 100.  
The voltage gain and the DC output level can be  
expressed as follows:  
An instrumentation amplifier with a rail-to-rail output  
swing,operatingfroma3Vsupplycanbeconstructedwith  
the LT1632 as shown in the first page of this data sheet.  
13  
LT1632/LT1633  
TYPICAL APPLICATIONS  
U
10  
0
R4  
R3  
R2 R3 +R2  
A =  
1+  
+
V
R1  
R5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
+
IN  
IN  
V
= V V  
A  
V
OUT  
Common mode range can be calculated by the following  
equations:  
V
V
= 3V, 0V  
S
= 2.5V  
IN  
P-P  
Lower limit common mode input voltage  
0.1k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
V
A
R2  
R5  
1.0  
1.1  
OUT  
1632/33 F03  
V
=
+ 0.1V  
CML  
V
Figure 3. Frequency Response  
Upper limit common mode input voltage  
V
A
R2  
R5  
1.0  
1.1  
With a 2.25VP-P, 100kHz input signal on a 3V supply, the  
filter has harmonic distortion of less than 87dBc.  
OUT  
V
=
+ V 0.15V  
(
)
CMH  
S
V
where V is supply voltage.  
RF Amplifier Control Biasing and DC Restoration  
S
Taking advantage of the rail-to-rail input and output, and  
the large output current capability of the LT1632, the  
circuit shown in Figure 4 provides precise bias current for  
the RF amplifiers and restores the DC output level. To  
ensure optimum performance of an RF amplifier, its bias  
point must be accurate and stable over the operating  
For example, the common mode range is from 0.15V to  
2.65V if the output is set at one half of the 3V supply. The  
common mode rejection is greater than 110dB at 100Hz  
when trimmed with resistor R1. The amplifier has a  
bandwidth of 550kHz.  
Single Supply, 400kHz, 4th Order Butterworth Filter  
5V  
ThecircuitshowninFigure2makesuseofthelowvoltage  
operation and the wide bandwidth of the LT1632 to create  
a400kHz4thorderlowpassfilterwithasinglesupply. The  
amplifiers are configured in the inverting mode to mini-  
mize common mode induced distortion and the output  
can swing rail-to-rail for the maximum dynamic range.  
Figure 3 displays the frequency response of the filter.  
Stopband attenuation is greater than 85dB at 10MHz.  
R4  
10  
R2  
R1  
453Ω  
10Ω  
5V  
Q1  
2N3906  
A1  
Q2  
2N3906  
1/2 LT1632  
+
+
C1  
0.01µF  
R3  
10k  
+
+
C6  
0.01µF  
C5  
0.01µF  
L1  
220µH  
L2  
220µH  
HP-MSA0785  
RF2  
HP-MSA0785  
RF1  
C3  
C2  
1500pF  
C4  
1500pF  
1500pF  
V
IN  
V
OUT  
47pF  
2.32k  
6.65k  
L3  
3.9µH  
L4  
2.32k  
22pF  
2.74k  
5.62k  
3.9µH  
V
IN  
2.74k  
+
220pF  
1/2 LT1632  
+
A2  
1632/33 F04  
470pF  
V
1/2 LT1632  
+
R5  
50Ω  
OUT  
1/2 LT1632  
V /2  
S
1632/33 F02  
Figure 4. RF Amplifier Control Biasing and DC Restoration  
Figure 2. Single Supply, 400kHz, 4th Order Butterworth Filter  
14  
LT1632/LT1633  
U
TYPICAL APPLICATIONS  
temperature range. The op amp A1 combined with Q1, Q2,  
R1, R2 and R3 establishes two current sources of 21.5mA  
to bias RF1 and RF2 amplifiers. The current of Q1, is  
determined by the voltage across R2 over R1, which is  
thenreplicatedinQ2.Thesecurrentsourcesarestableand  
precise over temperature and have a low dissipated power  
due to a low voltage drop between their terminals. The  
amplifier A2 is used to restore the DC level at the output.  
With a large output current of the LT1632, the output can  
be set at 1.5V DC on 5V supply and 50load. This circuit  
has a 3dB bandwidth from 2MHz to 2GHz and a power  
gain of 25dB.  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
8.255  
N8 1197  
(
)
(0.457 ± 0.076)  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
SO8 0996  
S Package  
14-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.337 – 0.344*  
(8.560 – 8.738)  
0.010 – 0.020  
(0.254 – 0.508)  
14  
13  
12  
11  
10  
9
8
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.228 – 0.244  
(5.791 – 6.197)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
S14 0695  
1
2
3
4
5
6
7
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1632/LT1633  
U
TYPICAL APPLICATION  
Tunable Q Notch Filter  
decrease Q as depicted in Figure 6, because the output  
induces less of feedback to amplifier A2. The value of R7  
should be equal or greater than R9 to prevent oscillation.  
If R8 is a short and R9 is larger than R7, then the positive  
feedbackfromtheoutputwillcreatephaseinversionatthe  
output of amplifier A2, which will lead to oscillation.  
A single supply, tunable Q notch filter as shown in Figure  
5 is built with LT1632 to maximize the output swing. The  
filter has a gain of 2, and the notch frequency (fO) is set by  
thevaluesofRandC. TheresistorsR10andR11setupthe  
DC level at the output. The Q factor can be adjusted by  
varying the value of R8. The higher value of R8 will  
C
1000pF  
C1  
2.2µF  
5V  
40  
20  
R
+
V
IN  
1.62k  
A1  
V
R
OUT  
1/2 LT1632  
R1  
1.62k  
1
INCREASING R8  
f =  
500Ω  
O
C
2πRC  
R2  
1k  
1000pF  
0
–20  
–40  
R = 1.62k  
C = 1000pF  
R6  
1k  
R5  
1k  
DECREASING R8  
R11  
R11+R10  
V
= 5V  
= 2.5V  
O(DC)  
C5  
4.7µF  
R7  
1k  
A2  
A
= 2  
V
5V  
1/2 LT1632  
+
R10  
10k  
R8  
5k  
R9  
1k  
0
20 40 60 80 100 120 140 160 180 200  
1632/33 F05  
FREQUENCY (kHz)  
C2  
4.7µF  
R11  
10k  
13632/33 F06  
Figure 6. Frequency Response  
Figure 5. Tunable Q Notch Filter  
RELATED PARTS  
PART NUMBER  
DESCRIPTON  
COMMENTS  
Input Common Mode Includes Ground, 275µV V  
LT1211/LT1212 Dual/Quad 14MHz, 7V/µs, Single Supply Precision Op Amps  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 1.8mA per Op Amp  
LT1213/LT1214 Dual/Quad 28MHz, 12V/µs, Single Supply Precision Op Amps  
LT1215/LT1216 Dual/Quad 23MHz, 50V/µs, Single Supply Precision Op Amps  
Input Common Mode Includes Ground, 275µV V  
6µV/°C Max Drift, Max Supply Current 3.5mA per Op Amp  
,
OS(MAX)  
Input Common Mode Includes Ground, 450µV V  
,
OS(MAX)  
6µV/°C Max Drift, Max Supply Current 6.6mA per Op Amp  
LT1498/LT1499 Dual/Quad 10MHz, 6V/µs Rail-to-Rail Input and Output  
High DC Accuracy, 475µV V  
Max Supply Current 2.2mA per Amp  
, 4µV/°C Max Drift,  
OS(MAX)  
C-LoadTM Op Amps  
LT1630/LT1631 Dual/Quad 30MHz, 10V/µs Rail-to-Rail Input and Output Op Amps High DC Accuracy, 525µV V , 70mA Output Current,  
OS(MAX)  
Max Supply Current 4.4mA per Amp  
C-Load is a trademark of Linear Technology Corporation.  
16323f LT/TP 0998 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
16 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY